
Using Web services in the European Grid of Solar
Observations (EGSO)

Simon Martin and Dave Pike

Space Science and Technology Department, Rutherford Appleton Laboratory, Chilton,
OX11 0QX, UK

{simon.martin, c.d.pike}@rl.ac.uk

Abstract. The European Grid of Solar Observations (EGSO) [1] is employing
Grid computing concepts to federate heterogeneous solar data archives into a
single ‘virtual’ archive, allowing scientists to easily locate and retrieve
particular data sets from multiple sources. EGSO will also offer facilities for the
processing of data within the Grid, reducing the volume of data to be
transferred to the user. In this paper, we examine the use of Web services in
EGSO as a means of communicating between the various roles in the system.

1 Introduction

To understand the Sun, solar physicists need access to data from a variety of
instruments scattered across the globe. Data are stored in archives with varying
degrees of accessibility. Even if easily accessible via the Internet, these archives are
heterogeneous, with the metadata catalogues describing the data varying widely
between archives [1]; hence obtaining the desired data can often be difficult.
Additionally, the volumes of data involved are very large. Current archives may have
accumulated as much as 1TB of data, whilst future missions may produce this
quantity of data in a day. As well as the problems associated with searching large
archives, transferring vast amounts of data across networks is undesirable.

EGSO is a Grid test-bed whose main aim is to improve access to solar data. This
will be achieved by federating distributed data archives, creating standardised meta-
data catalogues of the data available and providing users with tools to search these
catalogues for specific data sets and retrieve them, whilst insulating the user from the
details of data access [2]. EGSO will reduce the amount of data transfer required by
providing data processing facilities (e.g. to calibrate datasets) within the Grid; hence
EGSO is both a data and service Grid [3].

In this paper we briefly outline the EGSO functional architecture (section 2) and
describe how Web services are being employed in the current phase of the EGSO
project (section 3). Section 4 assesses the suitability of Web services for this purpose.

2 The EGSO Functional Architecture

The functional architecture for EGSO defines three separate roles [4]: consumers,
providers and brokers (an organisation may play multiple roles). In simple terms, a
consumer represents the user interaction with EGSO, and interacts initially with a
broker to discover which provider(s) may hold the desired data (or service). The
consumer then contacts the relevant provider(s) to obtain the requested data (or
service). Providers are usually linked to data centres and offer data access facilities,
but may offer services such as data processing. Brokers collect information from
providers, such as metadata catalogues or details of their services, which can then be
used by consumers to perform data searches; the system has multiple brokers which
can behave as a single ‘virtual broker’, although this multiplicity is invisible to
consumers. Typical information to be exchanged between roles includes data files,
images, fragments of metadata catalogues, and details such as authentication data or
session IDs.

Roles interact with each exclusively via an external interaction subsystem, which
must support passing messages of the types listed above, whilst being loosely coupled
to the rest of the role to allow possible replacement as Grid technologies mature. The
subsystem contains components which allow the consumer to interact with the broker
and provider, the provider to interact with the broker and consumer, and the broker to
interact not only with consumers and providers, but also with other brokers.

3 Using Web services in EGSO

Web services represent a service-oriented approach to distributed computing, with
services accessed via XML messaging over Internet-based protocols for platform-
independence [5]. Standards [6] such as XML and SOAP ensure interoperability,
whilst UDDI and WSDL allow the discovery and description of Web services.
Although Grid middleware is available (e.g. the Globus toolkit [7]), at this time we
have decided to use Web services for inter-role communications (i.e. in the external
interaction subsystem) in EGSO for several reasons. Web services are compliant with
direction of W3C and industry, they are platform independent, they are lightweight,
and can be easily replaced and deployed on systems. They are also loosely coupled,
and enable remote procedure call (RPC) and document exchange type Web services
to be implemented, synchronously and asynchronously [8]. Furthermore, the Globus
toolkit is starting to implement the Open Grid Services Architecture (OGSA) [9],
which integrates Web services and Grid technologies and concepts; OGSA is not yet a
mature technology, but we are then well positioned to implement it if necessary in
place of Web services.

3.1 Implementation

Document exchange and RPC-type Web services were investigated to determine their
suitability for use in EGSO. Sun’s Java Web Services Developers Pack (JWSDP) v1.1

[10] was used to implement both types of Web services. RPC-type Web services were
also developed using Apache Axis, a SOAP implementation [11].

To develop RPC-type Web services and clients, the JWSDP provides the Java API
for XML-based RPC (JAX-RPC); the current Reference Implementation uses SOAP
as the application protocol and HTTP as the communication protocol. The API hides
much of the complexity from the developer, representing method calls and responses
as SOAP messages. On the server side, the developer specifies remote procedures by
defining these methods in a Java interface, and codes the relevant classes that
implement those methods. On the client side, the remote method is called on a stub
object, which acts as a proxy for the remote service. The JWSDP tools create any
required classes (e.g. stubs) and deploy the Web service in a Web container (Tomcat).

Axis can create Web services in a similar manner, but also allows for very simple
deployment of RPC-type Web services; Java classes with public methods can be
exposed as Web services by simply placing them in a target directory. Clients can
then be created using a simple Axis API to access the service. Both Axis and JAX-
RPC also allow the use of dynamic proxies or dynamic invocation interfaces to access
Web services whose WSDL descriptions are only known at runtime, although this
method was not tested.

