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Abstract

The thesis proposes a number of techniques for elaborating requirements constructively
from high-level goals. The techniques are based on the KAOS goal-oriented method for
requirements engineering. This method consists in identifying goals and refining them
into subgoals until the latter can be assigned as responsibilities of single agents such as
humans, devices and software. Domain properties and assumptions about the software
environment are also used during the goal refinement process. The method supports the
exploration of alternative goal refinements and alternative responsibility assignments of
goals to agents. It also supports the identification and resolution of conflicts between
goals, and the identification and resolution of exceptional agent behaviors, called obsta-
cles, that violate goals and assumptions produced during the goal refinement process.

The thesis enriches the KAOS framework through three kinds of techniques:

(a) techniques for identifying agents, goal refinements, and alternative responsibility
assignments, and for deriving agent interfaces from such responsibility assignments;

(b) techniques for deriving operational requirements from goal specifications;

(c) techniques for generating obstacles to the satisfaction of idealized goals and assump-
tions, and for generating alternative obstacle resolutions.

The result is a coherent body of systematic techniques for requirements elaboration that
are both theoretically well-founded (a formal model of agent is defined) and effective in
practice (the techniques are validated on two real case studies of significant size: the
London ambulance despatching system, and the Bay Area Rapid Transit train system).
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Introduction

Chapter 1
Introduction

Requirement engineerir(E) is the very first step of the system development process. It

is concerned with the identification of stakeholders’ goals about the intended system; the
specification of services and constraints that operationalize those goals; and the assign-
ment of responsibilities for the resulting requirements to agents such as humans, devices
and software [Lam2Kc].

Requirements engineering is now widely recognized to be among the most critical steps
of system development. In order to implement a system that satisfies the stakeholders’
needs, those needs must be clearly understood and adequately mapped to specifications
of required software behaviour. Inadequate requirements engineering has been repeat-
edly pointed out to be a major source of problems in software development [Bel76,
Sta95, ESI96]. The cost of correcting errors or misconceptions in requirements increases
exponentially along the software life-cycle if such errors are not handled during the
requirements engineering stage [Boe81]. It is thus essential that requirements engineer-
ing be done with great care and precision.

Goalsplay a prominent role in the requirements engineering process. Goals drive the
elaboration of requirements to support them [Ros77, Dar91, Rub92]; they provide a
completeness criterion for the requirements specification - the specification is complete
if all stated goals are met by the specification [Yue87]; they provide a rationale for
requirements - a requirement exists because of some underlying goal which provides a
base for it [Dar91, Som97]; they are generally more stable than the requirements to
achieve them [Ant94]. In short, requirements “implement” goals much the same way as
programs implement design specifications.

Goals are to be achieved by the cooperation of varagets Such agents may include
software components that exist or are to be developed, external devices, and humans in
the environment. The system being considered in the requirements engineering process
is thuscompositgFea87]; it includes both the software-to-be and its environment.

Reasoning about agents is a critical aspect in the requirements elaboration process. It
involves reasoning about alternative responsibility assignments of goals to agents
[Fea87, Dar93]; reasoning about the agent’s permissions and obligations to perform
actions to achieve the goals [Ken93, Mai93]; reasoning about the required interactions
between the different agents in terms of information they monitor, control and communi-
cate [Fea87, Par95, Heim98]; reasoning about possibilities of agents’ misbehaviors
[Lam98]; and reasoning about agents’ dependencies in an organizational environment
[Yu93].

The elicitation of goals, their organization into a coherent structure, and their operation-
alization into requirements to be assigned to the various agents is at the core of require-
ments engineering. The thesis addresses two key concerns requirements engineers have
to cope with during requirements elaboration: the exploration of alternative responsibil-

ity assignments of requirements to agents, and the handling of possible agents’ misbe-
haviors.



Introduction

Exploring Alternative Agents Responsibilities

A critical step of the requirements engineering process is the identification of the agents
that should play a role in achieving the goals of the system; the definition of their respon-
sibilities with respect to the goals to be achieved; and the identification of the quantities
to be monitored and controlled by each agent in order to be able to achieve the goals it is
assigned to [Par95, Zav97]. Alternative decisions about agent responsibilities, monitor-
ing and control result in systems in which more or less functionality is automated and in
which the interactions between the automated system and its environment may be quite
different. Such decisions have a critical impact on the performance, cost and risks associ-
ated with the composite system. Responsibility assignment, however, is taken for granted
by most specification techniques; no systematic support is available. As a result, alterna-
tive, perhaps superior, decisions about agent responsibilities, monitoring and control are
not systematically explored; the rationale for such decisions is not made explicit for eas-
ier evolution.

Our general objective in this thesis is to provide systematic techniques for elaborating,
from the high-level goals of the composite system, alternative agent assignments that sat-
isfy those goals.

The exploration of alternative system proposals is at the heart of goal-oriented
approaches to requirements engineering. Our work is based on an existing goal-oriented
requirements elaboration method, called KAOS. The core of the method consists in iden-
tifying goals and refining them into subgoals until the latter can be assigned as responsi-
bilities of single agents [Dar93].

Extensions to the KAOS language are proposed to model and reason about agent respon-
sibilities, monitoring, and control. Aealizability consistency rule is introduced to relate

the responsibility of an agent for a goal to the agent’s monitoring and control capabili-
ties: the goal is realizable by an agent if it defines a relation between quantities moni-
tored and controlled by the agent.

Realizability is seen to play a central role in the goal-oriented requirements elaboration
process: violations of the realizability rule drives the identification of new agents and the
refinement of goals into subgoals until the latter are realizable by individual agents.

We define gaaxonomy of realizability problents support the identification and classifi-
cation of violations of realizability. Realizability problems include: lack of monitorabil-
ity, lack of control, references to future, goal unsatisfiability, and time-unbounded
achievement goals. This taxonomy is shown to be complete.

A library of specification elaboration tactics then defined to guide the resolution of
realizability problems. These tactics guide the elaboration of the requirements models by
identifying new agents and by recursively refining goals into subgoals until the latter are
realizable by single agents.

Once goals have been refined into subgoals that are realizable by single agents, the next
step of the goal-oriented elaboration process consists in deriving the operations to be per-
formed by the agents so as to satisfy the goadsmal operationalization patternare
proposed to derive complete operational requirements from the formal definitions of
realizable goals.
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Handling Exceptional Agent Behaviours

Another important aspect of the software development process is the anticipation and
handling of potential agent misbehaviors that might prevent goals from being achieved.
The requirements elaboration process tends to produce requirements and assumptions
about agent behaviors are often too ideal. Some of them are likely to be violated from
time to time in the running system. The lack of anticipation of exceptional behaviors
results in unrealistic, unachievable and/or incomplete requirements. As a result, the soft-
ware developed from those requirements and assumptions will inevitably result in poor
performance, sometimes with critical consequences on the environment.

Our objective here is to provide systematic techniques for reasoning about obstacles to
the satisfaction of goals and assumptions elaborated in the requirements engineering
process. A key principle is to tackle risks of unexpected agent behaviour as early as pos-
sible in the development process, that is, at the goal level. By reasoning about exceptions
upfront in the development process, one is left with more freedom for resolving such
exceptions, for instance, by identifying alternative system proposals in which the possi-
bilities and consequences of agent misbehaviors are reduced.

The thesis describes systematic techniques for generating obstacles to the satisfaction of
idealized goals and assumptions, and for generating alternative obstacle resolutions. The
latter transform the goal model by deidealizing goals and assumptions or by generating
new goals so as to avoid, reduce or tolerate the identified obstacles.

Contributions
The main contributions of the thesis are the following.

* A formal model of agentthat provides the underlying semantic domain for a signifi-
cant part of the KAOS language related to agents and their responsibilities. This
model provides the basis for a precise definition of ikedizability consistency rule
that defines when an agent has sufficient monitoring and control capabilities to take
responsibility for a goal.

» A taxonomy of realizability problemnthat allows one to identify unrealizable goals in
a systematic way. This taxonomy is shown to be complete.

» Alibrary of agent-driven tacticfor recursively elaborating goal models and agents so
as to resolve violations of the realizability rule.

 alibrary ofoperationalization patternfor deriving operational requirements from the
formal definitions of realizable goals.

» a precise definition of the concept obstacleto the satisfaction of goalgbstacle
identification technique$or systematically generating obstacles from goals, and a
library of obstacle resolution tactider transforming the goal and agent models so as
to resolve generated obstacles.

* An assessment of the proposed techniques on two real case studies of significant size:
the LAS ambulance despatching system and the BART automated train control sys-
tem.
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Organization
The thesis is structured as follows.

Chapter 2 describes some background work on the modelling of goals and agents in RE.

Chapter 3 describes the KAOS goal-oriented specification language and method; it also
introduces extensions to the language to model and reason about agent responsibili-
ties, monitoring, and control.

Chapter 4 defines a formal model of agents that provides the underlying semantic
domain for the KAOS language; it also gives a formal definition for the realizability
consistency rule that relates agent responsibility for goals to its interfaces.

Chapter 5 describes a complete taxonomy of realizability problems used to identify unre-
alizable goals during the requirements elaboration process.

Chapter 6 defines agent-driven tactics for refining goals into subgoals and for identifying
agents so as to resolve realizability problems.

Chapter 7 describes the use operationalization patterns for deriving operational require-
ments from realizable goals.

Chapter 8 is based on [Lam2Ka] and describes the handling of obstacles during the goal-
driven requirements elaboration process.

Chapter 9 illustrates and assesses the techniques described in the thesis on the two fore-
mentioned cases studies.

Chapter 10 discusses related work.

Chapter 11 concludes and discusses further work.
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Chapter 2
Goals and Agents
In Requirements Modelling

This chapter briefly reviews some background works related to the modelling of goals
and agents in requirements engineering. Some background on the handling of excep-
tional behaviours is introduced as well. Related work will be discussed in further detall
in Chapter 10.

2.1. Foundations of RE

Before discussing particular requirements specification languages and methods, it is
essential to understand the foundations of RE. Two important frameworks of require-
ments engineering have been proposed: the framework of Jackson and Zave [Jac95,
Zav97], and the Four-Variable Model of Parnas [Par95].

The framework of Jackson and Zave [Jac95, Zav97] explains the precise nature of goals,
requirements and domain properties, as well as the precise nature of the relationships

among therh In that framework, the terrmachineis used to denote the hardware/soft-
ware to be developed. The purpose of the machine is to bring about some properties in
the environment; therefore requirements engineering should only be concerned with
modelling properties in the vocabulary of environment.

When modelling the environment, it is essential to distinguish between the quantities in
the environment that armonitoredby the machine, those that acentrolled by the

machine, and those in the environment outside the interface with the mfachine

A further essential distinction is made between goals, domain properties and require-
ments:

» A goalis a desired property about quantities in the environment.

» A domain propertys a property that naturally holds in the environment, as it would
be without or in spite of the machine.

» A requirements a special kind of goal that constrains the behavior of the machine. To
be a requirement, a goal must satisfy the following three properties:

() it is described entirely in terms of quantities monitored and controlled by the
machine;

1. In order to keep a uniform terminology throughout the thesis, we changed the terminology used
by Jackson and Zave. In their terminology, a goal is called a requirement, and a requirement is
called a specification.

2. In the terminology of Zave and Jackson, monitored variables are defined as variables that are
sharedbetween the machine and its environment, and thatangrolled by the environment
controlled variables correspond sharedvariables between the machine and the environment
that arecontrolled by the machinenvironment variable outside the interface with the machine
are unshared variables controlled by the environment.
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(i) it constrains only quantities that are controlled by the machine;

(i) the controlled quantities are not defined in terms of future values of monitored
guantities.

The main role of domain properties is to help bridge the gap from goals to requirements.
More precisely, ifG is the set of goals defined in terms of quantities in the environment,
D the set of domain properties about the environment, Rridle requirements on the
machine, the following properties must hold:

1. the requirements, together with the domain properties must guarantee the satisfac-
tion of the goals:

D,R|=G
2. the requirements must be consistent with the domain properties:
D, R |# false.

The Four-Variable Model of Parnas [Par95] is a similar model that introduces a further
distinction between environmental quantities that m@nitoredand controlled by the
system and the actualputsandoutputsof the software. The terrsystenis used here to
denote the software and its I/O devices.

This model, illustrated in Figure 1, emphasizes that requirements should be described as
a relation between monitored and controlled variabMenitored variablesrepresent
environmental quantities that the system meas@estrolled variablegepresent envi-
ronmental quantities that the system controls. A black-box specification of required
behaviour is given as two relatiom®EQ andNAT, from the monitored to the controlled
variables.NAT defines natural constraints on the system behaviour, such as constraints
imposed by physical laws and the system environmBR&Q defines additional con-
straints on the system to be built as relations the system must maintain between the mon-
itored and the controlled variables.

If the term machine used by Jackson and Zave is meant to represent the software and its
I/O devices, theREQ relation of the Four-Variable Model is roughly equivalent to the
requirementR in the previous framework. (A detailed comparison of these two frame-
works can be found in [Gun2K].)

System
Monitored Input Output Controlled
Variables —\\Variables Variables /50 N\ | Variables
i npu Software utputy | i
Environment -» Devices/ T Environment
N\ / / \ /
vV vV \4
IN SOF ouT
7
™~
REQ andNAT

FIGURE 1. The Four-Variables Model
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The Four-Variable Model introduces two additional sets of variablgsuts variables
represent the values actually stored in the input registers of the software s¢aigut
variables represent the values of the output register of the software. A reldtion
between monitored and input variables is used to describe the behaviour of the input
devices. A relatiorOUT between output and controlled variables is used to describe the
behaviour of the output devices.

The behaviour of the software is then described by a rele&gi©OR between input and
output variables. For the software to correctly implement the requirements, the relation
SOF must satisfy:

IN OSOF OOUT ONAT U REQ.

Both frameworks insist on the well-known but often neglected importance of precisely
defining the correspondence between mathematical variables and the physical quantities
they denote.

The main advantage of these frameworks is that they prasidplemodels explaining

the nature of requirements engineering. Simplicity is what makes these models so attrac-
tive and useful. Some aspects of requirements modelling have therefore been oversimpli-
fied, and some others have been ignored. In Chapter 4 of the thesis, we describe a more
detailed, but more complicated, formal framework for requirements modelling.

A fundamental concern of requirements modelling is completely ignored in these frame-
works: the engineering of requirements involves the exploratioaltefnative system
proposals in which the boundary between the automated system and its environment may
be quite different. The above models characterize only the result of this exploration; the
boundary has been decided on and is frozen. Techniques supporting the exploration of
alternative system proposals from goals is a central theme of the thesis.

2.2. Modelling Goals

The need to model WHY a system should be developed has been recognized since the
early days of RE [Ros77]. However, most requirements modelling notations and tech-
niques focus on the “late-phase” of the requirements engineering process [Yu97], during
which initial statements of functional requirements are precisely reformulated and ana-
lyzed for ambiguity, incompleteness and inconsistency. Methods supporting this kind of
analysis range from semi-formal (e.g. structured methods [Ros77], object-oriented meth-
ods [Rum91, Rum98]) to formal (e.g. history-based [Man92, Lamp94, Koy92], state-
based [Pot91, Jon90, Abr96], or transition based [Har87, Heit96] -- see [Lam2Kb]).

Goal modelling is intended to address the “early-phase” of requirements engineering
during which stakeholders goals are explored and alternative system proposals that sat-
isfy the goals are investigated.

Two complementary frameworks for goal-oriented requirements engineering have
emerged: the first one is KAOS [Dar93, Lam2Kc]; it is mostly concerned witly#mer-

ation of alternative system designs from high-level goals defined in temporal logic. The
second one is the NFR framework [Myl92, Chu2K]; it is mostly concerned witleviaé
uation and selectiorof alternatives with respect to qualitative ‘non-functional’ goals
such as usability, performance, accuracy, security, etc.
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In the KAOS frameworkgoals are related to subgoals through AND/OR refinement
links. A goal is AND-refined into a set of subgoals when the satisfaction of all subgoals
ensure the satisfaction of the parent goal. OR-refinement links relate a goal to an alterna-
tive set of AND-refinements; this means that satisfying one of the refinements is suffi-
cient for satisfying the parent goal. Conflicts links between goals are also used to relate
goals that cannot be satisfied together.

An optional formal assertion layer is used to formally specify goals in a real-time tempo-
ral logic [Man92, Koy92]. The formal definition of goals allows one to

» prove the completeness of goal-refinements, and identify overlooked goals and
assumptions [Dar95, Dar96],

* identify conflicts between goals [Lam98b],

» generate obstacles from the definition of goals [Lam98a, Lam2Ka].

The NFR frameworkemphasizes the need to model and reason about non-functional
requirements such as usability, performance, accuracy, security, etc. Such non-functional
requirements provide criteria for evaluating and selecting among alternatives design
decisions. The term “softgoal” is used to characterize goals that do not have a clear-cut
criterion for their satisfaction. Weaker versions of goal refinement and goal conflict links
are introduced to model softgoal dependencies. Instead of goal satisfaction, ssditgoal
isficing is introduced to express that lower-level softgoals are expected to achieve their
parent softgoals within acceptable limits rather than absolutely. A labelling procedure
has been defined to help determine the degree to which a softgoal is satisficed or denied
by lower-level softgoals and requirements. The NFR framework is also composed of a
rich catalogue of generic expert knowledge about softgoals and softgoal dependencies.

2.3. Modelling Agents

The concept of agent has also been introduced in several requirements specification lan-
guages and methods.

Formal agent-oriented languages such as structured MAL [Rya91], and Albertll [Dub95]
have been proposed to model and reason about systems made of interacting agents.
These languages are targeted to the “late phase” of the requirement elaboration process.
They do not support the process of identifying which agents should play a role in the sys-
tem and what requirements each agent should be responsible for. In contrast, our work is
concerned with the “early phase” of the requirement engineering process during which
the goals of the system-to-be are identified and alternative operationalizations and
responsibility assignments are still being investigated.

Our work has been significantly influenced by the paradigm of Composite System
Design proposed in [Fea87] for the development of systems involving multiple interact-
ing agents. This approach consists in separately specifying the global constraints on the
behaviors of a multi-agent system and gradually deriving the local constraints on the
behavior of individual agents. The notionresponsibilitywas identified there as playing

a major role in describing the stages of decomposition of global constraints into local
constraints on agent behaviors. Different responsibility assignments may lead to radi-
cally different designs. To support this kind of requirements elaboration process, [Fea87]
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introduces a simple formal framework for modelling agents, agent interfaces, and agent
responsibility for goals. An agent responsible for a goal is the only one required to
restrict its behaviour so as to ensure the goal.

This framework has been defined further in [Fic92] where formal techniques are sug-
gested for (i) identifying inconsistencies between operational specifications of individual
agents and declarative specifications of global goals; and (ii) resolving the identified
inconsistencies by transformations of the operational and declarative specifications. That
paper describes a small core of specification elaboration operators capable of generating
a whole range of composite system designs. These operators were discovered empiri-
cally by studying various existing composite systems and trying to rationally rederive
their features.

The work reported in [Fea94] proposes another set of techniques based on the weakest
precondition calculus [Dij76] and finite differencing techniques; the aim is to derive an
operational specification of agents from global goals. Informal reasoning about lack of
agent monitoring and control capabilities is used to guide the derivation process.

2.4. Exceptional Behaviours

Exceptional agent behaviours might obstruct the achievement of goals. These excep-
tional behaviours will be called obstacles.

Reasoning about exceptions during software development is of utmost importance to get
high-quality software. There has been a lot of software engineering research to address
this for the later stages of software architecturing or implementation, where the boundary
between the software and its environment has been decided and cannot be reconsidered,
and where the requirements specifications are postulated correct and complete [And81,
Bor85, Per89, Cri91, Ros92, Jal94, Cri95, Aro98, Gar99]. In contrast, the techniques
presented in the thesis work at the much earlier stage of requirements engineering, from
goal formulations, so that more freedom is left concerning adequate ways of resolving
goal violations -- like, e.g., considering alternative requirements or alternative agent
assignments that result in different system proposals, in which more or less functionality
is automated and in which the interaction between the software and its environment may
be quite different.

Some work has been done at specification level though. The JSD method [Jack83]
already recognized the need to anticipate and handle errors at that level. JSD provides
techniques for handling inputs which are not valid for a given specification (such as
meaningless inputs or inputs arriving in an unexpected order). Jackson also recognized
that mistaken valid inputs cannot be handled by the proposed techniques, as they may
require transformation of the whole specification, and that such errors should be taken
into account in the earlier steps of the specification elaboration process. However, no
techniques are provided there to anticipate and resolve such errors. The techniques
described in Chapter 8 are intended to fill that void.

Systematic techniques have been defined for analyzing a formal model of the automated
system for exceptional cases. The Z precondition calculus makes it possible to systemat-
ically identify exceptional cases in which an operation could be applied [Pot91]. The
operation can then be made robust by separately specifying responses to those excep-
tional cases. The Z logical schema combination constructs are used to combine normal
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and exceptional cases. With the same objective of making a specification complete
against all possible inputs, automatic techniques have been defined to check whether a
state machine model handles all possible sequence of inputs [Heim96, Heit96].

For safety-critical systems, hazard analysis techniques such as fault-tree analysis have
been developed to identify and reason about the causes of hazards of a system [Lev95].
The primary purpose of such techniques is to analyze the causes of hazards, not to iden-
tify the hazards over which the analysis should start. A good understanding of the system
is essential for identifying the top hazards to be analyzed, and for elaborating the fault
trees.

Deontic logics are formalisms that enable one to specify and reason about normal and
abnormal situations by means of modal operators such as permission and obligation
[Mey93]. Such logics have been proposed for system specification, making it possible to
specify what should happen if an abnormal situation occurs [Mai93, Ken93]. However
such approaches do not provide any guidance for elaborating the requirements, in partic-
ular the requirements dealing with the abnormal situations. In contrast, the techniques
discussed in Chapter 8 are based on goals which serve as a rationale for introducing new
requirements to deal with the abnormal situations.

The concept obbstaclewas first introduced in [Pot95] to describe situations that may
block the fulfilment of goals. Obstacles are identified there by exploration of scenarios of
interaction between software and human agents. This exploration is informal and based
on heuristics. Some limited obstacle resolution strategies such as obstacle defence and
obstacle mitigation are sketched there. Chapter 8 builds on that work by providing more
systematic techniques for identifying and resolving obstacles to the satisfaction of goals.

10
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Chapter 3
Goal-Oriented Requirements
Engineering with KAOS

This chapter describes the KAOS goal-oriented specification language and method used
in the dissertation. We first motivate our choice of a goal-oriented approach for exploring
alternative responsibility assignments and for handling agent misbehaviours during
requirement engineering. The KAOS goal-oriented specification language is presented in
Section 3.2. The KAOS goal-driven method for elaborating requirements is then
described in Section 3.3.

The chapter also introduces extensions of the KAOS language that are necessary to
model and reason about agent responsibility, monitorability and controladém inter-

face models added to the KAOS language to model the monitoring and control capabil-
ities of agents with respect to object attributes (Section 3.2.8ahzability consistency

rule that relates agent responsibility for goals to agent interfaces is introduced.

The realizability consistency rule plays a significant role in the goal-oriented require-
ment elaboration process: violation of that constraint drives the refinement of goals into
subgoals and the identification of new agents (Section 3.3.5). The realizability consis-
tency rule provides the basis for the formal techniques proposed in the thesis; techniques
for identifying and resolving unrealizability are described in Chapters 5 and 6, respec-
tively.

Much effort was also put into clarifying and simplifying various other aspects of the lan-
guage. Portions of the KAOS language that significantly differ from or extend the origi-
nal description of the language in [Dar93] are highlighted with a bar in the margin.

3.1. Why a Goal-Oriented Approach?

As mentioned in Chapter 2, goals play a prominent role in the requirement engineering
process. In particular, they are well-suited to support the exploration of alternative
designs involving multiple agents and the handling of agent misbehaviours.

The exploration of alternative system designs is at the core of requirements engineering
[Fea87, Fick92, Dar93, Myl99]. Alternative ways of refining goals into subgoals, and
alternative responsibility assignments of goals to agents yield different designs in which
the boundary between the automated systems and its environment may be completely
different. Goals are also used to identify the agents which should play some role in the
system. The introduction of a new agent arises from the need to fulfil some system-wide
goals.

Goals also provide the basis for identifying agent misbehaviours. The refinement of

goals into subgoals involves making assumptions about agents in the environment. Goals
and assumptions define the ideal behaviour of agents. Agent misbehaviours are then
defined as exceptions which cause these goals and assumptions to be violated. Further-

11
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more, handling agent misbehaviours at the goal level gives more freedom for resolving
such exceptions, for instance by considering alternative goal refinements and responsi-
bility assignments that yield different system designs.

3.2. The KAOS Goal-Oriented Requirement Specification
Language

This section introduces the KAOS goal-oriented language used in the dissertation. Sec-
tion 3.2.1 gives an overview of the language. Section 3.2.2 introduces the conceptual
modelling aspects of the language and the three levels of modelling involved in require-
ment acquisition. Section 3.2.3 defines the temporal logic used in KAOS for specifying
requirements formally. Sections 3.2.4 to 3.2.8 describe the various components of the
language in more detalil.

3.2.1 Overview

The KAOS language is a multiparadigm language. A KAOS model is composed of sev-
eral submodels related through inter-model consistency rules (Figure 3.1).

The goal modelis the driving model of the KAOS language. It declares the goals of the
composite system. foal defines an objective the composite system should meet, usu-
ally through the cooperation of multiple agents. An example of goal for a meeting sched-
uling problem is the goalAchieve[ConvenientMeetingHeld] requiring that every
requested meeting is eventually held with the presence of all intended participant.

Goal-refinemenlinks relate a goal to a set of subgoals. A set of subgoals refines a parent
goal if the satisfaction of all subgoals is sufficient for satisfying the parent goal [Dar93,
Dar95, Dar96]. As an example, the gaalhieve[ConvenientMeetingHeld] is refined in
Figure 3.1 into the subgoalschieve[PrtcptsCstrknown], Achieve[ConvenientMeeting-
Planned], andAchieve[Prtcptsinformed].

A parent goal may be refined by alternative sets of subgoals. For instance, the goal
Achieve[PrtcptsCstrknown] can alternatively be refined into the subgoals
Achieve[PrtcptsCstrRequested] and Achieve[RequestedCstrProvided] or into the sub-
goals Maintain[ElectronicAgendaUpToDate] and Achieve[PrtcpsCstrknownFromA-
genda]. Note that alternative goal refinements may yield alternative system design.

In addition to goal refinementspnflictsbetween goals can also be captured [Lam98a].

The goal model has a two-layer structure. An outer semantic net layer [Bra85] is used for
declaring goals and goal links. An inner textual layer is used for defining goals. Goals are
defined in natural language and may optionally be defined formally in a real-time tempo-
ral logic formalism similar to [Koy92] - see Section 3.2.3 hereatfter.

The object modeldeclares the objects of interest in the application domain. An object is
classified aentity, relationship eventor agentdependent on whether the object is auton-
omous, subordinate, instantaneous or active. The object’s characteristics are declared as
attributesand relationship links to other objects. Inheritance between objects is declared
throughlSArelationships.

12
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FIGURE 3.1. Overview of the KAOS models
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There are inter-model rules between the object model and the goal model. On one side,
the object model declares the vocabulary to be used in the definition of goals; on the
other side, these definitions bound the vocabulary to be declared in the object model.

The agent responsibility modeldeclaregesponsibilityassignments of goals to agents.
Agents include software components that exist or are to be developed, external devices,
and humans in the environment. Responsibility assignment provides a criterion for stop-
ping the goal refinement process. A goal assigned as the responsibility of a single agent
is not refined any further. Alternative responsibility assignments are captured through
OR responsibility links. For instance, the ga@alhieve[PrtcptsCstrRequested] could be
assigned th&cheduler software agenbr to thelnitiator agent. The meaning of a respon-
sibility assignment is that the agent responsible for a goal is the only one required to
restrict its behaviour so as to ensure that goal [Fea87].

The operation modeldefines the state transitions in the application domain. Operation
are defined througdomain pre- and post-conditionBor instance, the domain pre- and
post-conditions of th&€endCstrRequest in Figure 3.1 minimally capture what any send-
ing of a constraint request is about in the application domain.

Further requirements on operations are necessary to ensure the goals assigned to individ-
ual agents. Such requirements are specified throeeminred pre-, trigger, and post- con-
ditions They are related to the goal they ensure throapghrationalizationlinks. For
instance, the required trigger condition on 8endCstrRequest operation requires that a
constraint request must be sent to a participant when the participant is intended to the
meeting. This required trigger condition operationalizes the goaikve[PrtcptsCstrRe-
quested].

Each operation is also related to the agent that can initiate it thrqpegfoemancdink.

The agent interface modeldeclares which objects are monitored and controlled by each
agent. In the agent interface model of Figure 3.1,3bkeduler agent controls th€str-
Requested relationship, and monitors thetended relationship. Alternative agent inter-
face models can be captured through OR monitorability and control links.

There is an inter-model consistency rule between the agent interface and the correspond-
ing responsibility assignment of a goal to an agent. Roughly speasiggal can be
assigned as the responsibility of an agent only if the goal is stated in terms of objects that
are monitorable and controllable by the agewts will be seen later, this consistency

rule, called theealizability rule, is a central concept of the thesis.

The KAOS language has a two-layer structure: an outer conceptual modelling layer for
declaring concepts (such as goals, objects, agents, etc) and links between concepts (such
as goal refinements, responsibility assignments of goals to agents, etc.); and an inner for-
mal assertion layer for formally defining concepts. Section 3.2.2 further introduces some
background material on conceptual modelling. Section 3.2.3 introduces the formal lan-
guage used at the inner layer of the KAOS language. The various models of the KAOS
language are then described in further detail in Sections 3.2.4 to 3.2.8.

14
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3.2.2 Conceptual Modelling

We first introduce the three levels of modeling involved in requirements acquisition; then
we define more precisely conceptual modeling constructs relevant to the definition of the
KAOS language.

3.2.2.1 The Meta, Domain, and Instance Levels

The KAOS approach to requirements engineering involves three different levels of mod-
elling: the meta-level, the domain-level, and the instance level (Figure 3.2).

The KAOS language is defined through a conceptual meta-modem&keemodepro-

vides domain-independent abstractions in terms of which domain-specific concepts are
acquired. The meta-model is composednata-conceptésuch assoal, Agent, Relation-

ship, Operation, etc.);meta-relationshipgsuch asRefinement betweenGoals, Respon-

sibility betweenAgent and Goal, Monitoring betweenAgent and Object, etc.); meta-
attributes of meta-concepts or meta-relationships (egfinition of Goal, Priority of

Goal, DomPre- and DomPost conditions of Operation, etc.); andmeta-constrainton
meta-concepts and meta-relationships (e.g. “the vocabulary used in the definition of a
goal must be defined in the object model”).

The domain modelis composed of domain-specific instances of meta-concepts and
meta-relationships. In Figure 2, tiMeeting concept is an instance of thntity meta-
concept, the goahchieve[PrtcptsCstrRequested] is an instance of th&oal meta-con-

cept, the operatioSendCstrRequest is an instance of th®peration meta-concept, etc.

