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Abstract— Software testing represents one of the most explored 
fields of application of Search-Based techniques and a range of 
testing problems have been successfully addressed using 
Genetic Algorithms. Nevertheless, to date Search-Based 
Software Testing (SBST) has found limited application in 
industry. As in other fields of Search-Based Software 
Engineering, this is principally due to the fact that when 
applied to large problems, Search-Based approaches may 
require too much computational efforts. In this scenario, 
parallelization may be a suitable way to improve the 
performance especially due to the fact that many of these 
techniques are “naturally parallelizable”. Nevertheless, very 
few attempts have been provided for SBST parallelization. In 
this paper, we present a Parallel Genetic Algorithm for the 
automatic generation of test suites. The solution is based on 
Hadoop MapReduce since it is well supported to work also in 
the cloud and on graphic cards, thus being an ideal candidate 
for high scalable parallelization of Genetic Algorithms. A 
preliminary analysis of the proposal was carried out aiming to 
evaluate the speed-up with respect to the sequential execution. 
The analysis was based on a real world open source library. 

Keywords- Parallel Genetic Algorithm, Hadoop MapReduce, 
Search Based Software Testing. 

I. INTRODUCTION

Software testing represents one of the most explored 
fields of application of Search-Based techniques. Indeed, a 
range of testing problems has been addressed, such as 
structural testing (both static and dynamic), functional 
testing, non-functional testing, mutation testing, test case 
prioritization, and so on (see [27] for a survey). Despite all 
such efforts, to date, Search-Based Software Testing (SBST) 
has found limited application in industry [7][24]. As in other 
fields of Search-Based Software Engineering (SBSE), this is 
principally due to the fact that in general when applied to 
large problems, Search-Based approaches may require too 
much computational efforts [24][40]. Indeed “many 
approaches that are attractive and elegant in the laboratory, 
turn out to be inapplicable in the field, because they lack 
scalability” [20], i.e., the ability to be efficient when applied 
to large real-world software systems. 

In this scenario, parallelization may be a suitable way to 
improve the performance, both in terms of computational 
time and effectiveness in the exploration of the search space. 
Moreover, many of these techniques are “naturally 
parallelizable” [20]. As a matter of fact, the population based 
characteristic of Genetic Algorithms (GA) allows the fitness 
function of each individual to be computed in parallel. 
Nevertheless, very few attempts have been provided for 

SBST parallelization. As suggested in [40] “one possible 
historical barrier to wider application of parallel execution 
has been the high cost of parallel execution architectures 
and infrastructure. …While commodity PCs have 
significantly reduced the cost of such clusters, their 
management can still be a non-trivial task, restricting the 
potential availability for developers.”

The emerging use of Cloud Computing and of General 
Purpose computing on Graphical Processing Unit (GPGPU) 
can represent an affordable solution to address the above 
issues. This can provide a significant impulse in SBST 
parallelization allowing for more scalable research proposals 
suitable to be transferred in software industry. Indeed, 
GPGPU exploits a parallelism (originally designed for 
graphics) for non graphical tasks using a single hardware 
component (GPU) that is less expensive than multiple PCs 
and has smaller management costs [40]. Cloud Computing 
solutions offer a parallel distributed computational 
environment together with an on demand resource handling 
and allocation to easily scale up. As a consequence, 
companies that plan to use this kind of solutions as an 
alternative to traditional cluster-based platforms could 
employ virtually unlimited computational resources without 
caring about the management and the maintenance of the 
overall IT infrastructure. Furthermore, the on-demand 
resource allocation mechanism allows companies to reduce 
costs consistently since they have to pay only for the 
computational resources actually used. 

Based on these considerations in this paper we present a 
Genetic Algorithm for the automatic test suite generation for 
Object Oriented software and show how it can be 
parallelized using Hadoop MapReduce [4]. Hadoop 
MapReduce is a framework for developing applications that 
rapidly process vast amounts of data in parallel on large 
clusters of computing nodes. This choice was motivated by 
the fact that it is becoming the de-facto standard MapReduce 
implementation and it has been used also in industry [37]. 
Moreover, it is well supported to work not only on clusters, 
but also on the cloud [3] and on graphic cards [19], thus 
being an ideal candidate for high scalable parallelization of 
GAs. 

