
Agile Modeling and Design of Service-Oriented
Component Architecture

Zoran Stojanovic, Ajantha Dahanayake, Henk Sol

Systems Engineering Group, Faculty of Technology, Policy and Management,
Delft University of Technology,

Jaffalaan 5, 2628 BX Delft, The Netherlands
{Z.Stojanovic, A.Dahanayake, H.G.Sol}@tbm.tudelft.nl

Abstract. Component-Based Development (CBD) and Web Services (WS)
have been proposed as ways of building high quality and flexible enterprise-
scale e-business solutions that fulfill business goals within a short time-to-
market. However, current achievements in these areas at the level of modeling
and design are much behind the technology ones. This paper presents how
component-based modeling and design principles can be used as a basis for
modeling a Service-Oriented Architecture (SOA). Proposed design approach is
basically model-driven, but incorporates several agile development principles
and practices that provide its flexibility and agility in today’s ever-changing
business and IT environments.

1 Introduction

During the last years first Component-Based Development (CBD) [1] and then Web
Services (WS) [4] have been introduced as paradigms for building complex Web-
based systems and providing effective inter- and intra-enterprise application integra-
tion. Besides technology developments, there is a need to architect component-based
and service-oriented enterprise-scale software systems. Service-Oriented Architecture
(SOA) is an approach to distributed computing that considers software resources as
services available on the network that in collaboration provide comprehensive and
flexible system solutions. CBD and WS technology platforms are naturally the ways
of implementing SOA. However, developers and system architects cannot just start
using technology such as EJB or .NET or standards such as XML and SOAP in real-
izing the SOA. Effective methods for modeling and design of such a complex
architectural model are required. Among the other benefits, SOA design should
provide a necessary support in deciding:

• what component of the system can be exposed as a service, that can be potentially
used in intra- or inter-organization settings, offering a business value to the con-
sumer, and at the same time being as much as possible decoupled from the rest of
the system.

• what part of the system logical architecture can be realized by invoking a particu-
lar service over the Web, and how that part should interface with the existing or-
ganization’s system solution.

The SOA modeling and design approach should provide a way of capturing given
business requirements in the platform-independent system architecture that can be
further mapped into the particular implementation solution, providing effective bi-
directional traceability between business concepts and implementation assets. This is
the main idea behind the current Object Management Group’s (OMG) Model Driven
Architecture (MDA) [5]. On the other hand, due to ever-changing business, principles
and practices of another development paradigm called Agile Development (AD) must
be considered as well [3]. While both AD and MDA provide solutions for building
flexible solutions under the high change rates and within short time-to-market, their
targets and proposed mechanisms are quite dissimilar. Therefore the balance between
the two must be made in order to use the benefits of both paradigms.

The aim of the paper is to propose a service-oriented component modeling and de-
sign approach organized around the concepts of services and components in the Ser-
vice-Oriented Architecture. The approach provides a paradigm shift from components
as objects to components as service managers that makes component concepts capa-
ble for modeling the architecture of collaborating and coordinating loose-coupled
business-valued services. The approach is flexible and agile, providing the way of
balancing business and IT concerns, and adopting changes from both sides.

2 Related Work

SOA is an evolutionary, rather than revolutionary concept. A basis of SOA is the
concept of a service as a functional representation of a real-world business activity
meaningful to the end user and encapsulated in a software solution. Using the analogy
between the concept of service and a business process, SOA provides that loosely
coupled services are orchestrated into business processes that support organization’s
business goals. Components and services modeled in implementation-independent
way represent an abstraction layer between business and technology. Business goals,
rules, concepts and processes are captured by components and services at the specifi-
cation level that are further mapped to technology artifacts providing effective bi-
directional traceability between business and technology. The representation of the
building blocks of SOA in a conceptual way provides the level of communication and
understanding that is above the level of XML-based languages such as Web Services
Description Language (WSDL) [8]. This is particularly important for providing com-
mon understanding and effective communication among the project stakeholders.

The natural starting points for SOA modeling and design are component-based and
interface-based concepts and techniques, as well as the standard UML as a modeling
notation. The current version of the UML (version 1.5) still treats components mainly
as implementation units, rather than the main building blocks of the logical system
architecture (although there are some improvements in that direction from the version

1.3) [6]. An improved support for components has been promised for the next major
revision of the UML (version 2.0) scheduled for this year.