The components of a requirements model are thus acquired as domain-specific instances
of meta-concepts, linked by instances of meta-relationships, and characterized by
instances of meta-attributes. These components must furthermore satisfy the meta-con-
straints of the meta-model.

The instance modelrefers to specific instances of domain-level concepts. A specific
meeting is an instance of the domain-level conceptegting.

Role of the meta-model

In the context of requirements elaboration, the KAOS meta-model fulfills two important
roles.

1. The KAOS meta-model determines the content and structure of the requirement docu-
ments.

Concepts of the meta-model such@sal, Operation, Agent, etc. define what infor-
mation must be included in the requirements model. Links between concepts (such as
goal refinement links) provide structure to the requirements model.

2. The KAOS meta-model drives the requirements elaboration process.

The components of a requirements model are acquired as domain-specific instances
of meta-concepts. Meta-relationships between concepts guide the acquisition of
related concepts. For instance, Refinement meta-relationship guides the acquisi-

tion of subgoals of a given goal.
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Meta-constraints play an important role during the requirement acquisition process.
The violation of a meta-constraint drives the elaboration of the model so as to resolve
the violation. For example, a violation of the meta-constraint linking goal definitions
to the object model drives the identification of objects and attributes to be declared in
the object model.

As will be seen later, one of the key ideas of the thesis corresponds to an application
of this general principle; it consists in refining goals and identifying agents by sys-
tematically identifying and resolving violations of the realizability meta-constraint
that relates goals and agent interfaces.

From the point of view of tools, the KAOS meta-model determines the structure of the
requirement database in which the requirements model is gradually elaborated. The vari-
ous components of the meta-model also yield criteria for measuring conceptual similar-
ity when requirements are acquired by analogy with other systems [Mas97].

3.2.2.2 Characterizing meta-model components

As mentioned above, the meta-model is made of meta-concepts, meta-relationships link-
ing meta-concepts, and meta-attributes attached to meta-concepts and meta-relation-
ships. What is meant by meta-concept, meta-relationship and meta-attribute is now made
more precise. AND/OR meta-relationships are also introduced to support the declaration
of alternative requirements options at the domain level, andsanelation between
meta-concepts is defined to support their specialization.

1. Meta-Concepts, meta-relationships and meta-attributes

A meta-concepC denotes a set of concept instances. The fact that a concept instance
belongs to a conce is notedinstOf(c, C). Goal andObject are examples of meta-con-
cepts of the KAOS meta-model. Specific domain-level goals and objects are respectively
instances of th&oal andObject meta-concepts.

A meta-relationshigr is a mathematical relation betweeooncept<i,..., Cn; i.e.
ROC1x..xCn

An instance of a relationshiR is a tuple<ci,..., cn> with eachci O Ci. We use the nota-
tion R(c1,..., cn) to denote that the tupkecl,..., cn> is an instance oR. As an example,
Concern is a meta-relationship linking the meta-conceptsGafal and Object. An
instance of theConcern meta-relationship is a pa#G, Obj> whereG is an instance of
Goal andObj an instance oDbject. It declares that the objecibj is referenced in the
definition of the goat.

The cardinality of a concegi involved in a relationshi® is a pair<mincard, maxcard>
wheremincard andmaxcard denote the minimum and maximum number of instances of
R in which every instance @i may participate, respectively.

A meta-attributeAtt of a meta-concept or meta-relations@ip is defined as a function
Att: CR - D

whereD is called the domain of values of the attribute. For instanceGtw meta-con-
cept has the meta-attributeame anddefinition. The domain of values of theefinition
attribute of theGoal meta-concept is the set of natural language statementsoirhal
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definition of a goal is also a meta-attribute of tGeal meta-concept. Its domain of values

is the set of logical formulas in the formal language used at the inner layer of the KAOS
language.

2. And/Or meta-relationships

And/Or meta-relationships are introduced to support the declaration of alternative
requirements fragments at the domain level. Since a goal can be refined into several alter-
native combinations of conjoined subgoals, the goal refinement meta-relationship is an
AND/OR meta-relationship.

An And/Or meta-relationshif® over concepts andD is a compound binary relation-
ship defined as follows [Dar93]:

R = AndR o OrR( “0” denotes relation composition)

with AndR O C x AltR, andOrR O AltR x D, whereAltR is a meta-concept that denotes
the set of possible alternatives for the relationghig\n instance oR is a pair<c, {d1,...,
dn}> such that there exists an alternatated AltR for which <c, alt> 0 AndR and<alt,
di> 0 OrR fori=1..n.

And/Or meta-relationships haveSelected attribute with “yes” and “no” as possible val-
ues to record which alternatives are effectively selected.

And/Or meta-relationships are also subject to the following constraint:
for everyalt (0 AltR there is exactly oned C such thakc, alt> [0 AndR.
(In other words, the cardinality 8itR in the relatiomAndR is (1:1).)

For theRefinement And/Or meta-relationship, the constraint requires that each alterna-
tive refinement has exactly one parent goal.

An Or meta-relationshigetween concepts andD is an And/Or relationship that satis-
fies the following additional constraint:

for everyalt (I AltR there is exactly one [J D such thakalt, D> [J OrR
(In other words, the cardinality @itR in the relatiorOrR is (1:1).)

As will be seen belowResponsibility is an example of Or meta-relationship between
Agent andGoal; every alternative responsibility assignments links exactly one agent and
one goal. (Several responsibility links may be used to assign several goals to the same
agent.)

3. Meta-concepts specialization

Meta-concept specialization is captured through the bimG#yrelation between con-
cepts. This relation is defined by

Isa(C1, C2) iff every instance o€1 is also an instance af2.

A consequence of meta-concept specialization is that attributes and relationships defined
onC2 are also defined an1.
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3.2.3 Formal Specification of Timed Assertions

At the inner layer of the language, formal assertions can be attached to domain-level con-
cepts. These assertions are values for the formal definition attribute of a goal; the pre,
trigger, and post condition attributes of operations, etc. This section provides an intro-
duction to the formal logic used in this dissertation.

Time plays a critical role in requirement engineering. Goals define sets of temporal
behaviours of the system. There are many competing formalisms for expressing timed
properties. The objective of the KAOS project has not been to define yet another logic,
but to choose among existing formal languages. The choice for such a language resulted
from a trade-off between the expressive power of the language and its formal analysis
capabilities.

The logic used in KAOS is typed first-order real-time logic. Its real-time constructs are
inspired by [Koy92]. It consists of the traditional temporal operators [Man92], together
with additional real-time operators for specifying properties involving real-time dead-
lines. A key feature of the logic is its ability to model real-time properties concisely with-
out referring explicitly to a time variable.

The temporal logic of [Koy92] has been extended with operators for specifying real-time
properties referring to the absolute time of the system, and for specifying real-time prop-
erties in which the real-time bounds are allowed to change over time.

A limitation of the logic currently used in KAOS is that the time domain is assumed to be
discrete. This makes it difficult to accurately capture and reason about properties involv-
ing time derivatives and integrals of time-continuous variables.

Note that the outer layer of the KAOS language is independent from the choice of for-
malisms at the inner layer of the language. The outer layer of the language can be given a
precise semantics that is independent from the inner layer of the language. As a conse-
guence, one can learn and use the outer layer of the language in a precise way without
knowledge of the formal layer of the language. One can also more easily change or adapt
the formalism used at the inner layer of the language, for instance, by replacing the tem-
poral logic based on a discrete temporal domain by a temporal logic based on a continu-
ous time domain.

We now introduce the temporal operators used in the dissertation. These operators are
classified into operators for specifying qualitative temporal properties, relative real-time
properties, absolute real-time properties, and flexible real-time properties.

3.2.3.1 Qualitative Temporal Properties

Qualitative temporal properties are properties about sequences of states. Examples of
such properties are:

“every request is eventually satisfied”

“every state satisfies some state invariant I”
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Qualitative temporal properties are specified using the following classical operators of
temporal logics [Man92]:

O (some time in the future) 4 (some time in the past)
[0 (always in the future) m (always in the past)

w (always in the futurenles$ B (always in the padiack tg
U (always in the futurentil) S (always in the pastince

The semantics of such operators is defined over a linear temporal structure. An history is
a function

h: N - State,

whereN is a totally ordered set of time points, asthte is the set of possible global
states of the system. (Formall$tate is the set of interpretation functions for the state
variables of the model -- see Section 4.2.1.) In the sequel weNaide the set of natu-
ral numbers.

The notation
(h,)|=P

IS used to express that assertirs satisfied at timéof historyh. An assertion is said to
be satisfied by an histotyiff it is satisfied at the initial time of the history, that is,

hj=P iff (h, 0)|=P.
The semantics of the above temporal operators is defined as follows [Man92]:
Future operators:
(h,i) |=0OP iff  (h,j) |= Pforsomepi
(h,i) =0P iff (hj) |=Pforallj=i
(h,i) |=PUQ iff there exists akisuchthath,j)|=Q
and for every k, £k <, (h, k)|= P
(h,) =PwQ iff (hi)|=PUQor(hi)=0P
Past operators:
(h,i) |= &P iff  (h,j) |= P forsomgc<i
(h,iy |=mP iff (hj) |=Pforallj<i
(h,i) =FPSQ iff there exists agisuch thath,j)|=Q
and for every k, fk<i, (h,k)|= P
(h,i) =PBQ iff (h,i) |=PsQ or(h,i)|=m P

The logic also uses the classical logical connectivésnd),](or), = (not), - (implies),
-~ (equivalent), and the usual quantifiergfor all), O (exists).

We also use the following standard notations for entailment and strong equivalence:

POQ iff O(P-Q)
P-Q iff OFPe- Q)

Note that there is an implidif-operator in every entailment.
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Since the temporal domain is assumed to be discrete, the following operators can also be
introduced:

O (in the next stat®)(in the previous state)
The semantics of these operators is defined as follows:

(hi) |=OP iff (h i+1)=P
(hi) |=eP iff (hi-1)=P andi>0

We also introduce the SCR-like notation B)to denote that an assertioh has just
become true:

@P iff e-POP
The next and previous operators are also defingdrorsof the language, i.e.,

VAL(h, i)( O T) = VAL(h, i +1)(T)
VAL(h, t)(® T) =VAL(h,i-1)(T) if i>0, otherwise it may have any value.

whereT is a term of the language, aMAL(h,i)(T) is the valuation function of term at
timei of historyh.
3.2.3.2 Relative Real-Time Properties

In requirement engineering, one often needs to specify real-time properties. Examples of
such properties are:

“every request should be satisfigithin an hour”
“every borrowed book copy should be returnveithin 2 weeks”

Relative real-time properties are properties referring to real-time delays between system
states. In order to specify such properties, bounded versions of the above temporal oper-
ators are introduced in the style advocated by [Koy92]. Examples of such operators are:

O (some time in the future within deadlidg
Oy (always in the future up to deadlidg

To define such operators, the temporal structuiie enriched with a metric domain
and a temporal distance function

dist NxN - D
which has all desired properties of a metric [Koy92]. We will take

D: {d | there exists a natunalsuch that d = & 3},
whered denotes some chosen time unit
dist(i, j):  |j-i|*xd

The [0 -operator then yields the nearest subsequent time position according to the time
unit.
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The semantics of the real-time operators is then defined accordingly, e.g.,
Future operators:
(h, i) |= 04 P iff  (h,j)|= P for someg =i with dist(j, j) < d
(h,i)y|=0O4P iff  (h,j)|=P forallj=isuch thatlist(, j) < d
(h,i) =PU,4Q iff  (h,])|=Q for somg =i with dist(, j) < d
and for every k, £k <, (h, k)|= P
(h,) |=PWgQ iff  (hi) |= PUgyqQ or(h,i)l=UqP
Past operators:
(h,i) |= ¢ 4P iff  (h,j) |= P for somg <i with dist(j, i) < d
(h,i) |=m4P iff (h,j) |=P forallj<iwith dist(, i) < d
(h,i) |=PS,4Q iff (h,j)|=Q for somg =i with dist(j, i) < d
and for every k, £k <, (h, k)|= P
(h,i) |= PB4Q iff  (h, i) |= PSggQ or(h,i=mP

3.2.3.3 Absolute Real-Time Properties

Some real-time properties refer to the absolute time of the system, as in the following
example

“every borrowed book copy should be returimdthe end of the year for inventory”

In order to capture such properties, we introduce bounded versions of qualitative tempo-
ral operators in which the real-time bounds refer tathsolute timeof the system, e.g.,

O (some time in the future befotiene T)
O (always in the future up tiime T)

To define such operators, the temporal strudtuieenriched with a function

time: N - Time
which assign to each time point the current time at that point. We define such function as
follows:

time(i) =g time(0) + dist(0, i)
The time at the initial time point, i.¢ime(0), is arbitrarily chosen. The semantics of
absolute real-time operators is then defined as follows, e.g.,

(h,i)|=05P iff  (h,j) |= P forsomg >isuch thatime()<T

(h,)|=05P iff  (h,j) |= Pforallj=isuch thatime()<T1
3.2.3.4 Flexible real-time Properties

Flexible real-time properties are properties involving deadlines and delays whose values
are not necessarily fixed and may be time-dependent, as in the following example:

“When a reviewer accepts to review a paper, the review of the paper should be avail-
able to the associate editor in charge of the papéhin somedelay which has been
agreed between the associate editor and the reviewer”
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In this last example, the delay for returning the review is a variable whose value may
change over time; it could be extended or shortened.

Flexible real-time properties are the most frequent real-time properties in requirement
engineering. Most often, the real-time bound is a time-dependent variable. (Note that the
operators defined in the previous sections only allowed for constant real-time bounds.)

In order to capture such properties, we introduce bounded versions of qualitative tempo-
ral operators in which the relative or absolute real-time bounds refer to variables whose
values may change over time, e.g.,

0.4 P: P holds before delag has expired,
whered is a time-dependent variable of type

O P: P holds before deadlinkis passed,
whereT is a time-dependent variable of typene

These operators are defined over the temporal structure previously introduced.

The formal definition of such operators requires some attention. We first consider the
operatordt P whereT is a time-dependeneadline

The operator is formally defined as follows:

(h, i) |= O Piff there existg =i such thath, j) |= P
and for allk such that <k <j, time(k) < VAL, 1(T)

whereVAL, 1y(T) is the value of the time-dependent variailat the time positiork of
historyh.

The definition asserts that there is a future time ppattwhichP holds and that form the
current time point up toj, the current time is less that the current value for the deadline.
As a consequence, if the deadline is extended before the initial deadline is passed, the
assertion is satisfied provide®l holds before the extended deadline. However, if the
deadline is extended after the initial deadline is passed, the assertion is violatdidl if

not hold before the first deadline.

This operator is similar to the bounded obligation operator in [Ken93]. It is defined here
for declarative temporal assertions, whereas the bounded obligation operator is defined
for a logic of operations.

The operatof.4 P whend is a time-dependextelayis similarly defined as follows.

(h, i) |= 04 Piff there existg =i such thath, j) |= P
and for allk such that <k <j, time(k) - time(i) < VAL 1(d)

The definition of the past temporal operators is much simpler. The deadline is evaluated
in the current state of interpretation; this corresponds to the intuition that when talking
about the past, the deadline or delay mentioned is by default the deadline as currently
defined. As an example, the operamyy whend is a time-dependent delay is formally
defined as follows:

(h, i) |= m 4 Piff (h, j) |= P forallj <i such thatime(i) - time(j) < VAL, (d).
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3.2.4 The Goal Model

Having introduced the conceptual modelling framework and the temporal assertion
framework, we now detail the various submodels that together define a KAOS model.

3.2.4.1 Defining Goals

As mentioned before, a goal defines an objective the composite system should meet usu-
ally through the cooperation of multiple agents. For example, a goal in a meeting sched-
uling problem would be that each requested meeting is eventually held with the presence
of all intended participants. This ideal goal might be captured by the following specifica-
tion fragment.

Goal Achieve[ConvenientMeetingHeld]

Definition each requested meeting is eventually being held with the presence of all
intended participants.

FormalDef [0 m: Meeting:

m.Requested

0o

m.HoldsLI (L p: Participant): Intended(p,m) — Participates(p,m)

Each goal has aame a natural languagédefinition and an optionatormal definition
The above goal is name&thieve[ConvenientMeetingHeld] (the Achieve verb is a key-
word that will be explained below).

A goal defines a set of admissible histories in the composite system. Intuitively, an his-
tory is a temporal sequence of states of the system. Each goal is satisfied by some histo-
ries and falsified by some other histories. The notation

h|=G
is used to express that histdrgatisfies the goa.

The definition of a goal is a natural language statement describing the set of histories sat-
isfying the goal. The formal definition of a goal is a temporal logic formula describing
the same set of histories. (It is the specifier’'s responsibility to ensure that the natural lan-
guage and formal definitions of a goal describe the same property.)

3.2.4.2 Classifying Goals

A goal taxonomys used to guide the acquisition and definition of goals. Goals are clas-
sified according to their pattern and category.

The pattern of a goal is based on the temporal behaviour required by the goal. The
KAOS language distinguishes the following four goal patterns:

Achieve goals: goals requiring that some property eventually holds
Cease goals: goals requiring that some property eventually stops to hold
Maintain goals: goals requiring that some property always holds

Avoid goals: goals requiring that some property never holds

Goal patterns provide a lightweight way of declaring the temporal behaviour of a goal
without writing formal goal definitions.
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The pattern of a goal can also be used to guide the specification of the formal definition
of the goal: goal patterns constrain the formal definition of goals [Dar98]. Goal patterns
and corresponding temporal formula templates include the following:

Achieve: PO ¢Q, PO 04 Q, PODOQ
Cease: POO-Q, POO4-Q, POO=-Q
Maintain: P O Q, PO OQ, PO QWR
Avoid: PO - Q, PO O-Q, PO-QWR

Goal categoriesprovide a further classification of goals that can be used to guide the
acquisition, definition and refinement of goals. The idea is to reuse common goal and
goal-refinement techniques found in various application area. As an example, the goal
Achieve[ConvenientMeetingPlanned] is an instance of a satisfaction goal because it is
concerned with satisfying an agent wish. The category of the goal is declared as follows.

Goal Achieve[ConvenientMeetingHeld]
InstOf SatisfactionGoal

Goal categories include the following:

» Satisfaction goalareAchieve goals concerned with satisfying agent wishes.

» Safety goalsreMaintain goals concerned with avoiding hazardous states

» Security goalsreMaintain goals concerned with avoiding threats to the system

» Information goalsareAchieve goals concerned with making an agent informed about
some states in its environment.

» Accuracy goalsareMaintain goals concerning the accuracy of the beliefs of an agent
about its environment.

Goal categories are organized into a specialization hierarchy. For example, the category
of security goal is specialized into subcategories such as confidentiality goals, availabil-

ity goals, authentication goals, etc. according to standard classification in the security

domain [Amo94]. The declaration of the goal category is optional.

3.2.4.3 Domain Properties

As will be seen below, domain properties play a critical role when refining goals into
subgoals. A domain property is a property that is naturally true about the composite sys-
tem. Physical laws are typical examples of domain properties. An example of domain
property for the meeting scheduling problem is the fact that a participant cannot partici-
pate simultaneously in two different meetings. Domain properties are declared as domain
invariants attached to objects in the object model (see Section 3.3.2.5).
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3.2.4.4 Goal Refinement

Goals are related to subgoals through goal refinement links. As an example, the figure
below shows that the goalchieve[PrtcptsCstrknown] is refined into the two conjoined
subgoalsAchieve[PrtcptsCstrRequested] andAchieve[RequestedCstrProvided].

Achieve
[PrctpsCstrknown]

Achieve Achieve
[PrctptsCstrRequested] [RequestedCstrProvided]

A goal can be refined into severalternative combinations of subgoals. The figure
below shows an alternative refinement for the gealieve[PrtcpsCstrkKnown], in which
participants constraints are retrieved from electronic agendas of participants.

Achieve
[PrtcptsCstrKnown]

OR
AND
Achieve Achieve Maintain Achieve
[PrtcptsCstr [RequestedCstr [PrtcptsAgenda | [[PrtcptsCstrkKnown
Requested Provided] UpToDate] FromAgenda]

In case of alternative goal refinementsSelected attribute attached to goal refinement
links is used to capture which alternative refinements are actually chosen. (The selection
of OR-refinement links is not exclusive; more than one alternative refinement could be

selected.)
Semantics of goal refinements

Formally, a set of goalsdy, ..., G} refines a goals in a domain theorypom if the fol-
lowing conditions hold [Dar95]:

1. G4, ....,G,,Dom|=G (completeness)
2. 1,6, Dom|#G foreachiO[l.n] (minimality)
3. Gy, ..., G,,, Dom |# false (consistency)

The first condition requires that the satisfaction of the subgoals together with the satis-
faction of domain properties ibom is sufficient for satisfying the parent goal. The sec-
ond condition requires that if a subgoal is left out of the refinement, the remaining
subgoals are not sufficient for satisfying the parent goal. The third condition requires that
the conjunction of the subgoals is logically consistent with the domain theory.

The formal definition of goals allows one to verify formally the completeness, minimal-
ity and consistency of goal refinements.
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Refinement tactics and patterns

Goal refinement tactics and formal refinement patterns have been defined to help the ana-
lyst produce complete, minimal and consistent goal refinements [Dar95, Dar96].

Formal goal refinement patterrege generic goal refinements between abstract goal for-
mulations. They are proved correct once and for all. Reusing a refinement pattern entails
reusing its proof. Formal refinement patterns are classified accordmedirtement tac-

tics. The latter help selecting goal refinement patterns according to semantic criteria.

Two important goal refinement tactics are worth pointing out:rthkestone-driverand
the case-drivergoal refinement tactics (see [Dar95, Dar96] for further details).

The milestone-drivenrefinement tactic refines akchieve goal of the formC O ¢ T by
introducing an intermediate milestoiefor reaching a state satisfying the target condi-
tion T from a state satisfying the conditigh A Typical goal refinement pattern associ-
ated with this tactic is shown in Figure 3.3.

cooT

/COOM] /MOOT/

FIGURE 3.3. Milestone-driven goal refinement pattern

As an example of using the pattern in Figure 3, consider the Addaéve[PrtcptsCstr-
Known] defined as follows:

Intended(p,m) O ¢ CstrkKnown(p,m)
The pattern above can be used to refine the goal with the following instantiations:

C : Intended(p,m)
T : Cstrknown(p,m)
M : CstrRequested(p,m)

That is, the goal is refined by introducing the intermediate milestGsaRe-
quested(p,m). The following subgoals are thereby obtained:

Goal Achieve[PrtcptsCstrRequested]
FormalDef Om: Meeting, p: Prtcpt
Intended(p,m) O ¢ CstrRequested(p,m)

Goal Achieve[RequestedCstrProvided]

FormalDef Om: Meeting, p: Prtcpt
CstrRequested(p,m) [1 ¢ CstrkKnown(p,m)
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The case-drivergoal refinement tactic refines a goal by splitting it into cases. A typical
goal refinement pattern associated with this tactic is shown in Figure 3.4.

POCIOQ//PUC20U Q//PD cigcz /

FIGURE 3.4. A case-driven goal refinement pattern

As an example of application of the case-driven goal refinement tactic, consider the goal
Achieve[PrtcptsCstrRequested]. If different constraint requests have to be sent out
according to the importance of the participant, one can refine the goal by instantiating the
case-driven refinement pattern in Figure 3.4 as follows:

P . Intended(p,m)

Q : ¢ CstrRequested(p,m)

C1l: Intended[p,m].importance = ‘High’
C2: Intended[p,m].importance = ‘Low’.

The following subgoals are thereby obtained:

Goal Achieve[lImprtPrtcptsCstrRequested]
FormalDef [Om: Meeting, p: Prtcpt
Intended(p,m) U Intended[p,m].importance = ‘High’ [1 ¢ CstrRequested(p,m)

Goal Achieve[OtherPrtcptsCstrRequested]
FormalDef Om: Meeting, p: Prtcpt
Intended(p,m) O Intended[p,m].importance = ‘Low’ [1 ¢ CstrRequested(p,m)

(Note that these subgoals form an AND-refinement of the parent goal, not an Or-refine-
ment.)

The third assertion resulting from the instantiation of the pattern, that is,

Intended(p,m)
O Intended[p,m].importance = ‘High’ O Intended[p,m].importance = ‘Low’

is a domain property stating that the importance of an intended participant is either high
or low.
3.2.4.5 Goal Conflicts

Conflicts between goals can be recorded through instances Gbtiiict meta-relation-
ship. Intuitively, a set of goals are conflicting if they cannot be realized together.

As an example, consider a system to control a pump inside a mine [Jos96]. The goals
Maintain[PumpOnWhenHighWater] andMaintain[PumpOffWhenCriticalMethane]
can be formally defined as follows

s.WaterLevel > ‘HighWater’ ] HasPump(s,p) O p.Status = ‘On’
s.MethaneLevel > ‘Critical’ D HasPump(s,p) O p.Status = ‘Off’
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Maintain Maintain
/ [PumpOnWhenHighWater] / [PumpOffWhenCriticalMethane]

FIGURE 3.5. Goal conflict: an example

These goals cannot always be realized together. Whenever the water level is above the
high water level and the methane level is critical, the first goal requires the pump to be on
whereas the second one requires the pump to be off. A binary conflict between the two
goals can be represented graphically as suggested in Figure 3.5.

Note that the two goals are not logically inconsistent. However, they become inconsistent
whenever the following condition holds:

ds: Sump, p: Pump
¢ s.WaterLevel > ‘HighWater’' [0 s.MethaneLevel > ‘CriticalMethane’ 00 HasPump(s,p)

That is, the two goals are inconsistent when the water level is above high and the meth-
ane level is critical. This assertion is called the boundary condition of the effective con-
flict. Such potential conflicts are called divergences.

Formally, a set of goalsd1, ..., Gn} is divergent if there exists laoundary conditiorB
such that the following conditions hold [Lam98]:

1. {B, Gy, ..., G,,, Dom} |= false (logical inconsistency)
2. for everyi: {B, Ll G;, Dom} | false (minimality)

Further details about goal conflicts and divergences can be found in [Lam98Db].

3.2.4.6 Soft Goals and Optimization Goals

In addition to goals that define a set of admissible histories, we also consider soft goals
and optimization goals.

Softgoalsare goals that do not have a clear-cut criterion for their satisfaction [Myl92,
Myl99]. Instead of goal satisfaction, gosatisficingis introduced to express that lower-
level goals or requirements are expected to contribute to the satisfaction of the goal
within acceptable limits rather than absolutely. Soft goals are generally high-level goals
that need to be refined into more precise goals. Examples of softgoals are high-level
‘non-functional’ goals such as usability, flexibility, maintainability, etc.

Optimizationgoals are softgoals that enable one to compare alternative system designs
through minimize/maximize operators. An example of an optimization goal in the meet-
ing scheduling problem is to minimize the interaction among participants to a meeting.
Such a goal might be captured by the following specification fragment.

Goal Minimize[Participantinteraction]

Definition minimize the number of meeting-related messages sent to partici-
pants

Alternative designs for the meeting scheduling problem can be evaluated against such a
goal. The alternative in which participants’ constraints are known through electronic
agendas better contributes to minimizing interaction among participants than the alterna-
tive in which the participants’ constraints are explicitly requested.
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Softgoals and optimization goals can be And/Or refined like any other KAOS goals, con-
flicts between softgoals/optimization goals can also be captured [Myl92, Myl99]. An
important research issue concerns the precise definition of optimization goals, reasoning
techniques about soft goals and optimization goals, and the role of such goals in select-
ing among alternative goal refinements.

In graphical representations of goal models, softgoals and optimization goals are
depicted by cloud-like symbols.

3.2.5 The Object Model

3.2.5.1 Objects

An object instance is a “thing” that can be distinctly identified. A domain-level object
describes a set of such instances that share some common characteristics. A specific
meeting is an example of an object instance. The domain-level dfpsting is a con-

ceptual abstraction characterizing all meeting instances.

For each domain-level objeCibj, there is a built-in sehember(Obj) that denotes the set
of objects instances that are currently members of the domain-level Jotij'daetnotation
InstOf(0,0bj) is also used to denote that the object instamisecurrently a member of the
domain-level objecDbj, i.e.,

InstOf(0,0bj) iff o [ member(Obj)

Each domain-level object has a name and a definition.riimeeof the object is used to
identify the object. Thelefinitionof an object is a natural language statement that should
provide a precise interpretation for the setmber(Obj), so that one can tell whether or
not a particular object instance is currently an instance of the domain-level object.

The set of instances that are currently members of an object may change over time. A
given person could be an instanceSiident at some time, and could no longer be an
instance of that object at some later time.

Note also that objects are not necessarily disjoint. An object instance may be a member
of several objects simultaneously. As an example, a given person could simultaneously
be an instance of the two different objerssticipant andlnitiator.

The KAOS object meta-model distinguishes among different kinds of object®bfeat

is anEntity, Relationship, Event or Agent, depending on whether the object is autono-
mous, subordinate, instantaneous or active. Table 3.1 summarizes the different special-
izations of theDbject meta-concept and lists a few examples of objects from the meeting
scheduling problem.

Objects are always declared as being of one of the specializations Objéxet concept.
These specializations are further described below.

1. The setnember(Obj) replaces the “Exists” attribute of the original KAOS language described in [Dar93].
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Definition Examples
ENTITY autonomous object Meeting
AGENT active object Initiator, Scheduler, Participant
EVENT instantaneous object MeetingRequest
RELATIONSHIP subordinate object Intended (links Participant and Meeting)
Scheduling (links Scheduler and Meeting)

TABLE 3.1. Specializations of the Object meta-concept

3.2.5.2 Entities

An entity is an autonomous object. Théeeting object is an example of an entity. It
might be declared in KAOS as follows

Entity Meeting
Definition An instance of Meeting is any actual meeting that has already
been held or any wished meeting (no matter whether it will actually be
held or not).

As a specialization oDbject, the meta-concept dntity inherits all features of object;
each entity is identified by aameand has alefinition that is used to define which
instances are currently a member of the domain-level entity.

3.2.5.3 Events

An event instance is an instantaneous object. An example of event in the meeting sched-
uling problem is the evemMeetingRequest, which may be specified as follows.

Event MeetingRequest
Definition An instance of MeetingRequest occurs when an initiator
requests a new meeting to be scheduled.

As any specialization of object, each domain-level event is identifiedranaeand has
adefinitionwhich define its event instances.

An event instance is said to occur at the current time if it is currently an instance of some
domain-level event, i.e. we introduce the following notation:

ev.occurs iff InstOf(ev,E) for some domain-level eveht

The instantaneous nature of event is captured by the following built-in domain property
which says that an event instance occurs only once in any given history:

forall h: History, ev: Eventinstance
if (h, t) |= ev.occurs then for allt’ # t (h, t') |# ev.occurs

In temporal logic, this property is defined by:

ev.occurs O O O = ev.occurs e m - ev.occurs
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3.2.5.4 Agents

Agents are active objects, that is, they are capable of performing operations. Such agents
may be software agents, hardware devices, or humans. The scheduler is an example of
software agent in the meeting scheduling problem. This agent may be declared as fol-
lows.

Agent Scheduler
Definition A scheduler is a software agent assisting the meeting initiator
for meeting planning.

