Databases: transaction processing

P.A.Rounce
Room 6.18
p.rounce@cs.ucl.ac.uk

P.Rounce Transaction Processing

1

ACID

Database operation is processing of a set of “transactions’

Required features of a database transaction should be

. Atomi Clty —all or no changes should occur
. Cons Stency—should leave database in consistent state
. | solation - should not affect other transactions

. Durabil |ty — results should persist and not be undone

see: http://www.absoluteastr onomy.com/encyclopedia/a/ac/acid.htm

P.Rounce

Transaction Processing 2

Transaction example

Banking example: transfer £80 from Mary to Joe

Transaction, T Let: BalanceMary = 2000
Balance, ,=-10 Total = 1990

Read(Mary)

Mary := Mary — 80

Write(Mary) Bal,,., = 1920, Bal,, = -10 Total = 1910

Read(Joe’

Joe :=Joe + 80

Write(Joe) Bal,,, = 1920, Bal, =70 Total = 1990
Notation: Read(X) —read dataitem X from database into local variable X

Write(X) —write value from local variable X to database dataitem X

P.Rounce Transaction Processing 3

Transaction Failure:

Banking example: transfer £80 from Mary to Joe
Transaction fails after Write(Mary)!

Transaction, T Let: Balance,, ary = 2000

Balance, ,=-10 Total = 1990
Read(Mary)
Mary :=Mary —80 Inconsistent state
Write(Mary) Bal,,,, = 1920, Bal;,,=-10 Total # 1910
REA(JOE] e e

C)Pe+ 80 [

Wi QT

Must “undo” Write(Mary) during recovery from failurel

Atomicity: both Writes must succeed or nonel

Consistency: database must not beleft in inconsistent state

P.Rounce Transaction Processing 4

Transaction isolation

Banking example: transfer £80 from Mary to Joe

Transaction, T Let: BalanceMary = 2000
Balance, ,=-10 Total = 1990
Read(Mary)
Mary := Mary — 80
Write(Mary) Bal,,., = 1920, Bal,, = -10 Total = 1910
Read(Joe’
Joe := Joe + 80
Write(Joe) Bal,,, = 1920, Bal, =70 Total = 1990

Isolation: No other transaction must see (Bal,,,, = 1920, Bal ;= -10)!

P.Rounce Transaction Processing 5

Durability: stable storage and logs

Storage types.
. Vvolatile storage (main memory) — doesn't survive system crash

. non-volatile storage (disks & tapes) — usually survives system crash
. stable storage (theoretical) — never |ost!

Transaction Writes (e.g. Write(Mary)):

1% : go to a buffer in main memory

2" : goto disk

3'9: go to archival stable storage

Failure Recovery: need log file of transaction operations in
stable storage

P.Rounce Transaction Processing 6

L ogging
Transaction logging: updates must be logged before update

Why?

Suppose update then log, and a system crash occurs after
update, but beforelog is made:

If updateisonly in volatile storage, update islost!

Reguirement:

log records must be written to stable storage before updates
occur!

How is stable storage implemented on disks!
Have 2 or more copies of everything on separate disks if
possible (disk mirroring)!

P.Rounce Transaction Processing 7

P.Rounce

Fallure

- There are severa types of failures:
. Logica errors. theinterna state of atransactionis

inconsistent, e.g., bad input, run out of memory, etc.
. System errors or undesirable system states: e.g., deadlocks.
. Ssystem crash: hardware mafunctions,

. disk failures: disk looses ablock of data due to head crashes.

Transaction Processing 8

Transaction Processing: transaction states

ted

Transaction states: Failed M
Active: initial state

Partially committed: after last statement processed

Failed: after discovery that processing can no longer proceed
Aborted: after transaction rollback to state prior to transaction

Committed: after successful completion (after updates to database!)

