
10/7/2012 GC03 Mips Code Examples

Mips Code Examples

• Peter Rounce
P.Rounce@cs.ucl.ac.uk

10/7/2012 GC03 Mips Code Examples

Some C Examples

Assignment : int j = 10 ; // space must be allocated to variable j

Possibility 1: j is stored in a register, i.e. register $2

then the MIPS assembler for this is :-

Possibility 2: j is stored in memory, i.e. memory 0x12345678

then the MIPS assembler for this might be:-

addi $2, $0, 10 : $2 <- $0 + sign-extend[10]

lui $1, 0x1234 : $1 � 0x12340000

ori $1, $1, 0x5678 : $1 � 0x12345678

addi $8, $0, 10 : $8 � $0 + sign-extend[10]

sw $8, 0($1) : Mem[$1 + 0] � $8

Get address in $1

Get 10 in $8

Store 10� 0x12345678

10/7/2012 GC03 Mips Code Examples

Program to calculate Absolute value of difference between
2 input numbers: |A - B| (demonstrates if)

Assembler # Comment

lui $10, 0x1234
ori $10, $10, 0x5670

Program reads A from 4 bytes of memory starting at address 1234567016.

sw $12, 8($10)
sub $12, $4, $5
bgez $12,+1

sub $12, $5, $4
lw $5, 4($10)
lw $4, 0($10)

Program reads B from 4 bytes of memory starting at address 1234567416.

Program writes |A-B| to 4 bytes of memory starting at address 1234567816.

put address of A into register $10

read A from memory into register $4
read B from memory into register $5 (A address+4)

subtract A from B => B-A into register $12

branch if B-A is positive to ‘sw’ instruction
subtract B from A => A-B into register $12
store register $12 value, |A-B|, into memory

N.B. program uses displacement to access other locations from address of memory storing value of A

10/7/2012 GC03 Mips Code Examples

Given the binary for an instruction e.g.:

10101101111010001000000000000000

What code would you write to get the rs register number into a register
on its own, and into the low bits of this register?

10101101111010001000000000000000

00000001111000000000000000000000

code

Rs bits

00000000000000000000000000001111

What is wanted.

and

Shift right logical

// get masking value in $5
lui $5, 0x03e000000011111000000000000000000000in $5:

Code: assume code in $4
in $4:

in $6:

in $6:

// masked value in $6

// so shift $6 right

srl $6, $6, 21

and $6, $5, $4

Rs bits

10/7/2012 GC03 Mips Code Examples

Change rs field in instruction to value 2110 (101012):-

10101101111010001000000000000000

Code: 10101101111010001000000000000000

10101100000010001000000000000000

10101110101010001000000000000000

code

What is wanted.

and

// get masking value in $5
lui $5, 0xfc1f
ori $5, $5, 0xffff

or

11111100000111111111111111111111in $5:

00000010101000000000000000000000in $5:

Code: assume code in $4

in $6:

in $4:

in $6:

00000000000000000000000000010101in $5:

and $6, $5, $4

// new value into $5
addiu $5, $0, 0x15

or $6, $6, $5

sll $5, $5, 21

Rs bits

0 0 0 0 0 0 0 0 010 0 0 0
10/7/2012 GC03 Mips Code Examples

0 0 0 0 0 0 0 0 000 0 0 1

Shift Instructions:

Shift left logical: sll rd, rt, shift-amount
rd �rt << shift-amount : 0s placed on right

Example: Let $4 == 2, then
sll $5, $4, 3

shifts the contents of $4 left 3 places: (2<<3)� 16 which is stored in $5.

0 0 0 0 0 0 0 0 000 0 1 0

0 0 0 0 0 0 0 0 000 1 0 0

1:shift left 1

2:shift left 1

3:shift left 1

10/7/2012 GC03 Mips Code Examples

Shift right arithmetic : shift right with sign duplication

shift right arithmetic: sra rd, rt, shift-amount
shift right arithmetic variable:srav rd, rt, rs

shift left logical variable: sllv rd, rt, rs
: rs holds shift- amount for shifting rt with result into rd
: rd � rt << rs

shift right logical : reverse of shift left logical
srl rd, rt, shift-amount : 0s placed on left

shift right logical variable: srlv rd, rt, rs as sllv but shift right

arithmetic shifts duplicate the sign bit : 1s are placed on right for -ve values

1111110000 (>> 2) �1111111100 0011110000 (>> 2) �0000111100

e.g. $5 = 16 then srl $6, $5, 3 : $6 � 16 >> 3

$6 == 2 after instruction

10/7/2012 GC03 Mips Code Examples

Branches - a Reminder!!!!!

