
Modularizing Web Services Management with AOP

María Agustina Cibrán, Bart Verheecke

System and Software Engineering Lab
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussels, Europe

{Maria.Cibran, Bart.Verheecke}@vub.ac.be

Abstract. Web service technologi es accelerate application development by
allowing the selection and integration of third-party web services, achieving
high modularity, flexibility and configurability. However, current approaches to
integrate web services in client applications do not provide any management
support, which is fundamental for achieving robustness. In this paper we show
how Aspect Oriented Programming (AOP) can be used to modularize service
management issues in service oriented applications. To deal with the dynamic
nature of the service environment we suggest the use of a dynamic aspect-
oriented programming language called JAsCo. We encapsulate the management
code in aspects placed in an intermediate layer in between the application and
the world of web services, called Web Services Management Layer (WSML).

1. Introduction

Web services (WS) are modular applications that are described, published, localised
and invoked over a network. Web services technologies accelerate application
development by allowing the selection and integration of third-party web services,
achieving high modularity, flexibility and configurability. However, current
approaches only allow this integration by hard wiring the references to concrete web
services into the client applications. As stated in [1], this leads to unmanageable
applications that cannot adapt to changes in the business environment (e.g. a service
that is abandoned or changed, a new service that becomes available on the market,
etc). Moreover these approaches do not provide any management support, which is
fundamental for achieving robustness. To deal with these issues, code has to be
written manually and repeated for each service, resulting scattered in the application.
We observe the need for the application to be independent of specific services.

The focus of this paper is to show how the modularization of service management
issues can be enhanced by using dynamic Aspect Oriented Programming (AOP) [2]
[3]. To deal with the dynamic nature of the service environment we suggest the use of
a dynamic aspect-oriented programming language called JAsCo [4] [5]. We
encapsulate the management code in aspects placed in an intermediate layer in
between the application and the world of web services, called Web Services

2 María Agustina Cibrán, Bart Verheecke

Management Layer (WSML) [6]. In the next section we motivate the need for AOP
and introduce JAsCo. In section 3 we show how JAsCo is ideal to modularize the
management functionality of the WSML and provide some code examples. Finally,
we present our conclusions in section 4.

2. WS Integration and Management as Crosscutting Concerns

The web service architecture is the logical evolution of object-oriented principles in a
distributed context. Just as in object oriented approaches, the fundamental concepts of
web services are encapsulation, message passing, dynamic building, interface
description and querying. However, the distributed nature of web service applications
leads to the emergence of various management concerns that are difficult to
modularize using traditional software engineering methodologies.

First of all, we want to avoid hard wiring references to concrete services in the
applications achieve high flexibility in the selection of services. By decoupling web
services from the client application the concept of most suitable service is introduced.
With current approaches it would be the responsibility of the application to decide
which the most appropriate services are. This way, code for implementing service
selection would be written at each point where some service functionality is required,
resulting tangled and scattered in different places in the application. Thus, we need
support for encapsulating this crosscutting code separated from the application and
plug it in and out in a non-invasive way.

Moreover the selection of services also involves other management issues to be
considered at the moment the services are integrated in the applications. For instance,
services might need to control security, accounting, billing concerns at the time their
functionality is requested. This also results in crosscutting code since the application
developer would need to include this management code each time a service is
requested.

Therefore, to avoid tangling the application code with service related code we identify
the need for AOP. AOP states that some concerns of a system, such as
synchronisation and logging, cannot be cleanly modularized using current software
engineering methodologies, which leads to code duplication. To this end, AOP
approaches introduce a new concept that is able to modularize crosscutting concerns,
called an aspect. An aspect defines a set of join points in the target application where
the normal execution is altered.

Using aspects to express the selection and management concerns as part of the
WSML allows the application to remain independent of the service selection
infrastructure. Moreover, we also pursue dynamism in the management of services
and therefore an AOP technology that provides support for dynamic inclusion and
removal of aspects is required. For this reason we introduce an aspect-oriented
implementation language called JAsCo. JAsCo combines the expressive power of

Modularizing Web Services Management with AOP 3

AspectJ [7] with the aspect independency idea of Aspectual Components [8].
Originally JAsCo was designed to integrate aspect-oriented ideas into Component-
Based Software Development [9]. However, JAsCo has some characteristics that are
also useful in an object-oriented context:
• Aspects are described independently of a concrete context, making them highly

reusable.
• JAsCo allows easy application and removal of aspects at run time.
• JAsCo has extensive support for specifying aspect combinations.

JAsCo introduces two concepts:
• Aspect Beans: specify crosscutting behaviour by defining hooks which specify

when the normal execution of a method should be intercepted and what extra
behaviour should be executed.

• Connectors: apply the crosscutting behaviour of the Aspect Beans specifying
where the crosscutting behaviour should be deployed.

JAsCo enables the run-time plug in and out of connectors. This high flexibility and
configurability is exactly what is needed for the management of web services. For
more information about JAsCo we refer to [4], [5].