As a specialization of object, agents are declared by a name and a definition. The partic-
ular (meta-) features of agents are that they can perform operations, monitor and control
objects, and take responsibility for goals. Such features are described in the sections
describing the operation model, the agent interface model, and the agent responsibility
model.

3.2.5.5 Relationships

A relationship is a mathematical relation betweeabjects. For example, theatended
relationship linksParticipant andMeeting. It is specified as follows.

Relationship Intended
Links Participant role is_intended_to card O:N
Meeting role has_participant card O:N
Definition the participant is intended to participate at the meeting.

As a specialization dbbject, the concept oRelationship has anameand adefinition

Each relationship also has an ordered sdin&k to specific entities, events or agents. If a
relationshipRel has the set of link§Obj;, Obj,, ..., Obj,}, the set of current instances of
the relationship is given by

member(Rel) 0 {<oby, ..., ob,> | InstOf(ob;, Obj;) fori O[1..n]}

The instances of the relationship are those tuptés,..., ob,> of object instances which
are linked by the relationship. Note that tQ&j; in the above definition may not be dis-
tinct. For example, the relationstpother links the objecPerson to itself.

The following notation is introduced to denote that a tuple of object instances is an
instance of the relationshigel:

Rel(oby,..., oby) iff <oby,...., ob,> [0 member(Rel)
Each link of a relationship to an object has a role and has cardinality constraints.
Therole of an object in a relationship is the function that it performs in the relationship.

The cardinality of an object in a relationship link is a pajmincard, maxcard) that
denotes the minimum and maximum number of instances of the relationship in which a
given object instance can be involved simultaneously, respectively.

Cardinality constraints in the object model can only be used to state domain properties. If
a cardinality constraint is a goal rather than a domain property, it must be stated explic-
itly in the goal model. For instance, consider a train control system, and the property that
two trains should never be at the same time on the same track segment. This property
defines a goal rather than a domain property. It should not be declared as a cardinality
constraint in the object model.

32



Goal-Oriented Requirements Engineering with KAOS

3.2.5.6 Attributes

Objects may have attributes. The date and date range of a meeting are examples of
attributes of théMeeting entity. Such attributes are declared in KAOS as follows.

ENTITY Meeting

Definition ...

Has

date_range: SetOf[Date]
the set of dates within which the meeting should take place

date: Date
the planned date of the meeting. If the meeting is not planned, the
date is undefined.

Each attribute has mame arangeof values, and alefinition The above attributes are
nameddate_range and date; their range of values arBetOf[Date] and Date, respec-
tively.

The semantics of an attribut¢tr declared for an objec& with a rangeD is a function
Attr: member(O) - D.

The function defined by an attribute is not necessarily total. In the example above, the
date attribute of th&leeting entity is a partial function. A meeting that is not yet planned
does not have a date.

The definition of an attribute is a natural language description of the meaning of the
attribute.

Note that relationships may also have attributes. As an example, the importance of a par-
ticipant for a meeting can be declared as follows:

Relationship Intended
Links Participant role is_intended_to card O:N

Meeting role has_participant card 0:N
Definition Intended(p,m) iff participant p is intended to participate at meet-
ing m.
Has

importance: {High, Low}

3.2.5.7 Specialization

Inheritance between objects can be declared through instancesishtmeta-relation-
ship. As an example, thearticipant agent can be declared as a specialization oPtre
son agent.

The semantics d8A links between objects is membership inclusion, i.e.
If IsA(Obj1, Obj2) thenmember(Obj1) [0 member(Obj2)

Inheritance of object features is a consequence of this definition. That is, attributes
declared folObj2 are defined on instances©bj1 as well; and relationships linkingbj2
link instances oDbj1 as well.
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3.2.5.8 Invariants

Domain properties that are naturally true about objects can be declared as domain invari-
ants.

As an example, consider tMeeting entity specified as follows:

ENTITY Meeting
Definition ...
Has
date: Date
the planned date of the meeting. If the meeting is not planned, the
date is undefined.
planned: Bool

a meeting is planned if there exists a date for the meeting
Dominvar
m.planned = (Od: Date) m.date = d

The above invariant formally defines what a planned meeting is in the domain.
Cardinality constraints are short-cuts for specifying a restricted class of domain invari-
ants.

3.2.5.9 Consistency rules between the object and goal model

As mentioned before, there is a meta-constraint relating the goal and object models:

Every vocabulary element used in the formal definition of goals must be declared
in the object model.

Consider for instance the gosthieve[PrtcptsCstrRequested] defined above as follows:

Om: Meeting, p: Prtcpt
Intended(p,m) 0 ¢ CstrRequested(p,m)

The formal definition references the somstcpt and Meeting, and the predicates
Intended and CstrRequested. In order to satisfy the meta-constraint between the goal
and object models, the following portion of the object model is derived from the formal
definition of the goal:

Intended

Prtcpt | | Meeting

CstrRequested

In the KAOS meta-model, @oncern meta-relationship linkingsoal to Object is used to
keep track of the objects concerned by the goal.
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3.2.6 The Agent Responsibility Model

The agent responsibility model is used to declare responsibility assignments of goals to
agents. Responsibility assignments provide a criterion for stopping the goal refinement
process. A goal assigned as the responsibility of a single agent must not be refined fur-
ther.

3.2.6.1 Responsibility Links

Responsibility is an OR meta-relationship that links agents to gdaésponsibility links
declare potential responsibility assignment of goals to agents.

Examples of responsibility assignment are shown in Figure 3.6. In the figure, the goal
Achieve[PrtcptsCstrRequested] is potentially assigned to thiitiator agentor to the
Scheduler agent. The goahchieve[RequestedCstrProvided] is potentially assigned as

the responsibility of thearticipant agent.

Achieve
[PrctpsCstrknown]

Achieve Achieve
[PrctptsCstrRequested] [RequestedCstrProvided]

Resp

Participant

Scheduler

FIGURE 3.6. Responsibility assignments

Responsibility links have aSelectedhttribute used to indicate which alternative responsi-
bility assignments are actually chosen.

A goal effectively assigned to an agent in the software-to-be is then calkedaire-
ment, whereas a goal effectively assigned to an agent in the environment is called an
Assumption.

3.2.6.2 Instance declarations

At the outer-level, responsibility links declare the agent class responsible for the goal.
Instance declarations attached to responsibility links specify more precisely which
instance of the agent class is responsible for the goal instantiated to specific object
instances. The following example illustrates the need for such instance declarations.
Consider an air traffic system, and the g&&lintain[PlanelnRegionOnCourse] whose
definition is given by

U pl: Plane, atc: AirTrafficController
InRegion(pl, atc) I pl.OnCourse
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Suppose that the goal can be assigned as the responsibility of the air traffic controller
agent. Such responsibility assignment could be declared as follows:

Responsibility [AirTrafficController, PlanelnRegionOnCourse]
Instance Declarationl] atc: AirTrafficController, pl: Plane
Responsibility [atc, InRegion(pl, atc) LI pl.OnCourse ]

The outer level declaration declares that agents that are instang@3rafficController

are responsible for maintaining planes on course. The instance declaration defines more
precisely which instance of air traffic controller is responsible for which plane, that is,
each instance of air traffic controller is responsible for maintaining on course only those
planes which are in the region it controls.

The Responsibilityoperator relates a term denoting an agent instance to a temporal for-

mula. (This does not introduce second-order into the language.) It is a time-independent
declaration of responsibility assignment at the instance level. It can only be universally

guantified, i.e. instance declarations attached to responsibility links must have the fol-
lowing form:

(O ag: Agent, ob;: Objy, ..., ob,: Obj,): Responsibility(ag, G(ag, oby, ..., oby)).

(The Responsibilityoperator can only be used to define instance-level responsibility
assignments attachedResponsibility links; it cannot be used in the formal definition of
goals.)

Note that even though thiResponsibilityoperator is time-independent, it enables one to
declare time-dependent responsibility assignments. In the example above, an air traffic
controller is responsible for maintaining a plane on course while the plane is in its
region. When the plane leaves its region, the air traffic controller is no longer responsible
for maintaining that plane on course.

3.2.6.3 Semantics of Responsibility

The (intuitive) meaning of a responsibility assignment of a goal to an agent is that the
agent responsible for a goal is the only one required to restrict its behaviour so as to
ensure the goal [Fea87].

As an example, consider the gaalhieve[PrtcptsCstrRequested] assigned to th&ched-
uler agent. This declaration of responsibility means that3bkeeduler must restrict its
behaviour so as to ensure this goal, no matter what the behaviours of other agents are.

The meaning of responsibility assignments is made explicit thraymgnationalization

links that relate goals to requirements on operations and througkedpensibility meta-
constrainton such links. Intuitively, a set of requirements on the application of opera-
tions operationalize a goal if the temporal behaviours produced by such requirements is
included in the set of histories admitted by the goal; the responsibility meta-constraint
requires that only operations assigned to the agent responsible for a goal are constrained
SO as to operationalize that goal. Operationalization links and the responsibility meta-
constraint are further discussed in Sections 3.2.7.5 and 3.2.7.6.
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3.2.7 The Operation Model

An operationis an input-output relation over objects; operation applications define state
transitions. Operations are characterized by pre-, post-, and trigger conditions. A distinc-
tion is made betweedomain pre/postconditions, which capture the elementary state
transitions defined by operation applications in the domain, ugiired pre/trig-
ger/postconditions, which capture additional strengthenings to ensure that the goals are
met.

As an example, the operatidtianMeeting in the meeting scheduling problem may be
defined as follows.

Operation PlanMeeting
Input Meeting {arg m}
Intended
Constraint
Output Meeting /{Planned, Date}
DomPre - m. Planned
DomPost m.Planned
RegPostFor Maintain[ConvenientMeetingDate]
(O p: Participant): e Intended(p,m) - m.Date J @ Constraint[p,m].exclset

The operation above is nam@&thnMeeting. Its domain pre and post condition capture
elementary state transitions corresponding to the operation, namely, from a state where
the meeting is not planned to a state where the meeting is planned. The operation has a
required post condition which states that the meeting date must be outside the exclusion
set of all intended participants. This required post condition operationalizes the goal
Maintain[ConvenientMeetingDate]. The Input/Output clauses provide signature informa-
tion (in particular, the output dflanMeeting is restricted to two specific attributes of the
Meeting object).

3.2.7.1 Domain Pre/Post and Required Pre/Trigger/Post Conditions

In addition to its name, each operation is characterized by the following féatures

» A domain preconditiortharacterizing the states before any application of the opera-
tion;

* A domain postconditionlefining a relation between states before and after applica-
tions of the operation;

* Required preconditiondefining those states in which the operation is allowed to be
applied;

» Required trigger conditiondefining those states in which the operation is obliged to
be immediately applied provided the domain precondition is true;

» Required post conditiondefining additional conditions that applications of the opera-
tion must satisfy.

Required pre, trigger and post conditions are related to goals thapgyationalization
links further described below (Section 3.2.7.5).

1. This description of the operation model is slightly different from the one in [Dar93] where required pre-, trigger,
and postconditions are defined as attributes of a meta-relationship relating operations to goals.
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Operations denote atomic state transitiofrscase where one needs to model an activity
that lasts over several states, it is necessary to model one atomic operation that starts the
activity, one atomic operation that ends the activity (or several operations if there are dif-
ferent ways in which the activity can terminate), and one additional state variable to indi-
cate that the activity currently holds.

Several operations can occur concurrentBhis noninterleaving semantics is mostly
motivated by the semantics of trigger conditions as immediate obligations. With an inter-
leaving semantics, an operation model would be inconsistent when the trigger conditions
of two (or more) operations are true at the same time.

A formal semantics for the operation model is defined in chapter 7.

Note the difference betweerequired preconditionand required trigger condition
Required preconditions define permissions to apply the operation. If the operation is
applied, the required preconditions of the operation must be true. Required trigger condi-
tions define immediate obligations to perform the operation. If a trigger condition is true,
the operation must be applied (provided that the domain precondition is true).

A meta-constraint of the language is that required trigger conditions must imply required
preconditions, that is,

ReqTrig O RegPre.

Violations of that constraint yield inconsistent operation models. If there is a state in
which a required trigger condition is true and a required precondition is false, the opera-
tion must be applied immediately whereas it may not be applied at the same time.

3.2.7.2 Inputs and Outputs

Operations are related to objects througput/Output links. An object is among the
inputs (resp. outputs) of an operation if it is among the sorts making up the domain (resp.
codomain) of the relation defined by the operation.

For thePlanMeeting operation above, the objedi#eeting, Intended and Constraint are
declared asnput of the operation, whereas the objétteting is declared a®utput of
the operation.

The Input and Output meta-relationships have optionArgumentand Result meta-
attributes, respectively, to declare instances of variables referenced in the assertions
attached to the corresponding operation.

Input andOutput links may also declare more precisely which object attributes make up
the domain and codomain of the operation. In the example above)aheed andDate
attributes of theMeeting entity are declared as outputs of the operation. Attributes
declared as outputs of an operation are the only ones whose value can be changed by an
application of the operation.

3.2.7.3 Initial Conditions

One can also define initial conditions that must be satisfied at the initial state of every
history. Initial conditions can be declared as domain properties or as goals. Goals con-
straining the initial state of the system are also to be assigned as the responsibility of sin-
gle agents.
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3.2.7.4 Performance Links

An operation is related to the agent that can initiate it throu@eréormance link. Per-
forming is an OR meta-relationship linking agents to operations.

As an example, the operati®tanMeeting could be alternatively assigned to tBehed-
uler agent or to thénitiator agent.

As an OR meta-relationship, it hasSalected attribute used to denote which agent is
effectively assigned to which operation in the selected alternative.

Instance declarations attachedP&rformance links are used to declare specific assign-
ments of operations to specific agents at the instance level. For example, the assignment
of the operatiofPlanMeeting to theScheduler agent can be declared as follows:

Performance [Scheduler, PlanMeeting]
InstDecl O sch: Scheduler, m: Meeting
Scheduling(sch, m) O Performance(sch, PlanMeeting(m))

The Performance operator relates an agent instance to an operation instance (i.e. an oper-
ation with its arguments and results instantiated to instances of input and output objects).
Instance declarations f&@erformance links have the form:

R(ag, obl, ..., obn) [J Performance(ag, op(obl, ..., obn)

whereR is a domain-specific predicate relating a term denoting an agent instance to
instantiation of the arguments and result of the operation.

“Unique performer” meta-constraint

In some given alternative, an operation is associated with exactly one agent. In the meta-
model, this is captured by defining the cardinality constraint ofdperation concept in

the Performance relationship to be (1:1). At the instance level, the prediéateust sat-

isfy the following constraint:

R(ag, ob1, ..., obn) OR(ag’, obl, ..., obn) O ag = ag’

3.2.7.5 Operationalization Links

Required pre-, trigger, and postconditions are related to goals through operationalization
links.

The Operationalization meta-relationship is an AND/OR relationship between goals and
required pre, trigger, and post conditions of operations. Intuitively, a set of required pre,
trigger, and post conditions operationalizes a goal if satisfying the required conditions on
operations guarantees that the goal is satisfied. A formal semantics of operationalization
links is defined in Chapter 7.

As an example, the above required post condition on the operoNeeting is intro-
duced to ensure the gdahintain[ConvenientMeetingDate].

As another example, consider a mine pump control system and thé/igmahin[Pump
SwitchOnWhenHighWaterDetected]. This goal defined as follows:

O c: PumpController
e c.HighWaterSignal = ‘'On’ O c.PumpSwitch =‘On’
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An operationalization of that goal is given by the following required trigger and precon-
ditions on the operatior&vitchPumpOn andSwitchPumpOff:

Operation SwitchPumpOn
Input PumpController {arg c}/ HighWaterSignal
Output PumpController {res ¢}/ PumpSwitch
DomPre c.PumpSwitch = ‘Off’
DomPost ¢.PumpSwitch = ‘On’
ReqTrigFor Maintain[PumpSwitchOnWhenHighWaterDetected]
c.HighWaterSignal = ‘On’

Operation SwitchPumpOff
Input PumpController {arg c}/ HighWaterSignal
Output PumpController {res c} / PumpSwitch
DomPre c.PumpSwitch = ‘On’
DomPost c.PumpSwitch = 'Off’
RegPreFor Maintain[PumpSwitchOnWhenHighWaterDetected]
- c.HighWaterSignal = ‘On’

The required trigger condition on trgwitchPumpOn operation requires that the pump
must beswitched on when thelighWaterSignal is On; the required precondition on the
SwitchPumpOff operation requires that the pummay beswitched off only if theHigh-
WaterSignal is hotOn.

The formal definition of operationalization links defined in Chapter 7 can be used to
show that those requirements constitute a complete and minimal operationalization of
the goal.

3.2.7.6 The responsibility meta-constraint

As mentioned in Section 3.3.2.6.3, the semantics of assigning responsibility for a goal to
an agent is that only the agent responsible for the goal should restrict its behaviour so as
to ensure the goal [Fea87]. This is captured in the meta-model by the following responsi-
bility meta-constraint on operationalization links. It requires that the goal be operational-
ized by strengthening only the operations performed by the responsible agent:

if Responsibility(Ag, G) andOperationalization({Py, ..., P,,}, G)
thenPerformance(Ag, Operation(P;)) for all n =[1..n]

whereOperation(P;) denotes the operation constrained by the requirement

As an example, if the go&aintain[ConvenientMeetingDate] is assigned as the responsi-
bility of the Scheduler agent, the operatioRrlanMeeting whose required postcondition
operationalize the goal must be assigned to the Sahegluler agent.

Similarly, if the goalMaintain[PumpSwitchOnWhenHighWaterDetected] is assigned as

the responsibility of thePumpController agent, the operationSwitchPumpOn and
SwitchPumpOff whose required trigger and pre conditions operationalize that goal must
be performed by theumpController agent.
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3.2.8 The Agent Interface Model

The agent interface model is used to declare the quantities monitored and controlled by
each agent. Declaring which quantities are monitored and controlled by which agents is
important as the requirements assigned to an agent must be defined in terms of quantities
monitored and controlled by the agent [Fea87, Par95, Jac95, Zav97]. In the KAOS
framework, such quantities correspond to object attributes and links.

3.2.8.1 Monitoring and Control Links

Agent interfaces are declared throughbnitoring and Control links between agents and
objects’ attributes.

The meaning of aMonitoring link between an agent and an object attribute is that the
agent directly monitors (“reads”) the value of the attribute.

As an example, th&cheduler software agent does not directly monitor the actual date
constraints of the intended participants of a meeting; but it monitors the messages about
constraints that it receives from participants.

The meaning of &ontrol link between an agent and an object attribute is that the agent
directly controls (“writes”) the value of the attribute. In other words, an agent controls an
attribute if it is capable of controlling state transitions for that attribute. We also consider
that attributes controlled by an agent are observable by that agent as well.

As an example, th&cheduler agent does not control the presence of participants at a
meeting, but it could be declared to control the planned date of meetings.

In addition to monitored and controlled variables, we also consider variables that are
internal to an agent. An internal attribute of an agent is an attribute controlled by that
agent and monitorable by no other agents. (The motivation for having internal variables
in addition to interface variables is discussed in Section 6.5 of Chapter 6.)

To simplify the description of the model, we use the syntactic conventiommigitoring
(resp.Control) links can also be declared between an agent and an object when the agent
monitors (resp. controls) all attributes of the object.

For instance, the declarations below state thatStteeduler agent monitors thleet-
ingRequest event controlled by thénitiator agent; and th&cheduler agent controls the
date of theMeeting object.

Monitors [Scheduler, MeetingRequest]
Control [Initiator, MeetingRequest]
Control [Scheduler, Meeting.Date]

Graphically, agent interfaces are represented by context diagrams similar to the ones
used in Structured Analysis [Dem78]lonitoring and Control links are represented by
arrows labelled with attributes (or objects). An arrow leaving an agent means that the
agent controls the attributes attached to the arrow; an arrow pointing to an agent means
that the agent monitors the attributes attached to the arrow. Internal variables are not rep-
resented on the graphical view of the model.
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TheMonitoring andControl links in the example above will be represented graphically as
follows.

MeetingRequest Meeting.Date

< Initiator> Scheduler \———p»

Monitoring andControl are Or meta-relationships. Alternative agent interface models can
be represented. In the graphical view, alternative agent interface models are represented
by separate, alternative agent interface diagrams.

3.2.8.2 Instance declarations

Instances declarations attachedMonitoring and Control links enable one to describe
more precisely which agent instance monitors or controls the values of the attribute for
which object instance.

For example, the instance declaration attached to the follo@wamgyol link declares that
the scheduler instaneeh scheduling the meeting controls the date of that meting.

Control [Scheduler, Meeting.Date]
InstanceDeclaration (O sch: Scheduler, m: Meeting):
Scheduling(sch,m) O Ctrl(sch, m.Date)

The Mon and Ctrl operators relate an agent instance to an attribute of an object instance.
Instance declarations ftonitoring andControl links have the form

R(ag, 0) 0 Mon(ag, o.Attr)
R(ag, 0) O Ctrl(ag, o.Attr)

whereR is a domain-specific predicate betwegrando.

3.2.8.3 The “unique control” meta-constraint

The Control meta-relationship must satisfy thieique control constraintequiring that in
each alternative an object’s attribute is controlled by at most one agent.

At the outer-level of the language, the unique control constraint is defined as follows:
if Control(ag, Ob.Attr) then there is nag’ # ag such thatControl(ag’, Ob.Attr).

At instance-level, the unique control constraint requires that the prediciaeolved in
an instance declaration of the form

R(ag, o) O Citrl(ag, o.Attr)
satisfies the following condition:

R(ag, 0) 0 - (Oag’) ag’ # ag [1R(ag’, 0).
The unigue control constraint is used to avoid interference problems between concurrent
executions of agents.

The unique control constraint is an important and necessary feature of the language. It is
necessary to be able to assign goals as the responsibility of single agents. As an example,
consider a goal requiring that a predicateever holds:

0-P
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If the predicateP is controlled both by the agenégl andag2, none of these agents can
alone guarantee the goal: if the goal is assigned as the responsibility of the unique agent
agl, nothing prevents the other agent from making the predireatee, thereby violating

the goal.

The unique control constraint sometimes requires a single variable controlled by two
agents to be split into two variables, each controlled by a single agent.

3.2.8.4 The input/output meta-constraint

In a given alternative, thielonitoring andControl links of an agent are related to theput
andOutput links of the operations performed by the agent. This is captured by the fol-
lowing input/output meta-constraimf the language:

(i) if Input(Ob.Attr, Op) and Performance(Ag, Op)
then Monitoring(Ag, Ob.Attr) or Control(ag,
Ob.Attr)

(i) if Output(Ob.Attr, Op) and Performance(Ag, Op) then Control(Ag, Ob.Attr)

These constraints capture the facts that every attribute which is part of the input (resp.
output) of the operation must be monitored (resp. controlled) by the agent performing the
operation.

3.2.8.5 The realizability meta-constraint

The monitoring and control capabilities of agents constrain the possible responsibility
assignments of goals to agents: for a goal to be assignable to an agent, it must be defined
in terms of variables monitored and controlled by the agent [Fea87, Par95, Jac95,
ZavoT].

As an example, consider the meeting scheduling problem and the ideal goal
Achieve[ConvenientMeetingHeld] requiring that requested meetings are eventually held
with the presence of all intended participants. That goal is clearly not assignable to the
Scheduler software agent, because it constrains the actual occurrence of meetings and
the presence of participants at meetings; these are not controllable [8chbéduler

agent.

As another example, consider the gaahieve[ConvenientMeetingPlanned] requiring to

find a date for the meeting that satisfies the constraints of the participants. This goal is
also not assignable by ttgeheduler software agent because the scheduler has no moni-
toring capabilities on the actual date constraints for participants to the meeting.

Consider on the other hand the g@ahieve[PrtcptsCstrRequested] requiring that a con-
straint request is sent to every participant intended for the meeting. That goal is assign-
able to theScheduler agent provided it controls the sending of constraint requests to
participants and it monitors which participants are intended for the meeting.
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The realizability meta-constraintaptures this relation between agent responsibilities
and agent interfaces. A goal is said torkalizableby an agent if an operationalization

of the goal that satisfies the responsibility and input/output meta-constraints can be
found!. The realizability meta-constraint requires that a goal assigned to an agent is real-
izable by that agent. A formal definition of this meta-constraint is given in Chapter 4.

The realizability meta-constraint plays a significant role in the goal refinement process. It
defines what is meant for a goal to be assignable to an agent, and therefore provides a
precise criterion for stopping the goal refinement process. Violations of that constraint
drive the elaboration of the goal and agent models; a goal that is not realizable by a sin-
gle agent has to be further refined so as to eventually reach subgoals that are realizable
by single agents. The role of this meta-constraint in the goal refinement process is further
described in Section 3.3.5 below.

3.3. The Goal-Oriented Requirements Elaboration Method

This section discusses the KAOS goal-oriented method. It first gives a brief overview of
the method, then further describes the various steps of the method and illustrates their
application on a small case study, the mine pump control system. The important role of
the realizability meta-constraint in this goal-oriented process is then discussed in Section
3.3.5.

3.3.1 Overview

The KAOS goal-oriented requirements elaboration method consists in deriving the
requirements for a future system from high-level goals. It consists in the following activ-

ities (Figure 3.7).
Goal Model
Elaboration
Object Model
Elaboration

Elaboration of
Alternative
Agent Models

Evaluation and
Selection
of Alternatives

v

FIGURE 3.7. The goal-driven requirement elaboration process

—>
data dependency

The activities are ordered by data dependencies; they are running concurrently, with
much intertwining between them. In particular, there is significant intertwining between
the elaboration of the goal model and the elaboration of alternative agent models. This
intertwining is further discussed in Section 3.3.5.

1. This concept of realizable goal is the equivalent at the goal level of the concept of realizable specification at the
design level: a specification is realizable if there exists a program that implements it [Aba89].

44



Goal-Oriented Requirements Engineering with KAOS

1. Elaborating the goal model and identifying objects The first activity consists in
identifying goals and elaborating the goal refinement graph. Preliminary goals are identi-
fied from various sources available (documentation, high-level objective statements,
interviews, scenarios, and so forth). Further goals are identified by a combination of bot-
tom-up and top-down processes. Subgoals are identified by asking HOW questions about
the goals already identified; parent goals are identified by asking WHY questions. The
identified goals are given formal definitions from which the objects concerned by the
goals are identified.

In summary, the activities of elaborating a goal model and identifying the objects con-
cerned by the goals consist of the following activities:

1.1 identifying preliminary goals

1.2 formalizing goals and identifying objects

1.3 eliciting further goals through WHY questions
1.4. eliciting further goals through HOW questions

2. Exploring Alternative Agent models. Alternative agent responsibilities, agent inter-
faces and operation models are gradually elaborated from the goal model. Potential
responsibility assignments of goals to agents are identified during the goal refinement
process. Agent interfaces are derived form responsibility assignments of goals to agents.
Operations relevant to the goals and requirements on operations that guarantee the satis-
faction of the goals are identified during the operationalization step. The following steps
are thus performed for elaborating alternative agent models from goals:

2.1. Identifying potential responsibility assignments
2.2. Deriving agent interfaces from responsibility assignments
2.3. Operationalizing goals

3. Evaluation and selection of Alternatives This activity consists in making choices
among alternative goal refinements and responsibility assignments. Such choices are
based on non-functional or softgoals [Myl92] such as reduce costs, minimize risks, avoid
agents’ overloading, maximize flexibility, etc. Relevant techniques for such an evaluation
and selection process are described in [Fea91], [Rob90] and [Myl99].

3.3.2 The Mine Pump Example

The following problem statement for a mine pump is used as a running example to illus-
trate the KAOS goal-oriented requirements elaboration method. The problem statement,
taken from [J0s96], is reproduced below.

Water percolating into a mine is collected in a sump to be pumped out of the
mine (see. Figure 3.8). The water level sendoindE detect when water is
above a high and below a low level, respectively. A pump controller switches
the pump on when the water reaches the high water level and off when it goes
below the low water level. If, due to a failure of the pump, the water cannot be
pumped out, the mine must be evacuated within one hour.

The mine has other sensois, B, O to monitor the carbon monoxide, meth-
ane and airflow levels. An alarm must be raised and the operator informed
within one second of any of these levels becoming critical so that the mine
can be evacuated within one hour. To avoid the risk of explosion, the pump
must be operated only when the methane level is below a critical level.
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Operator A A Carbon monoxide sensor
: B Methane Sensor
Log A | C Airflow sensor
. D  Highwater sensor
P! E Lowwater sensor
o] Pump
* Controller
Pump A l l lc
B
D
(o]
E
o
Sump

FIGURE 3.8. Mine pump and control system

Human operators can also control the operation of the pump, but within lim-
its. An operator can switch the pump on or off if the water is between the low
and high water levels. A special operator, the supervisor, can switch the pump
on or off without this restriction. In all cases, the methane level must be
below its critical level if the pump is to be operated.

Readings from all sensors, and a record of the operation of the pump, must be
logged for later analysis.

3.3.3 Elaborating the goal and object models

3.3.3.1 Identifying preliminary goals

The first step of the elaboration method consists in identifying preliminary goals from
various sources: interviews, analysis of available documentation to find out problematic
issues with the existing system, objectives that are explicitly stated about the envisioned
one, usage scenarios, operational choices whose rationale has to be elicited, etc.

Mine Pump Examples

Figure 3.9 gives the preliminary goals identified from the initial statement of the mine
pump case-study. These goals correspond to properties explicitly stated in the initial
problem statement. The goals are listed in the order in which they appear in the initial
problem statement.

At this stage, elicited goals are given a name and a tentative natural language definition.
The temporal pattermAghieve/Maintain) of the goal is also identified. Goal hames and
definitions will gradually be made more precise as the specification evolves and more
knowledge is gained about the system.
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Goal Maintain[PumpOnWhenHighWater]
Definition The pump must be On when the water level in the sump is above the
high water level.

Goal Maintain[PumpOffWhenLowWater]
Definition The pump must be Off when the water level in the sump is below the
low water level.

Goal Achieve[MineEvacuatedWhenPumpFailure]
Definition If, due to a failure of the pump, the water cannot be pumped out, the
mine must be evacuated within one hour.

Goal Achieve[AlarmRaisedWhenCriticalGazLevel]

Definition If the carbon monoxide level, methane level or airflow level becomes
critical, an alarm must be raised and the operator must be informed within one sec-
ond.

Refines Achieve[MineEvacuatedWhenCriticalGazlLevel]

Goal Achieve[MineEvacuatedWhenCriticalGazLevel]
Definition If the carbon monoxide level, methane level or airflow level becomes
critical, the mine must be evacuated within one hour.

Goal Maintain[PumpOffWhenCriticalMethane]
Definition The pump must be off when the methane level is above a critical level.
Refines Avoid[Explosion]

Goal Avoid[Explosion]
Definition No explosion should occur in the mine.

Goal Maintain[OperationsLogged]
Definition Readings from all sensors, and a record of the operation of the pump,
must be logged for later analysis

FIGURE 3.9. Preliminary goals for the mine pump
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Only a portion of the goal graph is elicited. Further goals will be identified by asking
WHY and HOW questions.