The proposed Parallel Genetic Algorithm (PGA) takes as 
input the software to be tested and an initial population of 
random solutions (i.e., a set of test cases) that are evolved 
according to a given coverage criterion (i.e., branch 
coverage) following a global parallelization model. This 
means that at each iteration the individual fitness evaluation, 
which is the most time consuming GA task in the considered 
domain, is carried in a parallel way exploiting the 
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MapReduce programming model. At the end of the evolution 
process a JUnit test suite, optimized to cover as much 
branches as possible of the software under test, is given in 
output to the user. 

A preliminary analysis of the proposed PGA was realized 
on standard cluster exploiting a real word open source 
library. The results were evaluated in terms of the time 
needed to generate the test suites and compared with the ones 
achieved executing the same GA in the traditional sequential 
way. 

Although the problem of parallelizing Search-Based 
techniques is not new (see section V for related work), to the 
best of our knowledge this work is the first that proposes a 
PGA based on Hadoop MapReduce for the automatic 
generation of JUnit test suite, showing also a preliminary 
evaluation of its use. 

The rest of the paper is organized as follows. In section II 
we describe the design of a Genetic Algorithm for the 
automatic generation of JUnit test suite. Section III presents 
the approach we proposed to parallelize the genetic 
algorithm exploiting HadoopMapReduce. Section IV reports 
the design and the results of the analysis we carried out to 
assess the effectiveness of the proposed approach. Section V 
describes related work while some final remarks and future 
work conclude the paper. 

II. A GENETIC ALGORITHM FOR THE AUTOMATIC 
GENERATION OF TEST SUITE

Genetic Algorithms (GA) [17] are evolutionary 
algorithms that, inspired by the theory of natural evolution, 
simulate the evolution of species emphasizing the law of 
survival of the strongest to solve, or approximately solve, 
optimization problems. To this end, a fitness function is used 
to evaluate the goodness (i.e., fitness) of the solutions 
represented by the individuals (i.e., chromosomes) and 
genetic operators based on selection and reproduction are 
employed to produce new offspring.  

The elementary evolutionary process of GA is composed 
by the following steps: 

1. An initial population is usually randomly generated; 
2. A fitness function is used to assign a fitness value to 

each individual; 
3. According to their fitness value some individuals are 

selected as parents (i.e., reproduction selection) and 
new individuals (offspring) are created by applying 
reproduction operators (i.e., crossover and mutation) 
and evaluated using the fitness function; 

4. To determine the individuals that will be included in 
the next generation a selection based on individual’s 
fitness value is applied (i.e., survival selection); 

5. Steps 2, 3, and 4 are repeated until stopping criteria 
hold. 

In the following, we describe the design choices we made 
for tailoring GA to automatically produce test suites for the 
unit testing of classes of a given software system. 

In such a scenario, a chromosome represents a test suite 
(i.e., a set of  n test cases) for a given Java class belonging to 
the software under test (SUT). We employ a representation 
similar to [16] for each test case that contains a sequence of 

statements of length l for object creation, state change, and 
method invocation. In particular, each statement can be one 
of these types: primitive, constructor, field, and method [16]. 

The initial population is randomly generated. Then the 
classical evolutionary scheme is applied aiming at evolving 
towards populations containing chromosomes with a high 
fitness value.  

The fitness of each individual is measured in terms of 
branch coverage by exploiting the Cobertura coverage tool 
[8].  Given a test suite and a SUT, this tool calculates the 
percentage of branches covered by the test suite when 
executed with JUnit on the instrumented bytecode of the 
SUT. In particular, Cobertura considers a branch as covered 
if it is exercised on the true and false outcomes, at least once. 
Moreover, if a same branch is covered more than one time 
by different test cases within the same test suite (i.e., 
chromosome) the corresponding branch is counted just once 
during the fitness evaluation. 

