
A Parallel Genetic Algorithm Based on Hadoop MapReduce for the
Automatic Generation of JUnit Test Suites

Linda Di Geronimo, Filomena Ferrucci, Alfonso Murolo, Federica Sarro
University of Salerno

Via Ponte don Melillo, 84084 Fisciano, Italy
e-mail: {fferrucci, fsarro}@unisa.it

Abstract— Software testing represents one of the most explored
fields of application of Search-Based techniques and a range of
testing problems have been successfully addressed using
Genetic Algorithms. Nevertheless, to date Search-Based
Software Testing (SBST) has found limited application in
industry. As in other fields of Search-Based Software
Engineering, this is principally due to the fact that when
applied to large problems, Search-Based approaches may
require too much computational efforts. In this scenario,
parallelization may be a suitable way to improve the
performance especially due to the fact that many of these
techniques are “naturally parallelizable”. Nevertheless, very
few attempts have been provided for SBST parallelization. In
this paper, we present a Parallel Genetic Algorithm for the
automatic generation of test suites. The solution is based on
Hadoop MapReduce since it is well supported to work also in
the cloud and on graphic cards, thus being an ideal candidate
for high scalable parallelization of Genetic Algorithms. A
preliminary analysis of the proposal was carried out aiming to
evaluate the speed-up with respect to the sequential execution.
The analysis was based on a real world open source library.

Keywords- Parallel Genetic Algorithm, Hadoop MapReduce,
Search Based Software Testing.

I. INTRODUCTION

Software testing represents one of the most explored
fields of application of Search-Based techniques. Indeed, a
range of testing problems has been addressed, such as
structural testing (both static and dynamic), functional
testing, non-functional testing, mutation testing, test case
prioritization, and so on (see [27] for a survey). Despite all
such efforts, to date, Search-Based Software Testing (SBST)
has found limited application in industry [7][24]. As in other
fields of Search-Based Software Engineering (SBSE), this is
principally due to the fact that in general when applied to
large problems, Search-Based approaches may require too
much computational efforts [24][40]. Indeed “many
approaches that are attractive and elegant in the laboratory,
turn out to be inapplicable in the field, because they lack
scalability” [20], i.e., the ability to be efficient when applied
to large real-world software systems.

In this scenario, parallelization may be a suitable way to
improve the performance, both in terms of computational
time and effectiveness in the exploration of the search space.
Moreover, many of these techniques are “naturally
parallelizable” [20]. As a matter of fact, the population based
characteristic of Genetic Algorithms (GA) allows the fitness
function of each individual to be computed in parallel.
Nevertheless, very few attempts have been provided for

SBST parallelization. As suggested in [40] “one possible
historical barrier to wider application of parallel execution
has been the high cost of parallel execution architectures
and infrastructure. …While commodity PCs have
significantly reduced the cost of such clusters, their
management can still be a non-trivial task, restricting the
potential availability for developers.”

The emerging use of Cloud Computing and of General
Purpose computing on Graphical Processing Unit (GPGPU)
can represent an affordable solution to address the above
issues. This can provide a significant impulse in SBST
parallelization allowing for more scalable research proposals
suitable to be transferred in software industry. Indeed,
GPGPU exploits a parallelism (originally designed for
graphics) for non graphical tasks using a single hardware
component (GPU) that is less expensive than multiple PCs
and has smaller management costs [40]. Cloud Computing
solutions offer a parallel distributed computational
environment together with an on demand resource handling
and allocation to easily scale up. As a consequence,
companies that plan to use this kind of solutions as an
alternative to traditional cluster-based platforms could
employ virtually unlimited computational resources without
caring about the management and the maintenance of the
overall IT infrastructure. Furthermore, the on-demand
resource allocation mechanism allows companies to reduce
costs consistently since they have to pay only for the
computational resources actually used.

Based on these considerations in this paper we present a
Genetic Algorithm for the automatic test suite generation for
Object Oriented software and show how it can be
parallelized using Hadoop MapReduce [4]. Hadoop
MapReduce is a framework for developing applications that
rapidly process vast amounts of data in parallel on large
clusters of computing nodes. This choice was motivated by
the fact that it is becoming the de-facto standard MapReduce
implementation and it has been used also in industry [37].
Moreover, it is well supported to work not only on clusters,
but also on the cloud [3] and on graphic cards [19], thus
being an ideal candidate for high scalable parallelization of
GAs.

The proposed Parallel Genetic Algorithm (PGA) takes as
input the software to be tested and an initial population of
random solutions (i.e., a set of test cases) that are evolved
according to a given coverage criterion (i.e., branch
coverage) following a global parallelization model. This
means that at each iteration the individual fitness evaluation,
which is the most time consuming GA task in the considered
domain, is carried in a parallel way exploiting the

2012 IEEE Fifth International Conference on Software Testing, Verification and Validation

978-0-7695-4670-4/12 $26.00 © 2012 IEEE

DOI 10.1109/ICST.2012.177

785

MapReduce programming model. At the end of the evolution
process a JUnit test suite, optimized to cover as much
branches as possible of the software under test, is given in
output to the user.

A preliminary analysis of the proposed PGA was realized
on standard cluster exploiting a real word open source
library. The results were evaluated in terms of the time
needed to generate the test suites and compared with the ones
achieved executing the same GA in the traditional sequential
way.

Although the problem of parallelizing Search-Based
techniques is not new (see section V for related work), to the
best of our knowledge this work is the first that proposes a
PGA based on Hadoop MapReduce for the automatic
generation of JUnit test suite, showing also a preliminary
evaluation of its use.

