
10/13/2011

09-GC03 Stacks 1

10/13/2011 09-GC03 Stacks 1

Mips Stack Examples

Peter Rounce
P.Rounce@cs.ucl.ac.uk

10/13/2011

09-GC03 Stacks 2

10/13/2011 09-GC03 Stacks 2

Stack

00EFFFD8spRegister

top of stack

MIPS Stack Example

lw $7,8($sp)

accessing a data value within the stack

00EFFFFC 97 B6

00EFFFF8 08 E2

00EFFFF4 F3 7C

FF FF

2A 78

31 49

00 00

FF FF

00EFFFEC 12 34

00EFFFE8 08 E2

00EFFFE4 F3 7C

00EFFFE0 FF FF

56 78

56 56

56 56

FF FF

00EFFFDC 57 A1

00EFFFD8 12 34

00EFFFD4 28 71
00EFFFD0 FF FF

00 29

56 78

55 72
FF F8

00EFFFF0

4 locations
(4 bytes)

The ‘top’ of the stack is defined
by the contents of a register, sp.

Where sp points is the top of the stack!

Memory at address 0xefffe0 (0xefffd8 + 8) is accessed and 4 bytes read
from this address and the following 3 addresses into register $7

The ‘bottom’ of the stack is
anchored in one place – top moves.

10/13/2011

09-GC03 Stacks 3

10/13/2011 09-GC03 Stacks 3

int fun1(int p1, double p2, int p3) {

int i , j, k, res;

double r1;

r1 = fun2(p1*p2+k, j, &i) ;

…..

return res ;

}

A call to the function:

r1 = fun1(10, 11, 12) ;

A C Function (method):

MIPS assembler for the call (ignoring the parameters for now):-

jal fun1 # $31 <-- pc; pc <- address of fun1

MIPS assembler for the return (ignoring the return value for now):-

jr $31 # pc <-- $31

? what about the function call to fun2 within sub?

? what to do with return address?

10/13/2011

09-GC03 Stacks 4

10/13/2011 09-GC03 Stacks 4

Choices for dealing with return address for nested function calls

3) save return address into memory but use an extendable memory area
- a STACK

A Stack is a standard feature in computers. Supports recursion!

1) use a different register to hold return address at each level
e.g. jalr $30, fun2 # $30 <-- pc ; pc <- address of fun2

only useful in handwritten assembler – not for compiled code!

2) In each function, take return address from $31 into a defined
memory location freeing $31 for use for calls within this function.
Reload $31 just before return from function.
- no good for recursive function calls
-space is allocated even when function is not being used!

Item 1) Using a different register to hold return address at each level;
there are difficulties in implementation : can run out of registers if
there are many calls
Need to make sure that calling function uses the correct register for
the called function.
If there are several calls to a function from different places in the
code: all have to use the same register for the return address! Could
be at different code levels – program writer might have to know how
the hardware works!!!!!!
Cannot make recursive function calls if do this!

10/13/2011

09-GC03 Stacks 5

10/13/2011 09-GC03 Stacks 5

00EFFFFC 97 B6

00EFFFF8 08 E2

00EFFFF4 F3 7C

00EFFFF0 FF FF

2A 78

31 49

00 00

FF FF

00EFFFEC 12 34

00EFFFE8 08 E2

00EFFFE4 F3 7C

00EFFFE0 FF FF

56 78

56 56

56 56

FF FF

00EFFFDC 57 A1

00EFFFD8 41 C1

00EFFFD4 28 71

00EFFFD0 FF FF

00 29

05 02

55 72

FF F8

Stack

00EFFFFC 97 B6

00EFFFF8 08 E2

00EFFFF4 F3 7C

00EFFFF0 FF FF

2A 78

31 49

00 00

FF FF

00EFFFEC 12 34

00EFFFE8 08 E2

00EFFFE4 F3 7C

00EFFFE0 FF FF

56 78

56 56

56 56

FF FF

00EFFFDC 57 A1

00EFFFD8 12 34

00EFFFD4 28 71

00EFFFD0 FF FF

00 29

56 78

55 72

FF F8

Stack

00EFFFFC 97 B6

00EFFFF8 08 E2

00EFFFF4 F3 7C

00EFFFF0 FF FF

2A 78

31 49

00 00

FF FF

00EFFFEC 12 34

00EFFFE8 08 E2

00EFFFE4 F3 7C

00EFFFE0 FF FF

56 78

56 56

56 56

FF FF

00EFFFDC 57 A1

00EFFFD8 12 34

00EFFFD4 28 71

00EFFFD0 FF FF

00 29

56 78

55 72

FF F8

Stack

00EFFFDC

SPRegister

top of stack

stack before
00EFFFDC
SPRegister

top of stack

00EFFFD8
SPRegister

top of stack

Stack
after

Stack
before

stack after

MIPS Stack Example: saving return/returning address in $31 to/from stack

Assumption: $31
holds 0x12345678 addi $sp,$sp, -4

sw $31, 0($sp)
saving return address

lw $31, 0($sp)
addi $sp,$sp, +4

restoring return address

Note: can save any register value on to stack - can use stack as a temporary store

10/13/2011

09-GC03 Stacks 6

10/13/2011 09-GC03 Stacks 6

Stack

parameter p-1

parameter 0
return PC

old frame pointer

saved register 0

saved register m-1

local variable 0
local variable 1

local variable n-1

Stack Pointer (sp)

Frame Pointer (fp)

Stack is used in C to store function parameters and local variables plus…...