On the other hand, classical CBD methods do not provide thorough support for
business-level concepts and services within the SOA [1]. Their focus is mainly on
finer-grained components that closely map the underlying entities such as Customer,
Order, and Product, rather than on larger-grained, business value added services and
components as required by SOA. By treating components as binary-code packaging
artifacts during implementation and deployment and as larger-grained business ob-
jects during analysis and design, these methods are not well equipped for modeling
loosely coupled coarse-grained service-based components that offer business mean-
ingful services organized in the SOA. Moreover, by defining a number of modeling
artifacts as well as a complex and prescriptive way of using them proposed methods
are often heavyweight and not flexible and adaptable enough to fit into agile business
environments of today. A SOA modeling approach must be business service-driven
rather than data-driven with strong requirements for modeling service interaction,
coordination and dependencies at different levels of granularity. The collaboration
and coordination of service components become as important as components them-
selves.

Therefore a SOA modeling and design approach should be naturally based on
standard practices of component-based and object-oriented (OO) paradigms inte-
grated with business process and workflow design concept and techniques. Business
and system modeling and design are, more than ever before, integrated around the
same set of service concepts and solutions.

3 Service-Based Component Concepts

Components were first introduced at the level of implementation and deployment
through the component implementation models such as CORBA Components, Sun’s
Enterprise Java Beans, and Microsoft COM+/.NET. They have been defined as pack-
ages of binary and/or source code that can be deployed over the network nodes. Just
recently components have become important analysis and design artifacts in creating
logical system architecture.

On the other hand, Web services are self-contained self-describing, modular units
providing location independent business or technical services that can be published,
located and invoked across the Web. They are natural extension of component think-
ing. From a technical perspective the web service is essentially an extended and en-
hanced component interface constructs. Web services, as components, represent
black-box functionality that can be reused without worrying about how the service is
implemented.

While the component technology has been rather proprietary (divided basically
into two camps - Microsoft and Java-community), Web services have provided stan-
dards and protocols for interoperability of loose-coupled software constructs across
the Internet. Although these technology achievements such as XML, SOAP and
UDDI are necessary for enabling true interoperability, the way of designing a system
has not been changed. The basic design philosophy is still founded around compo-

nent-based design techniques such as interface-based design, black-box modeling,
design patterns, design by contract, dependency modeling etc. Therefore the compo-
nent design concepts are a solid foundation of an approach for designing service-
oriented architecture. While the classical objects in Object-Orientation are at too low
level of granularity to be considered as a basis for defining Web services, larger-
grained service-based business components represent a perfect mechanism for design-
ing services in a SOA.

For the purpose of modeling the main building blocks of SOA we introduce the
concept of service component. A service component is a self-contained service-based
building block. It delivers services to its environment through the contract-like inter-
face that abstracts its internal realization. Services can differ in granularity (coarse or
fine-grained) and nature (provides a transformation, computation or information).
Component collaborates with other service components in the single application
space or across the Internet to provide a higher-level goal.

The service component meta-model can be divided into two parts. First part de-
fines the basic concepts describing the very nature of a service component. At first
place a component can be defined through the three basic aspects:

• Context (environment) inside which the component exists.
• Contract that is defined according to the component role in the context and that

the component guaranties to fulfill.
• Content (interior) of the component that represents a realization of the compo-

nent contract.

A component does not exist in isolation; it fulfils a particular role in a given con-
text and actively communicates with it. A component participates in a composition
with other components to form a higher-level component. At the same time every
component can be represented as a composition of lower-level components. A com-
ponent must collaborate and coordinate its activities with other components in a com-
position to achieve a higher-level goal. Well-defined behavioral dependencies and the
coordination in time between components are of a great importance in achieving the
goal.

The second part of the component meta-model defines the basic elements of the
component contract as the main aspect of a service component. Component contract
concepts represent the complete information about the component necessary for its
consumer to use it without knowing its interior. This is an enriched and enhanced
basic interface construct that now contains all the information about the component
(or service) that must be known by its context in order to make use of it. In this way a
component interface goes beyond simple operations’ signatures to become a real
business contract between a component as a service provider and the context as a
service consumer. The following are the contractual concepts of a component:

• Component identification
- Unique name in the naming space or identifier, the goal and purpose of a com-

ponent (service).
• Component behavior

- Operations (actions) provided and required,

- Pre-conditions and post-conditions defined on these operations,
- Events published and subscribed,
- Coordination of operations and/or events to provide a higher-level behavior.

• Component information
- Information types that the component uses or handles (not necessarily stores)

mostly as parameters for services and operations the component provides and
requires,

- Invariants and constraints on these information objects.
• Configuration parameters

- Parameters defined by the component that can adapt its contract to fit into pos-
sibly new requirements coming from the context, such as required Quality of
Service (QoS), location in space, location in time, consumer profiles, etc.

• Non-functional parameters
- Parameters that characterize the “quality” of component behavior in the con-

text, such as performance, reliability, fault tolerance, priority, security etc.

The component contract can be fully specified using different mechanisms, from
natural language to formal specification language and to XML-based language if we
want a machine-readable specification of a component. On the other hand the compo-
nent contract can be implemented using different implementation tools and tech-
niques to provide the life of the component in the world of bits.