The rest of the paper is organized as follows. In section II
we describe the design of a Genetic Algorithm for the
automatic generation of JUnit test suite. Section III presents
the approach we proposed to parallelize the genetic
algorithm exploiting HadoopMapReduce. Section IV reports
the design and the results of the analysis we carried out to
assess the effectiveness of the proposed approach. Section V
describes related work while some final remarks and future
work conclude the paper.

II. A GENETIC ALGORITHM FOR THE AUTOMATIC
GENERATION OF TEST SUITE

Genetic Algorithms (GA) [17] are evolutionary
algorithms that, inspired by the theory of natural evolution,
simulate the evolution of species emphasizing the law of
survival of the strongest to solve, or approximately solve,
optimization problems. To this end, a fitness function is used
to evaluate the goodness (i.e., fitness) of the solutions
represented by the individuals (i.e., chromosomes) and
genetic operators based on selection and reproduction are
employed to produce new offspring.

The elementary evolutionary process of GA is composed
by the following steps:

1. An initial population is usually randomly generated;
2. A fitness function is used to assign a fitness value to

each individual;
3. According to their fitness value some individuals are

selected as parents (i.e., reproduction selection) and
new individuals (offspring) are created by applying
reproduction operators (i.e., crossover and mutation)
and evaluated using the fitness function;

4. To determine the individuals that will be included in
the next generation a selection based on individual’s
fitness value is applied (i.e., survival selection);

5. Steps 2, 3, and 4 are repeated until stopping criteria
hold.

In the following, we describe the design choices we made
for tailoring GA to automatically produce test suites for the
unit testing of classes of a given software system.

In such a scenario, a chromosome represents a test suite
(i.e., a set of n test cases) for a given Java class belonging to
the software under test (SUT). We employ a representation
similar to [16] for each test case that contains a sequence of

statements of length l for object creation, state change, and
method invocation. In particular, each statement can be one
of these types: primitive, constructor, field, and method [16].

The initial population is randomly generated. Then the
classical evolutionary scheme is applied aiming at evolving
towards populations containing chromosomes with a high
fitness value.

The fitness of each individual is measured in terms of
branch coverage by exploiting the Cobertura coverage tool
[8]. Given a test suite and a SUT, this tool calculates the
percentage of branches covered by the test suite when
executed with JUnit on the instrumented bytecode of the
SUT. In particular, Cobertura considers a branch as covered
if it is exercised on the true and false outcomes, at least once.
Moreover, if a same branch is covered more than one time
by different test cases within the same test suite (i.e.,
chromosome) the corresponding branch is counted just once
during the fitness evaluation.

Concerning the reproduction operators we employ a
single point crossover which generates offspring O1 and O2
from two parents (i.e., two test suites) P1 and P2, selecting a
random point of cut in the parent chromosomes and
swapping their test cases with a rate of 0.5. As for the
employed mutation operator, it changes with probability 0.25
each gene in a chromosome replacing the current test case
with a new one obtained by using a feedback-directed
random generation which adds method arguments in an
incremental way (i.e., building, executing, and checking
arguments against a set of contracts to determine whether an
input is redundant, illegal, contract-violating, or useful for
generating more inputs for a given method). These genetic
operators working on an entire test case allowed us to avoid
the difficulties due to dependencies between statements of a
test case [36].

As for the selection operators we employed Tournament
and Linear Ranking selectors for reproduction and survival
selection, respectively.

The search process is stopped after performing a fixed
number of generations or whether the best solution doesn’t
change for a certain number of generations.

III. A PARALLEL GENETIC ALGORITHM BASED ON
HADOOP MAP REDUCE

In the following subsections we first give some
background, reporting on the strategies proposed in the
literature to parallelize Genetic Algorthms and recalling the
main aspects of MapReduce and Hadoop MapReduce. Then,
we present the design of the proposed parallel Genetic
Algorithm using Hadoop MapReduce.

A. Parallelization Strategies
Several GA parallelization strategies exist depending on

the grain of parallelization to achieve. Basically, three levels
of parallelization can be exploited:

� fitness evaluation level (i.e., global parallelization
model);

� population level (i.e., coarse-grained parallelization
or island model);

786

� individual level (i.e., fine-grained parallelization or
grid model) [34].

In the global parallelization model, a node acting as a
master, manages the population (i.e., applying genetic and
selection operators) and distributes the individuals among
slave nodes which compute only the fitness values of the
individuals. The main advantage of using such a model is
that it does not require any change to the design of traditional
GA since the individual fitness evaluation is independent
from the rest of the population.

In the island model the population is subdivided in
several subpopulations of relatively large size which are
located in several islands (i.e., nodes). Thus, a Genetic
Algorithm is executed on each subpopulation and such
subpopulations exchange information by allowing some
individuals to migrate from one island to another according
to a given temporal criteria. The main expected advantages
of this model are: (i) different subpopulations could explore
different portions of the search-space; (ii) migrating
individuals injects diversity into the converging population.

Finally, in the grid model each individual is placed on a
grid (i.e., each individual is assigned to a node) and all GA
operations are performed in parallel evaluating
simultaneously the fitness and applying locally selection and
genetic operations to a small neighboring. A drawback of
this approach is the overhead due to the frequent
communications between grid nodes.

There exist proposals that fall in the so called hybrid
models which combine different levels of parallelization.

In the following we define a way to exploit the first
parallelization model using Map Reduce.