Instructions are always 4 bytes long in Mips.

Instructions are always stored at addresses that are an integer
multiple of 4:-0, 4, 8, … 0x2C, 0x30, …. 0x12345678, 0x1234567C…..

pc always points at an instruction,
i.e. pc always holds a multiple of 4

Branches always change pc by a multiple of 4

Branch offset is number of instructions to branch,
not number of addresses!

Branch target address calculation:- pc + (offset *4)

10/7/2012 GC03 Mips Code Examples

Conditional Branch Instructions – using labels
calculating offsets is difficult – use a label instead!

Branch Equal
beq rs, rt, Label

: if rs == rt pc <- pc + (address of label – pc)

Assembler Program calculates difference between address of instruction following
the branch and the address of Label (label address – pc), divides by 4 and stores
this value, the number of insructions to branch, in offset field of instruction.

6 Bits 5 Bits 5 Bits
op rs rt offset

16-bit

: if rs == rt pc <- pc + offset*4
Branch Not-Equal

bne reg1, reg2, Label
: if rs != rt pc <- pc + (address of label – pc)
: if rs != rt pc <- pc + offset*4

you write this
assembler calculates this

10/7/2012 GC03 Mips Code Examples

Other Branches
These branches test the contents of a single register against 0.

branch on greater than or equal zero:
bgez register, label : if (register >= 0) pc � address of label

: if (register >= 0) pc �pc + offset*4
branch on greater than zero:

bgtz register, label : if (register > 0) pc � address of label
: if (register > 0) pc �pc + offset*4

branch on less than or equal zero:
blez register, label : if (register <= 0) pc � address of label

: if (register <= 0) pc �pc + offset*4
branch on less than zero:

bltz register, label : if (register < 0) pc � address of label
: if (register > 0) pc �pc + offset*4

Note: branches can only go –32768 instructions back & 32767 forward
memory address space in Mips is 1G instructions!!!!!!!!!!

10/7/2012 GC03 Mips Code Examples

What about comparing 2 registers for < and >=?

Use a Set instruction followed by a conditional branch.

The immediate value, (imm), is 16-bits and is sign-extended to 32 bits before comparison.

Use beqor bneagainstreg $0to test result register rd after set.

Comparison Instructions
R-Format versions: compare 2 register and put result into 3rd register

Set less than (signed): slt rd, rs, rt : if rs<rt set rd=1 else set rd=0

Set less than unsigned: sltu rd, rs, rt : if rs<rt set rd=1 else set rd=0

I-Format versions: compare register and constant, put result into 2nd register
Set less than immediate (signed): slti rd, rs, imm : if rs<imm set rd=1 else set rd=0
Set less than unsigned immediate: sltui rd, rs, imm : if rs<imm set rd=1 else set rd=0

10/7/2012 GC03 Mips Code Examples

MIPS ‘for loop’ example

unsigned i ;
int array[10] ;

for (i=0; i<10; i++) {
array[i] = 0 ;

}

Setting the elements of an array to zero

Data declarations:-

N.B. C creates the space for both these automatically
no new required.

10/7/2012 GC03 Mips Code Examples

Let the variable i be stored in register $4
Let ‘int array’ start at address 1234567816

Each integer occupies 4 addresses

MIPS ‘for loop’ example

add $4, $0, $0 : set $4=0 : 0 � i
loop: slti $8, $4, 10 : set $8=1 if $4 < 10 otherwise $8=0

beq $8, $0, end : if $8=0 ($4>=10) branch to end label
lui $8, 0x1234 : $8 � 0x12340000
ori $8, $8, 0x5678 : $8 �$8 | 0x5678 : $8 =0x12345678
sll $9, $4, 2 : $9 � $4 << 2 : $9 �i*4
add $8, $8, $9 : form address of array[i] in $8
sw $0, 0($8) : store 32-bits of zero from $0 into array[i]
addui $4, $4, 1 : i++

beq $0, $0, loop : branch to label loop - always branches
end:

Use $8 and $9 for temporary storage of intermediate values
i=0

i++

i<10

10/7/2012 GC03 Mips Code Examples

0x12345678

array

0 0 0 0 0 0 0 0 0 0

0x12345678+0
0x12345678+4

0x12345678+8
0x12345678+0xc

0x12345678+0x10
0x12345678+0x14

0x12345678+0x18
0x12345678+0x1C

0x12345678+0x20
0x12345678+0x24

10/7/2012 GC03 Mips Code Examples

MIPS ‘for loop’ example

unsigned i ;
int array[10] ;
int *ap ;

ap = array ; // put the address of array into ap

Setting the elements of an array to zero,
but using pointers to memory addresses!
Data declarations (C code –NOT Java!!!):-

Variable ‘ap’ is of type ‘pointer to
integer’ and will hold an address
(a pointer in C)

for (i=0; i<10; i++) {

}

*ap = 0 ; // store 0 in the location pointed to byap
ap++ ; // increment the address in ap by 4

// ap now points at the next element of array

10/7/2012 GC03 Mips Code Examples

ap

array

0 0 0 0 0 0 0 0 0 0

0x12345678
0x1234567C

0x12345680
0x12345684

0x12345688
0x1234568C

0x12345690
0x12345694

0x12345698
0x1234569C

10/7/2012 GC03 Mips Code Examples

Let the variable i be stored in register $4, and variable ap in $6
Let ‘array’ of integers be stored at addresses 1234567816-1234569F16

add $4, $0, $0 : set $4=0 : 0 � i

lui $6, 0x1234 : $6 <- 0x12340000
ori $6, $6, 0x5678 : $6 <- $6 | 0x5678 : $6 =0x12345678

loop: slti $8, $4, 10 : set $8=1 if $4 < 10 otherwise 0
beq $8, $0, end : if $8=0 ($4>=10) branch to end label
sw $0, 0($6) : store 32-bits of zero in $0 into array[i]

addui $6, $6, 4 : ap++; add4 to $6 to point to array[i+1]
addui $4, $4, 1 : i++ ; increment loop variable

beq $0, $0, loop : branch to label loop - always branches
end:

MIPS ‘for loop’ example

Use $8 for temporary storage ap = array

i++

i<10

ap++

*ap=0

i=0

10/7/2012 GC03 Mips Code Examples

Other instructions that change the PC:

jump register : jr rs : pc <- rs : register contents into pc

Register value must be multiple of 4 (or processor stops)
pc can be set to anywhere in memory (greater range than branches).
This is used to perform function return, e.g. jr $31,

N.B. Jumps can go a greater distance than branches.
However jumps are never conditional unlike branches.
Both are therefore necessary.

jump and link register : jalr rs, rd : rd <- pc ; pc <- rs

pc saved to register rdand thenrs written into pc

Used for function (method) calls to anywhere in the address space.

10/7/2012 GC03 Mips Code Examples

i.e.0x0001AB40->$31
0x00045678 -> PC

Code of method
0x00045678 ____________
0x0004567C ____________
0x00045680 ____________
0x00045684 ____________

Some lines of program
0x0001AB2C ____________
0x0001AB30 ____________

Function return

Function call

0x0001AB34 lui $1, 0x04 ; $1 <- 0x00040000
0x0001AB38 ori $1, 0x5678 ; $1 <- 0x00045678
0x0001AB3C jalr $1, $31 ; pc -> $31, $1->PC

0x0001AB40 ____________

Function (Method or Subroutine) Call

0x00045688 jr $31 ; $31->PC
i.e.0x01AB40 -> PC

Have to be sure that
$31 has the value store
by the jalr when the jr
is executed!

10/7/2012 GC03 Mips Code Examples

Jump Instructions - J Format

jump to target : j target : pc[bits 27:0]�target*4

6 Bits
op target

26 Bits

In both cases lower 28 bits of PC register are
loaded with (26 bits of target field * 4)

jal is a method call instruction saving the PC before changing it.

Detail : pc is always an integer multiple of 4: therefore value stored in
target field of instruction for j and jal is target address divided by 4, i.e.
least 2 bits are dropped, since they are always 00.

Note: the upper 4-bits of PC are unchanged by these instructions.

jump and link target : jal target
register 31 <- contents of pc ; pc[bits 27:0]� target*4

