
1

1P.Rounce Transaction Processing

Databases: transaction processing

P.A.Rounce
Room 6.18

p.rounce@cs.ucl.ac.uk

2P.Rounce Transaction Processing

ACID

Database operation is processing of a set of “ transactions”

Required features of a database transaction should be

� Atomicity – all or no changes should occur

� Consistency – should leave database in consistent state

� Isolation – should not affect other transactions

� Durability – results should persist and not be undone

see: http://www.absoluteastronomy.com/encyclopedia/a/ac/acid.htm

2

3P.Rounce Transaction Processing

Transaction example

Banking example: transfer £80 from Mary to Joe

Transaction, T

Read(Mary)
Mary := Mary – 80
Write(Mary)
Read(Joe)
Joe := Joe + 80
Write(Joe)

Let: BalanceMary = 2000
BalanceJoe = -10 Total = 1990

BalMary = 1920, BalJoe = -10 Total = 1910

BalMary = 1920, BalJoe = 70 Total = 1990

Notation: Read(X) – read data item X from database into local variable X
Write(X) – write value from local variable X to database data item X

4P.Rounce Transaction Processing

Transaction Failure:
Banking example: transfer £80 from Mary to Joe

Transaction, T

Read(Mary)
Mary := Mary – 80
Write(Mary)
Read(Joe)
Joe := Joe + 80
Write(Joe)

Let: BalanceMary = 2000
BalanceJoe = -10 Total = 1990

BalMary = 1920, BalJoe = -10 Total = 1910

Transaction fails after Write(Mary)!

Atomicity: both Writes must succeed or none!

Must “undo” Write(Mary) during recovery from failure!

Consistency: database must not be left in inconsistent state

Inconsistent state

3

5P.Rounce Transaction Processing

Transaction isolation

Banking example: transfer £80 from Mary to Joe

Transaction, T

Read(Mary)
Mary := Mary – 80
Write(Mary)
Read(Joe)
Joe := Joe + 80
Write(Joe)

Let: BalanceMary = 2000
BalanceJoe = -10 Total = 1990

BalMary = 1920, BalJoe = -10 Total = 1910

BalMary = 1920, BalJoe = 70 Total = 1990

Isolation: No other transaction must see (BalMary = 1920, BalJoe = -10)!

6P.Rounce Transaction Processing

Durability: stable storage and logs

Storage types:

� volatile storage (main memory) – doesn't survive system crash

� non-volatile storage (disks & tapes) – usually survives system crash

� stable storage (theoretical) – never lost!

Transaction Writes (e.g. Write(Mary)):

1st : go to a buffer in main memory

2nd : go to disk

3rd: go to archival stable storage

Failure Recovery: need log file of transaction operations in
stable storage

4

7P.Rounce Transaction Processing

Logging

Transaction logging: updates must be logged before update

Why?

Suppose update then log, and a system crash occurs after
update, but before log is made:

I f update is only in volatile storage, update is lost!

Requirement:

log records must be wr itten to stable storage before updates
occur !

How is stable storage implemented on disks!
Have 2 or more copies of everything on separate disks if

possible (disk mir ror ing)!

8P.Rounce Transaction Processing

Failure

– There are several types of failures:

� Logical errors: the internal state of a transaction is

inconsistent, e.g., bad input, run out of memory, etc.

� system errors or undesirable system states: e.g., deadlocks.

� system crash: hardware malfunctions,

� disk failures: disk looses a block of data due to head crashes.

5

9P.Rounce Transaction Processing

Transaction Processing: transaction states

Active

Failed

Partially
Commit

ted

Aborted

Commit
ted

Transaction states:

Active: initial state

Partially committed: after last statement processed

Failed: after discovery that processing can no longer proceed

Aborted: after transaction rollback to state prior to transaction

Committed: after successful completion (after updates to database!)