B. MapReduce
MapReduce is an elegant and flexible paradigm which

enables to develop large-scale distributed applications [12].
It is expressed in terms of two distinct functions, namely
Map and Reduce, which are combined together in a divide-
and-conquer way where the Map function is responsible to
handle the parallelization while the Reduce collects and
merges the results. In particular, a master node splits the
initial input in several pieces, each one identified by a unique
key, and distributes them via the Map function to several
slave nodes (i.e., Mappers) which work in parallel and
independently from each other performing the same task on a
different piece of input. As soon as each Mapper finishes its
own job the output is identified and collected via the Reducer
function. In particular, each Mapper produces a set of
intermediate key/value pairs which are exploited by one or
more Reducers to group together all the intermediate values
associated to the same key and to compute the list of output
results. It is worth mentioning that the different intermediate
keys emitted by the Mapper functions affect the way the
model distributes the computation of each Reducer on
different machines. Thus, the program automatically invokes
and allocates a number of distinct Reducers that correspond
to the number of distinct intermediate keys.

C. HadoopMapReduce
Several different implementations of MapReduce have

been proposed. The most famous one is the AppEngine-
MapReduce [18], built on the top of the distributed Google
File System, and Hadoop MapReduce [4].

Hadoop MapReduce is an open-source project of the
Apache Software Foundation aiming at supporting
developers in realizing applications that rapidly process vast
amounts of data in parallel on large clusters of computing
nodes. Its popularity is increasing rapidly as well as its
adoption by large companies such as IBM and Yahoo.

With respect to its “big brother”, the AppEngine-
MapReduce [18], Hadoop MapReduce supports both Map
and Reduce phases, thus avoiding a programmer to manage
its own Reducer. Using Hadoop also lets us avoid some
limitations imposed by GoogleApp Engine (e.g., it is not
allowed to use files or executing external threads and
processes). Moreover, Hadoop MapReduce is well supported
to work not only on clusters, but also on the cloud [3] and on
graphic cards [19], thus being an ideal candidate for high
scalable parallelization of GA.

Hadoop MapReduce exploits a distributed file system (an
open source implementation of Google File System), named
the Hadoop Distributed File System (HDFS), to store data as
well as intermediate results and uses the MapReduce
programming model for data processing. The Hadoop
MapReduce interpretation of the Distributed File System was
conceived to increase large-data availability and fault-
tolerance by spreading copies of the data throughout the
cluster nodes, in order to achieve both lower costs (for
hardware and RAID disks) and lower data transfer latency
between the nodes themselves. Hadoop offers also a database
named HBase that was created to compete with Google’s
DataStore in order to speed up the data retrieval for billions
of small information.

In the next section we detailed how we exploited the
Hadoop MapReduce programming model to parallelize the
proposed Genetic Algorithm for the automatic creation of
test suites.

D. The proposed Parallel Genetic Algorithm based on
Hadoop MapReduce
The underlying idea in using MapReduce to parallelize

the Genetic Algorithm described in section II is to
encapsulate each iteration of the GA as a separate
MapReduce job and parallelize the chromosome fitness
evaluation assigning such task to several Mappers, while a
single Reducer is responsible to collect the results and to
perform the genetic operations (i.e., parents selection,
crossover and mutation, and survival selection) needed to
produce a new generation following a global parallelization
model.

Figure 1 shows the proposed architecture based on
HadoopMapReduce and composed by the following main
components: a Parallel Genetic Algorithm, a Master, a
number of Mappers and a Reducer, together with two other
units, namely InputFormat and OutputFormat, which are
responsible to split the data for the Mappers and to store the

787

R
(

e
p
H
n

a
m
t
u

A

i
a
T
e
i
p
a

Reducer outp
(HDFS), respe

Let us no
each other e
provided by H
Hadoop frame
nodes) are car

The Paral
a tester) spe
manages the
terminated it r
under test.

Figure 2 re
Algorithm com
1) is needed t
information ab
and to genera
Then, it start
executing the
iteration if a
postExecution
and the distrib

put into the H
ectively.
ote that these
exploiting the
Hadoop, while
ework (i.e., tho
rried out via so
lel Genetic Alg

ecify the Sof
overall execu

returns to the

eports the pse
mponent. First
to instrument t
bout the cover
ate an initial r
ts the evoluti
MapReduceJo
termination cr

n phase is need
buted one.

Hadoop Distri

components
HDFS distr

e the commun
ose between th
ocket using SS
gorithm modu
ftware Under
ution of GA.
user a test su

eudocode for th
t of all a PreE
the SUT bytec
rage in a prog
random popul
ionary proces
ob (lines 3-4)
riterion holds
ded to clean th

Figure 1

ibuted File S

communicate
ributed file s
nications with
he master and

SH (Secure SH
ule lets the use
r Test (SUT)
. Once the G

uite for the sof

he Parallel G
ExecutionPhase
code in order
gram run (line
ation (lines 1
ss by creating
and checks at
(line 2). Fina

he local file s

1. Architecture o

ystem

e with
system
hin the
d slave
Hell).
er (i.e.,
) and
GA is
ftware

Genetic
e (line
to get

es 8-9)
0-11).
g and
t each
ally, a
system

Alg
eva
(see
pha
com
foll

cur
pop
it in
the

the

sup
taki
deta
valu
Had
not
inpu
Map

of the proposed P

The MapRed
gorithm modu
aluations and
e Fig. 1). In p
ases (i.e., Sp
mponent perfo
lowing.
Split. In this

rrent populatio
pulation) from
n crunch of da
Mapper modu
The number
basis of the nu
The Master

pervise the ass
ing care also
ails, once the
ue> pairs - e
doop - the und
tified and the
ut split produ

appers.