Concerning the reproduction operators we employ a 
single point crossover which generates offspring O1 and O2 
from two parents (i.e., two test suites) P1 and P2, selecting a 
random point of cut in the parent chromosomes and 
swapping their test cases with a rate of 0.5. As for the 
employed mutation operator, it changes with probability 0.25 
each gene in a chromosome replacing the current test case 
with a new one obtained by using a feedback-directed 
random generation which adds method arguments in an 
incremental way (i.e., building, executing, and checking 
arguments against a set of contracts to determine whether an 
input is redundant, illegal, contract-violating, or useful for 
generating more inputs for a given method). These  genetic 
operators working on an entire test case allowed us to avoid 
the difficulties due to dependencies between statements of a 
test case [36].  

As for the selection operators we employed Tournament 
and Linear Ranking selectors for reproduction and survival 
selection, respectively.  

The search process is stopped after performing a fixed 
number of generations or whether the best solution doesn’t 
change for a certain number of generations. 

III. A PARALLEL GENETIC ALGORITHM BASED ON 
HADOOP MAP REDUCE

In the following subsections we first give some 
background, reporting on the strategies proposed in the 
literature to parallelize Genetic Algorthms and recalling the 
main aspects of MapReduce and Hadoop MapReduce. Then, 
we present the design of the proposed parallel Genetic 
Algorithm using Hadoop MapReduce. 

A. Parallelization Strategies 
Several GA parallelization strategies exist depending on 

the grain of parallelization to achieve. Basically, three levels 
of parallelization can be exploited:  

� fitness evaluation level (i.e., global parallelization 
model);  

� population level (i.e., coarse-grained parallelization 
or island model);
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� individual level (i.e., fine-grained parallelization or
grid model) [34].  

In the global parallelization model, a node acting as a 
master, manages the population (i.e., applying genetic and 
selection operators) and distributes the individuals among 
slave nodes which compute only the fitness values of the 
individuals. The main advantage of using such a model is 
that it does not require any change to the design of traditional 
GA since the individual fitness evaluation is independent 
from the rest of the population.  

In the island model the population is subdivided in 
several subpopulations of relatively large size which are 
located in several islands (i.e., nodes). Thus, a Genetic 
Algorithm is executed on each subpopulation and such 
subpopulations exchange information by allowing some 
individuals to migrate from one island to another according 
to a given temporal criteria. The main expected advantages 
of this model are: (i) different subpopulations could explore 
different portions of the search-space; (ii) migrating 
individuals injects diversity into the converging population.   

Finally, in the grid model each individual is placed on a 
grid (i.e., each individual is assigned to a node) and all GA 
operations are performed in parallel evaluating 
simultaneously the fitness and applying locally selection and 
genetic operations to a small neighboring. A drawback of 
this approach is the overhead due to the frequent 
communications between grid nodes.  

There exist proposals that fall in the so called hybrid 
models which combine different levels of parallelization.  

In the following we define a way to exploit the first 
parallelization model using Map Reduce. 

B. MapReduce 
MapReduce is an elegant and flexible paradigm which 

enables to develop large-scale distributed applications [12]. 
It is expressed in terms of two distinct functions, namely 
Map and Reduce, which are combined together in a divide-
and-conquer way where the Map function is responsible to 
handle the parallelization while the Reduce collects and 
merges the results. In particular, a master node splits the 
initial input in several pieces, each one identified by a unique 
key, and distributes them via the Map function to several 
slave nodes (i.e., Mappers) which work in parallel and 
independently from each other performing the same task on a 
different piece of input. As soon as each Mapper finishes its 
own job the output is identified and collected via the Reducer 
function. In particular, each Mapper produces a set of 
intermediate key/value pairs which are exploited by one or 
more Reducers to group together all the intermediate values 
associated to the same key and to compute the list of output 
results. It is worth mentioning that the different intermediate 
keys emitted by the Mapper functions affect the way the 
model distributes the computation of each Reducer on 
different machines. Thus, the program automatically invokes 
and allocates a number of distinct Reducers that correspond 
to the number of distinct intermediate keys.  

C. HadoopMapReduce 
Several different implementations of MapReduce have 

been proposed. The most famous one is the AppEngine-
MapReduce [18], built on the top of the distributed Google 
File System, and  Hadoop MapReduce [4].  

Hadoop MapReduce is an open-source project of the 
Apache Software Foundation aiming at supporting 
developers in realizing applications that rapidly process vast 
amounts of data in parallel on large clusters of computing 
nodes. Its popularity is increasing rapidly as well as its 
adoption by large companies such as IBM and Yahoo.  