3. JAsCo Aspects in the WSML

3.1 Introducing WSML

In [6] we present an abstraction layer, called Web Services Management Layer
(WSML), which is placed between the application and the world of web services. It
realises the concept of just-in-time integration of services: multiple services or
compositions of services can be used to provide the same functionality.

Figure 1 illustrates the general architecture of the WSML. On the left side the core
application resides, and if necessary, web service requests are issued to the layer. The
WSML is responsible for choosing the most appropriate service or composition in a
completely transparent way. This is realised by the Selection Module by considering
different service properties. The collaboration with the Monitoring Module is
required for this purpose as several properties of services might need observation over
time.

Additional management functionality resides in the layer like traffic optimisation,
billing, accounting, security, transaction, etc. The WSML is reusable in new
applications and is completely configurable to avoid unnecessary overhead.

4 María Agustina Cibrán, Bart Verheecke

Fig. 1. General Architecture of WSML

The WSML has the following advantages:
• The application becomes more flexible as it can continuously adapt to the changing

business environment and communicate with new services.
• Extracting all web service related code from the core application facilitates future

maintenance of the code.
• Weakening the link between the application and the service enables hot swapping

of services.

In the remainder of this section generic management aspects to deal with the
crosscutting concerns will be presented.

3.2 Using Aspects for Service Redirection

Figure 2 shows how we implement the WSML using JAsCo aspect beans and
dynamic connectors. A bas ic requirement is that hard-wiring services should be
avoided. Therefore, service requests must be formulated in an abstract way at the left
side of the layer and the WSML will be responsible for making the translation to a
concrete service at the right side. The requests of the application are formulated in an
abstract way as specified in an Abstract Service Interface (ASI) . This can be seen as
a contract specified by the application towards the services. This way the syntactical
differences between semantically equivalent services can be hidden. In order to
enable this we introduce the concept of mapping schemas with sequence diagrams
that unambiguously describe how the service or service composition maps to the ASI.
An example of this mapping can be found in [6].

Modularizing Web Services Management with AOP 5

Fig. 2. Detailed Architecture of the WSML

To illustrate these ideas an example of a travel agency application is introduced. The
application offers the functionality to book holidays online and customers can make
reservations for both flights and hotels. To achieve this functionality the agency
application integrates different web services. Suppose HotelServiceA and
HotelServiceB are services that offer the same functionality for the online booking of
hotels. Each hotel service returns exactly the same results.

Assume in the client-application a list of hotels needs to be shown to the customer. A
HotelServiceInterface is defined with the following method for this purpose.
HotelList giveAvailableHotels(Date, Date, CityCode). At
deployment time or at runtime the following two services are available:
HotelServiceA provides the method: giveHotels (CityCode, Date,
Date,). HotelServiceB provides the method: listHotels (Date, Date,
CityName).

To make the mapping possible between the ASI and the concrete service interfaces ,
we make use of the aspect power of JAsCo and define an aspect in charge of
redirecting the generic requests to the concrete services that will provide the
functionality required. The redirection aspect defines the logic of intercepting the
application requests and replacing them by a concrete invocation on a specific web
service. Figure 3 shows the code for the redirection aspect. Note that this aspect is
generic and does not refer to any concrete web service. The mapping to concrete web

6 María Agustina Cibrán, Bart Verheecke

services is specified in the connectors that deploy the redirection aspect. Several
connectors can exist each in charge of deploying the redirection to a concrete web
service. Figure 4 illustrates the deployment of the redirection aspect. The connector
HotelServiceA specifies the mapping between the ASI giveAvailableHotels
(Date, Date, CityCode) and the particular way to invoke that functionality
on the web service HotelServiceA, that is invoking the method giveHotels
(CityCode, Date, Date,). To communicate with HotelServiceA the GLUE
library is used [10].

class getAvailableHotelsRedirection {
 hook RedirectionHook {
 RedirectionHook(method (Date d1,Date d2,CityCode
cc)){
 call(method);
 }

 replace() {
 specificMethod(d1, d2, cc);
 }
 abstract public List specificMethod(
 Date d1,Date d2,CityCode cc);
 }}

Fig. 3. The Redirection Aspect Bean for hotel retrieval

static connector getAvailableHotelsOfServiceA {
 HotelServiceAStub hotelServiceA = null;
 try {
 hotelServiceA = HotelServiceAHelper.bind();
 // the stub is instantiated by analysing the WSDL-
 // file of hotelServiceA by using the GLUE library
 }
 catch(Exception e) { }
 getAvailableHotelsRedirection.RedirectionHook rhook =
 new getAvailableHotelsRedirection.
 RedirectionHook(Application.
 giveAvailableHotels(Date, Date, CityCode){
 public List specificMethod(Date d1,Date d2,CityCode
cc){
 return hotelServiceA.giveHotels(cc, d1, d2));
 }
}}

Fig. 4. Connector that deploys redirection aspect

Each connector encapsulates the mapping between each generic request in the
application and the concrete manner to solve that request in a specific service. Thus,
there will be one connector for each different request that can be invoked by the

Modularizing Web Services Management with AOP 7

application. The WSML is responsible for the creation and management of these
connectors. JAsCo allows the creation of connectors to be done dynamically. This
characteristic enables the dynamic integration of new services. When the functionality
of a new service has to be integrated in the application, a connector realizing the
mapping for that service is created at run time. This is achieved transparently for the
application.