GA for test suite

duceJob is the
ule since it al

distribute the
particular, a M
plit, Map, an
forms its pro

s phase the I
on (i.e., the tes

m the HDFS an
ata (i.e., input
ules.
of input splits
umber of avai
module is re

signment of re
o of the load
e InputForma
exploiting the
derlying Hadoo
Master compo
uced by the I

generation.

e core of the P
lows us to p

e computation
MapReduceJob

nd Reduce)
per task as

InputFormat m
st suites compo
nd processes it

split) to be di

s is dynamica
lable Mappers
esponsible to
esources and t
d balancing a
at begins to

RecordReade
op framework
onent is invok
InputFormat

Parallel Gene
arallelize fitn

n over the nod
consists of thr
in which ea
detailed in t

module gets t
osing the curr
t in order to sp
istributed amo

lly computed
s.

coordinate a
the computatio
aspects. In mo

emit the <k
er component
k is automatica
ked to assign t
to the availab

etic
ess
des
ree
ach
the

the
ent
plit
ong

on

and
ons
ore

key,
of

ally
the
ble

788

Figure 2. Parallel Genetic Algorithm pseudocode.

Map. In this phase each Mapper carries out its task on
the received input split in a parallel and independent way. In
particular, each Mapper is responsible to exercise a class of
the SUT with the test suites associated to the received
chromosomes and to observe the software behavior in order
to evaluate the corresponding fitness value (i.e., branch
coverage).

 Once such evaluation is completed, each Mapper
generates a new pair <key, value>, where value is a pair
<chromosome, fitness value>, while the new key will be used
by the Master module to properly assign the Reducers. Since
our architecture does not require any other parallel
computation, the generated key will be the same for all the
chromosomes, in order to have only a single Reducer.

The Master module in this phase is responsible to collect
the outputs produced by the Mappers that will constitute the
input for Reducer.

Reduce. As soon as a Mapper evaluates a chromosome
the corresponding data (i.e., key, chromosome, and fitness
value) is sent to the Reducer. Once the entire population has
been available to the Reducer it can perform the survival
selection and apply on the new generation the crossover and
mutation operators to produce a new offspring to be
evaluated in the next MapReduceJob. Note that to obtain the
entire population the Reducer should wait until all Mappers
have replied. However each Mapper evaluates approximately
the same number of chromosomes and if they are executed in
parallel they require approximately the same time. Finally,
the data concerning with the new offspring is saved by the
OutputFormat - using the RecordWriter - into the HDFS,
allowing the Parallel Genetic Algorithm module to verify
whether the stopping criteria hold.

The Master module in this phase is responsible to notify
Parallel Genetic Algorithm to restart the computation
invoking the MapReduceJob for the new offspring created by
Reducer.

IV. PRELIMINARY EVALUATION

In this section we report the results achieved in a
preliminary analysis carried out to assess the speed-up
achieved by using the Parallel Genetic Algorithm described
in section III with respect to the sequential Genetic
Algorithm described in section II (denoted in the following
as SGA).

TABLE I. APACHE COMMONS PRIMITIVES PACKAGES

Package Description
org.apache.commons.collections.
primitives

Collections of primitive values.

org.apache.commons.collections.
primitives.adapters

Adapters for converting between the
primitive and object based versions
of the collections framework.

org.apache.commons.collections.
primitives.adapters.io

Adapters for converting between
primitive collections and Java I/O
classes.

org.apache.commons.collections.
primitives.decorators

Decorators of primitive collections.

TABLE II. THE CASE STUDY SUBJECT.

Subject # Classes # Branches LOC

Commons
Primitives
(CP)

Total

259 1446 4605

Testable

89 1024 2826

A. Subject
The proposed approach was empirically evaluated by

applying it to an open source software library, namely
Apache Commons Primitives [5], which contains collections
and utilities specially designed for use with primitive types in
Java (i.e., boolean, byte, char, double, float, int, long and
short). Indeed, despite a lot of functionality is provided by
the JDK for Object types, relatively little functionality is
provided for primitive types. Thus, Apache Commons
Primitives library addresses this by providing a set of utility
and collection classes for primitives (e.g., ArrayByteList,
ArrayShortList, ArrayCharList, ByteIterator). In particular, it
is organized in four packages containing 259 classes, for a
total of 4605 Lines of Code (LOC) and 1446 branches (see
Table I). As done in previous work [16], we tested all the
classes which were not interface, abstract, or private (see
Table II).

B. Evaluation Criteria
To compare the performance of the employed algorithms

we evaluated them both in terms of execution time and
branch coverage. In particular, the execution time was
measured using the system clock and the TotalTime is
composed of the following parts:

� InitTime: total time required by PGA for initializing
a Map with the information (i.e., SUT instrumented
bytecode, JUnit, test cases) needed to perform the
fitness evaluation in each generation;

� EvalTime: total time spent to evaluate the fitness of
chromosomes;

� RemainTime: time given by the difference between
TotalTime and (InitTime+EvalTime); it comprises
the time required to create the initial random
population, perform selection, crossover, and
mutation operators and, in case of PGA also the time
spent for the communication among nodes.