3.3.3.2 Formalizing Goals and Identifying Objects

The next step in the specification elaboration process is to formalize goals and derive the
objects concerned by the goals. This step consists of the following intertwined substeps:

(i) Formalize goalsThe informal definitions of goals are translated into formal defi-
nitions. The formalization of goals is guided by the pattern and category of the goal.
The pattern of a goal drives the choice of a pattern of temporal formula. The category
of the goal is intended to further guide the formalization of the goal by providing
generic formalizations of goals specific to the goal category.

(i) Derive objects from goal definitioThe definition of goals drives the identifica-
tion of objects and attributes to be declared in the object model. Through application
of the consistency rule between the goal model and object model, the vocabulary
used in the formal definition of goals gives rise to the declaration of objects and
attributes in the object model.

(i) Define objects and attribute§’he identified objects and attributes must be
defined by relating them to the real-world quantities they denote [Par95, Zav97].

Mine Pump Examples

Consider the goallaintainfPumpOnWhenHighWater]. The Maintain pattern of the goal
suggests using one of the formal patternshaintain goals (see Section 3.2.4.2). Since
the goal requires a property to hold globally, the formal definition of the goal has the
general form

PO Q,

whereP andQ are state formulae. The abstract definition pattern is then instantiated to
yield the following definition:

0 s: Sump, p: Pump:
s.WaterLevel = ‘HighWater’ 00 HasPump(s,p) O p.Motor = ‘On’

The vocabulary appearing in the definition of the goal gives rise to the declaration of
objects and attributes shown in Figure 3.10. The formal definition references the sorts
Sump andPump, which drives the declaration of the corresponding entities in the object
model. TheHasPump predicate drives the declaration of the corresponding relationship
betweenSump andPump. The sump’s water level and the status of the pump motor are
declared as attributes of the corresponding entities.

WaterLevel: DepthUnit Motor: { On, Off }

FIGURE 3.10. Preliminary object model derived from the goal
Maintain[PumpOnWhenHighWater]
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In addition to declaring the vocabulary relevant to the goals of the system, the object
model should also include precise the interpretation for the vocabulary used. For
instance, the entiticsump andPump could be defined as follows:

Entity Sump
Definition Bottom portion of a mine, into which water percolating into the mine
is collected in order to be pumped.
Has
WaterlLevel: DepthUnit
the actual water level in the sump

Entity Pump
Definition Device used to pump water out of the mine.
Has
Motor: {On, Off}
the status of the motor of the pump

The formalization of the other goals in Figure 3.9 gives rise to further elaboration of the
object model. Consider the godlchieve[MineEvacuatedWhenPumpkFailure]. The
Achieve pattern of the goal suggests defining the goal with one of the formal definition
patterns forAchieve goals. Since the goal requires a property to eventually hold within
some real-time bound, the following pattern of goal definition is chosen:

The goal is then formally defined as follows:

U p: Pump, m: Mine
p.Failure O PumpInMine(p,m) O 91, = (Ominer: Miner): InsideMine(miner,m)

The initial portion of the object model is now enriched with the vocabulary used in this
definition (Figure 11).
InsideMine \

/

PumplnMine
Sump HasPump Pump
WaterLevel: DepthUnit Motor: {On, Off }
Failure: Bool

\_ J

FIGURE 3.11. Object model derived form the goal Achieve[MineEvacuatedWhenPumpFailure]

The formalization of other goals gives rise to further elaboration of the object model. The
formal definition of all the preliminary goals is given in Figure 3.12. The derived object
model is shown in Fig. 3.13.

The activities of formalizing goals and deriving the corresponding fragments of the
object model are performed continuously during the requirement elaboration process as
new goals are being identified.
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Goal Maintain[PumpOnWhenHighWater]

Definition The pump must be On when the water level in the sump is above the high water level.
FormalDef 0O s: Sump, p: Pump:

s.WaterLevel = ‘HighWater’ 00 HasPump(s,p) O p.Motor = ‘On’

Goal Maintain[PumpOffwWhenLowWater]

Definition The pump must be Off when the water level in the sump is below the low water level.
FormalDef O s: Sump, p: Pump:

s.WaterLevel < ‘LowWater’ [0 HasPump(s,p) O p.Motor = ‘Off’

Goal Achieve[MineEvacuatedWhenPumpFailure]

Definition If, due to a failure of the pump, the water cannot be pumped out, the mine must be evacuated
within one hour.

FormalDef O p: Pump, m: Mine
p.Failure O PumpinMine(p,m) O 0<q1p = (O miner: Miner): InsideMine(miner,m)

Goal Achieve[AlarmRaisedWhenCriticalGazLevel]

Definition If the carbon monoxide level, methane level or airflow level becomes critical, an alarm must be
raised and the operator must be informed within one second.
FormalDef O m: Mine

( m.MethaneLevel = ‘CriticalMethane’

Om.COLevel = ‘COCeritical’

O'm.AirFlow < ‘CrticalAirflow’ )

0 9<1sec

m.Alarm = ‘On’

O (O op: Operator): OperatingMine(op,m) — op.Informed

Goal Achieve[MineEvacuatedWhenCriticalGazLevel]

Definition If the carbon monoxide level, methane level or airflow level becomes critical, the mine must be
evacuated within one hour.

FormalDef O m: Mine

( m.MethaneLevel = ‘CriticalMethane’
Om.COLevel = ‘COCritical’

Om.AirFlow < ‘CrticalAirflow’ )

0 0<1h — (O p: Miner): InsideMine(p,m)

Goal Maintain[PumpOffWhenCriticalMethane]

Definition The pump must be off when the methane level is above a critical level.
FormalDef 0O s: Sump, p: Pump:

s.MethaneLevel < ‘CriticalMethane’ O HasPump(s,p) O p.Motor = ‘Off’

Goal Avoid[Explosion]
Definition No explosion should occur in the mine.
FormalDef (O m:Mine): L1 = m.explosion

Goal Maintain[OperationsLogged]

Definition Readings from all sensors, and a record of the operation of the pump, must be logged for later
analysis

FormalDef <not specified at this stage>
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InsideMine \

Operator OperatingMine Mine [ Miner ]
Informed MethaneLevel
COLevel
Airflow
Alarm
Explosion
PumpInMine
Sump HasPump Pump
WaterLevel Motor
Failure

\_ )

FIGURE 3.13. Object model derived from the preliminary goals

Living with ambiguities

Ambiguities are inevitable in the early stages of the requirement elaboration process.
Two places where ambiguities arise are in the definition of objects/attributes and in the
definition of goals.

At the early stages of the requirement elaboration process, it is not always clear what def-
initions should be given to objects and attributes. For instancé&dhee attribute of the

Pump entity is not precisely defined in the initial problem statement. A pump failure
could have at least one of the following different meanings:

» the motor of the pump refuses to go on;

» the motor of the pump is on but the pump is not pumping water;
» the motor of the pump refuses to go off;

« all or some of the above.

Failing to write a precise definition for objects and objects’ attributes makes the model
useless. The model cannot be criticized or validated, because it is impossible to know
exactly what it means. However, such ambiguities need not be solved as soon as they
arise. It is often preferable to solve them after further elaboration of the model, when
more knowledge is gained about the system.

Another source of ambiguity arises in the translation of natural language definitions of
goals into formal definitions. Natural language definitions are often ambiguous because
of the inherent ambiguity of natural languages. They are also sometimes ambiguous on
purpose when one does not want to commit oneself to a fixed description of what is
exactly required, but rather leaves some freedom about what should be achieved. Again,
such ambiguities need not be fully resolved in the very early stages of the requirement
elaboration process; they should be resolved gradually as more knowledge is gained
about the system. In order to do this, it is helpful to start with idealized formal definitions
of goals.
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Being Idealist

First-sketch goal definitions tend to be idealistic; it is generally impossible to write real-
istic goal definitions at the beginning of the requirement elaboration process. First-sketch
goals will be impossible to achieve due to agent misbehaviour, limited agent capabilities,
or conflicts with other goals. Consider for instance the g@aintain[PumpOnWhen-
Highwater]. The goal is idealized because delays to switch on the pump may make it
impossible for the pump to be on as soon as the water level is above “high”, or because a
critical methane level may prevent the pump for being operated, or yet because the pump
may fail to start when commanded. Such exceptional cases cannot be all anticipated in
the early phases of the requirement elaboration process; idealized goals definitions are
thus inevitable.

It is actuallydesirableto start from idealized goal definitions. The reason is simple: pre-
mature compromises of what is ideally required prevents the identification of further
goals and the exploration of alternatives, such as alternatives ways of deidealizing goals,
or to make trade-offs between conflicting goals. Therefore, one should be idealist when
writing first-sketch goal definitions.

This recommendation amounts to the traditional advice of specifying ideal behaviours
first, and to consider exceptional cases later. For operational specifications, this recom-
mendation makes the specification easier to read and write. At the goal level, specifying
the ideal behaviour first is important not only to make the process of writing the specifi-
cation simpler, but more importantly, to avoid premature, implicit, and probably not opti-
mal compromises.

Systematic techniques for handling idealized goals are studied in Chapter 8 on obstacles
analysis. Techniques for identifying and resolving conflicts between goals are described
in [Lam98a].

3.3.3.3 Eliciting New Goals through WHY questions

Asking WHY guestions enables one to identify higher-level goals that provide rationale
for the initial goals. Identifying higher-level goals is important for understanding the ini-
tial goals, and for identifying other important subgoals that may have been overlooked in
the first place.

There are no clear-cut criteria for knowing when to stop asking why questions [Zav97a].
The quest for higher-level goals should remain within the system’s subject matter.

Mine Pump Examples

Asking WHY questions about the go#aintain[PumpOffWhenLowWater] yields the

goal graph shown in Figure 3.14. If the pump motor is on when no water flows into the
pump, there is a risk of the pump being burned out. Thus, the goal refines the goal
Avoid[PumpOnWhenEmpty] which in turn refines the goa@void[PumpBurnedOut]. The

dots in the goal graph indicate that the refinements are not complete.

Companion subgoals can be formally elicited through formal refinement patterns
[Dar96]. In the goal graph above, the new gaabid[PumpOnWhenEmpty] is formally
defined as follows:

p.Empty [J p.Status = ‘Off’
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[PumpBurnedOut]

j

Avoid
[PumpOnWhenEmpty]

Maintain
[PumpOffWhenLowWater]

4 Avoid )
| /

WHY ? /

J

FIGURE 3.14. WHY questions:Maintain|PumpOffWhenLowWater|

The following formal goal refinement pattern can be used to identify companion sub-
goals [Dar95].

/ / Dx:P(x) U Q(x) / \

/D(x,)y: ( )//](x,) y: ( )/ /D x, Oy: L R(x,y)/
P(x) OR(x,y) O T(y T(y) OR(x,y) O Q(X
\ %

The formal definitions of the goalgaintainfPumpOffWhenLowWater] and Avoid[Pum-
pOnWhenEmpty] matches that pattern with the following instantiations:

P(X): p.Empty Q(x): p.Motor = ‘Off’
T(y):s.WaterLevel < ‘Low'R(X,y): HasPump(s,p)

The instantiation of the pattern yields the following new assertions:

(O p: Pump, s: Sump):
p.Empty O HasPump(s,p) O s.WaterLevel < ‘Low’

(O p: Pump, Os: Sump): O HasPump(s,p)

The second assertion is a domain property stating that every mine pump is related to a
sump. The first assertion is a new goal constraining the value of the low water level. The
following companion subgoal has thereby been elicited formally:

Goal Maintain[AppropriateLowWaterLevel]

Definition The low water level must be defined so that if the water level in the
sump is above the low level, the water can flow into the pump.

FormalDef O p: Pump, s: Sump
p.Empty OHasPump(s,p) O s.WaterLevel < ‘Low’
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FIGURE 3.15. WHY questions:Maintain[PumpOnWhenHighWater]

Asking WHY questions about the other goals will similarly enrich the goal model with
higher-level goals and companion subgoals. For instance, asking a WHY question about
the goalMaintain[PumpOnWhenHighWater] yields the goal graph shown in Figure 3.15.
The rationale for the goaWaintainfPumpOnWhenHighWater] is the goalAvoid[Over-
flowedSump] which in turn refines the goaloid[OverflowedMine].

Companion subgoals are elicited as well. For the gashtain[PumpOnWhenHighWa-

ter] to ensure the goalvoid[OverflowedSump], one has to assume that (i) the pump is
actually pumping water out of the mine when the pump motor isNintain[Water-
PumpedOutWhenPumpOn]), (ii) the rate at which water flows into the sump is bounded
(Maintain[LimitedWaterFlow]), and (iii) the capacity of the pump is above the maximum
rate of water that flows into the sumyajntain[SufficientPumpCapacity]).

Asking WHY questions also allows one to considéternative subgoal$o the one ini-
tially described. This is illustrated by the following example.

Consider the initial goaAchieve[MineEvacuatedWhenPumpFailure]. Asking a WHY
guestion about that goal yields the parent geaid[MinerinOverflowedMine].

Through applications of formal refinement patterns, one identifies that the goal refine-
ment is complete provided that when there is no pump failure, the mine remains not
overflowed for at least one houMéintain[MineNotOverflowedWhenNoPumpFailure]),

and provided that miners do not enter the mine when there is a pump failure
(Avoid[MinerEnteringMineWhenPumpFailure]) -- see the And-refinement on the left of
Figure 3.16.

The refinement is based on the assumption, callethtain[MineNotOverflowedWhen-
NoPumpFailure], that only pump failures could cause the mine to be overflowed. This
assumption is not valid, for instance, when the capacity of the pump is not sufficient to
pump the water that flows into the mine, or when the methane level prevents the pump
from being operated.

Note also that the initial goal requires the mine to be evacuated as soon as there is a
pump failure. This may lead to unnecessary evacuations of the mine if the water that
flows into the mine is low.
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FIGURE 3.16. Asking WHY questions and identifying alternative subgoals

This suggests looking for an alternative refinement of the higher-level Aya&[Min-
erlnOverflowedMine].

An alternative refinement of the goal is shown in Figure 3.16. This alternative requires
the mine to be evacuated when the water level in the sump remains high during a certain
period of time:

Goal Achieve[MineEvacuatedWhenCriticalWater]

Definition If the water level in the sump remains high during a period of ‘Criti-
calDelay’ time units, the mine should be evacuated within one hour.

FormalDef [0 m: Mine, s: Sump

B _CriticalDelay S-WaterLevel = *High’ L] SumpInMine(s,m)
U O<1p = (Up: Miner): InsideMine(p,m)

To summarize, identifying higher-level goals through WHY questions is important
because:

* it provides a rationale for the initial goals;

it enables one to formally identify companion subgoals that were overlooked in the
first place;

it enables one to explore alternative subgoals that may provide better solutions to the
higher level goals.

The quest for higher-level goals and alternative subgoals should of course remain within
the system’s subject matter.
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3.3.3.4 Eliciting new goals through HOW questions

Another step of the requirements elaboration process consists in refining goals until
reaching subgoals that can be assigned to individual agents. Subgoals are identified by
asking HOW questions about the goals already identified.

Mine Pump Examples.

For example, a HOW question about the gdaintain[PumpOnWhenHighWater] yields
the goal-refinement shown in Figure 17.
Maintain
[PumpOnWhenHighWater] HOW

I Maintain _ // ~ Maintain
[HighWaterDetected]fJ [PumpOnWhenHighWaterDetected]

FIGURE 3.17. Refinement of the goal MaintainfPumpOnWhenHighWater]

The first subgoal is formally defined as follows:

Goal Maintain[HighWaterDetected]
InstOf AccuracyGoal

Definition The HighWaterSignal must be on when the water level in the sump is
above high.

FormalDef O s: Sump, c: PumpController
s.WaterLevel = ‘High’ O HasCtrler(s,c) O c.HighWaterSignal = ‘on’

That goal is an accuracy goal relating the actual water level in the sump to a new
attribute, HighWaterSignal, denoting a signal received by tRempController agent from
aHighWaterSensor agent. The second subgoal is defined as follows.

Goal Maintain[PumpOnWhenHighWaterDetected]
Definition The pump must be on when tHigghWaterSignal is on.
FormalDef O p: Pump, ¢: PumpController
c.HighWaterSignal = ‘on O CtrlPump(c,p) O p.Status = ‘on’

The goal refinement also uses the two following domain properties:
O s: Sump, Oc: PumpController: L1 HasCtrler(s,c)
O s: Sump, ¢: PumpController, p: Pump
HasCltrler(s,c) OHasPump(s,p) O CtrlPump(c,p)

The formalization of the two subgoals together with the above properties may be used to
prove that together they entail the parent gdalintain[PumpOnWhenHighWater] for-
malized before.

56



Goal-Oriented Requirements Engineering with KAOS

Similarly, asking a HOW question about the generated subigaatain[PumpOnWhen-
HighWaterDetected] yields a new portion of the goal-refinement graph shown in Figure
18.

/ / Maintain \

[PumpOnWhenHighWater]

/ Maintain Maintain

[HighWaterDetected]/ [PumpOnWhenHighWaterDetected] HOW

Maintain Maintain

[PumpSwitchOn [PumpOnWhenSwitchOn]
WhenHighWaterDetected]

FIGURE 3.18. Refinement of the goal MaintainfPumpOnWhenHighWaterDetected]

\_ )

The new subgoals are defined as follows.

Goal Maintain[PumpSwitchOnWhenHighWaterDetected]

Definition The pump switch must be set to on when thighwater flag of the
pump controller is on.

FormalDef O p: Pump, ¢: PumpController
c.HighWater = ‘on’ O CtrlPump(c,p) O p.Switch = ‘on’

Goal Maintain[PumpOnWhenSwitchOn]
Definition The pump motor is on when the pump switch is set to on.
FormalDef O p: Pump
p.Switch = ‘on’ O p.Motor = ‘on’

This goal refinement also leads to the identification of amewnp.Switch attribute.

Again, the formalization of these subgoals can be used to prove that together they entalil
the parent goaWaintain[PumpOnWhenHighWaterDetected] formalized before.

Note that the above definitions are first approximations. They do not take reaction times
into account. In fact, the pump motor cannot start running instantaneously when the
pump switch is set to on. PumpDelay is the time taken to switch the pump motor on,
the last goal above can be formalized as follows:

® B _p mpDelay P-Switch =‘on’ [J p.Status = ‘on’

It asserts that if the pump switch has been on for theRastpDelay time units, then the
pump motor is on. (The operator is a formal “noise” necessary in a later stage to derive
operational requirements satisfying the goal.)

Similarly, the goal Maintain[PumpSwitchOnWhenHighWaterDetected] requires the
pump controller to react synchronously to the values received from the high water sensor.
If the reaction time of the pump controller is assumed to be a positive cortitaile-

lay, the goal is temporally weakened as follows:

® B _cyipelay [ C-HighWater = ‘on U CtrlPump(c,p) ]U} p.Switch = ‘on’
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Finally, the goaMaintain[HighWaterDetected] is also temporally weakened to take into
account the delay of the water sensor:

® B _\yatersensorDelay [ S-WaterLevel = ‘High' U HasCltrler(s,c) |
O
c.HighWater = ‘on’

The weakening of these goals is then propagated along the goal graph. As a result, the
goalMaintain[PumpOnWhenHighWater] is now defined by

B _safetyMargin [ S-WaterLevel = ‘High’ HasPump(s,p) ] U p.Status = ‘On’

For the goal refinements to be complete, the delays and safety margin must satisfy the
following constraint:

SafetyMargin = PumpDelay + CtrirDelay + WaterSensorDelay + 3 d .

(0 is the smallest time unit. The termd3omes from the operator in the definitions of
the subgoals.)

The safety margin is also defined so that the gaaintain[PumpOnWhenHighWater]

still ensures its parent goAloid[OverflowedSump] in Figure 15. The validity of the goal
refinements in Figure 15 also relies on the domain properties that the relationships
HasPump, HasCtrler, andCtrlPump do not change over time, i.e.

HasPump(s,p) = [ HasPump(s,p)
HasCtrler(s,c) = [l HasCtrler(s,c)
CtrlPump(c,p) = U CtrlPump(c,p)

These assertions are captured as domain properties on the corresponding relationships.

The goalMaintainfPumpOnWhenHighWater] has now been refined into subgoals that
can be assigned as the responsibility of single agents (the potential responsibility assign-
ments of goals to agents is considered below).

The goals Maintain[PumpOffWhenLowWater] and Maintain[PumpOffWhenCritical-
Methane] are refined in a similar way. Their goal refinement graphs are shown in Figure
3.19.

3.3.4 Elaborating Alternative Agent Models

Alternative agent models are gradually elaborated for the goals elicited. The activity of
elaborating alternative agent models consists in the following steps:

1. Identify potential agents and responsibility assignments of goals to agents;
2. Derive agent interfaces from responsibility assignments of goals to agents;
3. Operationalize goals through operations and associated requirements.

For the purpose of presenting the goal-oriented requirements elaboration method, the
identification of agent monitoring and control capabilities is here delayed until after the
goals have been assigned as responsibilities of single agents. This process emphasizes
that alternative agent interfaces are a result of alternative goal refinements and responsi-
bility assignments. In fact, considerations about possible agent monitoring and control
capabilities influence the goal refinement process. For instance, the above refinements of
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/ / Maintain \

[PumpOffWhenLowWater]

Maintain Maintain / Maintain
[LowWaterDetected] [PumpSwitchOff [PumpOffWwhenSwitchOff]
WhenLowWaterDetected]

Maintain
[PumpOffwWhenCriticalMethane]

Maintain Maintain / Maintain
[Accurate [PumpSwitchOff [PumpOffwhenSwitchOff]
MethaneMeasure] When

CriticalMethaneMeasure]

\_ )

FIGURE 3.19. Refinement of the goals Maintain[PumpOffWhenHighWater] and
Maintain[PumpOffWhenCriticalMethane]

the goalMaintain[PumpOnWhenHighWater] were driven by the need to resolve lack of
monitoring and control capabilities of tlimpController agent. The activities of elabo-
rating the goal and agent models are therefore much intertwined. Such intertwining is
further described in Section 3.3.5.

3.3.4.1 ldentifying potential responsibility assignments

Potential agents and potential responsibility assignments of goals to agents are identified
during the goal refinement process.

Mine Pump Examples

Potential responsibility assignments for the goal refinement graph of theMypoad
tainfPumpOnWhenHighWater] are given in Figure 3.20; the gaslhintain[HighWaterDe-
tected] is assigned to aHighWaterSensor agent described in the initial problem
statement; the goMaintain[PumpSwitchOnWhenHighWaterDetected] is assigned to the
PumpController software agent; and the go&laintainfPumpOnWhenSwitchOn] is
assigned to RumpActuator agent.

Responsibility assignments for the subgoals of the gbalisitainfPumpOffwhenLow-
Water] andMaintain[PumpOffwhenCriticalMethane] are shown in Figure 3.21.
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[PumpOnWhenHighWater]

/ / Maintain \

Maintain Maintain
[HighWaterDetected]// [PumpOnWhenHighWaterDetected]

HighWater
Sensor

Maintain Maintain
[PumpSwitchOn [PumpOnWhenSwitchOn]
WhenHighWaterDetected]

Resp
Controller

FIGURE 3.20. Responsibility assignments for the subgoals of
Maintain[PumpOnWhenHighWater]
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[PumpOffWhenLowWater]

Resp

Pump
Actuator

o
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[LowWaterDetected] [PumpSwitchOff [PumpOffWhenSwitchOff]
WhenLowWaterDetected]
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Controller

Maintain
[PumpOffWhenCriticalMethane]

»
owWater Actuurggr
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[Accurate [PumpSwitchOff [PumpOffWhenSwitchOff]
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Resp Pump
Actuator
ol
Sensor Controller

FIGURE 3.21. Responsibility assignments for the subgoals of Maintain[PumpOffWhenLowWater]
and Maintain[PumpOffwhenCriticalMethane]
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/ / Maintain \
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FIGURE 3.22. Alternative refinement and responsibility assignments for
Maintain[PumpOnWhenHighWater]

These responsibility assignments are the ones suggested by the initial problem statement.
Alternative goal refinements and responsibility assignments could have been explored.
For instance, the goalaintain[PumpOnWhenHighWater] could have been alternatively
refined into the subgoal#aintain[AccurateWaterMeasure] and Maintain[PumpOn-
WhenHighWaterMeasure] defined as follows:

Goal Maintain[AccurateWaterMeasure]
InstOf AccuracyGoal
Definition The water measure should equal the actual water level in the sump.

FormalDef O s: Sump, p: Pump, c: PumpController
CtrlPump(c,p) HasPump(s,p) Ll c.WaterLevelMeasure= s.WaterLevel

Goal Maintain[PumpOnWhenHighWaterMeasure]
Definition The pump must be on when the water measure is above high.
FormalDef O p: Pump, c: PumpController
c.WaterLevelMeasure = ‘High’ O CtrlPump(c,p) O p.Motor = ‘on’

The goalMaintain[AccurateWaterMeasure] is an accuracy goal that can be assigned as
the responsibility of a water sensor agent. This goal refers YagrLevelMeasure
attribute instead of thelighwaterSignal attribute referenced in the golsllaintain[High-
WaterDetected]. The resulting alternative responsibility assignments are shown in Figure
3.22. Similarly, alternative refinements and responsibility assignments can be defined for
the goalMaintain[PumpOffWhenLowWater]. In this alternative, a unique water sensor is
responsible for measuring the water level in the sump, and the responsibility of compar-
ing the measured water level to tHegh andLow water levels is now given to threump-
Controller.

More complex systems generally have much more radical alternative designs. Further
examples of alternative goal refinements and responsibility assignments will be

described for the LAS ambulance dispatching system and the BART train control system
in Chapter 9.
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3.3.4.2 Deriving agent interfaces

This step consists in deriving agent monitoring and control links from their responsibility
assignments. The derivation will be informal here; it is guided by the realizability meta-
constraint introduced in Section 3.8.2. Formal techniques for deriving agent interfaces
from responsibility assignments are described in Chapter 7.

Mine Pump Examples

Consider the goaMaintain[PumpSwitchOnWhenHighWaterDetected] assigned as the
responsibility of thePumpController agent. To fulfil its responsibility, the pump control-
ler must monitor theHighWaterSignal attribute and control the value of th&witch
attribute of the pump. The followingonitoring andControl links are thereby derived:

Monitoring [PumpController, PumpController.HighWaterSignal]
InstDecl [J ¢: PumpController
Mon(c, c.HighWaterSignal)

Control [PumpController, Pump.Switch]
InstDecl [ ¢: PumpController
CtrlPump(c,p) O Ctrl(c, p.Switch)

Through similar reasoning, the agent interface model in Figure 23 is derived from the
responsibility assignments of Figure 3.21.

/ HighWater
Sensor

Sump.WaterLeve
Sump.WaterLevel owWater \ PumpCtrler.LowWater Pump.Switch Pump.Motor
P>\ Sensor

Pump Pump
Controller Actuator
Sump.MethaneLevel
Viethane PumpCtrler.MethaneMeasure
K Sensor /

FIGURE 3.23. Agent interface model derived from the responsibility
assignments of Figures 3.20 and 3.21

~

PumpCtrler.HighWaterSignal

Note that alternative responsibility assignments generally yield alternative agent inter-
faces. For instance, the alternative in which the water level is measured by a single water
sensor yields the agent interface model of Figure 3.24.

Water
Sensor
Sump.MethaneLevel
Viethane
Sensor

FIGURE 3.24. Alternative agent interface model derived from the
alternative responsibility assignments in Figure 3.22

~

- Pump.Switch Pump.Motor
ump Pump
Controller Actuator

PumpCtrler.MethaneMeasure /

Sump.WaterLevel PumpCitrler.WaterMeasure
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3.3.4.3 Operationalizing goals

This step consists in identifying operations relevant to the goals and deriving require-
ments on operations so that the goals are satisfied. there are two sub-steps:

1. Identify operationsSpecific state transitions referred to in goals formulation are iden-
tified. Only elementary domain pre- and post-conditions are identified. Such domain pre-
and post- conditions do not ensure the goal from which they are derived.

2. Derive requirements on operationshe identified operations are strengthened with
required pre-, trigger, and post conditions so that the goals are satisfied.

Formal techniques for deriving operations and requirements on operations from goals
will be explored in chapter 8.

Mine Pump Examples

The goalMaintain[PumpSwitchOnWhenHighWaterDetected] assigned to th@umpCon-
troller agent constrains the value of thRemp.Switch attribute. The following operations
are then identified from that goal.

Operation SwitchPumpOn
PerfBy PumpCitrler {arg c}
Input Pump {arg p}
Output Pump {res p}/ Switch
DomPre p.Switch = ‘Off’ O CtrlPump(c,p)
DomPost p.Switch = ‘On’

Operation SwitchPumpOff
PerfBy PumpCitrler {arg c}
Input Pump {arg p}
Output Pump {res p}/ Switch
DomPre p.Switch = ‘On’ O CtrlPump(c,p)
DomPost p.Switch = ‘Off’

These definitions minimally capture what the switching on and off of the pump is about
in the application domain.

The following required conditions on the applications of the operations are derived so as
to ensure the goal:

Operation SwitchPumpOn

ReqTrigFor Maintain[PumpSwitchOnWhenHighWaterDetected)]
B . CtrirDelay c.HighWaterSignal = ‘On’

Operation SwitchPumpOff
RegPreFor Maintain[PumpSwitchOnWhenHighWaterDetected]

- B ciielay C-HighWaterSignal = ‘On’

Therequired triggercondition on theSwitchPumpOn operation requires that the opera-
tion must be applied when théighwaterSignal has beerOn for a delay ofCtrirDelay.
Therequired preconditioron theSwitchPumpOff operation requires that the operation is
not applied if thedighWaterSignal has bee®n for a delay ofCtrirDelay.
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Other goals assigned to the pump controller agent give rise to further requirements on
these operations. For instance, the following operational requirements are derived from
the goals  Maintain[PumpSwitchOffWhenLowWaterDetected)] and Main-
tain[PumpSwitchOffWhenCriticalMethaneMeasure]:

Operation SwitchPumpOn

RegPreFor Maintain[PumpSwitchOffWhenLowWaterDetected]
- B cyirpelay C-LOWWaterSignal = “‘Off’

ReqgPreFor Maintain[PumpSwitchOffWhenCriticalMethaneMeasure]
- W ciielay C-MethaneMeasure 2 ‘CriticalMethane’

Operation SwitchPumpOff

ReqTrigFor Maintain[PumpSwitchOffWhenLowWaterDetected]
B _ CirirDelay C-LOWWaterSignal = *Off’

ReqTrigFor Maintain[PumpSwitchOffWhenCriticalMethaneMeasure]
B _ crirDelay C-MethaneMeasure = ‘CriticalMethane’

Note that the derived requirements on these operations violate the meta-constraint
ReqTrig O RegPre.

For the operatiorswitchPumpOn, the required trigger condition for the go®lain-
tain[PumpSwitchOnWhenHighWaterDetected] can be true while the required condition
for the goal Maintain[PumpSwitchOffWhenCriticalMethaneMeasure] is false. This
inconsistency is due to a conflict at the goal level between the ¢tafgain[PumpOn-
WhenHighWater] and Maintain[PumpOffWhenCriticalMethane]; it needs to be solved at
that level. The handling of conflicting goals is briefly described later.