10P.Rounce Transaction Processing

Transaction logging Data

Log:

transaction star t: <T i star t>

transaction wr ites: <T i, X j, V1, V2>

transaction commit: <T i commit>
T i – unique transaction identifier

X j – data item identifier

V1 – value of X j before wr ite

V2 – new value of X j (value after wr ite)

Log records

6

11P.Rounce Transaction Processing

Transaction example of logging

Transaction, T

Read(Mary)
Mary := Mary – 80
Write(Mary)
Read(Joe)
Joe := Joe + 80
Write(Joe)

Log records

<T start>

<T, Mary, 2000, 1920>

<T, Joe, -10, 70>
<T commit>

Let: BalanceMary = 2000
BalanceJoe = -10

12P.Rounce Transaction Processing

Larger logging example: 2 transactions

Transactions

T1: Read(Mary)
T1: Mary := Mary – 80
T1: Write(Mary)
T1: Read(Joe)
T1: Joe := Joe + 80
T1: Write(Joe)

T2: Read(Zack)
T2: Zack := Zack + 100
T2: Write(Zack)

Log records

<T1 start>

<T1, Mary, 2000, 1920>

<T1, Joe, -10, 70>
<T1 commit>
<T2 start>
<T2, Zack, 230, 330>
<T2 commit>

Let: BalanceMary = 2000, BalanceJoe = -10 BalanceZack = 230

Log contains
sequence of
transactions

7

13P.Rounce Transaction Processing

Deferred Database Modification

� This technique ensures atomicity by deferring all writes of a
transaction until transaction partially commits.

� When transaction partially commits, the log records for the
transaction are used in executing the deferred writes

(Remember the log records are written to stable storage before these
writes)

System actions:
� Log record <T start> is written to log
� Each Write(X) creates a write record <T, X,V1,V2> in log
� At end of transaction (on partially commiting) <T commit> record
written to log

� Log records written to stable storage
� Log consulted and writes made to database

14P.Rounce Transaction Processing

Deferred Modification: failure recovery

On system failure, the log is used to recover the database to a
consistent state.

Recovery process:
Go to start of log and read log records sequentially

For each transaction with a <Ti start> and a <Ti commit> record:
execute a redo(Ti) operation

redo: sets all values written to by Ti to their new values(V2)

When all log records have been analysed, database will be in consistent
state.
All transaction with a <Ti start> but no <Ti commit> will have to be re-
executed: remember database writes are deferred until after <T commit>
record written, so no other action is required on incomplete transactions.

Note: old value, V1 is not used – so doesn't need to be logged for deferred modification.

8

15P.Rounce Transaction Processing

Immediate Database Modification

� This technique updates the database as Write operations occur.
� Log records are written to stable storage before each Write.
� There is increased disk activity because of this.

System actions during transaction
� Log record <T start> is written to log
� Each Write(X) creates a write record <T, X,V1,V2> in log
� Log records written to stable storage
� New value of X is written into database
� When transaction partially commits, <T commit> record written to
log.

This technique needs an undo(X) operation during failure recovery

16P.Rounce Transaction Processing

Immediate Modification: failure recovery

On system failure, the log is used to recover the database to a
consistent state.

Recovery process:
Go to start of log and read log records sequentially

For each transaction with a <Ti start> and a <Ti commit> record:
execute a redo(Ti) operation

For each transaction with a <Ti start> but no <Ti commit> record:
execute a undo(Ti) operation

redo: sets all values written to by Ti to their new values(V2)
undo: sets all values written to by Ti to their values(V1) at the start of Ti

Note: old value, V1 is used for this technique

9

17P.Rounce Transaction Processing

Recovery example: 2 transactions

Log records

<T1 start>

<T1, Mary, 2000, 1920>

<T1, Joe, -10, 70>
<T1 commit>
<T2 start>
<T2, Zack, 230, 330>

Let: BalanceMary = 2000, BalanceJoe = -10 BalanceZack = 230

Deferred Modification Recovery

Redo(T1): // commit record found
Mary <-- 1920

Joe <-- 70

Immediate Modification Recovery

Redo(T1): // commit record found
Mary <-- 1920

Joe <-- 70
Undo(T2): // no commit record found

Zack <-- 230

18P.Rounce Transaction Processing

Checkpoints: reducing recovery activity

In theory, log file needs to be read from beginning during recovery failure.

This process is time-consuming if log is large: theoretically log contains all
activity since database created.

Most transactions in log will have had their updates written into stable
storage.

Checkpoint actions:-
output all log records currently in main memory to stable storage
output all modified data buffers in main memory into stable storage
output <checkpoint> log record to stable storage.

On failure recovery:
search log backwards from end looking for latest <checkpoint> record –
start recovery from this point in log.