With respect to its “big brother”, the AppEngine-
MapReduce [18], Hadoop MapReduce supports both Map 
and Reduce phases, thus avoiding a programmer to manage 
its own Reducer. Using Hadoop also lets us avoid some 
limitations imposed by GoogleApp Engine (e.g., it is not 
allowed to use files or executing external threads and 
processes). Moreover, Hadoop MapReduce is well supported 
to work not only on clusters, but also on the cloud [3] and on 
graphic cards [19], thus being an ideal candidate for high 
scalable parallelization of GA. 

Hadoop MapReduce exploits a distributed file system (an 
open source implementation of Google File System), named 
the Hadoop Distributed File System (HDFS), to store data as 
well as intermediate results and uses the MapReduce 
programming model for data processing. The Hadoop 
MapReduce interpretation of the Distributed File System was 
conceived to increase large-data availability and fault-
tolerance by spreading copies of the data throughout the 
cluster nodes, in order to achieve both lower costs (for 
hardware and RAID disks) and lower data transfer latency 
between the nodes themselves. Hadoop offers also a database 
named HBase that was created to compete with Google’s 
DataStore in order to speed up the data retrieval for billions 
of small information.  

In the next section we detailed how we exploited the 
Hadoop MapReduce programming model to parallelize the 
proposed Genetic Algorithm for the automatic creation of 
test suites.  

D. The proposed Parallel Genetic Algorithm based on 
Hadoop MapReduce 
The underlying idea in using MapReduce to parallelize 

the Genetic Algorithm described in section II is to 
encapsulate each iteration of the GA as a separate 
MapReduce job and parallelize the chromosome fitness 
evaluation assigning such task to several Mappers, while a 
single Reducer is responsible to collect the results and to 
perform the genetic operations (i.e., parents selection, 
crossover and mutation, and survival selection) needed to 
produce a new generation following a global parallelization 
model. 

Figure 1 shows the proposed architecture based on 
HadoopMapReduce and composed by the following main 
components: a Parallel Genetic Algorithm, a Master, a 
number of Mappers and a Reducer, together with two other 
units, namely InputFormat and OutputFormat, which are 
responsible to split the data for the Mappers and to store the 
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Figure 2. Parallel Genetic Algorithm pseudocode. 

Map. In this phase each Mapper carries out its task on 
the received input split in a parallel and independent way. In 
particular, each Mapper is responsible to exercise a class of 
the SUT with the test suites associated to the received 
chromosomes and to observe the software behavior in order 
to evaluate the corresponding fitness value (i.e., branch 
coverage).  

 Once such evaluation is completed, each Mapper
generates a new pair <key, value>, where value is a pair 
<chromosome, fitness value>, while the new key will be used 
by the Master module to properly assign the Reducers. Since 
our architecture does not require any other parallel 
computation, the generated key will be the same for all the 
chromosomes, in order to have only a single Reducer.

The Master module in this phase is responsible to collect 
the outputs produced by the Mappers that will constitute the 
input for Reducer.

Reduce. As soon as a Mapper evaluates a chromosome 
the corresponding data (i.e., key, chromosome, and fitness 
value) is sent to the Reducer. Once the entire population has 
been available to the Reducer it can perform the survival 
selection and apply on the new generation the crossover and 
mutation operators to produce a new offspring to be 
evaluated in the next MapReduceJob. Note that to obtain the 
entire population the Reducer should wait until all Mappers
have replied. However each Mapper evaluates approximately 
the same number of chromosomes and if they are executed in 
parallel they require approximately the same time. Finally, 
the data concerning with the new offspring is saved by the 
OutputFormat - using the RecordWriter - into the HDFS, 
allowing the Parallel Genetic Algorithm module to verify 
whether the stopping criteria hold.  

The Master module in this phase is responsible to notify 
Parallel Genetic Algorithm to restart the computation 
invoking the MapReduceJob for the new offspring created by 
Reducer.