3.3.5 Goal refinement and agent identification: an intertwined process

As mentioned before, the activities of refining goals into subgoals and generating alter-
native agent responsibilities and interfaces are much intertwined. The principal reason
for refining goals into subgoals is to eventually reach subgoals that can be assigned as the
responsibility of single agents. Preliminary information about agents potentially avail-
able is therefore needed to guide the goal refinement process.

The goal refinement process is guided by the following principles [Dar93]:
1. Stop refining a goal when it can be assigned as the responsibility of a single agent;

2. Refine goals into subgoals so that the latter require the cooperation of fewer potential
agents.

The first principle provides a criterion for stopping the goal-refinement process. The sec-
ond principle ensures the convergence of the goal refinement process towards subgoals
that can be assigned to single agents.
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The following activities are therefore recursively performed during the goal-refinement
process.

Identifying potential agents and their capabilities -- Preliminary information about
potential agents and their capabilities is needed to determine when the goal refinement
process may stop, and to guide the refinement process towards subgoals that can be
assigned to individual agents.

Preliminary information about agents and their monitoring and control capabilities is
identified from initial goals by asking WHO could play a role in achieving the goals and
WHO is capable of monitoring and controlling the objects referenced in the goal formu-
lations. Such information about agents and their capabilities is also often described in the
preliminary materials describing the envisioned system.

It is important to note that the result of this preliminary identification jsaatial agent
interface model that may includaternative monitorability and control links. Further
agents and agent capabilities are then gradually and systematically identified during the
goal-refinement process.

Mine Pump Example

For example, asking WHO could play a role in achieving the gahtain[PumpOn-
WhenHighWater] may lead to the identification of treumpController software agent.

Other agents such as thiighWaterSensor and thePumpActuator could also be iden-

tified at this preliminary stage by asking WHO could be capable of monitoring and
controlling the objects referenced in this goal. These agents can also be systematically
identified later during the goal refinement process.

Identifying goal unrealizability-- Every time a goal is produced one has to check
whether the goal is realizable by a single agent already identified. If the goal is realizable
by an agent, it may be potentially assigned as the responsibility of that agent. If the goal
is not realizable by a single agent, the model has to be elaborated further.

Mine Pump Example.

Consider the goalaintain[PumpOnWhenHighWater]. It describes a relation between

the water level in the sump and the status of the pump motor. This goal is not realiz-
able by thePumpController software agent, because it lacks monitoring capabilities
for the actual water level in the sump; and it lacks control capabilities for the status of
the pump motor. Therefore, the goal cannot be assigned as the responsibility of that
agent, and the model has to be elaborated further.

Resolving goal unrealizability-- Once realizability problems have been identified, the
model has to be elaborated so as to resolve theses problems. Resolution of realizability
problems drives the identification of new agents and the refinement of goals into sub-
goals.

Mine Pump Examples

As mentioned above, the gadhintain[PumpOnWhenHighWater] is not realizable by
the PumpController software agent because it cannot monitor the actual water level in
the sump and cannot control the status of the pump motor.
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In order to resolve the lack of monitoring capabilities of thenpController for the
actual water level in the sump, the goshintain[PumpOnWhenHighWater] was
refined into the subgoals:

Maintain[HighWaterDetected]
MaintainfPumpOnWhenHighWaterDetected].

During this requirement elaboration step, we also identified theHigiawaterSignal
attribute monitorable by theumpController agent, and theélighWaterSensor agent
capable of monitoring whether the water level in the sump is above high and control-
ling the HighwaterSignal attribute. The generated subgadahintain[HighWaterDe-
tected] can then be assigned as the responsibility of that agent.

The goal MaintainfPumpOnWhenHighWaterDetected] is still not realizable by the
PumpController because it cannot control the variaBlemp.Motor. In order to resolve
this realizability problem, the goal is refined into the subgoals:

Maintain[PumpSwitchOnWhenHighWaterDetected]
Maintain[PumpOnWhenSwitchOn].

During this requirement elaboration step, we also identified the Pewp.Switch
attribute controllable by theumpController agent; and th@umpActuator agent capa-

ble of monitoring the pump switch and controlling the status of the pump motor. The
generated subgoalMaintainfPumpSwitchOnWhenHighWaterDetected] and Main-
tain[PumpOnWhenSwitchOn] are now realizable by theumpController and thePum-
pActuator agents, respectively.

A contribution of this thesis is to provide formal support to assist users in applying this
intertwined goal refinement and agent identification process. Chapter 5 describes formal
techniques for identifying realizability problems; Chapter 6 describes formal techniques
for refining goals and identifying agents so as to resolve realizability problems.

Note that this process of elaborating the requirement model by identifying and resolving
violations of the realizability meta-constraint is an application of a more general scheme
that consists in using meta-constraints from the meta-model to guide the requirement
elaboration process (see Section 3.2.2).

3.3.6 Goal-Oriented Analysis

There is more to goal-oriented requirements engineering than what has been outlined
above. Three important aspects of requirements engineering have not been covered in the
previous sections: (i) the handling of conflicts between goals, (ii) the handling of agent
misbehaviour, and (iii) the evaluation and selection of alternatives. These aspects are
now briefly discussed.

3.3.6.1 Conflict Analysis

During the elaboration of the goal model, conflicts between goals are identified, and
alternative conflict resolutions are proposed. The selection of one alternative over the
others is performed during the alternative evaluation activity. Formal techniques for iden-
tifying conflicts between goals and for generating alternative resolutions are described in
[Lam98b].
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Mine Pump Example

The conflict between the goalgaintainfPumpOnWhenHighWater] and Maintain[Pum-
pOffwhenCriticalMethane] has been described in Section 3.3.2.4.5. The divergence
between these goals, and the boundary condition for the divergence is recalled in Figure

3.5.
Maintain \
[PumpOffWhenCriticalMethane]

/ aintain
| punpony /

[PumpOnWhenHighWater]

¢ Os: Sump

s.WaterLevel = ‘HighWater’

a

s.MethanelLevel = ‘CriticalMethane’

o )

FIGURE 3.25.Conflict between the goal$/aintain -
[PumpOnWhenHighWater] and Maintain[PumpOffWhenCriticalMethane]

The boundary condition states that the two goals become inconsistent when the methane
level is critical while the water level is above high.

Various techniques for resolving divergences are described in [Lam98b]. Here, the diver-
gence is resolved by weakening the gaaintainfPumpOnWhenHighWater]:

Goal Maintain[PumpOnWhenHighWater]

Definition The pump must be On when the water level in the sump is above the
high water levekxcept if the methane level is critical

FormalDef [0 s: Sump, p: Pump:

s.WaterLevel = ‘HighWater’ [1HasPump(s,p)

O

p.Motor = ‘On’ [1s.MethaneLevel = ‘CriticalMethane’

Note that the goal is weakened by adding the boundary condition as a disjunct in the con-
sequent of the goal.

Once the goal is weakened, the transformation of the goal definition is propagated up and
down along the goal refinement and operationalization links.

3.3.6.2 Obstacle Analysis

Goals produced during the refinement process tend to be idealized. They are likely to be
violated due to exceptional agent behaviours. In the mine pump example, the water sen-
sors may fail to detect correctly the high and low water level; the pump may refuse to
start or stop running; the pump controller may also fail to produce correct outputs in
time; etc.

The identification such exceptional situations drives the elicitation of further goals to
prevent them or to mitigate their consequences. For instance, one could identify a new
goal specifying what should happen if the pump refuses to stop. Some goals described in
the initial problem statement were already introduced to mitigate the consequences of
agent failures. The goal requiring the mine to be evacuated in case of pump failure is an
example of such goals.
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Exceptional situations that prevent the fulfilment of goals are caledaclesThe pre-
cise definition of obstacles, and the definition of formal techniques for identifying obsta-
cles and for resolving them are described in Chapter 9.

3.3.6.3 Alternative evaluation and selection

Another important aspect that has been left out up to now concerns the evaluation and
selection of alternatives. As mentioned before, the selection of alternatives is based on
softgoals and optimization goals such as reduce costs, minimize risks, etc. Preliminary
techniques for evaluation and selection are described in [Fea91], [Rob90], and [Myl99].
This is an area where much research remains to be done; we will not address it in the the-
Sis.

3.4. Summary and Outlook

The work reported in the thesis is based on an existing goal-oriented requirement elabo-
ration method, called KAOS. This method consists in identifying goals and refining them
into subgoals until the latter can be assigned as responsibilities of single agents. The
method supports the exploration of alternative goal refinements, and alternative responsi-
bility assignments of goals to agents, resulting in alternative system proposals in which
the boundary between the automated system and its environment may be quite different.

This chapter has described the KAOS goal-oriented language and methods, and proposed
extensions of the language to modagent interfaceghrough monitoring and control

links. We also introduced alizability meta-constraint relating an agent’s responsibility

for a goal to its interface: a goal is realizable by an agent if it defines a relation between
objects monitored and controlled by the agent.

The realizability meta-constraint plays a significant role in the goal-oriented require-
ments elaboration process: violations of realizability drive the identification of agents
and the refinement of goals into subgoals until the latter are realizable by individual
agents.

Extensions to the KAOS goal-oriented method will described in the following chapters:

» Chapters 5 and 6 extend the KAOS goal-oriented method with formal techniques for
identifying realizability problems and for resolving them by identifying agents and
refining goals into subgoals. These techniques are based on a formal model of agent
responsibility, monitorability, and control defined in Chapter 4.

» Chapter 7 describes techniques for deriving operational requirements from goals, and
for deriving agent monitoring and control links from responsibility assignments.

» Chapter 8 describes formal techniques for handling exceptional agent behaviors that
may block the fulfillment of idealized goals and assumptions.
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Chapter 4
A Formal Model for Agents

This chapter defines a formal model of agents for goal-oriented engineering. The objec-
tive is to set the foundations over which the requirements elaboration techniques of the
following chapters are grounded. In particular, we give a formal definition for the realiz-
ability meta-constraint between an agent’s responsibility for goals and its interface.

The formal model of agents is intended to be part of a complete semantics of the KAOS
language. Section 1 proposes a general framework for defining the semantics of the
KAOS language, and describes how the formal model of agents fits in that framework.
Section 2 defines the formal model of agents. Section 3 defines what is meant for a goal
to be realizable by a single agent, and defines necessary and sufficient conditions charac-
terizing realizable goals.

4.1. Towards a Formal Semantics
for the KAOS Language

4.1.1. Motivation

In order to provide systematic formal support during the requirement elaboration proc-
ess, it is necessary to assign a mathematical meaning to KAOS models. Such mathemati-
cal semantics for the language is not an objective per se but only a means for reaching
our primary objective of providing systematic guidance during the requirement elabora-
tion process. The two important objectives of a semantics of the KAOS language are:

* to clarify the meaning of language constructs; and
 to provide a basis on which to define and integrate dedicated reasoning techniques and
tool support for the KAOS method.

In order to serve those objectives, the semantics of the language should meet the follow-
ing qualities.

Mathematically grounded -- A mathematical semantics is heeded for defining and inte-
grating techniques and tool support for reasoning about KAOS specifications. It also
helps in detecting and correcting ambiguities and other flaws in the definition of the lan-
guage.

Simple and intuitive -- A formal semantics should clarify the meaning of a language,
not obscure it. We wish the semantics to give clear insights toskesof the language.

It is not intended to be solely for use by tool developers. We wish the semantics to both
follow and give intuition about the language.

Supporting partial specifications -- The KAOS method is intended to support incre-
mental elaboration of requirements; the language must therefore be able to support par-
tial and incomplete specifications. It is thus fundamental to be able to give a meaning to
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partial specifications and to support reasoning about them. This contrasts with many for-
mal methods where formal verification is usually performed a posteriori, after the model
has been fully specified.

Such need for reasoning about partial specifications has a strong influence on the seman-
tics of the KAOS operation model defined in chapter 8.

Designed for ease of language extension and contractienBecause the language is
expected to evolve, its formal semantics should be easy to maintain. One may wish to
add further models to the set of models already supported by the language. The integra-
tion in the KAOS language of the concept of obstacle (described in Chapter 8) is an
example of such an extension. Among other likely language changes are the choice of
the particular formalisms used for the formal layer of the language. There are many com-
peting formalisms and progress towards more expressive and efficient formalisms are
likely to occur. On the other side, the full power of the KAOS language is not always
needed. In many cases, people will only use the ‘semi-formal’ declaration layer of the
language. It is fundamental for them to be able to understand the meaning of their model
without studying the particular formalism used at the formal layer of the language.
Sometimes, it might also be decided to perform only goal analysis. It should then be pos-
sible to understand the semantics of the various constructs of the goal model - such as
goal refinement, goal conflict, etc. - without referring to the other models.

Note that the objective of support for reasoning about partial specifications and the
objective of a maintainable semantics of the language are different. The former requires
modularity of the domain-level models expressed in the KAOS language. The latter
requires modularity of the meta-level description of the KAOS language.

4.1.2. Choosing a Semantic Domain

Like for any language, the semantics of the KAOS language is given by a translation of
every KAOS model into some other target language, callecémeantic domaiof the
language. For the semantics to be useful, the semantic domain should be composed of
simpler, more primitive constructs than the original language. The purpose of the origi-
nal language is to provide syntactical constructs that facilitates the description of models
at the semantic level.

The choice of an appropriate semantic domain is a critical concern in defining a seman-
tics. The semantic domain may range from a very simple and general domain such as the
standard models of first-order logic (FOL) to more complex and specialized domains.

This choice of semantic domain has an impact on the understandability of the semantics,
the definition of reasoning procedures associated with the language, and the capability to
define multi-paradigm languages. These concerns are discussed in turn.

Each semantic domain reflects a particular ontology, i.e. a particular view of the world.
For instance, the standard model of FOL views the world as being composed of a uni-
verse of individuals and of relations between individuals. Such a model is simple and
easy to understand. However, the mapping from the KAOS language to this model may
become fairly complex. The assertions in FOL resulting from such mapping may become
large and incomprehensible. On the other hand, a specialized semantic domain with a
richer ontology is more complex, but the semantic function is simpler. The case for spe-
cialized semantic models reflecting the ontology of the language in a closed way has
been articulated in [Par95], which calls for semantic domains describing the content of
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specification documents independently from the particular notations used for describing
such content. The 4-variable model is proposed there as the semantic domain for describ-
ing requirements. The SCR tabular notation [Hen80, Heit96] is one notation that can be
used to describe 4-variable models. We believe that the semantics of the KAOS language
would be easier to understand if we can define it over a specialized semantic domain that
reflects the underlying ontology of the KAOS language.

A semantic domain also provides a basis on which to define reasoning procedures. An
advantage of defining the semantics of a language in FOL is that the logic has well-
known reasoning procedures. In theory, such reasoning procedures could then be used to
reason about a specification at the semantic level. In practice, however, this approach is
intractable, as the formulas in FOL resulting from the translation function may be too
complex to handle; anthe result of the analysis performed in FOL is difficult to trans-

late back into the original languagéViore specialized semantic domains on the other
hand make it possible to define more specialized and efficient reasoning procedures.
Model-checking for propositional temporal logic formula is an example of such a proce-
dure. The completeness and consistency checking techniques for RSML and SCR mod-
els [Heim96, Heit96] are other examples of powerful analysis techniques made possible
by defining the semantics of these languages over specialized semantic domains, namely,
state-machine models.

The choice of a semantic domain may also have an important impact on how the seman-
tics of different languages can be combined to form a multi-paradigm language. A first
approach consists in defining the semantics of various languages over a common seman-
tic domain. Such a semantic domain must be very general in order to be able to model
constructs from a wide range of languages. [Zav93] shows the feasibility and limits of
this approach by defining and relating the semantics of various specification languages in
FOL. A second approach consists in defining separate semantics for the different lan-
guages over separate, specialized semantic domains; and combine these semantics
through inter-model consistency rules. The latter approach requires consistency rules to
be defined between each pair of languages. It may not be appropriate for combining
specifications written in many different languages. We are however interested in defining
the semantics of a language which combines a few paradigms addressing orthogonal
aspects of the system. The second approach is appealing as inter-model consistency rules
correspond to the meta-constraints linking components of the KAOS meta-model.

4.1.3. Overview of a semantics for the KAOS language

To summarize, our approach for defining the semantics of the KAOS language is based
on the following decisions:

» The semantics is structured according to the multi-paradigm structure of the language.
A separate semantics is defined for each KAOS submodel, namely, the goal model,
the object model, the operation model, the agent responsibility model, and the agent
interface model.

» Each KAOS submodel is defined over a specialized semantic domain that describes
the ontology of the model.

» The different models are combined through inter-model consistency rules at the
semantic level. These semantic-level consistency rules yield language-level consist-
ency rules which correspond to the meta-constraints over components of the meta-
model.
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To reflect the language structure, the semantics of the KAOS language will furthermore
be composed of two parts.

A first part defines the outer layer of the language. It is composed of separate semantics
for the goal model, the object model, the agent model, and includes consistency rules
between those models.

A second part defines the syntax and semantics of the logical formalism used at the inner
layer of the KAOS language; and includes consistency rules between the formal asser-
tion layer and the declaration layer of KAOS models.

In the thesis, we are mainly concerned with the semantics of agent responsibility, moni-
toring, and control, together with the semantics of the operation model. The formal
model of agents defined in the next section is intended to provide the semantic domain
for these language constructs.

4.2. The Underlying Agent Model

This section defines the semantic domain for agents in the KAOS language. The map-
ping of constructs of the KAOS language to this semantic domain is also outlined.

Intuitively, an agent is characterized by the following items:

1) aninterfacewhich declares a set of state variables that the agent monitors, and a set of
state variables that the agent controls;

2) atransition systemvhich is composed of an initial condition on controlled states, and
a “next state” relation mapping each sequence of monitored states to a next state of con-
trolled variables; and

3) a set ofjoalsthe agent is responsible for.

The concepts of agent interface, transition system and responsibility assignments of
goals to agents are formally defined in the following sections.

As a specialization of object, an agent also has attributes and links to other objects. Such
features are part of the semantics of the object model.

Our model of agents is based on states, and interaction between agents are through
shared state variables. An alternative paradigm would be to specify agent interactions in
terms of shared actions.

4.2.1. Preliminary Definitions: State Variables, States and Histories

We first recall the basic concepts of state variables, states, and histories [Man92].
State Variables

We assume a se&fAR of all possible state variables symbols. We also assume that each
state variable has a type which is notet (v). The vocabulary of an application domain
is given by a se¥ [ VAR.
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State variables correspond to attributes of object instances in the KAOS object model. As
an example, consider the following partial object model for a library system.

Borrowing
User BookCopy

name : Name title : Title

The set of state variables corresponding to this object model is composed of:

u.name
with TY(u.name) = Name for every possible instanceof theUser entity

bc.title
with TY(bc.title) = Title  for every possible instante of theBookCopy entity

Borrowing(u,bc)
with TY(Borrowing(u,bc)) = Bool
for every possible instanceof theUser entity,
and every possible instanbe of theBookCopy entity.

In the sequel, the concepts of the underlying agent model are illustrated with examples
from the mine pump control system (see Section 3.3.2 of Chapter 3) for which we con-
sider the following set of variables:

WaterLevel: Depth the actual water level in the sump of the mine
HighWaterSignal: {On, Off} the signal sent by the high water sensor

LowWaterSignal: {On, Off} the signal sent by the low water sensor

PumpSwitch: {On, Off} the position of the switch that commands the pump
PumpMotor: {On, Off} the status of the pump motor
State

LetV O VAR be a set of state variables symbolsstates of V is an interpretation func-
tion for the variables iW, that is, it is a function

stV - TY(V).
The set of all possible states\ofs notedState(V).

An example of statel for the above set of state variables of the mine pump control sys-
tem is given by:

sl(WaterLevel) = 7.2
s1(HighWaterSignal) = On
sl(LowWaterSignal) = On
s1(PumpSwitch) = On
s1(PumpMotor) = On
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Histories and Paths

A history over a set of variable¥ is an infinite sequence of states\gfmodelled as a
function

h: Nat —» State(V)
The set of all histories over a set of varialMas notecHistory(V).

In order to model real-time properties, sequences of states are extended with real-time
tags as defined in Section 3.2.3 of Chapter 3; there is a function

time: Nat — Time

which assigns a real-time value to each positiahNat. The functiontime is defined as
follows:

time(0) is the time at the initial position of every history
time(i) = time(0) + d 1, whered is the time elapsed between successive states.

In the sequel, we are also interested by partial histories, i.e., by finite sequences of states.
A pathover a set of variableg is a finite or infinite sequence of states\wofThe set of all
paths over a set of variablgss notedPath(V).

The following notations for sequences are used.d &g a path, and létbe a natural
number such thak length(o),

a(i) denotes the state ofat position,
o[i] denotes the prefix @f up to position,
o+s denotes the concatenation of sequeneeth states.

As mentioned in Chapter 3, a goal defines a set of histories. The fact that an histiry
isfies a goaG is noted

h|=G.
We also use the notation
0|=G

to denote that the patihsatisfies the goas. This satisfaction relation is formally defined
as follows:

o |= G iff there exists an infinite suffix of o such thah |= G.

As an example, i is a state invariaritl P whereP is a state-formulag |= O P is true iff
a(i) |= P for alli O[O ... length(o)].
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4.2.2. Agent Interface

Agent interfaces in the underlying agent model are formally defined as follows.

Definition (Agent Interface) -- An agent interface modé€l over a sev of variables is a
tuple composed of the following items:

* a SetAGENT of ageninstances
and for eaclag [0 AGENT, a signatur&IGN(ag) composed of the following items

» a setMon(ag) [ V of variables monitored by the agent;
* a sefCtrl(ag) I Vv of variables controlled by the agent;

We use the notatiovioc(ag) to denote the union dflon(ag) andCtrl(ag).

An agent signature must furthermore satisfy the following constraints:

(1) for each agent, the sets of monitored and controlled variables are disjoint, i.e.
Mon(ag) n Ctrl(ag) = @.

(2) every variable is controlled by at most one agent, i.e.
if ag # ag’ thenCtrl(ag) n Ctrl(ag’) = @.

The second constraint is used when defining transitions of agents in order to avoid inter-
ference between concurrent executions of agents.

For example, an agent interface model for the mine pump control system is given by:
Agent = {pump_ctrler, high_sensor, low_sensor}

Mon(pump_ctrler) = {HighWaterSignal, LowWaterSignal}
Ctrl(pump_ctrler) = {PumpSwitch}

Mon(high_sensor) = {WaterLevel}
Ctrl(high_sensor) = {HighWaterSignal}

Mon(low_sensor) = {WaterLevel}
Ctrl(low_sensor) = {LowWaterSignal}

Here, the agentsump_ctrler, high_sensor, low_sensor are agent instances.

The semantics of KAOS agent interface models is defined over agent signatures by a
function that maps instance declarations of monitoring and control links of the KAOS
model to agents signatures of the underlying agent model.

In the thesis, we make the simplifying assumption that agent interfaces are static.

Note that in our model, agent interfaces are composedarfitored and controlled state
variables. With an event-based formalism, agent interfaces would be compasediof

tored and controlled eventtn our model, the occurrence of an event is viewed as a state
variable that holds at a single point in time. (Remember that a KAOS event is a special
kind of object; see Section 3.2.5 in Chapter 3). Interaction through shared events is there-
fore also supported by our model.
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4.2.3. Agent Views and Indistinguishability

Agent interfaces define the views that agents have on the system.3tate(V) is a glo-
bal state of the system, thew of an agenbn the global system state is given by the
projections)yec(ag) Of s 0NVoc(ag).

We use the notation
S ~Voc(ag) S

to express that two states ardistinguishabldy an agent; we have thus:
S ~Vocag) ' 1T Spvoc(ag) = S'voc(ag)

As an example, consider the agent interface model above and twostaads2 such
that

sl(WaterLevel) = 7.2 s2(WaterLevel) = 8
s1(HighWaterSignal) = On s2(HighWaterSignal) = On
s1l(LowWaterSignal) = On s2(LowWaterSignal) = On
s1(PumpSwitch) = On s2(PumpSwitch) = On
s1(PumpMotor) = On s2(PumpMotor) = Off

The two states are indistinguishable by puenp_ctrler agent, because the variables at its
interface all have the same values in the two states.

The notions of agent views and indistinguishability are extended to sequences of states
as follows

Ojvoc(ag) = the projection of every state afonVoc(ag),

0 ~Voc(ag) O iff Ovoc(ag) = O ' |Voc(ag)-

Similarly, the set of variables controlled by an agent defines a projection on global states
of the system and an equivalence relation between global states of the system:

Siciriag) = the projection o& on Ctrl(ag),
S ~ctri(ag) S’ Iff S|ctri(ag) = S'|ctri(ag)-
4.2.4. Agents Transition Systems

The transition system of agents is defined as follows.

Definition (Agent Transition System) -- A multi-agent transition systeri is a tuple
composed of the following items:

* an agent interface model= <AGENT, Sign >;
» for eachag [0 AGENT, a transition systemy(ag) composed of the following items:
» a set
Init(ag) L] State(Ctrl(ag))
of initial states for the variables controlled by the agent;
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* a “next state” relation
Next(ag) LI Path(Voc(ag)) x State(Ctrl(ag))
that relates sequences of states of variables in the signature of the agent to a next
state of variables controlled by the agent.

The transition system of an agent is furthermore submitted to the following constraints:
(1) the set of initial states of an agent is not empty, i.e,

Init(ag) # @
(2) theNext relation is total, i.e.,

for all o,,, O Path(Voc(ag)), there exists. [J State(Ctrl(ag))
such that g,,,, s; > [ Next(ag)

Even for small systems, it would be too long to defineltlegt state relation in extension
by listing all the pairs<o,,, s> O Next(ag). Specification languages are introduced for

defining this relation concisely. They can take different forms: tabular notations in the
spirit of SCR [Hen80, Heit96], transition diagrams in the spirit of [Har87] and [Lev94],
or state-based style specifications in the spirit of Z [Spi89], VDM [Jon90] or B [Abr96].

We will use the KAOS operation model to define the underlying multi-agent transition
system. The semantics of KAOS operation models is defined by a relation between these
models and the underlying transition systems defined here.

4.2.5. Agent Runs
An agent run is a sequence of states generated by the transition system of the agent.
Agent runs are formally defined as follows.

Definition (Runs of an Agent Transition System) --Let 1 = <I', A> be a multi-agent
transition system.

(a) The runs of an ageat [1 AGENT is a set
Run(ag) U Path(V)
such that [ Run(ag) iff it satisfies the following constraints:

 satisfaction of the initial condition:
0(0)\ctri(ag) U Init(ag)
» satisfaction of thé&lext relation:
< o[i'1]|V0c(ag)’ o(i)|CtrI(ag) > [J Next(ag) for alli D[l Iength(o)]

The set of infinite runs of the agent is noBathaviour(ag).

(b) The runs of the multi-agent system is a set
Run(M) O Path(V)

such that [ Run(IM) iff o 0 Run(ag) for all ag [J AGENT.

Note that the runs of an agent in these definitions are histories on global system states,
rather than histories on state of variables in the signature of the agents.

Also note that the transitions of agents occur concurrently. Interference between agents is
avoided because each variable is controlled by at most one agent.

77



A Formal Model for Agents

01+s Oy+S

(a) interface restriction (b) control restriction

FIGURE 4.1. Two properties of agent runs

In the previous section, we required tRext relation to be a total relation. This ensures
that every finite run can be extended into an infinite run.

4.2.6. Properties of Agent Runs

We now describe three important properties of agent runs. They will be used later to
define necessary and sufficient conditions for a goal to be realizable by an agent. The full
proofs of the properties are given in Appendix A.

(a) The domain of thélext state relation of an agent is restricted to the view the agent
has on the global system states. As a consequence, the set of runs of an agent is con-
strained by the interface of the agent. Suppose that the system is at apaird thato,

Hloc(ag) 02 (see Figure 4.1.a). KOy yoc(ag), Siciriagy™ [ Next(ag), then sinces; Hyoc(ag)
0y, We also have thato,)yoc(ag): Siciriagy™> [ Next(ag). Thus, if o;+s [ Run(ag) then
0,+s [J Run(ag). Therefore, the following property characterizes agent runs.

Property 1 (interface restriction) -- For allo,, 0, [1 Run(ag), s [ State(V),
if 01 Lyoc(ag) 02 theno+s L Run(ag) iff o,+s [ Run(ag)

(b) The second property is related to the fact that the range dfdkiestate relation of an
agent is restricted to the set of variables controlled by the agent. Suppose that the system
is at a pointo, and that there are two statesands2 such thatl Lcyag)S2 (see Figure

4.1.b). If <Ooc(ag) Slictriagy™> U Next(ag), then sincesl Leyyag) s2, we also have that
<O)voc(ag) S2|ctri(ag)™> U Next(@g). Thus, ifs; Leyiag) So theno +s; U Run(ag) iff 0 +s;
[J Run(ag). This is formally captured by the following property.

Property 2 (control restriction) -- For allo [ Run(ag), s1, S, [J State(V),
if 1 Ltriag) S2 theno +s; U Run(ag) iff o +s; U Run(ag)

The third property states that the specification of an agent transition system is violable in
a finite time. This is formally captured by the following property.

Property 3 (finitely violable) -- For allh [ History(V),
if h O Behaviour(ag) then there exists a finite prefixof h such that 00 Run(ag)

The property asserts that the set of histories generated by a transition systems define a
safety property according to the classical safety/liveness distinction of temporal logics
[Alp87]. It is a consequence of our definition of transition systems that does not include
fairness conditions.
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4.2.7. Agent Responsibilities

The agent responsibility model is defined as follows.

Definition (Agent Responsibility Model) -- An agent responsibility model is given by
the following items:

» a SetAGENT of agent instances

* asetGOAL of goals, where eac [J GOAL defines a set of histories on global system
states;

» arelationResp [J AGENT x GOAL.

As an example, consider the goal defined by
HighWaterSignal = ‘'On’ U U PumpSwitch = ‘On’.

The responsibility assignment of that goal toghmp_ctrler agent is declared by:
Resp(pump_ctrler, HighWaterSignal = ‘On’ J [ PumpSwitch =‘On’).

The responsibility relation of the underlying agent model is derived from the instance
declarations of th&esponsibility links in the KAOS model.

TheResp relation of the underlying agent model is a primitive relation. The responsibil-

ity assignments of goals to agents are purely syntactical relations between goals and
agents. The semantics of responsibility assignments is captured in the next section by a
responsibility consistency rule between the transition system of agents and their respon-
sibility assignments.

4.2.8. Relating agent responsibilities and the agent’s transition system

The semantics of responsibility assignment of a goal to an agent is that the agent must
restrict its behaviour so as to ensure the goal [Fea87]. The semantics is captured by the
following consistency rule relating the transition system of an agent to its responsibility
assignments.

Definition (Responsibility consistency rule) --Given an agent transition system and an
agent responsibility model, the following constraint must be satisfied:

for allag [0 AGENT, G [J GOAL
if Resp(ag, G), thenBehaviour(ag) O G.

Note that this formal notion of responsibility does not say that if the behaviours of an
agent satisfy a goal then the agent is responsible for that goal (an agent could satisfy a
property without being required to satisfy it). This consistency rule is therefore not a for-
mal definition (in the strict mathematical sense) of responsibility (that is, a statement that
defines responsibility assignments in terms of other more primitive concepts). It is how-
ever a formal property that captures the meaning of responsibility assignments.