4 SOA Modeling Approach

Complexity of distributed enterprise systems raises the need for using the separation
of concerns in specifying system architecture. Therefore, we use as underlying
frameworks both OMG’s MDA and ISO standard Reference Model of Open Distrib-
uted Processing (RM-ODP) [7] for defining the three architectural models that repre-
sent logical layers of our service-oriented component architecture:

• Business Architecture Model (BAM) – a model of the system as collaboration of
components and services that offer business value.

• Application Architecture Model (AAM) – a model of the system that shows how
business components and services are realized by the collaboration of finer-
grained components and services.

• Implementation Architecture Model (IAM) – a model of the system that shows
how business and application components and services can be realized using a
particular implementation platform.

The BAM roughly corresponds to ODP Enterprise Viewpoint, AAM to ODP Com-
putational Viewpoint, and IAM to Technology Viewpoint. Distribution concerns in
the ODP described by the Engineering Viewpoint, and information semantics and
dynamics in the ODP described by the Information Viewpoint are not treated sepa-
rately in our application framework then integrated throughout all three architectural
models. Thus distribution can be considered as business components distribution
(virtual enterprises, legacy assets, web services), application distribution (logical

distribution tiers) and implementation distribution (support by the particular middle-
ware). Similar to this, a conceptual information model is defined in the BAM, a speci-
fication information model is fully specified in the AAM, and the ways of permanent
data storage are considered in the IAM. The Figure 5 shows our architectural model-
ing framework.

Fig. 1. Architecture Modeling Framework

The BAM and AAM actually represents two levels of abstraction of a service-
oriented MDA’s Platform-Independent Model (PIM), while the IAM describes a
service-oriented Platform Specific Model (PSM) for a particular technology platform.
By focusing on two basic component stereotypes – Business Service Component and
Application Service Component, we can define two levels of a Platform Independent
Model. The first PIM level defines how business process is supported through con-
tractual collaboration and coordination of service-based business components. The
second level “opens” black-box business components and defines how their interior
design is realized through collaboration and coordination of finer-grained application
components and services. By defining all three models in a consistent manner, the
whole system is specified and ready for implementation. The best result is achieved
using constant iteration and small increments during design, as suggested by agile
development principles.

The main goal of the BAM is to specify the behavior of the system in the context
of the business for which it is implemented in terms of collaborating and coordinating
chunks of business functionality represented as business service components. BAM
starts with the following models: activity model that shows the flow of activities in

the system, use case model and domain information object model. Based on use cases
that fulfill business user goals (i.e. that correspond to Elementary Business Processes
[2]) we define business services that system should provide, as well domain informa-
tion objects used by these services. For each use case (and a service that supports it)
the use cases that precede it, follow it, perform in parallel with it or be synchronized
in other way with it should be defined, Figure 2. Furthermore, for each use case its
superordinate and subordinate use cases should be defined providing a hierarchy of
use cases, i.e. business goals. This can be illustrated using an activity diagram with
use cases as action states of the diagram, or a sequence diagram enriched to express
the action semantics (sequence, selection, loop, fork/join, etc.) with the use cases on
the horizontal axis of the diagram. Domain information types are cross-referenced
with the use cases defining, for each use case, what information types are needed for
its performance.

Find a Product Pay a BillSend an Order

<<precede>> <<precede>>

Fig. 2. The example of the relation <<precede>> between use cases

Services that support given use cases can be specified in two ways:

• in an agile-like manner using Service-Responsibility-Coordination (SRC) cards,
Figure 3, as a variant of a CRC (Class-Responsibility-Collaborator) cards,

• by using more formal specification mechanisms derived from the use case speci-
fication template [2].

Fig. 3. Service-Responsibility-Coordination (SRC) Card

Main elements of the SRC card are:

• Service – its name reflecting its goal, purpose and scope.
• Responsibility – description of its behavior preferably through lower-level ser-

vices or activity steps it provides together with information objects that should be
used by the service as some kind of parameters.

• Coordination – what services (events) precede or trigger this one, what services
should follow this one, or what events should be emitted; furthermore what are
eventual subordinate services and a superordinate service of this one.

By using the set of different business and technical criteria, such as semantic cohe-
siveness, shared data objects, market value, reusability potential, existing assets, etc.,

identified services are allocated to Service Cluster Units, which represent blueprints
for business service components of the system. Again, business service components
can be specified in a more formal contract-based manner, or, if the nature of the pro-
ject suggests, in more agile way using Component-Responsibility-Collaborator-
Coordination (CRCC) cards as another variant of classical CRC cards. Collaboration
and coordination of business service components that form the system can be repre-
sented using the component stereotype of the sequence diagram enriched to express
control flow mechanisms. Information about that is derived from the relationships
among use cases that particular business service components support. The relations
among the concepts of business components, services and business goal-oriented use
cases are shown in Figure 4.