1 population = preExecution(SUT);
2 while(!stopCriteria ()) {
3 mpJob= createMapReduceJob();
4 population= mpJob.execute(population);
5 }
6 postExecution();

7 preExecution (SUT):population {
8 instrumentedCode = instrument(SUT);
9 move(instrumented Code, HDFS);
10 population = createRandomPopulation();
11 return population;

789

a
r

c
t

c
b
t

p
e
a
e
c
f
b
c
s
s
s
w

n
w
d
c
a
W

C

P
T
u
S
i
R
t
H
M
a
c
R
u
g
p
S
b
g

w
f

The speed
amount of tim
required by PG

It is worth
cope with the
time and of th

Moreover,
coverage achi
by randomly
test suites) eva

Experimen
To set up

population siz
exploring a w
accurate cov
experimenting
chromosomes
found a setting
branches. The
chromosomes
statements ran
stopped after p
solution did n
was employed

As for the
node equipped
while for PG
distributed in
cores. The em
also exploited
Windows Ope

C. Results
Figure 3 re

PGA. As w
TotalTime) is
us to achieve
SGA. Moreov
initialize each
RemainTime,
to data mana
HDFS to mov
Master node).
an overhead b
could allow u
Regarding the
using PGA w
generate test s
percentage of
SGA (i.e., 78
better branch c
generated (i.e.

Exploiting
we could try
for population

d-up is then
me that SGA
GA.
h noting that w
e inherent ran
e GA, and rep
, as sanity c
ieved by SGA
generating the
aluated by SGA
ntal Setup
p SGA we
ze and genera

wider search sp
verage result
g with sma

and 10 iteratio
g which allow

e resulting setti
, each contain
nging from 2
performing 10

not change for
d for PGA to a
e employed ha
d with the co
A we exploit
a small cluste

mployed versi
d Cygwin 1.7
erating System

eports on the e
e can see,
 highly reduc
a speed-up o

ver, we can o
h Map (i.e., I
whose main p

agement durin
ve at each iter
 This suggeste

by means of c
us to further
e achieved br

with the same
suites able to
f branches wit
8%). Moreov
coverage with
., 28 %).

g the speed-up
to improve th

n size and gene

calculated by
required by t

we executed t
ndomness of
ported the aver
check we com
A and PGA wi
e same numbe
A and PGA.

exploited dif
ation number
pace allowed
ts. In partic
all setting
ons) and incre

wed SGA to co
ing employed

ning 6 test case
to 20. The s

00 generations
10 generation

allow for a fair
ardware, SGA
onfiguration re
ted nine Map
er of three nod
on of Hadoop
7.1 in order

m.

execution time
the total exe
ed by using P
f 57% with re

observe that th
InitTime) is m
part consists o

ng the reduce
ration the new
ed us that tryin
cloud computin
reduce the to
ranch coverag
e setting of S
cover in aver
th respect the

ver, both algo
h respect to the

p provided by
he coverage ac
eration number

y dividing the
the amount of

ten runs in or
dynamic exec

rage results.
mpared the b
ith the one obt
er of solutions

fferent setting
analyzing wh

us to achieve
cular, we s
values (i.e.

easing them un
over at least 7
a population o

es with a num
search proces
or whether th

ns. The same s
r comparison.
 was executed
eported in Tab
s and one Re

des for a total
p was 0.21 an
to run Hadoo

e for both SGA
ecution time
PGA, thus allo
espect to the u
he time requir
much less tha
of the overhea
e phase (i.e.,
w population
ng to diminish
ng or graphic

otal execution
ge, as we exp
SGA allowed
rage about the
e ones provid
orithms achiev
e test suite rand

PGA in the
cting on the s
r.

e total
f time

rder to
cution

branch
tained
s (i.e.,

gs for
hether
 more
started
, 25

ntil we
5% of
of 225

mber of
s was

he best
setting

d on a
ble II,
educer
of six

nd we
op on

A and
(i.e.,

owing
use of
red to
an the
ad due

using
to the
h such

cards
time.

pected
us to
 same

ded by
ved a
domly

future
setting

H

S

D.

par
and
effe
futu
vali
met
of t
exe
ana
can
asse
fine
thre
bias
emp
ave
exte
sub
abo
into
con

TABLE III

HARDWARE

SOFTWARE

Figure 3. E

Threats to Va
The focus of

rallel/distribute
d to conduc
ectiveness. Th
ure work to m
idity threats o
trics employed
the testing tech
ecution time s
alyze the speed
n be enriched
ess the quality
e-grained info
eats related to
s introduced b
ployed GA se

erage results
ernal validity

bject of the stu
out 250 Java
o account furt
nfirm the achie

I. EQUIPMENT

CPU

RAM

Hard Disk

Connectivity
Operating
System
Java Virtual
Machine
JUnit

Hadoop

Cygwin

Execution time pe

alidity
f this paper w
ed GA for au
ct a prelim
hus, several im
mitigate the co
f this study. A
d to evaluate
hniques were b
since the ma
d-up due to th

d exploiting f
y of the gener
ormation on t

the internal v
by the intrinsic
etting. We m
obtained from

y, it can be a
udy was an op
classes, thus
ther software
eved results.

T OF THE EMPLOY

Intel Core i3 21

4GB

SATA 500GB 5

10/100/1000 Et
Windows 7 Hom
64bit
Java SE Runtim

v. 4.10

v. 0.21

v. 1.7.1

rformance of SGA

was to propo
utomatic test

minary invest
mprovements
onstruct, intern

As for the cons
and compare
based on cove
in goal of th

he use of PGA
for example o
rated test suite
the RemainTi

validity, they c
c randomness o

mitigate these t
m ten executi
affected by th
pen-source sof
it could be in
projects of d

YED NODES

00

5200RPM

thernet LAN
me Premium SP1

me v.1.6.

A and PGA.

ose the use of
suite generati

tigation on
can be done

nal, and exter
struct validity
the performan

erage criteria a
he study was
A. However, th
other criteria
e, or providing
ime. As for
can be due to
of GA and to
threats by usi
ons. As for
he fact that

ftware containi
nteresting taki
different sizes

f a
ion
its
in

rnal
the
nce
and

to
hey

to
g a
the
the
the
ing
the
the
ing
ing
 to

790

V. RELATED WORK

In this section, we present some related works. First of
all, we discuss previous works on the design of parallel
Genetic Algorithms (not applied in the context of software
engineering) based on MapReduce, showing similarity and
differences with our proposal. Then, we describe solutions
based on parallel search-based approaches employed for
automated testing and for other software engineering
problems. Finally, we report on several studies proposing
different frameworks for the parallel execution of test cases.