The responsibility consistency rule yields meta-constraints at the language level. In order
to satisfy the responsibility consistency rule at the semantic level, a responsibility assign-

ment at the language level must be operationalized by a set of operational requirements
that satisfy the responsibility meta-constraint (see Section 3.2.7 in Chapter 3).
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4.3. Defining Realizability

Therealizability meta-constraint is intended to provide a precise criterion for identifying
whether a goal can be assigned as the responsibility of an agent based on its monitoring
and control capabilitieqyefore an operational model of the agent is available

As mentioned in Chapter 3, realizability plays a significant role in the goal-driven
requirement elaboration process. It provides a criterion for stopping the goal refinement
process (a goal realizable by an agent need not to be further refined), and it guides the
refinement of goals into subgoals until the latter are realizable by individual agents.

This section is structured as follows. Section 2.1. gives a formal definition of realizability
for a single goal. Section 2.2. gives necessary and sufficient conditions for a goal to be
realizable. These conditions are defined at the semantic level on the set of histories
admitted by the goal. Section 2.3 defines realizability for multiple goals.

4.3.1. Defining Realizability of single responsibility assignments

The realizability meta-constraint is intended to capture what are admissible responsibil-
ity assignments of goals to agents based on the agent’s monitoring and control capabili-
ties.

We say that a goal is realizable by an agent if, given the agent monitoring and control
capabilities, there exists a transition system for the agent such that the behaviour of the
agent issqualto the set of histories admitted by the goal.

Definition (Realizability) -- Let ag be an agent instance with interface variables
Mon(ag), Ctrl(ag), and letG be a goal. The god is realizableby an agenag
iff there gists a transition systef(ag) = <Init(ag), Next(ag)> with

* Init(ag) L] State(Ctrl(ag)
* Next(ag) LI Path(Voc(ag)) x State(Ctrl(ag))

such thaBehaviour(ag) = G.

This definition of realizability requires the existence of an appropriate transition system
for the agent. In the following section and in Chapter 5, we will see how one can estab-
lish whether a goal is realizable or not by an agent from the monitoring and control capa-
bilities of the agent, without referring, implicitly or explicitly, to the transition system of
the agent.

Note that the definition of realizability requires the existence of a transition system for
the agent such th&ehaviour(ag) = G, instead of simply requiring th&ehaviour(ag) [

G. Intuitively, this means that the agent should be able to satisfy thevgtiaut being
more restrictive than required by the godlhis will be illustrated by the third example
below.

Let us first consider an example of a realizable goal. Consider themgiathin[PumpS-
witchOnWhenHighWaterDetected], defined by:

HighWaterSignal="On’ 0 0 PumpSwitch = ‘On’.
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The goal is realizable by thmump_ctrler agent that monitors thidighWaterSignal varia-
ble and controls theumpSwitch variable. A transition system for thimp_ctrler whose
set of behaviours is equivalent to the goal is given by the<prétirNext> such that

(1) sc O Init for all s, O State(Ctrl(pump_ctrler))

(i) <oy, s> O Next  iff if o, (n)(HighWaterSignal) = On (wheren= length(c,,))
thens (PumpSwitch) = On

As a first example of an unrealizable goal, consider the Yahtain[PumpOnWhen-
HighWater], defined by:

WaterLevel = ‘High’ 0 0 PumpMotor = ‘On’.

Note that theoump_ctrler agent does not monitor th&aterLevel variable and does not
control thePumpMotor variable. As a result, it is impossible to find a transition system
for the pump_ctrler such thatBehaviour(pump_ctrler) = PumpOnWhenHighWater. (A
formal proof that such a transition system does not exist is given in the following sec-
tion.) The goal is not realizable by tipemp_ctrler and should therefore not be assigned
to that agent.

To illustrate why we require equality in the definition of realizability, consider the goal
Maintain[PumpSwitchOnWhenHighWater], defined by:

WaterLevel = ‘High’ 0 [0 PumpSwitch = ‘On’.

The pump_ctrler agent controls thé>umpSwitch variable, but does not monitor the
WaterLevel variable. The agent can ensure the goal by always keepinguineSwitch
variable set toOn’, regardless of the value of thgaterLevel variable. More explicitly,
one can show that the following transition for fhenp_ctrler system satisfies the goal:

(i)  scOlnit for all s, O State(Ctrl(pump_ctrler))

(i) <0y, sc>0ONext iff  s(PumpSwitch) = On

The behaviours generated by this transition system are defined by:
0 OO PumpSwitch = ‘On’

These behaviours are stronger than required by the goal. The goal is actually not realiza-
ble by thepump_ctrler, and cannot be assigned to that agent. (We will show in the next
section that there is no transition system for themp_ctrler such thatBehav-
iour(pump_ctrler) = PumpSwitchOnWhenHighWater.)

Therefore, the definition of realizability prevents the assignment of a goal to an agent if
the agent does not have the monitorability and control capabilities to satisfy the goal
without being more restrictive than required by the goal

Note that realizability requires that is mustessiblefor an agent to satisfy a goal with-

out being more restrictive than required by the goal; but that when several goals are
assigned to an agent, the actual transition system of the agent may be stronger than
required by any single goal.

This definition of realizable goal can be viewed as the equivalent at the goal level of the
concept of realizable specification: a specification is said to be realizable if there exists a
program that implements it [Aba89]. There are however two important differences: (i)
our concept of realizability explicitly refers to the variables monitored and controlled by
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the agent, and (ii) we require the existence of a transition system whose behaviours are
equalto the set of histories admitted by the goal, whereas only inclusion is required in
[Aba89].

4.3.2. Semantic Conditions for Realizability

To show that a goat is realizable by an agemt, one can exhibit a transition system
A(ag) such thaBehaviour(ag) = G. In this section, we are interested in the dual problem

of showing that a goal isotrealizable by an agent. A brute force approach would consist

in generating every possible agent transition system and showing for every one of them
that Behaviour(ag) # G. This approach is clearly not feasible. This motivates the intro-
duction of the following theorem. It states three necessary and sufficient conditions for a
goal to be realizable by an agent. These conditions are defined at the semantic level on
the set of paths admitted by the goal. (Syntactical conditions for identifying unrealizable
goals will be considered in Chapter 5.) The limitations of the theorem will be discussed
next.

Theorem 1 (Semantic Conditions for Realizability) --For all G [ Hist(V) such thaiG
# @, G is realizable by an ageay iff the following conditions hold:

(1) for alloy, 0, O Path(V), s U State(V),

if 01 Lloc(ag)02 thena+s |=G iff o,+s|=G
(2) for allo U Path(V), s, s, U State(V),

if 51 Ltri(ag)S2 theno +sy [= G iff 0 +s5[= G

(3) for allh O History(V)
if h |£G then there exists a finite prefixof h such that |2 G

The proof of the theorem is given in appendix A.

We illustrate the three conditions of the theorem by showing how they can be used to
show that a goal is not realizable by an agent. Since the conditions are necessary and suf-
ficient, every goal that is not realizable by an agent violates at least one of the conditions.
1. Goals violating the first condition

Consider the first condition. One can show that a goal is not realizable by an agent by
showing that the goal violates the first condition, i.e. by givirig 62 [ Path(V), ands
[ State(V) such that

01 Bloc(ag) 02 @andoy+s |= G andoy+s [£ G
Example 1.Consider the goal
WaterLevel = ‘High’ [ [ PumpSwitch = ‘On’

We show that the goal is not realizable by thenp_ctrler agent because it violates the
first condition of Theorem 1.
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Let us take two pathg,, 0,5, such thah = length(o,) = length(0,), and defined as fol-
lows:

01 (i) = a5 (i) foriJ[0...n-1]

04 (n) (WaterLevel) < ‘High’

0, (n) (WaterLevel) = ‘High’

01 (n) (v) = 0, (n) (v) for all v # s.WaterLevel

SinceWaterLevel U Voc(pump_ctrler), we have that; [pc(ag)O2- If we now takes
such that

s(PumpSwitch) = ‘Off’,

we have that;+s |= G ando,+s |# G. The first condition of the theorem is therefore
violated, and we have shown that the goal is not realizable Ipytie ctrler.

This goal violates the first condition of Theorem 1 because it refers to the vavailre-
Level that is not at the interface of themp_ctrler.
2. Goals violating the second condition

Consider the second condition. One can violate the second condition by giving
Path(V), ands;, s, [J State(V) such that

s1 Letriag)S2 @ndo +s; |= G ando +s,|# G.

We give three examples of goals that violates the second condition of Theorem 1. Each
of these examples shows a different cause of violation of this condition.

Example 2.Consider the goal
HighWaterSignal = ‘On’ 1 [ PumpMotor = ‘On’.

We show that the goal is not realizable by thenp_ctrler agent because it violates the
second condition of Theorem 1.

Let us take a patb of lengthn such that has not violated, i.e.o |= G, and
o (n) (HighWaterSignal) = On.

We now takes1 ands2 such that
s1(PumpMotor) = ‘On’ s2(PumpMotor) = ‘Off’
s1(v) = s2(v) for all v # PumpMotor

SincePumpMotor OCtrl(pump_ctrler), we have thas, Cetriag) So- We also have that
+s;1 |= G andao +s,|# G. The second condition of the theorem is therefore violated, and
we have shown that the goal is not realizable bytingp_ctrler.

This goal violates the second condition of Theorem 1 because it refers to the variable
PumpMotor that is not controlled by theump_ctrler.

83



A Formal Model for Agents

Example 3.As an example of goal violating the second condition for a different reason,
consider a goal defined by:

U<q HighWaterSignal = ‘On’ 1 [0 PumpSwitch = ‘On’.

This goal is defined only in terms of variables monitored and controlled by the
pump_ctrler agent. Intuitively, that goal is not realizable by themp_ctrler agent
because itefers to the futurevalues of the variablelighwaterSignal. One can show that
this goal also violates the second condition of Theorem 1 as follows.

Let us take a path of lengthn, defined by:

o (i) (HighwaterSignal) = Off forallisuchthab<i<n-d

o (i) (HighwaterSignal) = On for allisuch thah -d<i<n

o (i) (PumpSwitch) = Off forallisuchthab <i<n
togethersl, s2 such that

s1(HighWaterSignal) = ‘Off’, s2(HighWaterSignal) = ‘On’

s1(v) = s2(v) for all v # HighWaterSignal
SinceHighWaterSignal LICtrl(pump_ctrler), we have thad; Ley(ag) So-

Note that the assertion.y HighWaterSignal = On never holds for the path+s1.
Therefore, we have that+s; |= G. However, for the patb+s2, we have:

o+s2 (n-d+1) |= U4 HighWaterSignal = On
0+s2 (n-d+1) |# PumpSwitch = On

Therefore,o +s,|# G; and we have shown that the goal is not realizable by the
pump_ctrler.

Example 4.As a last example of goal violating the second condition of Theorem 1, con-
sider the meeting scheduling problem and the goal:

m.PlanningRequest
0 O (Od: Date):
m.Date =d 0O (O p: Prtcpt): e Intended(p,m) - d O e Cstr[p,m].exclset

For the sake of the example, assume thatleeduler agent is capable of controlling the
date of the meeting, and is capable of monitoring the planing requests and exclusion sets
of participants. One can show that this goal is not realizable byStiheduler agent,
because it violates the second condition of Theorem 1.

Let us take a path of lengthn defined as follows:

o (i) (m.PlaningRequest) = false for allisuch thato<i<n
and choosel, s2 such that

sl |# m.PlaningRequest

s2 |= m.PlaningRequest
0= (Od: Date): (O p: Prtcpt): @ Intended(p,m) — d O e Cstr[p,m].exclset
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Since the state variables.PlaningRequest, Intended(p,m), andCstr[p,m].exclset are
not controlled by the&scheduler agent, we have thay Ltyag)So- We also have thad

+s; |= G and o +s,|# G, because frono +s, there is no next state that satisfies the
goal. The second condition of the theorem is therefore violated, and we have shown
that the goal is not realizable by theheduler agent

In this example, the goal is defined only in terms of variables monitored and controlled
by the agent, and does not refer to the future values of monitored variables. Intuitively,
the goal is not realizable by the agent because there exists a behaviour of the agent’s
environment that makes the goal impossible to satisfy. The specialized condition, called
unsatisfiability characterizing this kind of realizability problem will be defined in chap-

ter 5.

3. Goals violating the third condition
The third condition of Theorem 1 is violated by giving an infinite hishosych that
h |2G
o |=G for all finite prefixo of h.
Example 5.As an example of goal violating the third condition, consider a goal defined
by:
Request 0 ¢ Service
We show that this goal violates the third condition as follows.
Consider an historly such that
(h, i) |= Request  for somei =0, and
(h, j) |# Service for allj>i.

Clearly,h |# G. However, any finite prefixo of h satisfies the goal because for any
finite prefixo of h, there exists a suffik’ of o such that’ |= G. That is, the goal can-
not be violated in a finite time.

According to the third condition, a “pure” liveness property (as classically defined) can-
not be assigned as the responsibility of an agent. The intuition for such restriction is that
a liveness property does not really constrain the behaviours of the agent: the agent can
indefinitely postpone the satisfaction of the goal without infringing on its responsibility.

A violation of a liveness property can also never be observed in the running system.

Even though a liveness property cannot be assigned as the responsibility of a single
agent, a goal on the global system can be a liveness property whose satisfaction can be
achieved through the cooperation of several agents.

Also note that boundesichieve goals of the form

are not liveliness properties in the classical sense. If the agent is responsible for satisfy-
ing any request within 2 days, the goal is violated as soon as a request has not been satis-
fied during two days.
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4. Practical Limitations of Theorem 1

Theorem 1 defines necessary and sufficient conditions that allow one to prove that a goal
is not realizable by an agent. However, the theorem does not provide efficient guidance
for identifying realizability problems during the requirements elaboration process:

» proving a violation of one of the conditions of the theorem requedgus reasoning
at the semantic levein the set of paths admitted by the goal,

« the fact that a goal violates one of the conditions of the theorem does not provide suf-
ficient explanation abowthythe goal is not realizable by the agent (see examples 3
and 4 above).

In Chapter 5, we will provide a complete taxonomy of realizability problems that (i)
allows one to identify realizability problems syntactically form the formal definition of
goals, and (ii) explain why a goal is not realizable, thereby providing guidance for elabo-
rating the requirements model so as to resolve the cause of the realizability problem.

4.3.3. Defining Realizability of multiple responsibility assignments
Up to now, we have considered the notion of realizability feiraylegoal. We extend the
concept of realizability to multiple goals as follows.

Definition (Realizability of multiple goals) -- A set of goal§G;,..., G} is realizableby
an agentyg iff there exists a transition systelag) = <Init(ag), Next(ag)> with

* |Init(ag) LI State(Ctrl(ag)
* Next(ag) LI Path(Voc(ag)) x State(Ctrl(ag))

such that
Behaviour(ag) = N G;.

It is worth pointing out that if two goals are realizable separately, they may not be realiz-
able together. As an example, consider again the p@é@tain[PumpSwitchOnWhen-
HighWaterDetected], defined by:

HighWaterSignal="On’ 0 O PumpSwitch = ‘On’
and the goaWaintain[PumpSwitchOffWhenCriticalMethanMeasure]:
MethaneMeasure = ‘Critical’ 0 O PumpSwitch = ‘Off’

whereMethaneMeasure is monitored by thegump_ctrler. Each of the two goals is sepa-
rately realizable by theump_ctrler. However, the two goals are not realizable together
by thepump_ctrler. Indeed, there is no transition system for the agent that satisfies both
goals. Since the variablétighWaterSignal and MethaneMeasure are not controlled by
thepump_ctrler, this agent cannot prevent the system from reaching asdtatevhich

s(HighWaterSignal) = On

s(MethaneMeasure) = ‘Critical’.
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In such a state, there is no next staitéhat satisfies both goals: the first goal requires the
next state to satisfy

s'(PumpSwitch) = ‘On’,
whereas the second goal requires the next state to satisfy
s'(PumpSwitch) = ‘Off’.

4.4. Summary

This chapter has defined a foundation on which the techniques presented in the following
chapters are built. We have defined a formal model of agents that provides the underlying
semantic domain for the KAOS language features related to the concept of agent. We
have formally defined the realizability meta-constraint that relates the responsibility of
an agent to its monitoring and control capabilities. We also identified necessary and suf-
ficient conditions allowing unrealizability to be identified by reasoning at the semantic
level on the set of paths admitted by the goal. These conditions however do not provide
practical support for reasoning about realizability during the requirements elaboration
process; they require tedious reasoning at the semantic level, and do not provide suffi-
cient explanation about the cause of unrealizability. The purpose of the next chapter is to
define checkable, syntactical conditions for identifying and classifying realizability
problems during the goal refinement process.
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Chapter 5
ldentifying and Classifying
Unrealizable Goals

The objective of this chapter is to propose systematic techniques for supporting the iden-
tification of realizability problems during the goal refinement process.

For that purpose, we define a taxonomy of unrealizability conditions that

» providescheckable syntactical conditiofigr identifying unrealizable goals during
the goal refinement process;

» explainswhy the goal is not realizabje¢o provide guidance for elaborating the model
So as to resolve the cause of unrealizability.

In brief, a goal is not realizable by an agent for at least one of the following reasons:

 lack of monitorability : the goal is defined in terms of variables that are not in the
interface of the agent;

 lack of control: the goal requires control of some variables that are not controlled by
the agent;

 reference to future: the goal constrains the values of controlled variables in terms of
future values of monitored variables;

» goal unsatisfiability: there exists a behaviour of the agent’s environment that makes
the goal impossible to satisfy;

 not finitely violable goal the goal does not constrain the finite runs of the agent, i.e.
it defines a liveness property.

The conditions of unrealizability are precisely defined in the following sections. We also
show that the taxonomy is complete, that is, every goal that is not realizable by an agent
satisfies at least one of the above conditions.

5.1. Viewing Goals as Relations

The taxonomy of realizability problems is intended to provide effective explanations of
why a goal is not realizable. In order to provide such explanation, it is useful to identify
what are the variables that anéended to be constraindyy the goal.

As an example, consider the g&&intainfPumpOnWhenHighWater] defined by:
WaterLevel = ‘High’ 0 0 PumpMotor = ‘On’.

Intuitively, that goal is not realizable by thieumpController agent because it cannot
monitor theWaterLevel variable, and cannot control tiRumpMotor variable. It would

not be meaningful to say that the goal is not realizable byPilmapController because

this agent cannatontrol the WaterLevel, monitorthe PumpMotor; and because the goal
constrains th&VaterLevel based on the future value of tiempMotor. The appropriate
realizability problems are identified only because we know from domain knowledge that
this goal is intended to constrain thempMotor, and not th&VvaterLevel.
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As another example, consider the ‘utility’ go&aintain[GateOpenWhenNoTrainIn-
Crossing] of the railroad crossing problem [Heit96b], for which we consider the follow-
ing simplified definition:

[<g — TraininCrossing [l GateOpen

This goal is intended to constrain the variallleteOpen based on future values of the
variableTrainInCrossing. Therefore, the goal is not realizable byateController agent
because: (i) this agent cannot monitor the varididéninCrossing; (ii) it cannot control
the variableGateOpen; and (iii) the goal refers to future values of the varialiainin-
Crossing.

Note that the temporal logic definition of that goal is semantically equivalent to:

- GateOpen [ 04 TrainInCrossing.

Therefore, if that goal was intended to constrain the variatali@InCrossing rather than
the variableGateOpen, it would have a completely different meaning: it would constrain
the future values of the variablaininCrossing based on the current value of the varia-
ble GateOpen; and the realizability problems would be quite different.

Note also that the concept of reference to the future is a goal property that is independent
of the actual interface of the agent: for the above goal, we want to be able to say that it
constrains the variableateOpen based on future values of the variabtaininCrossing

even though this variable is not monitored by@®ageController.

As yet another example, consider the gaahieve[ConvenientMeetingPlanned] in the
meeting scheduling problem:

m.Requested
0 ¢ (Od: Date):
m.Date = d O (O p: Prtcpt): e Intended(p,m) — d [0 e Cstr[p,m].exclset

From domain knowledge, we know that this goal is intended to constrain the date of the
meeting based of the exclusion sets of all intended participants. Therefore, we will iden-
tify that this goal is not realizable by $cheduler software agent because (i) this agent
cannot monitor the actual exclusion sets of intended patrticipants, and (ii) the goal is
unsatisfiable if the intersection of the exclusion sets of the participants is empty.

Note that goal unsatisfiability is another goal property that is independent of the actual
interface of the agent. In the last example, the actual constraints of the participants are
not monitored by th&cheduler.

In order to define a taxonomy of realizability problems that provide appropriate explana-
tion why a goal is not realizable, we associate to each@aaket

Ctrl(G) O Voc(G)

that denotes the set of variables thatiatended to be constrained by the godle also
define the satlon(G) 1 Voc(G) such thaMon(G) = Voc(G) \ Ctrl(G).

We assume that the sei#l(G) are given by domain knowledge. For instance, we know
from domain knowledge that the goslkintain[GateOpenWhenNoTrain] is intended to
constrain the values of the variableateOpen. Default choices for the seGrl(G) could

also be given based on the syntactical pattern of the goal definition. Usually, the variables
intended to be constrained by the goal appear in the consequent of the goal.

90



Identifying and Classifying Unrealizable Goals

5.2. A Complete Taxonomy of Realizability Problems

We now give a fundamental theorem that gives necessary and sufficient conditions for a
goal relation to be realizable by an agent.

In this theorem, the following notations about goal relations are used to help defining ref-
erence to the future: the sBjy, ¢) (hym) returns the set of all histories of constrained var-

iables that satisfy the goal for the histony,; and the seGy, ¢ (hy) [i] returns all
prefixes up to timeof the histories of constrained variablessigy c) (hy,). Formally,

G, ¢) () = {hc T Hist(C) | (hm, he) U Gv o)}
G(M, ) (hy) [i] = {o. O Path(C) | o, = h¢[i] for someh; O G(M, ) (hm)}-

Theorem 2 --Let G [ Hist(V) andag an agent with monitoring and control capabilities
given byMon(ag) andCtri(ag), respectivelyG is realizable byag if, and only if, there
existsC [ Voc(G) andM = Voc(G)\Ctrl(ag) such that the following conditions hold:

(i) the agent has sufficient monitoring capabilities
M 0 Voc(ag)
(il) the agent has sufficient control capabilities
C U Ctrl(ag)
(iii) Gou,c) is a total relation, that is,
for all hy, O Hist(M) there existé; U Hist(C) such thathy, he) O Gy c)

(iv) Gu,c) does not refer to future values Wi, that is, the values at timeof variables in
C only depend on the previous values of variableg up to timei -1.

(v) G is finitely violable, i.e.
for all h O History(V), if h |# G then there exists a finite prefixof h such that |# G

Condition (iv) is formally captured by the following property requiring that if two arbi-
trary histories of variables inl are equal up to time- 1, then they accept the same path
of variables inC up to timei:

for allhy, hy' O dom Gy ¢y andi= 0
if hy'[i-1] = hyli-1] ori =0 thenGy ¢ (hy) [i1 = Gyw, ¢y (hw) []

The proof of the theorem is given in Appendix B.

Note that conditions (i) and (ii) are syntactical conditions. Conditions (iii) to (v) are
semantic conditions defined on the set of histories admitted by the goal. Syntactical con-
ditions for verifying these conditions are proposed below.

The taxonomy of unrealizability conditions is defined with respect to a given goal rela-
tion Gy ) by taking the negation of conditions (i) to (v) in the above theorem.
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For a goalG, and a given paiiM, C) we will thus use the following criteria:

(i) Lack of monitorability : an agenég lacks monitorability foiGy ¢ iff M (/) Voc(ag)
(i) Lack of control: an agenag lacks control foiGy, ¢ iff C [/ Ctri(ag)

(iii) Goal unsatisfiability: Gy ¢ is unsatisfiable if5 c) is not a total relation

(iv) Reference to future G c) refers to the future values of iff condition (iv) of the-
orem 2 is violated

(v) Not finitely violable goal: G is not finitely violable iff condition (v) of theorem 2 is
violated.

Since the conditions of Theorem 2 are sufficient, we have shown that the taxonomy of
unrealizability conditions is complete.

Each of these conditions is illustrated in turn. We also discuss how such conditions can
be checked syntactically from the formal definition of the goal.

5.3. Identifying Lack of Monitorability

As mentioned before, an agent lacks monitorability in order to realize &gpa) iff
M [/l Voc(ag).

The lack of monitorability of an agent for a g&g{, ) is thus defined by the set
M \ Voc(ag).

As a first example, consider the gd&lintain[PumpOnWhenHighWater] defined by
WaterLevel = High I [J PumpMotor = ‘On’

The goal is intended to constrain the variabBlenpMotor based on the variabMater-
Level. That is, we consider the goal relation

PumpOnWhenHighWater ({ WaterLevel}, { PumpMotor})

Since the variabl&vaterLevel is not among the vocabulary of tiempController agent,
we have identified that tHeumpController lacks monitorability for that variable.

As another example, consider a train control system (cfr. Chapter 9) and thelgoal
tain[SafeAcceleration] formally defined by

Following(trl, tr2) 00 trl.Acc < F(trl.Loc, tr2.Loc, trl.Speed).

That is, the acceleration of a trair following a traintr2 should be less than some value
which is a function of the positions of traimd andtr2 and of the speed afl. The goal

is intended to constrain the variahté.Acc based on the values of the variabieisLoc,

tr2.Loc, trl.Speed, and Following(trl, tr2). The Loc and Speed attributes of theTrain

entity denote the physical location and speed of trains. These attributes are not monitored
by the TrainController software agent. Therefore, tifeainController cannot realize the

goal because it lacks monitorability for the variabieisLoc, tr2.Loc, trl.Speed andFol-
lowing(trl, tr2).
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Having identified the lack of monitorability of an agent provides guidance on how to
elaborate the model so as to resolve the lack of monitorability. Possible ways to resolve
lack of monitorability are described in Section 6.5 of Chapter 6.

5.4. ldentifying Lack of Control

As mentioned before, an agent lacks control in order to realize &gpa) iff
C [/ Ctrl(ag).
The lack of control of an agent for a g@&g, ¢, is thus defined by the set\ Ctri(ag).

As a first example, consider again the g@iaintainfPumpOnWhenHighWater]. The goal
constrains the value of the varial®#@mpMotor; the latter is not directly controllable by
the PumpController agent. Therefore, the goal is not realizable by FuenpController
because it lacks control of the variablémpMotor.

As a second example, consider the gdaintain[SafeAccelaration] defined above. The
Acc attribute of theTrain entity denotes the physical acceleration of the train. This
attribute is constrained by the goal but is not directly controlled byTthController
agent. Therefore, the goal is not realizable byTzénController because it lacks control
for the variablerl.Acc.

Having identified the lack of control of an agent provides us guidance for elaborating the
model. Possible ways to resolve lack of control are described in Section 6.6 of Chapter 6.

5.5. ldentifying Unsatisfiable Goals

As mentioned before, a goal relati@y, ¢ is unsatisfiable if5(y, c) is not a total rela-
tion, i.e.

there existd, O Hist(M) such that there is ng, 0 Hist(C),
such thathy,, he) U Gy, c)-

Note the similarity between the concept of unsatisfiability of a goal relation and the con-
cept of unsatisfiability of an operation in VDM [Jon90]: an operation there is unsatisfia-
ble iff

there exists a satisfying the precondition such that there is no next state
such thats, s’) U Post.

We define thelomain of unsatisfiabilitpf a goal relatiorGy, ¢) to be a set of histories
B U Hist(M) such that

B = Hist(M) \ dom Gy, ¢
A goal is thus unsatisfiable iB # .
(Note also that when the goal is logically inconsistent, we Bavédist(M).)

The following proposition characterizes goal unsatisfiability at the language level.
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Proposition -- A goal relationGy, ¢ is unsatisfiable iff there exists a temporal formula
B whose state variables are allhy such that:

i) Bl=-G

(i) B |#false
_The proposition suggests applying the following steps in order to identify unsatisfiabil-
ity:

1. Negate the goal;

2. Strengthen the goal negation so as to remove predicates involving variahles in
As an example, consider the meeting scheduling problem and the goal defined by

m.PlanningRequest
0 O (Od: Date):
(m.Date =d
Oe (O p: Participant): Intended(p,m) — d O Constaint[p,m].exclset )

The goal requires that when a planning request event occurs for a meeting, a meeting
date is defined so that it is outside the exclusion set of all intended participants. The goal
constrains the possible values of Dee attribute of the meeting.

The negation of the goal is given by the formula

¢ (Om: Meeting):
m.PlanningRequest
00 = (Od: Date):
(m.Date =d
Oe (O p: Participant): Intended(p,m) - d O Constaint[p,m].exclset )

The goal negation can then be strengthened by removing the predicate = d, yield-
ing the formula:

¢ (Om: Meeting):
m.PlaningRequest
0= (Od: Date): (O p: Participant): Intended(p,m) - d O Constaint[p,m].exclset

By construction, this formula satisfies condition (i) in the above proposition. Since the
formula is not inconsistent, we have shown that the goal is unsatisfiable. Therefore, we
have identified that the goal is unsatisfiable when a planing request occurs and there is no
date that is outside the exclusion sets of all intended participants.

Techniques for resolving goal unsatisfiability are described in Section 6.7 of Chapter 6.
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5.6. ldentifying References to the Future

As mentioned before, a goal relation does not refer to the futune ifff the following
condition holds:

there existéy, hy,’ U dom Gy ¢y and iz 0 such that
(hm'-1] = hy[i-1] ori =0) andGy, ¢ (hm) [11# Gqm, ¢y (hm) [1]

Note that the condition of no reference to the future requires that when two histories of
variables inM are equal up to timel, they must accept the same path of variables in

up to timei. This means that a goal should not constrain the values of variables in
based on the future currentvalues of variables iN.

In the sequel, we say that a goafers to the strict futuref M iff the following condition
holds:

there existéy, hy,’ 0 dom Gy ¢y and iz 0 such that
hyy'[i] = hlil @ndGy, ¢) (hy) [ # Gu, ¢y () [

We say that a goal formulation haswgnchronization problenf it refers to the future of
M and does not refer to the strict futurevbf

As an example of goal that refers to the strict future, consider the railroad crossing prob-
lem [Heit96b] and the ‘utility’ goaMaintain[GateOpenWhenNoTrain]:

O<q — (Otr: Train): InCrossing(tr,cr) O cr.Gate = ‘opened’

One can show that the value of tleate attribute is constrained by the future values of
theInCrossing relationship.

As an example of a goal with synchronization problem, consider a train control system
and the goaWaintain[DoorsClosedWhileMoving]:

tr.Moving O tr.DoorsState = ‘Closed’

The goal constrains the value of the variatlboorsState based on the current value of

the variablar.Moving. Therefore, @oorController agent monitoring the variabteMov-

ing and controlling the variable.DoorsState cannot realize the goal. Indeed, if at some
time the doors are opened, and the train starts moving, the door controller would have to
close the doorsimultaneouslyvith the departure of the train.