Use CaseBusiness Com ponent Service

1..*+supports 1..*1..*+provides 1..*

Fig. 4. Conceptual relations between business components, services (operations) and use cases

The goal of the AAM is to define how interior of business service components is
realized in terms of collaboration of lower-level application components and services
that do not provide a direct business value. There can be different types of application
service components:

• Services that communicate with the business service component consumers by
transferring their requests to the form understandable to the business logic and
back. They should hide potentially different service consumers from business
service logic.

• Services that provide some computation or data transformation logic;
• Services that represent contact points for information about business entities used

by the given business component.
• Data access and data handler service components that hide variety of data storage

formats from the business service logic.
• Service components that support included and extended use cases of the use

case(s) realized by the given business service component;
• Coordination manager that coordinates other application service components

inside the business component;
• Event manager component that manages the event subscription and notification

mechanisms in an event-driven environment;
• Business rule manager component that handles business rules captured by the

given business service component and maps these rules to pre-conditions, post-
conditions, invariants, coordination conditions and other constraints defined on
the component behavior and structure.

The result of the AAM is complete, fully specified, component-oriented platform-
independent model that should be further considered for implementation on a particu-
lar technology platform. Functionality offered by a Business Component can be ex-
posed as both inter- and intra-enterprise Web service in a SOA. On the other the

services offered by an Application Component can be also used as Web services, but
mainly internally to the enterprise.

IAM uses the complete business-driven component-based distributed system archi-
tecture specified through the previous models, and translates them to platform-
specific models according to the chosen target implementation platform. To provide
further flexibility of the architecture models we propose a technique called compo-
nent refactoring which aims at reallocating and rearranging sub-components or sub-
services of the component being addressed, while preserving its contractual behavior,
analog to code refactoring used in agile development [3]. Application components are
normally implemented using implementation components, language objects/classes or
other programming constructs. Application Components can be directly or indirectly
instantiated (addressable) depending on their granularity. On the other hand, Business
Components are implemented as a composition of software constructs that realize
their sub-components (in which case they are indirectly instantiated), or can be used
as already built third-party software units, such as wrapped legacy assets, Web ser-
vices or COTS components (in which case they are directly addressable in a general
sense).

5 Conclusion

The SOA modeling arises certain requirements on top of the standard OO and CBD
modeling methods. Therefore, straightforward applying of existing UML and CBD
concepts for the purpose of modeling the SOA, although a good starting point, is not
a feasible approach. The UML component concept as a natural basis for SOA model-
ing is still mainly implementation-related, while popular CBD methods are mainly
focused on finer-grained entity-driven components. Due to the business-driven char-
acter of SOA, a proper modeling approach should combine component-based and
object-oriented (OO) modeling concepts on one side with activity and workflow
modeling mechanisms on the other side.

This paper presents a business-driven agile approach for modeling component- and
service-oriented architecture. The approach provides a paradigm shift from compo-
nents as objects to components as service managers. In this way the approach is capa-
ble of modeling the system architecture representing a contract-based collaboration
and coordination of components and services. Since components and services are
identified based on business requirements, goals and rules, then fully specified inside
the logical system architecture and implemented using advanced CBD and WS tech-
nology, the approach provides bi-directional traceability between business concepts
and implementation artifacts. The approach is basically model-driven but incorporates
certain agile development concepts, principles and practice (e.g. cards, refactoring,
user involvement) making an effective combination between the two in order to
achieve the goals of adaptable process and solution, high-quality and on-time devel-
opment products that closely reflect business goals and needs. The approach makes
use of standards OMG MDA and RM-ODP to provide iterative and incremental ar-
chitectural modeling and design through different architecture abstraction levels pro-

viding complete specification of the system ready for implementation in chosen plat-
form.

References

1. D’Souza, D.F. and Wills, A.C.: Objects, Components, and Frameworks with UML: the
Catalysis Approach. Addison-Wesley, (1999)

2. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley (2001)
3. Cockburn, A.: Agile Software Development. Addison-Wesley, Boston MA (2002)
4. IBM Web Services, http://www.ibm/com/webservices.
5. OMG Object Management Group, MDA- Model Driven Architecture, information available

at http://www.omg.org/mda/
6. OMG Object Management Group, UML- Unified Modeling Langauge, information available

at http://www.omg.org/uml/
7. ODP, International Standard Organization (ISO), Reference model of Open Distributed

Processing: Overview, Foundation, Architecture and Architecture semantics, ISO/IEC
JTC1/SC07, 10746-1 to 4, ITU-T Recommendations X.901 to 904, 1996.

8. W3C. World-Wide-Web Consortium, WSDL (Web Services Description Language). Avail-
able: http://www.w3.org/TR/wsdl