IV. PRELIMINARY EVALUATION

In this section we report the results achieved in a 
preliminary analysis carried out to assess the speed-up 
achieved by using the Parallel Genetic Algorithm described 
in section III with respect to the sequential Genetic 
Algorithm described in section II (denoted  in the following 
as SGA). 

TABLE I. APACHE COMMONS PRIMITIVES PACKAGES

Package Description
org.apache.commons.collections. 
primitives

Collections of primitive values. 

org.apache.commons.collections. 
primitives.adapters

Adapters for converting between the 
primitive and object based versions 
of the collections framework. 

org.apache.commons.collections. 
primitives.adapters.io 

Adapters for converting between 
primitive collections and Java I/O 
classes. 

org.apache.commons.collections. 
primitives.decorators

Decorators of primitive collections. 

TABLE II. THE CASE STUDY SUBJECT.

Subject # Classes # Branches LOC 

Commons 
Primitives 
(CP) 

Total

259 1446 4605 

Testable 

89 1024 2826 

A. Subject 
The proposed approach was empirically evaluated by 

applying it to an open source software library, namely 
Apache Commons Primitives [5], which contains collections 
and utilities specially designed for use with primitive types in 
Java (i.e., boolean, byte, char, double, float, int, long and 
short). Indeed, despite a lot of functionality is provided by 
the JDK for Object types, relatively little functionality is 
provided for primitive types. Thus, Apache Commons 
Primitives library addresses this by providing a set of utility 
and collection classes for primitives (e.g., ArrayByteList, 
ArrayShortList, ArrayCharList, ByteIterator). In particular, it 
is organized in four packages containing 259 classes, for a 
total of 4605 Lines of Code (LOC) and 1446 branches (see 
Table I). As done in previous work [16], we tested all the 
classes which were not interface, abstract, or private (see 
Table II). 

B. Evaluation Criteria 
To compare the performance of the employed algorithms 

we evaluated them both in terms of execution time and 
branch coverage. In particular, the execution time was 
measured using the system clock and the TotalTime is 
composed of the following parts:  

� InitTime: total time required by PGA for initializing 
a Map with the information (i.e., SUT instrumented 
bytecode, JUnit, test cases) needed to perform the 
fitness evaluation in each generation;  

� EvalTime: total time spent to evaluate the fitness of 
chromosomes;  

� RemainTime: time given by the difference between 
TotalTime and (InitTime+EvalTime); it comprises 
the time required to create the initial random 
population, perform selection, crossover, and 
mutation operators and, in case of PGA also the time 
spent for the communication among nodes.  

1 population = preExecution(SUT); 
2 while(!stopCriteria ()) { 
3   mpJob= createMapReduceJob(); 
4   population= mpJob.execute(population); 
5 } 
6 postExecution(); 

7 preExecution (SUT):population { 
8   instrumentedCode = instrument(SUT); 
9   move(instrumented Code, HDFS); 
10  population = createRandomPopulation(); 
11  return population;
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V. RELATED WORK

In this section, we present some related works. First of 
all, we discuss previous works on the design of parallel 
Genetic Algorithms (not applied in the context of software 
engineering) based on MapReduce, showing similarity and 
differences with our proposal. Then, we describe solutions 
based on parallel search-based approaches employed for 
automated testing and for other software engineering 
problems. Finally, we report on several studies proposing 
different frameworks for the parallel execution of test cases. 

A. Parallel Genetic Algorithms based on MapReduce 
To the best of our knowledge, in the literature two 

proposals [22][37] have been reported proposing a parallel 
GA based on MapReduce to solve classical optimization 
problems. Nevertheless, such proposals did not take into 
account the specific context of software testing and differ 
from the one proposed in this paper under several aspects.  

In [22] an extension of MapReduce, named MRPGA, 
was proposed. In that work the authors claimed that due to its 
iterative nature, the GA process cannot follow the two phases 
pattern of MapReduce. Thus, they added to the pattern a 
further reduction phase to perform a global selection at the 
end of each iteration of parallel GA. In particular, the 
architecture of the run time system consists of one master 
and multiple mappers and reducers. The master has the 
responsibility of scheduling the execution of parallel tasks, 
while the mapper workers have to execute the map functions 
(i.e., the evaluation of chromosome fitness defined by the 
user) and the reducer workers are responsible to execute 
reduce functions (i.e., the selection operation on 
chromosomes to choose local optimum individuals). The 
difference with the standard implementation of MapReduce 
concerns with the support provided for a second reduce 
phase that is conceived to use just a reducer responsible of 
the selection of the global optimum individuals. Moreover, a 
coordinator client is introduced to coordinate the executions 
of the parallel GA iterations. MRPGA was implemented on 
.NET platform using C# language and was applied to solve 
the DLTZ4 and DLTZ5 problems [14].  