Any 2 MIPS registers can be used for fp
and sp

This is the “Stack Frame”
of a function

fp allows parameters and variables
to be accessed with same offset
from fp, e.g. 8(fp), regardless of sp.

Return PC, old frame pointer, local variables etc place on stack by called function!

Parameters are pushed on the stack by the calling subroutine.
Parameters are accessed by called subroutine by displacement mode addressing via FP, e.g
+4(FP).

Space is created on the stack for Local Variables at the start of the function.
Local Variables are accessed like parameters via fpbut using negative displacements,
e.g. -4(fp).

Sometime CPUs registers are saved the stack to leave registers free for usage by subroutine.
In particular, it is usual in a subroutine to have some local variables stored in registers, while
the rest are stored on the stack. It is often necessary to keep the values of local variable across
function calls, so the values of those stored in registers must be saved on the stack across
function calls.
The choice for local variable storage is to store them in registers first and only then to use the
stack: registers are quicker to access.
When there is a choice to be made as to which local variables go into registers: it should be the
most used ones, although often it is the first declared in the function. If registers are used for
local variables, then the same registers will be used by all functions; when a function is
entered it must save contents of those registers it uses for local variables on the stack as their
contents must be preserved in case the calling function or one of the ones that called it is using
these registers for its local variables.

Within a function, the top of the stack is free for use for temporary storage of values and by
further function calls.

Some parameters may go into registers for faster access, while others go on the stack. The
stack allows for very large numbers of parameters to be used without running into resource
problems.

Typically in a Mips system, there might be up to 4 local variables in registers and 2 parameters
in registers. Although faster to access these registers are a liability to some degree because on
a function call, they have to be saved on the stack in the called function if the registers are to
be used again in the called function.

10/13/2011

09-GC03 Stacks 7

10/13/2011 09-GC03 Stacks 7

double fun1(int p1, double p2,
int p3) {

int i , j;

res = fun2(p1*p2, j) ;

return res ;

}

return PC

p1

p3

p2

old Frame Pointer

i

j

N.B. No saved registers here – makes diagram smaller!

Frame Pointer

Stack Pointer

Stack frame
for fun1

Frame pointer register points at a fixed point within the stack frame.

This allows parameters to be referenced with the same offset throughout
function execution, i.e, +8($fp) accesses p1.

Similarly, local variables are referenced with the same offset throughout
function, -4($fp) for ‘i’.

The value in $sp in the ‘calling function’ is remembered within the ‘called’
function by storing it on the stack as ‘Old Frame Pointer’ – this value will be
restored to $fp at the end of the’called’ function.

10/13/2011

09-GC03 Stacks 8

10/13/2011 09-GC03 Stacks 8

Stack frame
for fun2

Stack Pointer

Frame Pointer

double fun1(int p1, double p2,
int p3) {

int i , j;

res = fun2(p1*p2, j) ;

return res ;

}

return PC

p1

p3

p2

old Frame Pointer

i

j

i

r1

res

return PC

ar

ib

old Frame Pointer

double fun2(double ar, int ib) {

int i, r1 ;

double res;

…..

return res ;

}

Frame Pointer

Stack Pointer

Stack frame
for fun1

1) Can re-use names for local variables without difficulty, since get new space for
local variables on each call!

2) Before sub 2 returns, its stack frame is collapsed:

• the old frame pointer is placed back into the Frame Pointer, pointing it
back into the correct place within the stack frame for sub1;

• the stack is shrunk so that sub2 local variables are no longer in the stack
(their values must be considered lost, since later calls and other uses of
the stack will overwrite their locations).

• The return pc is popped from the stack and the return is made.

3) On re-entering the calling function, the parameters are still on the stack to be
removed by the calling function, and the stack pointer should be pointing at the
same stack location as when the call was made.

A stack uses space effectively since the same space is re-used over and over again by
stack frames for different functions.

Recursive function calls are possible – functions that call themselves – because there
is a new stack frame on every call, so that there are a new set of parameters, and
a new set of local variables. For a useful recursive function see the Java Linked
List code of earlier notes.

10/13/2011

09-GC03 Stacks 9

10/13/2011 09-GC03 Stacks 9

old Frame Pointer

int check_st(char c, char * st, int n)
{

int i ;
if (c == st[0])

i = n ;
else

i = check_st(c, &st[1], n+1) ;
return i ;

}

return PC
c

n
st

Frame Pointer

saved registers
Stack Pointer

return PC
c

n
st

old Frame Pointer

FP

any saved registers

SP
saved registers

Stack
Frame

Stack
Frame

return PC
c

n
st

old Frame Pointer

i i

i

Recursive Function calls: function calls itself

Note: new storage for local variables
is allocated on each call.

Outline code for function call check_st(c, &st[1], n+1):-

in calling function
push value of ‘c’ on to stack
push address of location of array element st[1] on to stack
push value of n+1 on to stack
jump&link (jal) to function check_st

in called function
push return pc to stack from register where it is saved
push current value of FP register to stack (becomes Old FP)
copy current address of top of stack from sp register to FP register
create space on top of stack for local variables, e.g. add $sp, $sp, -12
push the contents of any registers needing saving to stack
store any initial values for local variables on stack or in registers

Outline code for function return:-
in called function

place any return value into the appropriate register
reload contents of any saved registers from stack
copy contents of $fp to $sp – effectively removes local variables from stack
pop ‘Old FP’ from stack into $fp – set $fp t opoint back into calling stack frame
pop ‘return PC’ into register
return to calling function

in calling function
pop parameters from stack – called function knows exactly how many there are.

On each recursive call, a new stack frame is created with a whole new set of local variables and parameters,
which hide the previous sets in early stack frames.