3.3 Using Aspects for Service Management

As mentioned above, the layer can also deal with other management issues that need
to be controlled at the application side. For instance, suppose the HotelServiceA
describes a strategy for billing its use and the application wants to locally control this
for auditing reasons. Suppose the service specifies that each time the method
giveHotels (CityCode, Date, Date) is invoked, an amount of 2 euros
has to be paid. We can achieve this in a non-invasive way by defining a new aspect
that abstracts the logic for a “pay per use” billing strategy. Figure 5 shows the
implementation of this aspect. Note that the redirection aspect is generic and can be
deployed and customised for other services that adopt this billing policy. This
deployment is specified as part of the connector shown in Figure 6. In this example,
the billing is done when getAvailableHotels is invoked in the application.
However, as connector getAvailableHotelsOfServiceA implements this
method as a call to HotelServiceA, the billing is only done when this concrete service
is used. Note that the hook can also be initialised with multiple functionalities
provided by a web service.

class BillingPerUse {
 hook BillingHook {
 private int total = 0;
 private int cost = 0;

 public void setCost(int aCost){
 cost = aCost;
 }
 private void pay(){
 total = total + cost;
 }
 BillingHook(method (Date d1,Date d2,CityCode cc)) {
 call(method);
 }
after() {
 pay();
 }
}
}

Fig. 5. Billing Aspect

8 María Agustina Cibrán, Bart Verheecke

static connector getAvailableHotelsOfServiceA {
…
BillingPerUse.BillingHook billPerUse =
 new BillingPerUse.BillingHook(List
 Application.giveAvailableHotels(Date, Date,
CityCode));
 billPerUse.setCost(2);
 rhook.replace();
 billPerUse.after();
}

Fig. 6. Billing connector

The aspect BillingPerUse defines a billing template that can be reused by different
services. Other more complex billing aspects can be formulated and implemented in a
similar way.

This simple example illustrates that a generic library of aspects can be created to
achieve high flexibility in the creation and manipulation aspects that implement other
management issues.

4. Conclusion

In this paper we show how the use of AOP is needed to fully decouple service
management concerns from the client applications. We propose to use a dynamic
AOP implementation language JAsCo to enable hot-swapping and runtime
management of services.

This approach has the advantage that applications become adaptable as they can
easily integrate new services and dynamically accommodate to management
requirements.

We are currently working on the definition of a library of reusable aspects that would
allow the application developer to dynamically instantiate and configure the needed
aspects to deal with different service management issues. We are also working on
realising the hot swapping mechanism in a more intelligent way by considering
service oriented rules. These rules are derived from the requirements the application
specifies and are based on the non-functional properties of services.

Modularizing Web Services Management with AOP 9

5. References

[1] J. Malhotra, Ph.D., Co-Founder & CEO interKeel Inc., “Challenges in Developing Web

Services-based e-Business Applications,” Whitepaper, interKeel Inc., 2001

[2] Aspect-Oriented Software Development. http://www.aosd.net/

[3] Communications of the ACM. Aspect-Oriented Software Development, October 2001.

[4] D. Suvée and W. Vanderperren. “JAsCo: an Aspect-Oriented approach tailored for

Component Based Software Development”. Proc. of 2nd Int. Conf. on AOSD, Boston, USA,
2003.

[5] W. Vanderperren, D. Suvée, B. Wydaeghe and V. Jonckers. “PacoSuite & JAsCo: A visual

component composition environment with advanced aspect separation features”. Proc. of
Int. Conf. on FASE, Warshaw, Poland, April 2003.

[6] B. Verheecke, M. A. Cibrán. “AOP for Dynamic Configuration and Management of Web

services in Client-Applications”. ICWS'03-Europe (submitted)

[7] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersen, J. Palm, and W. G. Griswold. “An

overview of AspectJ”. In Proceedings European Conference on Object-Oriented
Programming, volume 2072 of Lecture Notes in Computer Science, pages 327--353, Berlin,
Heidelberg, and New York, 2001. Springer-Verlag.

[8] Lieberherr, K., Lorenz, D. and Mezini, M. Programming with Aspectual Components.

Technical Report, NU-CCS-99-01, March 1999. Available at:
http://www.ccs.neu.edu/research/demeter/biblio/aspectual-comps.html.

[9] C. Szyperski. Component software: Beyond Object-oriented programming. Addison-

Wesley, 1998.

[10] The Mind Electric, “The Glue Platform,” 2003,

http://www.themindelectric.com/glue/index.html