Identifying whether a goal refers to future values of monitored variables by reasoning at
the semantic level is a tedious process. Therefore, we would like to be able to identify
that a goal refers to the future values of monitored variables from the syntax of the goal
definition. For instance, one can immediately see from the definition of theMpial
tain[GateOpenWhenNoTrain] that the value of the attribut@.Gate is constrained by the
future values of the relationshipCrossing.

Unfortunately, it is not easy to give a general characterization of temporal formulas that
constrain a set of variablésbased on the future values of variablesinThe fact that a

goal constrains variables @based on future values of variablesMrs not equivalent to

the fact that an occurrence of a variablevirmppears in a “future” subformula of the goal
definition. Consider, for instance the following temporal formula:

e PO QW (QOR).
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Pattern of reference to strict future
Future(M) O Past(C)

whereFuture(M) is a future temporal formula on variableshh andPast(C) is a
past temporal formula on variablesGn

Patterns of synchronization problem
Maintain Goals
P(M) O Q(C)
P(M) O 0 Q(C)
PM)O QC)WS
e P(M) O Q(C)W R(M)
"4 P(M) O Q(C)

where P(M), R(M) are state formulas on variablesMn
Q(C) is a state formula on variables@n
S is any state formula.

Achieve Goals
PM)O O Q(COM)
P(M) O ¢ Q(C O M)

P(M) O 0<4 Q(C)
whered [0 M.
where P(M) is a state formula on variableshh

Q(C) is a state formula on variables@
Q(C O M) is a state formula on variables@andM.

FIGURE 5.1. Patterns of references to the future

The occurrence of the variabfeappears in a “future” subformula. However, the formula
does not constrai@ based on the future value Bf one can show that the goal is realiz-
able by monitorind, R, and controllingQ.

In order to help in detecting references to the future, we have started to build a library of
recurrent patterns of goal definitions with references to the future. These patterns are
listed in Figure 5.1.

As an example, one can identify that the gieiaintain[GateOpenWhenNoTrain] refers to

the strict future because its formal definition matches the pattern of reference to strict
future in Figure 5.1. Similarly, one identifies that the geiaintain[DoorsClosedWhileM-

oving] suffers from synchronization problem because its formal definition matches the
first pattern of synchronization problems kaintain goals.
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As an example of a synchronization problemAohieve goals, consider the goal

m.Requested
0 ¢ (Od: Date)
m.Date =d
0 (0 p: Participant): Intended(p,m) - d O Constraint[p,m]. exclset

The goal is intended to constrain the variableDate based on the variables
m.Requested, Intended(p,m) and Constraint[p,m].exclset. The goal matches the follow-
ing pattern of synchronization problems:

P(M) O ¢ Q(C O M)

The goal is not realizable because it constrains the value of the vamebéte based on
thecurrentvalue of the variablestended(p,m) andConstraint[p,m].exclset.

Techniques for resolving references to the strict future and synchronization problems are
described in Section 6.8 of Chapter 6.

5.7. Identifying Unbounded Achieve Goals

The last class of unrealizable goals are goals that do not constrain the finite runs of the
agent assigned to them.

One can identify that a temporal formula is a liveness property from the structure of the
Buchi automaton equivalent to that formula [Alp87].

In practice, we consider that a goal does not constrain the finite runs of an agent if its for-
mal definition matches one of the following patterns:

ROOS,ROPUS
5.8. Summary

We have defined a taxonomy of realizability problems that allows one to identify unreal-
izability from the formal definition of goals, and provide explanations about why the
goal is unrealizable. We have also proved that this taxonomy is complete: every unrealiz-
able goal satisfies at least one of the realizability problem. Techniques for resolving each
kind of realizability problem are described in the following chapter.

97



Identifying and Classifying Unrealizable Goals

98



Agent-Driven Tactics for Elaborating Goal Models

Chapter 6
Agent-Driven Tactics
for Elaborating Goal Models

This chapter proposes a systematic technique for identifying agents and their capabili-
ties, and for refining goals into subgoals until the latter are realizable by single agents.

The general principle is to provide a library of specification elaboration tactics whose

applications are driven by the need to resolve violations of the realizability meta-con-

straint. Specific tactics are provided for each category of realizability problem. These

tactics provide systematic guidance for recursively refining goals into subgoals, and for
identifying new agents. Alternative goal refinements are explored through the application
of alternative tactics. Formal goal refinement patterns associated with the tactics provide
guidance for elaborating goal refinements that are proved correct.

The chapter is structured as follows. Section 6.1 describes the general principle of using
agent-driven tactics for elaborating goal models. Section 6.2 shows a first example of
tactics and its application. Section 6.3 discusses the benefits of agent-driven tactics for
elaborating requirements. Section 6.4 describes how the library of tactics has been built
and discusses the coverage of the library. Sections 6.5 to 6.11 describe the library of
agent-driven tactics in detalil.

6.1. Basic Ildea

Specification elaboration tactiae heuristic rules that provide guidance for elaborating
requirements models. Applications of tactics transform the model so as to satisfy some
process-level objectives [Dar95].

Agent-driven tacticgre specification elaboration tactics whose applications are driven
by the need to resolve unrealizable goals. Applications of agent-driven tactics result in
transformed goal, object, and agent models.

The description of tactics used in the thesis is based on the ICARUS meta-model for

process description and its extension to process-level objectives [Dar95]. Specialization
links between tactics are furthermore introduced to help requirements engineers browse
the library of tactics.

Each tactic is defined by the following items:

« amotivation that describes the process-level objective addressed by the tactics.

» aprecondition that characterizes the current state of the specification model to which
the tactic can be applied.

» an applicatiorheuristic that defines when the tactic should be applied. Application
heuristics are proposed to and evaluated by requirements engineers. They guide them
in selecting which tactic to apply.

» apostcondition that characterizes the state of the specification model after applica-
tion of the tactic. Postconditions are defined by their effects on the object model, goal
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model and agent models, respectively. A setfaimal goal refinement patterns
[Dar95, Dar96] associated to the tactics is used to define formally the goal refine-
ments produced by the tactic.

The tactics are organized into specialization hierarchy This hierarchy is used to
browse the library of tactics and select some appropriate one. Specialized tactics inherit
features from their parent tactics in the usual way: more specialized tactics have stronger
pre- and post-conditions as well as stronger heuristics. More specialized tactics therefore
provide more specific guidance.

Figure 6.1 shows the top structure of the library of agent-driven tactics. The library is

organized according to the taxonomy of realizability problems defined in Chapter 5. Spe-
cialized tactics for resolving each kind of realizability problem are defined in Sections

6.5t0 6.11.

Agent-Driven Tactics

Resolve Resolve Resolve Resolve Resolve
Lack of Lack of Reference Goal Unbounded
Monitorability Control To Future Unsatisfiability Achieve Goal

FIGURE 6.1. The library of agent-driven tactics

6.2. A First Example

As a first example, Figure 6.2 shows the definition of the tantroduce accuracy goal
that is a specialization of the tactesolve lack of monitorability.

As an example of application of the tactic, consider the mine pump problem and the goal
Maintain[PumpOnWhenHighWater]:

WaterLevel = ‘High’ O PumpMotor = ‘On’

The goal is unrealizable by RumpController agent because it lacks monitorability for
the WaterLevel variable. An application of the tactiatroduce accuracy goal resolves
that lack of monitorability by elaborating the object and goal models as follows:

1. Object model elaboration the object model is enriched with a new variable
HighWaterSignal.

2. Goal model elaboration the goalMaintainfPumpOnWhenHighWater] is refined into
the subgoals:

Maintain[HighWaterDetected]
Maintain[PumpOnWhenHighWaterDetected].
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Tactic introduce accuracy goal
Motivation : resolve lack of monitorability
Precondition: the agengg lacks monitorability ofn in order to realiz&y, ¢,

Heuristics: the tactic should be applied when one can identify an intermediate yaria-
ble i that can be related tm through some accuracy goal. (The accuracy progerty
relatingi tom can also be a domain property.)

PostCondition: The tactic elaborates the object and goal models as follows:

1. Object model elaboration.The object model is enriched with a new variable
denoting an image of the variahbte

2. Goal model elaboration.The unrealizable goal is refined into an accuracy goal
relatingi to m, and a companion subgoal whose definition refers to the variaples
instead oim. Two formal refinement patterns for the tactic are shown below.

0G=m)//G {mli} P(m) - Q) G{Pm)/Q()}”~

(a)introduce accuracy goal on variable (b) introduce accuracy goal on predicate

The notationG{x/y} is used to denote the substitution of every occurrencelyfy in
the definition ofG. The validity of these goal refinement patterns is based on theg sub-
stitutivity property of temporal logic [Man92]. In the pattanfroduce accuracy goal on
predicate, the symbolsP(m) and Q(i) are used to denote formulas involving the state
variablesm andi respectively.

The patternsntroduce accuracy goal on variable andintroduce accuracy goal on predicate
correspond to alternative ways of applying the tactic.

Variants of these patterns dealing witbn-ideal accuracy goalsvolving tolerances
and delays are discussed in Section 6.5.4.3.

Specialization introduce tracking object, introduce sensor agent

FIGURE 6.2. The tactithtroduce accuracy goal

These goals are formally defined by applying the pattetmoduce accuracy goal on
predicate with the following instantiation:

P(m): WaterLevel = ‘High®  Q(i): HighWaterSignal = ‘On’
The resulting goal definitions are thereby obtained:

HighWaterSignal = ‘On’ = WaterLevel = ‘High’

HighWaterSignal = ‘On’ O PumpMotor = ‘On'.
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As another example of application of the same tactics, consider the patient monitoring
problem [Ste74] and the goakhieve[AlarmRaisedForCriticalPulseRate]. Assume that
the goal is formally defined as follows:

p.PulseRate O p.SafePulse [0 0.4 (Oa: Alarm): a.Raised Oa.Loc = p.BedNbr

The goal is not realizable by tHatientMonitoring software agent because it lacks moni-
torability of the variableg.Pulserate, p.SafePulse, andp.BedNbr. The tacticsntroduce
accuracy goal can be used to resolve such lack of monitorability. An application of that
tactic yields the following elaboration of the object and goal models:

1. Object model elaboration-- The object model is enriched with a new obj&eiti-
entinfo denoting information known about patient status, antracking relationship
relatingPatientinfo to Patient (see Figure 6.3).

Patient
| AlarmForCriticalPulseRate / PulseRate
SafePulse
BedNbr

AccuratePatientTracking /

[ AccuratePatientinfo [/ AlarmForCriticalPulseRatelnfo / Tracking

Patientinfo

PulseRate

SafePulse
BedNbr

FIGURE 6.3. Goal model and object model for the patient monitoring system after
application of the tactintroduce accuracy goal

2. Goal Model Elaboration -- The goalAchieve[AlarmRaisedForCriticalPulseRate] is
refined into the following subgoaBigure 6.3):

Goal Maintain[AccuratePatientInfo]
FormalDef [ p: Patient, pi: Patientinfo
Tracking(pi,p)

1l

pi.PulseRate = p.PulseRate

O pi.SafePulse = p.SafePulse

O pi.BedNbr = p.BedNbr

Goal Achieve[AlarmRaisedForCriticalPulseRatelnfo]
FormalDef [ pi: Patientinfo
pi.PulseRate [ pi.SafePulse O 0.4 (Ca: Alarm): a.Raised Ua.Loc = pi.BedNbr

Goal Maintain[PatientTracked]

FormalDef

(O p: Patient) O (0! pi: Patientinfo): Tracking(pi,p)
O

O p: Patient, pi: Patientinfo

Tracking(pi,p) O 0O Tracking(pi,p)
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The process of identifying realizability problems and applying agent-driven tactics to
resolve these problems is applied recursively until all subgoals can be made realizable by
single agents. For instance, the gbd&lintain[AccuratePatientinfo] is still not realizable

by a single agent in the domain considered. Further refinements of that goal will be
described below.

6.3. Benefits of Agent-Driven Tactics

Agent-driven tactics are useful for the following reasons:

» They providesystematic and recursive guidanoe elaborating requirements models;

» They provide ways texplore alternative goal refinements

» Formal goal refinement patterns associated with the tactics generate goal refinements
that areproved correctwhile hiding formal reasoningrom the requirements engi-
neers [Dar95].

Each point is illustrated in turn.

6.3.1. Systematic elaboration of requirements

Agent-driven tactics provide systematic guidance for recursively refining unrealizable
goals into subgoals until the latter can be assigned as responsibilities of single agents.

For example, Figure 6.4 shows a portion of the goal refinement graph for the patient
monitoring problem; the graph is generated by recursively applying agent-driven tactics
S0 as to resolve realizability problems.

At the top of Figure 6.4, the goalchieve[NurselnterventionForCriticalPulseRate] is
defined by:

p.PulseRate [ p.SafePulse U Oginterevention_delay (I N: Nurse): Intervention(n,p)

That goal is unrealizable biurse agents because they lack monitorability of the
patients’ pulse rates. A tactic calledlit lack of monitorability with milestone is used to
resolve such lack of monitorability by generating the subgoals:

Achieve[AlarmForCriticalPulseRate]
Achieve[NurselnterventionForAlarm].

The application of this tactic also introduces the n&larm entity together with the
PatientMonitoring software agent that controls this entity. Thlarm entity is monitored
by Nurse agents, and the second subgoal is assigned as responsibility of that agent.

As seen before, the generated subgadlieve[AlarmForCriticalPulseRate] is unrealiza-
ble by thePatientMonitoring software agent; and the tactigtroduce accuracy goal can
be used to resolve that lack of monitorability; it generates the subgoals:

Maintain[AccuratePatientinfo]
Achieve[AlarmForCriticalPulseRate]

Maintain[AccuratePatientTracking]
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/ NurselnterventionForCriticalPulseRate /

Patient
Monitoring

Accurate Accurate Accurate
BedNbrinfo PulseRatelnfo SafePulseRangelnfo

Accurate PulseRatelnfo
PulseRateMeasure BasedOnSensorMeasure

-
~_Thiroduce accuracy goal < 5
-

AccurateMapping PulseRatelnfo
Patient/PulseRateSensor BasedOnMeaureOfMappedSensor
Patient
Monitoring

FIGURE 6.4. Applying agent-driven tactics for the patient monitoring problem

[N

The entityPatientInfo is also identified through the application of this tactic. This entity
is declared as an internal variable of tiRatientMonitoring agent, and the goal
Achieve[AlarmForCriticalPulseRate] is now realizable by that agent.

The tacticsplit lack of monitorability by cases is then used to refine the gomlain-
tain[AccuratePatientInfo] into cases. The generated formal definition for the ddaih-
tain[AccuratePulseRatelnfo] is given by:

Tracking(pi,p) O pi.PulseRate = p.PulseRate

This subgoal is unrealizable by thrRatientMonitoring software agent because it lacks
monitorability of the patients’ pulse rates. The tadticoduce sensor agent is then used
to refine that goal into the subgoals:

Maintain[AccuratePulseRateMeasure]

Maintain[PulseRateInfoBasedOnSensorMeasure]
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The application of this tactics also introduces th@seRateSensor agent capable of
monitoring patients’ pulse rates, and assigns the Blaaitain[AccuratePulseRateMeas-
ure] to that agent. The generated formal definition for the companion subgmial
tain[PulseRatelnfoBasedOnSensorMeasure] is given by:

Tracking(pi,p) O HasPulseRateSensor(p, s) 0 pi.PulseRate = s.PulseMeasure

This goal is still not realizable by theatientMonitoring agent because the agent lacks
monitorability of the relationshipiasPulseRateSensor. (In order the realize the goal,
the PatientMonitoring agent has to know which pulse rate sensor is connected to which
patient.) Another application of the taciitroduce accuracy goal resolves that lack of
monitorability by refining the goal into:

Maintain[AccurateMappingPatient/PulseRateSensor]
Maintain[PulseRateInfoBasedOnMeasureOfMappedSensor].

The first subgoal is an accuracy goal that could be assigned as responsibilityjNaf¢be
agent; the second subgoal can be assigned as responsibilityRaitidgr@Monitoring soft-
ware agent.

The agent interface model that has been gradually elaborated by the above tactics is
shown in Figure 6.5.

PulseRate

PulseRate
Sensor

PulseRateMeasure

Intervention

Nurse

Alarm

Patient.SafePulse
HasPulseRateSensor

Patient
Monitoring

FIGURE 6.5. Partial agent interface model for the patient monitoring problem derived by
application of the tactics in Figure 6.4.

6.3.2. Exploration of alternatives

Agent-driven tactics allow for the exploration @fternative goal refinements and
responsibility assignments. For every realizability problem, alternative applications of
agent-driven tactics can be considered. Such alternative applications produce alternative
goal refinement and agent models, corresponding to alternative system designs in which
the boundaries between the automated system and its environment may be fairly differ-
ent.

As a first example, consider the meeting scheduling problem and the goal
Achieve[PrtcptsCstrknown]; this goal requires that information about participants’ date
constraints are eventually accurately known by the scheduler.
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This goal is not realizable by thdeetingScheduler agent because the latter cannot mon-

itor the actual date constraints of participants. A first way to resolve this lack of monitor-
ability is to apply the tactisplit lack of monitorability with milestone so as to produce the

first And-refinement in Figure 6.6. An alternative way to resolve this lack of monitorabil-

ity is to apply the tactiéntroduce accuracy goal so as to produce the secofdd-refine-

ment in Figure 6.6. In the first alternative, participants’ constraints are obtained by
sending constraint request messages to the participants; in the second alternative, they
are obtained from electronic agendas of the participants.

Achieve
PrctpsCstrkKnown]

P - - o -

~ -

-— - - -

T 2g

AND AND
Achieve Achieve Maintain Achieve
[PrctptsCstr [RequestedCstr [Accurate [PrtcpsCstrknown
Requested] Provided] PrtcpsAgenda] FormAgenda]

FIGURE 6.6. Alternative refinements of the g@ahieve[PrtcptsCstrkKnown]

As another example, consider again the mine pump control system and thelajoal
tain[PumpOnWhenHighWater]. We previously applied the tactiatroduce accuracy goal

on predicate to produce the subgoal®aintain[HighWaterDetected] and Main-
tain[PumpOnWhenHighWaterDetected]. The alternative tactiintroduce accuracy goal

on variable can be used to produce the alternative subgdmtain[AccurateWater-
Measure] and Maintain[PumpOnWhenHighWaterMeasure]. This alternative refinement
results in alternative agent responsibilities and interfaces: a ulgteSensor agent is
responsible for measuring the water level, and the task of comparing the measured water
level against its high level is transferred to PuenpController agent.

6.3.3. Formally complete goal refinements

Formal goal refinement patterns associated with the tactics help produce goal refine-
ments that are proved complete [Dar95, Dar96]. Formal goal refinement patterns are
abstract refinement links between abstract goal definitions. They are proved correct once
and for all, and can be reused through instantiation in many application domains. Reus-
ing a pattern entails reusing its proof. Formal reasoning is therefore hidden from the

requirements engineer.

Our work focuses on the use of goal refinement patterns for the constructive elaboration
of goal refinement graphs. Formal goal refinement patterns can also be used for checking
given goal refinements for completeness, and for identifying goals and assumptions that
were overlooked in the first place (see [Dar95, Dar96] for details).
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6.4. Building a Library of Agent-Driven Tactics

To be effective in practice, the library of agent-driven tactics should have the following
gualities.

» Coverage the library should provide effective guidance for situations that are
encountered by requirements engineers.

* Relevance:the library should not be polluted by irrelevant tactics.

* Retrievability : the library should be organized so that relevant tactics can be easily
retrieved.

We first describe how relevant tactics have been identified and classified for retrievabil-
ity. The coverage of the library is addressed next.

6.4.1. ldentifying tactics

Two complementary approaches were followed to identify tactics.

Inferring tactics from examplesWe inferred tactics from examples of goal-oriented
specifications in the literature. These include a lift system [Dar91, Fea87], a library sys-
tem [Dar91], the meeting scheduler problem [Lam95], resource allocation systems
[Dar95], the package router [Lon82], and a turnstile system [Jack95]. We also used
examples of applications of formal goal refinement patterns given in [Dar95, Dar96].
Besides, we inferred tactics from our own cases studies; the latter were performed by
systematically identifying and resolving realizability problems. These case-studies
include the mine pump problem [Jos96], a patient monitoring system [Ste74], an ambu-
lance dispatching system [LAS93], and an automated train control system [Win99]. In all
these examples, we tried to identify goal refinements that could be motivated by the need
to resolve violations of the realizability meta-constraint; we generalized them into corre-
sponding agent-driven tactics. In some cases, the goal refinements had to be adapted
because they were incomplete or because they did not adequately resolve violations of
realizability. These tactics were then classified according to the kind of realizability
problem they resolve.

Systematic exploration of the space of tactid@ complement the identification of tac-

tics from examples, we also used the specialization hierarchy as a map to systematically
explore the space of tactics. For each realizability problem, we tried to systematically
identify from the definition of that problem what alternative tactics could be used to
resolve it. In order to achieve complete coverage of the space of tactics, we tried to iden-
tify tactics so that the specialized tactics offer a complete specialization of the parent tac-
tics. We also noted that lack of monitorability and lack of control are symmetric
problems. We exploited that symmetry to identify symmetric tactics for resolving lack of
monitorability and lack of control.

To give an idea of the space of tactics covered, Figure 6.7 shows the tactics that have
been identified so far. These tactics are fully defined in Sections 6.5 to 6.11.
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Resolve
lack of monitorability

N

add monitorability split
lack of monitorability

accuracy goal unmonitorable state
by monitorable events

split split split
lack of monitorability lack of monitorability |5ck of monitorability
with milestone by chaining by cases

(a) Tactics for resolving lack of monitorability

Resolve
lack of control

RN

add control split
lack of control

introduce ~———_—~ - :epl:agr.‘ tat
actuation goal uncontrofiable state
by controllable events

split split split
lack of control lack of control lack of control
with milestone by chaining by cases

(b) Tactics for resolving lack of control

Resolve
References to Future

Resolve Resolve
References to StrictFuture Synchronization Problem
temporally apply apply replace current by
weaken goal  anticipation pattern mutual exclusion previous
pattern

(c) Tactics for resolving references to the future

Resolve Resolve
Unsatisfiability Unbounded Achieve Goals
weaken prevent add real-time  replace eventually
unsatisfiability unsatisfiability bound by next
(d) Tactics for resolving (e) Tactics for resolving
goal unsatisfiability unbounded Achieve goals

FIGURE 6.7. The library of agent-driven tactics
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6.4.2. Coverage of the library

The coverage of the library can be assedbedreticallyby determining the coverage of

the specialization links of the library. Note that the top structure of the library of agent-
driven tactics is complete, because Theorem 2 defines a complete taxonomy of realiza-
bility problems (see Section 5.2). However, these high-level tactics provide only limited
guidance for elaborating the model. Further specialized tactics are therefore defined to
provide more specific guidance. Theoretically determining the coverage of these special-
ized tactics is more difficult. Specialized tactics are based on recurrent patterns of goal
definitions and goal refinements. The coverage of those specialized tactics is then relative
to the coverage of the taxonomy of goal patterns.

The coverage of the library can also be assessmdirically by determining to what
extent these tactics can be used to effectively specify goal refinement graphs for real sys-
tems. In our experience, the current library of tactics provides effective guidance for
elaborating goal refinement graphs for all case-studies we have considered. A systematic
experiment based on further case studies, in the spirit of the one described in [Dwy99],
should be carried out for validating the coverage of the library more precisely and possi-
bly for identifying further tactics.

The tactics identified so far make little use of goal categories (such as satisfaction goals,
information goals, accuracy goals, security goals, etc.). Further specialized tactics could
be explored by identifying specialized ways of resolving realizability problems for spe-
cific categories of goals. The basic idea for such specialized tactics would be similar to
the idea of using problem frames [Jac95b, Jac2K].

6.5. Resolving Lack Of Monitorability

We first detail tactics for resolving lack of monitorability. Two ways of resolving lack of
monitorability of an agent consists in adding the necessary monitoring links to the agent
or refining the goal further. The tactiasld monitorability andsplit lack of monitorability

are described next. We then describe further specialization of the salitiack of mon-
itorability.

6.5.1. Add monitorability

The simplest way to resolve an agent’s lack of monitorability for a variabieto add a
monitoring link between the agent and the variable. This tactic can however be applied
only if m can actually be monitored by the agent. Whemrannot be monitored by the
agent, the goal has to be refined further.

Tactic add monitorability
Motivation : resolve lack of monitorability

Precondition: the agenag lacks monitorability of variablen in order to realize
G, )

Heuristics: the tactic should be applied only if the variable can actually be made moni-
torable by the agent. When the variable cannot be made monitorable, one has to consider
the alternative tactisplit lack of monitorability described below.
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PostCondition: a new monitorability link is created betwesmnandm.

Example: Consider the meeting scheduling problem and the golaikeve[ParticipantsC-
strRequested] defined by:

Intended(p,m) Ul Scheduling(sch,m)

O ¢ (Ocstr_req: CstrRequest):
cstr_req.Sent

[cstr_req.MeetingName = ¢ m.Name
[lcstr_req.delivery_address = @ p.address

Assume that given the current agent interface modelStiheduler agent lacks monitor-
ability of the predicaténtended(p,m). The tacticadd monitorability resolves that lack of
monitorability by declaring the following monitoring link and instance-level declaration:

Monitoring [Scheduler, Intended]
InstDecl : Scheduling(sch,m) O Mon(sch, Intended(p,m))

Note that in order to realize the goal tBeheduler also lacks monitorability of the varia-

ble p.Address that denotes the actual e-mail address of the participant. If that variable is
not directly monitorable by th&cheduler agent, the tactiadd monitorability cannot be
applied and the goal has to be further refined.

6.5.2. Split lack of monitorability

When an agent lacks of monitorability for a variable that cannot be made monitorable by
that agent, the goal has to be refined by applying the tatititack of monitorability.

Tactic split lack of monitorability

Motivation: resolve lack of monitorability

Precondition: the agenag lacks monitorability ofn in order to realiz& gy, ¢)-
(The symbom denotes a set of variables, possibly a singleton, includedl in

Heuristics the tactic should be applied whencannot be monitored kag.
PostCondition

1. Object model elaboration.The object model is enriched with new intermediate
variables. (i also denotes a set of variables).

2. Goal model elaboration.The goalG is refined into the subgoal&l, ;, that
relatesi to m, andG2(p\ m) 0 i, c)- Note thatG2 does not refer to the unmonitorable
variablesm.

[Cw.c/

Glm, G2mmnicy”

FIGURE 6.8.split lack of monitorability
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Example. Consider again the mine pump control system and the refinement of the
goalMaintain[PumpOnWhenHighWater] into the subgoals:

Maintain[HighWaterDetected]
Maintain[PumpOnWhenHighWaterDetected].

This refinement corresponds to an application of the tagpiiclack of monitorability
instantiated as follows:

m: Waterlevel i: HighWaterSignal
Gl(y,) : Maintain[HighWaterDetected]

G2: Maintain[PumpOnWhenHighWaterDetected].

The description of the tactic is slightly simplified. As will be seen below, tactics for
resolving lack of monitorability may sometimes refiGeinto more than two sub-
goals. Also, the assertio@l relatingi to m can be a domain property instead of a
goal.

Further guidance for refining goals so as to split lack of monitorability are described
in specialized tactics.

3. Agent model elaboration.The new intermediate variablésnust be monitorable
by ag or must be internal variables afy. This ensures that the subgaag refers to
fewer unmonitorable variables than the parent goal

A first way to elaborate the agent model consists in identifyingamitoring agent
capable of monitoringn and controllingi, and in assigning the go&@l,; to that
agent (Figure 6.9). In the context of control systems, external sensors are typical
examples of such monitoring agents.

Glim.i G2mwmpoicy”

Monitoring
agent
|
agent

FIGURE 6.9.ntroduce monitoring agent

Alternatively, the new intermediate variablean also be declared as an internal varia-

ble of some agent. This alternative elaboration of the agent model makes the goal

refinement graph more robust with respect to changes of monitoring agent or agent

interfaces. A heuristics of the goal refinement process is therefore to favour such a

device-independent goal refinement and to introduce monitoring agents and interfaces
as late as possible in the goal refinement process. This heuristics is further discussed
below.

Example 1.In the above refinement of the gddhintain[PumpOnWhenHighWater], the
agent model is also elaborated by introducingHiighWaterSensor agent, capable of (i)
monitoring whether the actual water level is above high and (ii) controllingHttiewa-
terSignal variable; The goaflaintain[HighWaterDetected] is then assigned to that agent.
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Example 2 To illustrate the case where the new intermediate variable is an internal vari-
able, consider the patient monitoring system and the refinement of the goal
Achieve[AlarmForCriticalPulseRate] into the following subgoals described in Section
6.2:

Maintain[AccuratePatientInfo]
Achieve[AlarmForCriticalPulseRatelnfo]

Maintain[PatientTracked]

This refinement corresponds to an application of the tagiit lack of monitorability
instantiated as follows:

m: {Patient.PulseRate, Patient.SafePulse, Patient.BedNbr}
i: {Patientinfo.PulseRate, Patientinfo.SafePulse, Patientinfo.BedNbr}

Gl(m,) : Maintain[AccuratePatientinfo]
G2: Achieve[AlarmForCriticalPulseRatelnfo]

(The goal refinement also uses a third subdgdaintain[PatientTracked] that requires
every patient to be tracked by exactly one instance d#dtientinfo entity.)

Note that in this application of the tactic, the intermediate eméyentinfo is declared

as an internal object of theatientMonitoring software agent. This elaboration does not
yet commit to particular sensor agents and interfaces between sensors &atiethie
Monitoring software. Such agents and interfaces are identified latter on when refining the
goal Maintain[AccuratePatientInfo].

Device-independent vs. device-dependent goal refinements

A good practice for elaborating goal refinement graphs is to start with device-independ-
ent goal refinements and introduce monitoring agents as late as possible in the goal
refinement process. This makes goal graphs more robust with respect to changes of mon-
itoring agents and interfaces between agents. The reader may compare the two goal
refinement graphs shown in Figure 6.10.

In the device dependent goal refinement (Figure 6.1Gg), is refined into subgoals
Gl and G2 ), and the intermediate variabigés declared as an interface variable
between th&ensor agent and th8oftware agent.

In the device-independent goal refinement (Figure 6.10.b), an internal variagdirst
introduced to denote an internal image of the environment varmbléhe goaH y, ) is
then refined by introducing the sensor agent and the interface varialie two goal
graphs describe the same system; only the model structures differ.

The benefit of device-independent goal refinement is more robustness of the resulting

goal graph with respect to changes of agents and agent interfaces. Alternative interfaces
between the sensor and the software can be explored through alternative refinements of
the goalHy, m= while keeping the goaoft ) unchanged. (The same principle is used

in the SCR method to make the description of the software specification easier to change

[Heit99].)
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[Sa/
A

In(m.i) /SOft(i.cA

m [ c
—{ Sensor )—< Software )—m

(a) device-dependent goal refinement

[Cma/

/H(m.m*) /SOft(m*,C) \
Software

IN(m,i) /'“*(i,m*vg
(Semsor)

g

m [ c
—(Sensor)—»<Software)—m

(b) device-independent goal refinement

FIGURE 6.10. Device-dependent vs. device-independent goal refinements

One may argue that such practice violates the principle requiring agent specifications to
be stated in terms of interface variables only [Zav97]. Note however that this principle is
applicable only when the interfaces between the agents are known. This is generally not
the case during the early phase of the requirement elaboration process. Furthermore, the
internal model that a software agent maintains about its environment is more stable than
the interfaces of the agents, and determines the possible evolutions of the system [Jac83].
Therefore, favouring device-independent goal refinements in which subgoals are defined
in terms of internal variables allows goals to be refined without too early commitments to
specific interfaces, and alternative agent interfaces to be explored later on in the goal
refinement process.