A. Parallel Genetic Algorithms based on MapReduce
To the best of our knowledge, in the literature two

proposals [22][37] have been reported proposing a parallel
GA based on MapReduce to solve classical optimization
problems. Nevertheless, such proposals did not take into
account the specific context of software testing and differ
from the one proposed in this paper under several aspects.

In [22] an extension of MapReduce, named MRPGA,
was proposed. In that work the authors claimed that due to its
iterative nature, the GA process cannot follow the two phases
pattern of MapReduce. Thus, they added to the pattern a
further reduction phase to perform a global selection at the
end of each iteration of parallel GA. In particular, the
architecture of the run time system consists of one master
and multiple mappers and reducers. The master has the
responsibility of scheduling the execution of parallel tasks,
while the mapper workers have to execute the map functions
(i.e., the evaluation of chromosome fitness defined by the
user) and the reducer workers are responsible to execute
reduce functions (i.e., the selection operation on
chromosomes to choose local optimum individuals). The
difference with the standard implementation of MapReduce
concerns with the support provided for a second reduce
phase that is conceived to use just a reducer responsible of
the selection of the global optimum individuals. Moreover, a
coordinator client is introduced to coordinate the executions
of the parallel GA iterations. MRPGA was implemented on
.NET platform using C# language and was applied to solve
the DLTZ4 and DLTZ5 problems [14].

Our solution differs from the one of [22] since it does not
employ the additional reduction phase, indeed, as suggested
also by Verma et al., this phase is not necessary since the
local reduce can be implemented within a Combiner as
shown in [13]. Further, using “default_key” and 1 as values
produced by the mapper, reducer, and final reducer
functions, MRPGA does not employ any characteristics of
the MapReduce model (i.e., the grouping by keys and the
shuffling). Moreover, in their proposal a huge amount of
work regarding mutation, crossover, and evaluation of the
convergence criteria is made by a single coordinator
affecting the scalability of their approach [37]. To avoid this
problem, in our solution we split these jobs among the
master node (performing evaluation of the convergence
criteria) and the reducer (performing mutation and
crossover).

Differently from [22], Verma et al. [37] designed a
Parallel GA based on the traditional MapReduce model and
realized it by exploiting Hadoop MapReduce [4]. The

proposed PGA was employed to solve the ONEMAX
problem [32] showing that larger problems could be resolved
without any changes in the implementation of the algorithms
by adding more resources. Our solution is similar to [32],
except for the use of multiple reducers. Indeed, they
followed a coarse-grained parallelization model performing a
local survival selection on multiple reducers to speed-up the
overall execution time, however as pointed out in [31] a local
selection can led to a reduction in selection pressure affecting
the time taken to converge. Thus, since in the domain we
considered the computation of the fitness function is the
most time consuming task we preferred employing a global
parallelization level using only one reducer. However, if a
higher level of parallelization is required, the architecture we
proposed can be extended, basically acting on the number of
the involved reducers and the intermediate keys, to
parallelize also the execution of selection and genetic
operators (i.e., coarse-grained parallelization) or to enhance
the selection pressure by means of migrations among groups
of chromosomes (i.e., fine-grained parallelization) as
described in [15].

B. Parallel Genetic Algorithms for Automated Testing
Search-based algorithms have been used to automate a

variety of software testing activities, such as test data
generation (e.g., [2][21][24][36]), test case generation and
selection (e.g., [16][39]), test case prioritization (e.g., [38]),
and so on. For sake of space we remind interested readers to
[1] and [27] for a review of these works and we discuss in
the following the parallel Search-based approaches proposed
for Software Testing.

In [15] the use of MapReduce has been recently
suggested for addressing the computational issues related to
SBST. In particular, the authors described three architectures
based on MapReduce to achieve different levels of
parallelization of Genetic Algorithms (i.e., global, island, and
grid models). Moreover, they illustrated with an example
how to design a Parallel Genetic Algorithm based on Google
AppEngine-MapReduce [18] for test data generation. As
they stated, the proposal needs to be validated in practice
carrying out an empirical evaluation of the solutions; this is
necessary to highlight on the field the strength or weakness
of the different architectures, as well as to assess their actual
scalability. Thus, in this paper we designed a Parallel
Genetic Algorithm conceived for JUnit test suite generation
based on the global parallelization model proposed in [15]
and realized it exploiting the Hadoop MapReduce framework
reporting also a preliminary evaluation of its use on standard
cluster. With respect to AppEngine-MapReduce [18],
Hadoop MapReduce provides several advantages as
described in section III-C.

A different approach to address parallelization of SBST
has been recently proposed by Yoo et al. in [40], where a
parallel multi-objective Genetic Programming for test suite
minimization was devised for exploiting the computational
power of modern graphic cards. The obtained results showed
that for their problem the speed-up achieved by using GPU
was logarithmic correlated to the problem size (i.e., SUT and

791

test suite size) and ranged from 1x to 25x with respect to the
use of a single-threaded version of the same GP.

C. Parallel Search-Based Approaches in Software
Engineering
As for the use of parallel solutions in other areas of

SBSE, Mitchell et al. [28] suggested the exploitation of a
distributed architecture to parallelize modularization through
the application of search-based clustering.