Document exchange-type Web services were developed with the JWSDP using the
Java API for XML Messaging (JAXM) and SOAP with Attachments API for Java
(SAAJ). JAXM provides classes and interfaces for creating a special type of servlet
(JAXMServlet) which can send and receive SOAP messages, and for using messaging
providers, discussed below. SAAJ is used for creating SOAP messages (with optional
attachments) and sending them synchronously without using a provider. XML
messages can be sent between applications with or without the use of a messaging
provider. In the former case, a standalone JAXM client can run independently, or
within a Web container. It sends a SOAP message synchronously over a connection to
a listening JAXM servlet; this is known as request-response messaging.

Alternatively, JAXM applications can use messaging providers (they are then
peers). A messaging provider is a service hidden from the developer that handles the
transmission and routing of messages. Very simply, the client sends the SOAP
message to its messaging provider with the details of the recipient(s) in the SOAP
Header. The messaging provider then forwards the message to the servlet’s provider,
which then sends the SOAP message to the servlet. There are several advantages to
using messaging providers including the fact that they are continuously active, and so
a JAXM application can close its connections after sending a message and the
provider will still send the message; the provider can also be configured to resend
messages until they are successfully delivered, and will store incoming messages for
the application ready for delivery upon reconnection. A significant advantage of
messaging providers in the context of EGSO is the ability to send a message to
multiple intermediate destinations before the message is delivered to its final
recipient. The intermediate destinations, or actors, are specified in the header of the
SOAP message. Providers can also incorporate profiles which are implemented on top
of SOAP; these are specifications that tell providers how to route messages.

4 Assessment of Web services for use in EGSO

In developing both types of Web service, the largest barrier to progress was found to
be incomplete documentation. RPC-type Web services were quite easy to deploy
using JAX-RPC and Axis, with Axis being the simpler of the two. Document
exchange Web services were also found to be easy to employ using JAXM; creating
and sending simple SOAP messages synchronously was quite straightforward.
However, the real strengths of using JAXM were found to be the ability to add
attachments of any type (e.g. images, text files) to the SOAP message, and the ability
to use messaging providers to not only ensure delivery of messages, but to send the
message to multiple recipients.

There are several issues to be considered before committing to use Web services in
such a large scale project. Security is a prime concern when using Web services e.g.
[13]; issues include authentication (verifying the identity of the message sender),
authorisation (determining whether the sender has permission to perform the
requested operation), integrity (verifying that the message received is unmodified),
and confidentiality (keeping the message private from unauthorised users).

There are also several quality of service (QoS) and performance issues which need
to be addressed [14]. In terms of reliability, SOAP messages are transmitted using
HTTP; hence there is no guarantee of packets being delivered to their destination. In
terms of RPC and synchronous document exchange services, this is a problem as the
SOAP message will need to be resent. However, this can be overcome with JAXM
since messaging providers will re-send a message until it is delivered. The use of
SOAP (XML) can cause performance problems, both in terms of applications parsing
the XML and the fact that XML messages tend to be substantially larger than
equivalent binary data, increasing bandwidth usage. Furthermore, network latency,
web server/container performance under load and back end systems can also affect
performance. However, given the vast amounts of data which need to be searched in
order to locate a particular data set for a user, along with processing of this data, then
many of these performance issues may be inconsequential.

5 Conclusions

Web services are relatively easy to develop and deploy. RPC-type Web services can
easily implement simple method calls, or could be used to initiate more complex tasks
through a composition of method calls. Document exchange using JAXM appears to
be very well suited to use in EGSO, with its ability to send messages reliably, to
multiple recipients, and to send non-XML content as attachments.

Some further investigations need to be carried out regarding issues such as
scalability, optimisations, and security, although these are not barriers to
implementing Web services in EGSO. Web services appear to be a viable method for
communicating between the roles in EGSO, particularly in the early stages of
production to allow integration testing of various components under relatively light
load levels. The lightweight nature and loose coupling of Web services means that it

should be relatively easy to add new roles into EGSO, and the external interaction
subsystem can also be easily replaced with Grid middleware if required.

References

1. http://www.egso.org
2. Csillaghy, A., Zarro, D. M., and Freeland, S. L.: Steps towards a virtual solar observatory.

IEEE Signal Processing Magazine, N.18/2 (2001) 41-48
3. Foster, I., and Kesselman, C. (eds.): The Grid: Blueprint for a New Computing

Infrastructure. Morgan Kaufmann Publishers (1999)
4. Piccinelli, G. (ed.): EGSO Architecture. EGSO Report EGSO-WP1-D4 (2003)
5. Vasudevan, V.: A Web Services Primer

http://webservices.xml.com/pub/a/ws/2001/04/04/webservices/index.html (April 2001)
6. http://www.webservices.org/index.php/article/archive/3/
7. http://www.globus.org
8. Chappell, D. A., and Jewell, T.: Java Web Services. O’Reilly and Associates (March 2002)
9. Foster, I., Kesselman, C., Nick, J. M., and Tuecke, S.: The Physiology of the Grid: An Open

Grid Services Architecture for Distributed Systems Integration. Open Grid Service
Infrastructure WG, Global Grid Forum (June 22, 2002)

10. http://java.sun.com/webservices/webservicespack.html
11. http://ws.apache.org/axis/
13. Deitel, H. M., Deitel, P. J., Gadzik, J. P., Lomelí, K., Santry, S. E., and Zhang, S.: Java Web

Services for Experienced Programmers. Prentice Hall (2003).
14. Mani, A., and Nagarajan, A.: Understanding quality of service for Web services. IBM

Developer Works, http://www-106.ibm.com/developerworks/library/ws-quality.html,
(January 2002)