P.Rounce Transaction Processing 9

Transaction logging Data

Log records
L og:
transaction start: <T #art>
transaction writes: <Ti,Xj, Vo>
transaction commit: <T.commy

T, —uniquetransaction identifier

X; —dataitem identifier

V, —value of X]. beforewrite

V, —new value of XJ. (value after write)

P.Rounce Transaction Processing 10

Transaction example of logging

Let: BaJanceMary = 2000

Balance, ,=-10

Transaction, T Log records
Read(Mary) <T start>
Mary := Mary — 80
Write(Mary) <T, Mary, 2000, 1920>
Read(Joe)
Joe :=Joe + 80
Write(Joe) <T, Joe, -10, 70>

<T commit>

P.Rounce Transaction Processing 11
L arger logaing example: 2 transactions

Let: Balance,,, = 2000, Balance,,, =-10 Balance,,, =230

Transactions Log records

T,: Read(Mary) <T, start>

T, Mary := Mary —80

T,: Write(Mary) <T,, Mary, 2000, 1920>

T,: Read(Joe)

Tl: Joe:=Joe+ 80

T.: Write(Joe

1 &(Joe) <T,, Jog, -10, 70>
T, Read(Zack) <T, commit>
T2: Zack := Zack + 100 <TZ start> Log contains
A v <T., Zack, 230, 330>
T,: Write(Zack) 2 _ sequence of
<T2 commit> .

transactions

P.Rounce

Transaction Processing

12

Deferred Database M odification

. This technique ensures atomicity by deferring al writes of a
transaction until transaction partially commits.

. When transaction partially commits, the log records for the
transaction are used in executing the deferred writes

(Remember the log records are written to stable storage before these
writes)

System actions:

.Log record <T start> iswritten to log

-Each Write(X) creates awrite record <T, X,V ,,V,>inlog

<At end of transaction (on partially commiting) <T commit> record
written to log

.Log records written to stable storage

.Log consulted and writes made to database

P.Rounce Transaction Processing 13

Deferred Modification: failurerecovery

On system failure, the log is used to recover the database to a
consistent state.

Recovery process:
Go to start of log and read |og records sequentially

For each transaction with a <T; start> and a <T, commit> record:
execute aredo(T;) operation

redo: sets all values written to by T, to their new values(V,)

When all log records have been analysed, database will bein consistent
State.

All transaction with a <T; start> but no <T; commit> will have to be re-
executed: remember database writes are deferred until after <T commit>
record written, so no other action is required on incompl ete transactions.

Note: old value, V, is not used — so doesn't need to be logged for deferred modification.

P.Rounce Transaction Processing 1 4

P.Rounce

| mmediate Database M odification

This technigue updates the database as Write operations occur.
Log records are written to stable storage before each Write.
Thereisincreased disk activity because of this.

System actions during transaction

.Log record <T start> iswritten to log

-Each Write(X) creates awriterecord <T, X,V ,,V,>inlog

.Log records written to stable storage

.New value of X iswritten into database

.When transaction partially commits, <T commit> record written to

log.

This technigque needs an undo(X) operation during failure recovery

Transaction Processing 15

P.Rounce

| mmediate M odification: failurerecovery

On system failure, the log is used to recover the database to a
consistent state.

Recovery process:
Go to start of log and read |og records sequentially

For each transaction with a <T; start> and a <T, commit> record:
execute aredo(T;) operation

For each transaction with a <T; start> but no <T, commit> record:
execute a undo(T,) operation

redo: setsall values written to by T, to their new values(V,)
undo: sets all values written to by T, to their values(V) at the start of T,

Note: old value, V, is used for this technique

Transaction Processing 16

Recovery example: 2 transactions
Let: Balance,,, = 2000, Balance,,, = -10 Balance,,, =230

Joe

Log records e .
00 TEcorcs Deferred Modification Recovery
<T, start> .
! Redo(T,): // commit record found
<T,, Mary, 2000, 1920> oy < 929

Immediate M odification Recovery

<T,, Joe, -10, 70> Redo(T,): // commit record found

<T, commit> Mary <-- 1920
<T start> Joe <-- 70
<Ty Zack, 230, 330> Undo(T,): // no commit record found
Zack <-- 230
P.Rounce Transaction Processing 17

Checkpoints: reducing recovery activity

In theory, log file needs to be read from beginning during recovery failure.

This processistime-consuming if log is large: theoretically log contains all
activity since database created.

Most transactionsin log will have had their updates written into stable
storage.

Checkpoint actions:-

output all log records currently in main memory to stable storage
output al modified data buffersin main memory into stable storage
output <checkpoint> log record to stable storage.

On failure recovery:
search log backwards from end looking for latest <checkpoint> record —
start recovery from this point in log.

P.Rounce Transaction Processing 18