To the same end, Mahdavi et al. [26] developed a parallel
hill climbing algorithm exploiting a cluster of standard PCs.

More recently, Asadi et al. [6] compared different
distributed architectures to parallelize a GA for the concept
location problem.

D. Parallel Execution of Testing
Since software testing is one of the most expensive

phases of the software development process, in the last
decades a huge amount of research efforts has been devoted
to speed-up testing activities. Nevertheless, despite the
general advantages of parallelizing software testing [33],
very little work has been made to distribute software testing
over multiple computers.

In the case study presented by Lastovetsky and Alexey
[25] it was shown that parallelizing regression testing for a
distributed programming system resulted in a speed up of up
to 7.7 on two 4-processor workstations.

These promising results encouraged also the
development of parallel regression testing tools based on
JUnit, such as Joshua [23] and GridUnit [9][10][11]. The
main idea underlying these tools was that a master node
distributes test cases for execution across slave machines to
speed-up the testing process and then collects the results. To
this end Joshua exploited Jini for distributing the regression
test suite execution over different CPUs, while GridUnit
exploited a computational Grid.

In [30] a distributed execution framework for JUnit test
cases, named HadoopUnit, was proposed and preliminary
results using a 150-node cluster suggest that HadoopUnit can
reduce test execution time significantly (about 30x
improvement). Recently high interest has been attracting the
use of cloud computing for addressing the significant
computing resources and the lengthy execution times
requested by software testing. Paper [35] takes into account
the characteristics of an application under test and the types
of testing to perform to decide when migrating software
testing to the Cloud. A proposal for distributing the
execution of test cases in the Cloud was presented in [29]. In
particular, they described a framework for the distributed
execution of the York Extensible Testing Infrastructure
(YETI), a language agnostic random testing tool [29]. They
employed the MapReduce primitives. Before the execution,
the needed files (i.e., the test cases and the employed testing
tool) are uploaded to the distributed file system file to be
later read by the Mapper nodes. Then, the Master node
launches a Mapper for each test case and each Mapper reads
its data and executes the corresponding test case. Finally, the
Reducer collects the test case results from each Mapper and
outputs them to a file on the DFS. The preliminary results

reported in [29] were promising, showing that exploiting the
proposed framework on the Amazon Elastic Computing
Cloud (EC2) [3] the performances of YETI improved
reducing the testing time.

VI. CONCLUSION AND FUTURE WORK

In this paper we proposed the use of a Parallel Genetic
Algorihtm (PGA) for test suite generation exploiting Hadoop
MapReduce and showed a preliminary evaluation of its use
on a small cluster. The obtained results highlighted that using
PGA allowed us to save over the 50% of time.

Since the use of parallel SBST approaches is still in its
early phases, several directions can be prospected as future
work. First of all a deeper empirical evaluation of the
proposed approach is needed to asses on other subjects its
strength or weakness, as well as to assess its actual
scalability employing different GA settings, numbers of
maps, and larger clusters. Also the use of Hadoop
MapReduce should be assessed running it not only on
standard clusters, but also exploiting cloud computing and
graphic cards. Moreover, it can be interesting to realize and
compare higher levels of parallelization, such as by
parallelizing the genetic operations other than the fitness
evaluation.

It would be also interesting to verify how other
approaches for test suite generation (e.g., EvoSuite [16])
could be take advantages of parallel/distributed computation
as the one described in this paper.

Finally, as a long-term research goal, it will be desirable
to integrate these SBST approaches within a whole
Validation-as-a-Service platform, available in the Cloud, to
support the entire software testing process.

ACKNOWLEDGMENT

The research has been carried out exploiting the
computer systems funded by University of Salerno's
Finanziamento Medie e Grandi Attrezzature (2010).

REFERENCES

[1] S. Ali, L. C Briand, H. Hemmati, R. K., Panesar-Walawege, “A
Systematic Review of the Application and Empirical Investigation of
Search-Based Test Case Generation,” IEEE Transactions on Software
Engineering, 36(6) 2010, pp. 742-762.

[2] S. Ali, M. Z. Z. Iqbal, A. Arcuri, L. C. Briand, “A Search-Based OCL
Constraint Solver for Model-Based Test Data Generation,” in
Proceedings of the 11th International Conference On Quality
Software, 2011, pp. 41-50.

[3] Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2
[4] Apache Hadoop Map Reduce, http://hadoop.apache.org/mapreduce/
[5] Apache Commons Primitives, http://commons.apache.org/primitives/
[6] F. Asadi, G. Antoniol, Y. Gueheneuc, “Concept locations with

genetic algorithms: A comparison of four distributed architectures,”
in Proceedings of the 2nd International Symposium on Search Based
Software Engineering, 2010, pp. 153 - 162.

[7] A. Bertolino, “Software Testing Research: Achievements,
Challenges, Dreams,” in Proceedings of Future of Software
Engineering, 2007, pp. 85-103.

[8] Cobertura, Coverage Tool, http://cobertura.sourceforge.net/

792

[9] A. Duarte, W. Cirne, F. Brasileiro, P. Machado, “Gridunit: software
testing on the grid,” in Proceedings of the 28th International
Conference on Software engineering, 2006, pp. 779-782.

[10] A. Duarte, G. Wagner, F. Brasileiro, W. Cirne, “Multienvironment
software testing on the grid,” in Proceedings of the Workshop on
Parallel and Distributed Systems: Testing and Debugging, 2006, pp.
61–68.

[11] R. N. Duarte, W. Cirne, F. Brasileiro, P. Duarte, and D. L. Machado,
“Using the computational grid to speed up software testing,” in
Proceedings of 19th Brazilian Symposium on Software Engineering,
2005.