Our solution differs from the one of [22] since it does not 
employ the additional reduction phase, indeed, as suggested 
also by Verma et al., this phase is not necessary since the 
local reduce can be implemented within a Combiner as 
shown in [13]. Further, using “default_key” and 1 as values 
produced by the mapper, reducer, and final reducer 
functions, MRPGA does not employ any characteristics of 
the MapReduce model (i.e., the grouping by keys and the 
shuffling). Moreover, in their proposal a huge amount of 
work regarding mutation, crossover, and evaluation of the 
convergence criteria is made by a single coordinator 
affecting the scalability of their approach [37]. To avoid this 
problem, in our solution we split these jobs among the 
master node (performing evaluation of the convergence 
criteria) and the reducer (performing mutation and 
crossover). 

Differently from [22], Verma et al. [37] designed a 
Parallel GA based on the traditional MapReduce model and 
realized it by exploiting Hadoop MapReduce [4]. The 

proposed PGA was employed to solve the ONEMAX 
problem [32] showing that larger problems could be resolved 
without any changes in the implementation of the algorithms 
by adding more resources. Our solution is similar to [32], 
except for the use of multiple reducers. Indeed, they 
followed a coarse-grained parallelization model performing a 
local survival selection on multiple reducers to speed-up the 
overall execution time, however as pointed out in [31] a local 
selection can led to a reduction in selection pressure affecting 
the time taken to converge. Thus, since in the domain we 
considered the computation of the fitness function is the 
most time consuming task we preferred employing a global 
parallelization level using only one reducer. However, if a 
higher level of parallelization is required, the architecture we 
proposed can be extended, basically acting on the number of 
the involved reducers and the intermediate keys, to 
parallelize also the execution of selection and genetic 
operators (i.e., coarse-grained parallelization) or to enhance 
the selection pressure by means of migrations among groups 
of chromosomes (i.e., fine-grained parallelization) as 
described in [15]. 

B. Parallel Genetic Algorithms for Automated Testing 
Search-based algorithms have been used to automate a 

variety of software testing activities, such as test data 
generation (e.g., [2][21][24][36]), test case generation and 
selection (e.g., [16][39]), test case prioritization (e.g., [38]), 
and so on. For sake of space we remind interested readers to 
[1] and [27] for a review of these works and we discuss in 
the following the parallel Search-based approaches proposed 
for Software Testing. 

In [15] the use of MapReduce has been recently 
suggested for addressing the computational issues related to 
SBST. In particular, the authors described three architectures 
based on MapReduce to achieve different levels of 
parallelization of Genetic Algorithms (i.e., global, island, and 
grid models). Moreover, they illustrated with an example 
how to design a Parallel Genetic Algorithm based on Google 
AppEngine-MapReduce [18] for test data generation. As 
they stated, the proposal needs to be validated in practice 
carrying out an empirical evaluation of the solutions; this is 
necessary to highlight on the field the strength or weakness 
of the different architectures, as well as to assess their actual 
scalability. Thus, in this paper we designed a Parallel 
Genetic Algorithm conceived for JUnit test suite generation 
based on the global parallelization model proposed in [15] 
and realized it exploiting the Hadoop MapReduce framework 
reporting also a preliminary evaluation of its use on standard 
cluster. With respect to AppEngine-MapReduce [18], 
Hadoop MapReduce provides several advantages as 
described in section III-C. 

A different approach to address parallelization of SBST 
has been recently proposed by Yoo et al. in [40], where a 
parallel multi-objective Genetic Programming for test suite 
minimization was devised for exploiting the computational 
power of modern graphic cards. The obtained results showed 
that for their problem the speed-up achieved by using GPU 
was logarithmic correlated to the problem size (i.e., SUT and 
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test suite size) and ranged from 1x to 25x with respect to the 
use of a single-threaded version of the same GP. 

