Longitudinal MR Imaging of Dementia

Gerard R. Ridgway (CMIC)

Supervisors:

Prof. D.L.G. Hill (CMIC)
Prof. N.C. Fox (DRC, ION)
Dr. B. Whitcher (GSK)
Overview

• Introduction to application
 – Image analysis challenges
• Existing approaches
 – Limitations
• New techniques
• Future plans
What is dementia?

- Neurological disorders causing impaired functioning of the brain
- Alzheimer’s Disease
 - Most common form
 - Memory, learning, communication, judgement, etc.
 - 10% of over-65s
 - Growing problem
Why study dementia with MRI?

• Diagnosis is difficult
 – Proof of AD requires post-mortem
 – MRI is non-invasive and safe
• Structural changes observed before symptoms
 – (familial AD studies)
• MRI measures correlate with clinical and histopath
Why “longitudinal” imaging?

- Major biological variability
 - Confounds diagnosis from single scan
- *Progression* of atrophy
 - Distinguishing diseases
 - Disease modifying drugs
Subtraction
Existing Approaches

• BBSI
 – Global
• Traced ROI
 – Manual
 – Prior hypotheses
• Voxel-based Morphometry
 – Automatic
 – Local change over whole brain
<table>
<thead>
<tr>
<th>Register/normalise</th>
<th>Segment</th>
<th>Smooth</th>
<th>Voxel-wise stats</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Compare groups A and B with t-test at each voxel

Ignores correlations
Wastes temporal info
Multivariate Methods

- Principal Component Analysis
 - Models spatial and temporal correlations
 - Dimensionality reduction
- Linear Discriminant Analysis
 - Group differentiation
- Other techniques
 - ICA, N-way FA, Kernel methods
Projection on y-axis
\((t = 5.53)\)
Projection on PC2
Projection on LD
(t = 7.93)
Rigid registration difference images
Rigid registration difference images
Fluid registration Jacobian images
Global measure (BBSI) vs LDA on Jacobians

![Values of Brain Boundary Shift Integral](image1)

(t = 2.34)

![LDA Scores for Jacobian images](image2)

(t = 5.58)
Future Plans

- Other multivariate methods
 - Hierarchical/multi-way
- Better voxel-wise correspondence
 - Groupwise registration
- Enabling technologies
 - Reliable non-rigid registration
Acknowledgements & References

Funding from EPSRC and GSK (CASE Studentship)

Ashburner, J. & Friston, K.J. *Voxel-based morphometry--the methods.* Neuroimage, 2000, 11, 805-821