[12] J. Dean, S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” in Proceedings of the 6th Symposium on Operating
System Design and Implementation, 2004, pp.137-150.

[13] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing
on large clusters”, Communications of ACM, 51(1):107–113, 2008.

[14] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable
multiobjective optimization test problems,” in Proceedings of
Congress on Evolutionary Computation, 2002, pp. 825-830.

[15] S. Di Martino, F. Ferrucci, C. Gravino, V. Maggio, F. Sarro, “Using
MapReduce in the Cloud to enhance effectiveness and scalability of
genetic algorithms for test data generation,” available at
http://www.dmi.unisa.it/people/sarro/www/research/SBSTCloud.html

[16] G. Fraser, A. Arcuri, “Evolutionary generation of whole test suite,” in
Proceedings of the 11th International Conference On Quality
Software, 2011, pp. 31-40.

[17] D. E. Goldberg, “Genetic Algorithms in Search, Optimization, and
Machine Learning,” Addison-Wesley, 1989.

[18] GoogleAppEngine, http://code.google.com/appengine/
[19] CUDA on Hadoop MapReduce,

http://wiki.apache.org/hadoop/CUDA%20On%20Hadoop
[20] M. Harman, “The current state and future of search-based software

engineering,” in Proceedingd of Future of Software Engineering
2007, pp. 342-357.

[21] M. Harman, P. McMinn, “A theoretical and empirical study of search
based testing: local, global and hybrid search,” IEEE Transactions on
Software Engineering, 36(2), 2010, pp. 226-247.

[22] C. Jin, C. Vecchiola, R. Buyya: “MRPGA: An Extension of
MapReduce for Parallelizing Genetic Algorithms,” in Proceedings of
IEEE Fourth International Conference on eScience, 2008, pp. 214-
221.

[23] G. M. Kapfhammer, “Automatically and transparently distributing the
execution of regression test suites,” in In Proceedings of the 18th
International Conference on Testing Computer Software, 2000, pp.
149-174 .

[24] K. Lakhotia, P. McMinn, M. Harman, “Automated Test Data
Generation for Coverage: Haven’t We Solved This Problem Yet?, ” in
Proceedings of Testing: Academic and Industrial Conference -
Practice and Research Techniques, 2009, pp. 95-104.

[25] A. Lastovetsky, “Parallel testing of distributed software,” Information
Software Technology, 47(10) 2005, pp. 657–662.

[26] K. Mahdavi, M. Harman, R. M. Hierons, “A multiple hill climbing
approach to software module clustering,” in Proceedings of
International Conference on Software Maintenance, 2003, pp. 315–
324.

[27] P. McMinn, “Search-based software test data generation: a survey,”
Journal of Software Testing, Verification & Reliability 14(2), 2004,
pp. 105-156.

[28] B. S. Mitchell, M. Traverso, and S. Mancoridis, “An architecture for
distributing the computation of software clustering algorithms,” in
Proceedings of the Working IEEE/IFIP Conference on Software
Architecture , pp. 181–190.

[29] M. Oriol, F. Ullah, “YETI on the Cloud”, in Proceedings of the Third
International Conference on Software Testing, Verification, and
Validation Workshops, 2010, pp. 434-437.

[30] T. Parveen, S. Tilley, N. Daley, P. Morales, “Towards a distributed
execution framework for JUnit test cases, “ in Proceedings of IEEE
International Conference on Software Maintenance, 2009, pp. 425-
428.

[31] A. J. Sarma, J. Sarma, and K. D. Jong, “Selection pressure and
performance in spatially distributed evolutionary,” in Proceedings of
the World Congress on Computatinal Intelligence, 1998, pp 553–557.
IEEE Press.

[32] J. Schaffer, L. Eshelman, “On Crossover as an Evolutionary Viable
Strategy,” in Proceedings of the 4th International Conference on
Genetic Algorithms, Morgan Kaufmann, 1991, pp. 61–68.

[33] E. Starkloff, “Designing a parallel, distributed test system,”
Aerospace and Electronic Syst Systems Magazine, IEEE, 16(6), 2001,
pp. 3-6.

[34] J. Stender, “Parallel Genetic Algorithms: Theory and Applications,”
Frontiers in Artificial Intellingence, 1993, vol.14.

[35] S. R. Tilley, T. Parveen, “When to Migrate Software Testing to the
Cloud?, “ in Proceedings of Third International Conference on
Software Testing, Verification, and Validation Workshops, 2010, pp.
424-427.

[36] P. Tonella, “Evolutionary testing of classes,” in Proceedings of the
2004 ACM SIGSOFT International Cymposium on Software Testing
and Analysis 2004, pp. 119-128.

[37] A. Verma, X. Llorà, D.E. Goldberg, R.H. Campbell, “Scaling Genetic
Algorithms Using MapReduce,” in Proceedings of the 2009 Ninth
International Conference on Intelligent Systems Design and
Applications, 2009, pp.13-18.

[38] K.R., Walcott, M.L., Soffa, G.M. Kapfhammer, R.S. Roos, “Time
aware test suite prioritization,” in Proceedings of the International
Symposium on Software Testing and Analysis, 2006, pp. 1–12.

[39] S. Yoo, M., Harman, “Pareto efficient multi-objective test case
selection”. In Proceedings of International Symposium on Software
Testing and Analysis, 2007, pp, 140-150.

[40] S. Yoo, M. Harman, S. Ur “Highly scalable multi objective test suite
minimisation using graphics cards,” in Proceedings of Third
International Symposium on Search Based Software Engineering,
2011, pp. 219-236.

793