C. Parallel Search-Based Approaches in Software 
Engineering 
As for the use of parallel solutions in other areas of 

SBSE, Mitchell et al. [28] suggested the exploitation of a 
distributed architecture to parallelize modularization through 
the application of search-based clustering.  

To the same end, Mahdavi et al. [26] developed a parallel 
hill climbing algorithm exploiting a cluster of standard PCs. 

More recently, Asadi et al. [6] compared different 
distributed architectures to parallelize a GA for the concept 
location problem. 

D. Parallel Execution of Testing 
Since software testing is one of the most expensive 

phases of the software development process, in the last 
decades a huge amount of research efforts has been devoted 
to speed-up testing activities. Nevertheless, despite the 
general advantages of parallelizing software testing [33], 
very little work has been made to distribute software testing 
over multiple computers.  

In the case study presented by Lastovetsky and Alexey 
[25] it was shown that parallelizing regression testing for a 
distributed programming system resulted in a speed up of up 
to 7.7 on two 4-processor workstations. 

These promising results encouraged also the 
development of parallel regression testing tools based on 
JUnit, such as Joshua [23] and GridUnit [9][10][11]. The 
main idea underlying these tools was that a master node 
distributes test cases for execution across slave machines to 
speed-up the testing process and then collects the results. To 
this end Joshua exploited Jini for distributing the regression 
test suite execution over different CPUs, while GridUnit 
exploited a computational Grid. 

In [30] a distributed execution framework for JUnit test 
cases, named HadoopUnit, was proposed and preliminary 
results using a 150-node cluster suggest that HadoopUnit can 
reduce test execution time significantly (about 30x 
improvement). Recently high interest has been attracting the 
use of cloud computing for addressing the significant 
computing resources and the lengthy execution times 
requested by software testing. Paper [35] takes into account 
the characteristics of an application under test and the types 
of testing to perform to decide when migrating software 
testing to the Cloud. A proposal for distributing the 
execution of test cases in the Cloud was presented in [29]. In 
particular, they described a framework for the distributed 
execution of the York Extensible Testing Infrastructure 
(YETI), a language agnostic random testing tool [29]. They 
employed the MapReduce primitives. Before the execution, 
the needed files (i.e., the test cases and the employed testing 
tool) are uploaded to the distributed file system file to be 
later read by the Mapper nodes. Then, the Master node 
launches a Mapper for each test case and each Mapper reads 
its data and executes the corresponding test case. Finally, the 
Reducer collects the test case results from each Mapper and 
outputs them to a file on the DFS. The preliminary results 

reported in [29] were promising, showing that exploiting the 
proposed framework on the Amazon Elastic Computing 
Cloud (EC2) [3] the performances of YETI improved 
reducing the testing time. 

VI. CONCLUSION AND FUTURE WORK

In this paper we proposed the use of a Parallel Genetic 
Algorihtm (PGA) for test suite generation exploiting Hadoop 
MapReduce and showed a preliminary evaluation of its use 
on a small cluster. The obtained results highlighted that using 
PGA allowed us to save over the 50% of time.  

Since the use of parallel SBST approaches is still in its 
early phases, several directions can be prospected as future 
work. First of all a deeper empirical evaluation of the 
proposed approach is needed to asses on other subjects its 
strength or weakness, as well as to assess its actual 
scalability employing different GA settings, numbers of 
maps, and larger clusters. Also the use of Hadoop 
MapReduce should be assessed running it not only on 
standard clusters, but also exploiting cloud computing and 
graphic cards. Moreover, it can be interesting to realize and 
compare higher levels of parallelization, such as by 
parallelizing the genetic operations other than the fitness 
evaluation.  

It would be also interesting to verify how other 
approaches for test suite generation (e.g., EvoSuite [16]) 
could be take advantages of parallel/distributed computation 
as the one described in this paper. 

Finally, as a long-term research goal, it will be desirable 
to integrate these SBST approaches within a whole 
Validation-as-a-Service platform, available in the Cloud, to 
support the entire software testing process. 
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