Note that once the agent interfaces are known, the internal variables can be declared as
derived variables defined in terms of interface variables so that the requirement on the
software and other agents are then defined in terms of interface variables only [Zav97].

Specializations Specialized tactics for splitting lack of monitorability define specialized
patterns for refining a goal so as to resolve lack of monitorability. These tactics vary
according to the pattern of the go@sG1, G2, and the nature of the intermediate varia-
blesi. These specializations are shown in Figure 6.11.
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split
lack of monitorability

— replace
introduce unmonitorable state
accuracy goal by events

split split split
lack of monitorability lack of monitorability lack of monitorability
with milestone by chaining by cases

FIGURE 6.11. Specializations of the taaijalit lack of monitorability

6.5.3. Introduce Accuracy Goals

We first discuss the basic tactic for splitting lack of monitorability by introduction of
accuracy goals. (This tactic was already defined in Section 6.2.) Specialization and vari-
ants of this tactic are described next.

6.5.3.1. The basic tactic

The basic tactiintroduce accuracy goal is defined in Section 6.2 (see in Figure 6.2). We
make some further comments here.

Remark 1. The elaboration of the agent model for this tactic is inherited from the parent
tactic split lack of monitorability. That is, a first way of elaborating the agent model is to
identify a monitoring agent capable of monitoringand controllingi, and assign the
accuracy goal as responsibility of that agent. An alternative way of elaborating the agent
model is to declare the intermediate variable as an internal variable.

Remark 2. The critical step in applying the tactistroduce accuracy goal is to identify

the intermediate variable The choice of such a variable is ultimately constrained by the
capabilities of agents available in the domain. Backtracking may be necessary if it latter
turns out that available sensors are not sufficient for ensuring the accuracy goal rielating
tom.

The tacticintroduce accuracy goal on variable andintroduce accuracy goal on predicate
correspond to two alternative choices the intermediate variables.

Example Remember the alternative refinements of the ¢shtain[PumpOnWhen-
HighWater] described in Section 6.3.2. The tadtitoduce accuracy goal on variable
ultimately results in assigning to\elaterSensor agent the responsibility of measuring
the water level; the tactimtroduce accuracy goal on predicate ultimately results in
assigning to aHighWaterSensor agent the responsibility of detecting whether the
water level is above some high measure.

Remark 3. Instead of an accuracy goal, one can also identify a domain property relating
the unmonitorable quantity to the intermediate variabie

Example [Jac93]:A goal in certain avionic systems is to ensure that reverse thrust
can be engaged if, and only if, the plane is landing and already on the runway:

RunningOnGround < RevThrustEnabled

The goal is not realizable by the software agent because it cannot monitor the predi-
cateRunningOnGround. The tacticintroduce accuracy goal can then be applied by
observing that when the plane is running on the ground, its wheels are turning. (This
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property happens to be false when the plane is aquaplaning. We will come back to this
problem in Chapter 8.) The refinement patténnoduce accuracy goal on predicate
is then instantiated as follows:

P(m) : RunningOnGround  Q(i) : WheelsTurning
The following assertions are thereby derived:

DomProp: RunningOnGround < WheelsTurning

SubGoal: WheelsTurning < RevThrustEnabled

Note that the accuracy property is declared in this example as a domain property
rather than as a goal.

The resulting subgoal is itself not realizable because the software agent lacks moni-
torability for the predicatenheelsTurning. The tacticintroduce accuracy domain
property can again be used to resolve such lack of monitorability by introducing the
variable WheelsPulse that is monitorable by the software agent, and using by the
domain property

WheelsTurning < WheelsPulse =‘On’
to generate the subgoal
WheelsPulse = ‘On = RevThrustEnabled

This subgoal is now realizable by the software agent.

6.5.3.2. Introduce tracking object

The tacticintroduce tracking object is defined as follows.
Tactic introduce tracking object
Specialization Ofintroduce accuracy goal

Heuristics. This tactic should be considered when lack of monitorability for an object
Obj can be resolved by maintaining an internal image of the object.

PostCondition.

1. Object model elaboration.If the unmonitorable variablm is an attribute of some
object Obj, the intermediate variableis modelled as an attribute of a new object
Objinfo denoting an internal image of the objeaij. A Tracking relationship is also
introduced to relate the obje@bj andObjinfo (see Figure 6.12).

_ Tracking .
Obj Objinfo

m i
FIGURE 6.12. Modeling an object and its image

(This Tracking relationship is based on the same idea asMhpping meta-relation-
ship discussed in [Dar93]. As opposed to the latt@raaking relationship isdomain-
dependentSuch a domain-dependent relationship must be used in place Wiiihe
ping meta-relationship. In this thesis, tiMapping meta-relationship has been sup-
pressed from the KAOS meta-model.)
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Examples.In the patient monitoring problem, lack of monitorability for attributes of
the Patient entity is resolved by introducing the entiBatientinfo that denotes an
image of the actual state of the patient. In an ambulance despatching problem, lack of
monitorability for ambulance status and location is resolved by introducimgréun-
lancelnfo object with the corresponding attributes (see Chapter 9); similarly, lack of
monitorability for attributes of théncident object can be resolved by introducing an
Incidentinfo object.

The Tracking relationship is required to be @e-to-one static relationship.e. it is
constrained by the following requirements:

(i) Tracking(oi, ob) 00 - (Ooi"): oi' # ob O Tracking(oi’, ob)
(i) Tracking(oi, ob) 0 = (o’): ob’ # ob O Tracking(oi, ob’)
(iif) 0 ob O Ooi Tracking(oi, ob)

(iif) O oi O Oob Tracking(oi, ob)

(v) Tracking(oi, ob) O O Tracking(oi, ob)

The first four assertions constrain the cardinality of the relationship to be at most one
on both sides. The fifth assertion requifiegking to be a static relationship.

Typically, these requirements on tiecking relationship are ensured by defining this
relationship in terms of some domain attribitgr that can act as an identifier of the
object:

Tracking(oi, ob) = oi.Attr = ob.Attr
whereAttr is an injective and immutable attribute of the object.

Examples.In the patient monitoring problem, th&acking relationship between
Patient andPatientinfo may be defined in terms of the patient social security number.
For the ambulance despatching problem, Treeking relationship betweembu-
lance andAmbulancelnfo may be defined in terms of the ambulance license plate.

Theses attributes must not be confused with the ‘internal’ identities of the objects. It is
important that the attributes used to define Treeking relationship be observable by
some agent in the domain. For instance, in the LAS probleTracking relationship
relatingIncident andIncidentinfo must not be defined in terms of some unobservable
identifier for thelncident object. A possible solution here consists in defining that two
incidents are considered to be the same if they occur at the same place and time.

The problem of ensuring the above properties for Treeking relationship may in
some cases be fairly complex. In the LAS system, duplicate calls have to be appropri-
ately detected to ensure accurate correspondence betaadsmt and Incidentinfo
objects. For an air traffic control system, the problem of correlating data received
from multiple noisy sensors in order to track airplanes is known to be complex
[Jon2K].

This problem is also related to the notion of ‘identities concern’ [Jac2K].

2. Goal model elaboration.The unrealizable go# is refined into the subgoals
Maintain[ObjectTracked]
Maintain[AccurateObjectinfo]
G {Object/Objectinfo}
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The first subgoal constrains thgacking relationship to be a one-to-one static rela-
tionship as defined above. Tlsecondsubgoal is an accuracy goal that relates an
object and its image. Thiird subgoal is obtained roughly by replacing references to
the actual object by references to the image of the object. Formally, one needs to uses
variants of the basic formal goal refinement patterns for the tattaziuce accuracy

goal in order to define that goal precisely.

Example 1.The refinement of the go&lchieve[AlarmForCriticalPulseRate] described in
Section 6.3.1 is a first example of application of the taaticduce tracking object.

Example 2.Consider an ambulance despatching system and the/Agbadve[Ambu-
lanceMobilization] requiring that for every reported incident, an available ambulance
whose location is close to the incident scene should be mobilized within 3 minutes.

This goal is unrealizable by afmbulanceAllocator agent because it lacks of monitora-
bility for the actual availability and location of ambulances. The taatroduce tracking
object can be used to resolve this lack of monitorability by introducing the new object
Ambulancelnfo whose attributes record information about ambulance availability and
location, and by refining the goathieve[AmbulanceMobilization] into:

MaintainfAmbulanceTracked]
Maintain[AccurateAmbulancelnfo]
Achieve[AmbulanceMobilizationBasedOnAmbulancelnfo]

The first subgoal requires every ambulance to have a correspoadibglancelnfo

object. The second subgoal relates the values oAthéable andLocation attributes of

the Ambulancelnfo object instances to the actual availability and location of the corre-
sponding ambulances. The third subgoal requires ambulances to be mobilized based on
information about availability and location held in #habulancelnfo objects.

6.5.3.3. Introduce sensor agent

The tacticintroduce sensor agent is another specialization of the tactitroduce accu-
racy goal. It is defined as follows.

Tactic introduce sensor agent

Specialization Ofintroduce accuracy goal

Heuristics This tactic should be considered when lack of monitorability for an object
Obj can be resolved by introducing a sensor agent capable of mon@aiing

PostCondition

1. Object model elaboration.If the unmonitorable variable is an attribute of some
objectObj, the intermediate variablgs modelled as an attribute of tisensor agent.
A relationshipHasSensor is also introduced to relate the objéti to theSensor.

Obj HasSensor

m i

Sensor
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Example. Consider the patient monitoring problem, and the gdalntain[Accu-
ratePulseRatelnfo]. An application of this tactic would generate the new agent
PulseRateSensor, and the relationshipHasPulseRateSensor linking Patient to
PulseRateSensor.

The cardinality requirements on the relationsHgsSensor will depend on the prob-
lem. However, one has to require that every object is measured by at least one sensor.
The relationship can be static, but most often it is allowed to change over time.

Example.In the patient monitoring problem, tiasPulseRateSensor relationship is
obviously not static.

2. Goal model elaboration.The unrealizable goat is refined into the following
three subgoals

Maintain[ObjectMeasuredBySensor]
Maintain[AccurateSensorMeasure]
G {m/ i}

Thefirst subgoal constrains thgasSensor relationship. As mentioned above, it usu-

ally requires every objecdbj to be connected to at least one sensor;HhsSensor
relationship can be static or dynamic. Teecondsubgoal is an accuracy goal con-
cerning the measures of the sensor. el subgoal is obtained roughly by replacing
references to the unmonitorable variables by references to the measures of the sensor.
Difficulties may arise when theasSensor relationship is dynamic. The definition of
formal refinement patterns to deal with such situations requires further work.

3. Agent model elaboration.The accuracy goaWaintain[AccurateSensorMeasure]
is assigned to th8ensor agent. That agent is declared to monitor the varialnesd
to control the variableis

Example. Consider the patient monitoring problem and the g&&intain[Accu-
ratePulseRatelnfo]. As mentioned in Section 6.3.1, that goal is not realizable by the
PatientMonitoring software agent because the latter lacks of monitorability for the actual
pulse rate of patients. The taciitroduce sensor agent can then be used to generate the
subgoals:

Maintain[PatientConnectedToPulseRateSensor]
Maintain[AccurateSensorMeasure]
Maintain[PulseRatelnfoBasedOnSensorMeasure].
The agenPulseRateSensor is identified and is assigned to the gddintain[Accurate-
SensorMeasure].

6.5.3.4. Deidealizing accuracy goals through tolerances and delays

We favour a requirement elaboration process in which one starts by building require-
ments models based on ideal accuracy goals, and in a later step deidealize the models to
take into account realizable accuracy goals involving tolerances and delays.

This section describes preliminary work for deidealizing accuracy goals. We propose (i)
goal definition patterns for specifying accuracy goals involving tolerance and delays, and
(if) techniques for propagating such deidealization along goal refinement links.
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Relevant techniques have been proposed in [Smi2K] for introducing tolerances and
delays into an ideal requirements specification, and for deriving properties of the deideal-
ized specification from those of the idealized specification. Further work is required to
extend and adapt such techniques in the context of the KAOS goal-oriented method.

1. Formal definition patterns

A few patterns of goal definitions for accuracy goals involving tolerances and delays are
shown in Table 6.1. Each pattern is described in turn and illustrated with an example.

Formal Definition Pattern Formal Definition Pattern
(accuracy goal onvariable) (accuracy goal onpredicate
ideal O (i=m) Q=P
tolerance [0 (m-dev<i<m+dev) StongP I Q
(deviation) 0Q 0 WeakP
with StongP O P, and P O WeakP
delay 004 (@=m) m_4P0O Q
(periodic) 0QO e,P

Table 6.1. Patterns of idealized and deidealized accuracy goals
Consideraccuracy goals on variabléirst. An example of idealized accuracy goal on
state variables for the mine pump control system is the goal

O (WaterMeasure = WaterLevel)

The firsttolerance pattern for accuracy goal would state that the value of the variable
always betweem - dev andm + dev, wheredev is the imprecision allowed betweemn
andi. For the accuracy goal on the water level, it yields:

O (WaterLevel - Dev < WaterMeasure < WaterLevel + Dev)

whereDev is the imprecision allowed between the actual water level and the measured
water level.

Thedelay pattern can be used to specify accuracy goals in which the varishl@dated
periodically at least everg time units. For instance, if the water level is measured peri-
odically at intervals of lengtbelay, the goal can be defined as follows:

U ¢ <pelay WaterMeasure = WaterLevel

We now consider formal definition patterns faccuracy goals on predicatedn exam-
ple of an idealized accuracy goal on predicate for the mine pump control system is the
goal

O (HighWaterSignal = ‘On’ = WaterLevel < ‘High’)
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The tolerance pattern can be used when the predic@tés not equivalent tcP but is
bounded by predicateStrongP and WeakP which are stronger and weaker th&n
respectively. For the accuracy goal on water level, the pattern can be instantiated as fol-
lows:

StrongP : WaterLevel < ‘High’ + Dev
WeakP: WaterLevel = ‘High’ - Dev

The following formal definition is thereby obtained:

WaterlLevel = ‘High’ + Dev O HighWaterSignal = ‘On’
O HighWaterSignal = ‘On’ O WaterLevel = ‘High’ - Dev.

The Delay pattern can be used when the value of the prediQatupdated periodically
at least everyl time units. (Note that the formulae.y P ande 4 P involved in the pat-

tern are stronger and weaker th@mespectively.) Thelelay pattern yields the following
definition for the accuracy goal on water level:

B _pejay WaterLevel = *High' O HighWaterSignal = ‘On’
U HighWaterSignal = ‘On’ I ¢ cpejoyWaterLevel = ‘High’

Further alternative patterns for non-ideal accuracy goals involving tolerances and delays
can be identified. The description of such patterns is subject to further work.

Goal-refinement with deidealized accuracy goals

We now consider the impact of deidealized accuracy goals on goal refinement links.
There are three ways in which a goal refinement link can be modified to deal with deide-
alized accuracy goal:

(i) the parent goal can be weakened,
(ii) the companion subgoal can be strengthened, and

(iif) an assumption on the variabhe can be added to the goal refinement link (gener-
ally, this assumption is a bound on the rate of change.of

Examples.Consider the goaHaintainfPumpOnWhenHighWater]:
WaterLevel > ‘High’ ' PumpMotor = ‘On’

and its refinement generated by the taetioduce accuracy goal on variable:
O ( WaterMeasure = WaterLevel ) ,
WaterMeasure = ‘High’ O PumpMotor = ‘On'.

Assume now that the accuracy goal is deidealized to allow some tolerance with respect to
the actual value of the water level:

O (WaterLevel - Dev < WaterMeasure < WaterLevel + Dev).

A first way to propagate this deidealization in the goal refinement consists in weakening
the parent goal into:

WaterLevel > ‘High’ + Dev 0 PumpMotor = ‘On’,
Alternatively, one could also strengthen the companion subgoal into:

WaterMeasure = ‘High’ - Dev [0 PumpMotor = ‘On’.
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To illustrate the adding of an assumption on variabJeassume now that the above ideal
accuracy goal is deidealized to allow a delay between the measured and actual water lev-
els:

0 0 <pelay WaterMeasure = WaterLevel.

One way to propagate this deidealization along the goal refinement link is to make the
following assumption on the rate of change of the water level:

WaterLevel =lev U [ggejqy WaterLevel < lev + Dev

(where A denotes the maximum increase of water levedétay time units), and to
strengthen the companion subgoal into:

WaterMeasure = ‘High’ - Dev O PumpMotor = ‘On’.

An alternative way to deidealize the same goal refinement link is to weaken the parent
goal into:

B _jelay WaterLevel = ‘High’ I PumpMotor = ‘On’.

Further work is needed to define and classify patterns for adding tolerances and delays in
accuracy goals.

6.5.4. Split Lack of Monitorability with Milestone

The tacticsplit lack of monitorability with milestone can be used to resolve the lack of
monitorability for a variable in thantecedenof an Achieve goal, by refining it accord-
ing to some intermediate milestone.

Tactic split lack of monitorability with milestone
Motivation: resolve lack of monitorability

Precondition: the unrealizable goal is aAchieve goal of the formC 0 ¢ T and the
agent lacks of monitorability for a variable appearing in the antecedent of that goal.

Heuristics: the tactic is worth being considered when an intermediate milestofor
reachingr from C can be identified.

Postcondition:

1. Object model elaboration the object model is enriched with the new variables
appearing in the definition of the milestavie

2. Goal model elaboration the Achieve goal is refined according to the following
milestone-driven goal refinement pattern [Dar95, Dar96]:

FIGURE 6.13Split lack of monitorability with milestone

Variants of this basic milestone-driven goal refinement pattern are defined in Table 6.2
[Dar95]. (In this table, the symbolsandy denote logical variables, and should not be
confused with state variables).
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Parent Goal Subgoal Subgoal
COooT COoM MOOT
Cx)d o0y T(xy) | C(x) O ¢ M(x) M(x) O ¢ Oy T(X,y)

C(x) O ¢ 0y T(x,y) | C(x) O ¢ 0Oy M(x,y) M(x, y) O ¢ T(x,y)
Cx)O o0y T(xy) | C(x) O ¢ Oz M(x,2) M(x, z) O ¢ Oy T(x,y)

Table 6.2. Goal-refinement patterns for
splitting lack of monitorability with milestone

(Note that not all milestone-driven goal refinement patterns of [Dar95] can be used to
resolve lack of monitorability because some of them still refer to the unmonitorable
antecedent in both subgoals.)

3. Agent model elaboration the elaboration of the agent model is inherited from the
parent tacticsplit lack of monitorability. That is, the intermediate milestone can be
defined in terms of interface variables of an agent monitoring variableéson it can

be defined in terms of internal variables of some agent.

Example 1.Consider the patient monitoring problem and the gaalieve[Nurselnter-
ventionForCriticalPulseRate]:

p.PulseRate [ p.SafePulse O (On: Nurse): Intervention(n,p)

That goal is unrealizable by theurse agent because the latter lacks of control for the
patients pulse rate and safe pulse. The tagiiclack of monitorability with milestone can
then be applied with the following milestone:

M: (Oa: Alarm): a.Raised Oa.Loc = p.BedNbr

This yields the following two subgoals
Achieve[AlarmForCriticalPulseRate]
Achieve[NurselntervetionForAlarm]

Example 2.Consider a resource allocation problem and the goal
Wishing(u,res) O ¢ Allocation(u, res).

The goal is not realizable by theesourceAllocator agent, because the latter lacks of
monitorability for the relationshigvishing(u,res).

The tacticsplit lack of monitorability with milestone can be used to resolve such lack of
monitorability by identifying the following milestone:

M : Requesting(u,res),

thereby generating the subgoals
Achieve[ResourceRequested]
Achieve[RequestedResourceAllocated]

The relationshiprequesting(u, res) is an interface variable controlled by thiser agent
and monitored by th&esourceAllocator. The first subgoal is therefore realizable by the
User agent, and the second one byResourceAlloctor agent.
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Specialisation More specific guidance for identifying alternative milestones can be pro-
vided based on the category of the goal to be refined. The idea is be to identify typical
alternative choices of milestone for each category of goal. For instance,

» Satisfaction goalsthe tacticintroduce request milestone is used to resolve lack of
monitorability foragent wishes

» Safety goalsthe tacticintroduce alarm milestone is used to resolve lack of monitora-
bility for hazardous states

The study of alternative goal refinement tactics for specific goal categories is subject to
further work.

6.5.5. Split Lack of Monitorability by Chaining

The tacticsplit lack of monitorability by chaining is similar to the tactiplit lack of moni-
torability with milestone, but is to be used witMaintain goals instead ofchieve goals. It
is defined as follows.

Tactic split lack of monitorability by chaining
Motivation: resolve lack of monitorability

Precondition: the unrealizable goal ishaintain goal of the forrP 0 Q,P 0 [ Q,
or P 0 Q WR; and the agent lacks of monitorability for variablesior R. (We assume
that constrained variables areQin

Heuristics: the tactic is worth being used in the following cases:

(i) to resolve lack of monitorability for a variable mwhen an intermediate condition
can be identified such thatl M;

(ii) to resolve lack of monitorability for a variable iR when an intermediate conditidn
can be identified such thistt[] R;

Postcondition

1. Object model elaboration the object model is enriched with new variables
appearing in the definition of the new prediddte

2. Goal model elaboration the Maintain goal is refined according to one of the
chain-driven goal refinement patterns in Table 6.3 [Dar95, Dar96].

Parent Goal Subgoal Subgoal
POQ PO M MO Q
POOQ PO M MO OQ
PO QWR PO M MO QWR
PO QWR MO R PO QWM

Table 6.3. Split lack of monitorability by chaining




Agent-Driven Tactics for Elaborating Goal Models

The specialized refinement patterns in Table 6.4 are frequently used in the particular
case where th®laintain goal has the general form:

Px) O = (Ox): x #x OP(X).

Parent Goal Subgoal Subgoal Subgoal
P(x) O P(x) O M(x) M(x) O
= (Ox): X #x OP(X) = (OX): X # x OM(X)
P(x) O P(x) O e M(x) M(x) O P(x) -
= (Ox): X #x OP(X) - (OX): X #xOMX) | = (Ox): X #x OP(X)

Table 6.4. Chain-driven goal refinement patterns foP(x) O - (Ox): X' # x OP(X)
3. agent model elaboration the elaboration of the agent model is inherited from
from the parent tactisplit lack of monitorability.

Example 1.Consider the mine pump problem and the gdaintain[PumpOnWhenHigh-
Water]:

WaterLevel = ‘High’ O PumpMotor = ‘On’

Lack of monitorability for the water level has been previously resolved by applying the
tacticintroduce accuracy goal to refine the goal into the subgoaaintain[HighWater-
Detected] andMaintain[PumpOnWhenHighWaterDetected].

A similar goal refinement can also be generated by applying the taititack of moni-
torability by chaining with the following instantiation:

M: HighWaterSignal = ‘On’

thereby generating the subgoals:
WaterLevel > ‘High’ 0 HighWaterSignal = ‘On’
HighWaterSignal = ‘On’ O PumpMotor = ‘On'.

Example 2.Consider the resource allocation problem and the geaid[Simultaneou-
sUses].

Using(u,res) O = (Ou’): u#u O Using(u’, res)

This goal is not realizable byser agents because the latter lacks of monitorability for
the relationshipUsing(u’, res) of other agents. The tactiplit lack of monitorability by
chaining is used to resolve that lack of monitorability by applying the first pattern in
Table 6.4 with the following instantiation:

M: Allocation(u,res),
thereby generating the following two goals:
Using(u,res) O Allocation(u,res)

Allocation(u,res) O = (Ou’): u2u OAllocation(u’, res).
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6.5.6. Split Lack of Monitorability By Cases

The tacticsplit lack of monitorability by cases is defined as follows:
Tactic split lack of monitorability by cases
Motivation: resolve lack of monitorability

Precondition: the agenag lacks monitorability fom in order to realiz&, ¢

Heuristics: the tactic is worth being applied when different cases can be identified in
which lack of monitorability fom can be resolved in specific ways for each case.

PostCondition:

1. Object model elaboration the object model is enriched with new variables
appearing in the definition of the different cases.

2. Goal model elaboration different goal refinement patterns for splitting lack of

monitorability by cases are given in Table 6.5 and Table 6.6. Patterns in Table 2 are to
be used for splitting the antecedent of the goal; patterns in Table 3 are to be used for
splitting the consequent of the goal. Most of these patterns were previously identified

in [Dar95].

Parent Goal Subgoal Subgoal Subgoal
P1LOP20 Q P10 Q P20 Q -
POQ POCO Q PO-COQ |-
POQ POC1IO Q POC20 Q |O(C10C2)
PO Q POC1U Q pOC20 Q |POC10C2
POQ ci10 Q c20 Q PO cl1OC2

(0x) Px) O Q(x)

C(x,y) O Q(x)

P(x) O Oy : C(xy)

(Ox) P O Q(x)

P(x) OC(xy) O Q(X)

P(x) O Oy : C(xy)

(Ox) P O Q(x)

P() OC(xy) O Q(X)

Ux O Oy : C(x,y)

(0x) Px) O Q(x)

P() UC(xy) O Q(x)

Ox Oy : O C(x,y)

Table 6.5. Case-driven goal refinement patterns: split antecedent

Parent Goal Subgoal Subgoal Subgoal
PO Q10Q2 PO Q1 PO Q2 ==
PO Q PO C1 PO C2 ciicz2l Q
X PO Q) | Px) O (Oy): Cxy) - C(xy) O Q(x)

Table 6.6. Case-driven goal refinement patterns: split consequent
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Example 1.Consider the following goal for the mine pump control system:
MethaneLevel > ‘MethaneCritical’ 0 COLevel = ‘COCritical’ [0 Alarm

The goal is not realizable by tlHumpController agent because it lacks of monitorability
for the variabledethaneLevel andCOLevel appearing in the antecedent of the goal. The
tactic split lack of monitorability by cases can then be used by instantiating the first pat-
tern in Table 6.5, thereby generating the two goals:

MethaneLevel > ‘MethaneCritical’ O Alarm
COLevel = ‘COCritical’ O Alarm
Lack of monitorability in each of these two goals can then handled separately.
Example 2.Consider the patient monitoring problem and the goal
Tracking(pi,p)
1l

pi.Pulse = p.Pulse [ pi.SafePulse = p.SafePulse [Ipi.BedNbr = p.BedNbr

The first refinement pattern in Table 6.6 refines that goal into the following three sub-
goals:

Tracking(pi,p) O pi.Pulse = p.Pulse
Tracking(pi,p) O pi.SafePulse = p.SafePulse
Tracking(pi,p) O pi.BedNbr = p.BedNbr
Lack of monitorability in each of these three goals can then handled separately.

Example 3.Consider the meeting scheduling problem and the @ahleve[PrtcptsC-
strknown] defined by:

Intended(p,m) O ¢ Cstrinfo[p,m].exclset = Cstr[p,m].exclset

The goal is not realizable by ttg&cheduler agent because the latter lacks of monitorabil-

ity for the exclusion set of participants. Suppose that this set is to be obtained differently
according to whether the participant maintains an electronic agenda or not. The tactic
split lack of monitorability by cases can then be used by instantiating the second pattern
in Table 6.5 with:

C: (Oag): HasAgenda(p, ag)
The following subgoals are thereby generated:

Intended(p,m) O (Oag): HasAgenda(p, ag)
O ¢ Cstrinfo[p,m].exclset = Cstr[p,m].excset

Intended(p,m)d - (Oag): HasAgenda(p, ag)
O ¢ Cstrinfo[p,m].exclset = Cst[p,m].excset

Different resolutions for the lack of monitorability of the participants’ constraints can
then be applied in each case.

Example 4 Consider a flight guidance system [Joh91] and the gohieve[PlaneBack-
OnCourse]:

pl.Loc O pl.FlightPlan O ¢ pl.Loc O pl.FlightPlan
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The FGS (Flight Guidance System) software agent cannot realize the goal because it
lacks monitorability for the location of planes. As a first step towards resolving such lack
of monitorability, the goal is split into cases according to the region in which the plane is
currently located. The tactigplit lack of monitorability by cases is therefore applied by
instantiating the eighth pattern of Table 6.5 with the following case:

C(x,y): InRegion(pl, fgs)
The following subgoals are thereby generated:
pl.Loc O pl.FlightPlan OInRegion(pl, fgs) O ¢ pl.Loc O pl.FlightPlan
O pl O Ofgs InRegion(pl, fgs)
6.5.7. Replace Unmonitorable States by Events
The tacticreplace unmonitorable state by events provides a standard technique for trans-
forming goals based on states into goals based on events. It is defined as follows.
Tactic replace unmonitorable state by events
Motivation : resolve lack of monitorability
Precondition: the agent lacks of monitorability for a predicata the definition ofG.

Heuristics: the tactic can be used when one can identify two evaatsP andstopP that
occur wherP becomes true and false, respectively.

PostCondition:

1. Object model elaboration the object model is enriched with the two evesttstP
and stopP that occur whe® becomes true and false, respectively:

startP = @ P
stopP = @ - P

2. Goal model elaboration Using the above domain properties, the geas refined
into the subgoal

G{P/ — stopP SincestartP}
and the initial condition
initially - = P.

(In practice, further simplification of the generated subgoals are sometimes necessary
to make the formal definition more readable.)

Example 1.Consider the railroad crossing problem and the goal
(Otr: Train): m 4 InRegion(tr,cr) O cr.Gate = Closed

The predicaténRegion(tr,cr) is not monitorable by any agent in the application domain.
However, the entry and exit of trains from the region are monitorable by sensor agents.
The goal can then be refined by applying the above goal refinement pattern with the fol-
lowing instantiation:

P: InRegion(tr,cr)
startP: RegionEntry(tr,cr)
stopP: RegionExit(tr,cr)
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Example 2.Consider the resource allocation problem and the goal:
Using(u, res) O Allocation(u, res)

The relationshipAllocation(u, res) is not directly monitorable by theser agent, but is
defined by the occurrences @fllocationEvent and ReleaseEvent at the interface
between theJser and theAllocator agents. One can then use the tactidace unmoni-
torable state by events to generate the subgoal:

Using(u, res) O - release_event(u,res) S allocation_event(u,res).
6.6. Resolving Lack of Control

We now detail tactics for resolving lack of control. These tactics are symmetric to the
tactics for resolving lack of monitorability. Two tactics consist in adding the necessary
control links to the agent or refining the goal further. The taciids$ control and split

lack of control are defined next. We then define further specializations of the tstic

lack of control.

6.6.1. Add control

Tactic add control
Motivation : resolve lack of control

Precondition: the agenag lacks control of variable in order to realiz&y c,

Heuristics: the tactic should be applied only if the variable can actually be controlled by
the agent. Otherwise, one has to consider the alternative $attitack of control defined
below.

PostCondition: a new control link is created betwesmnandc.

Example: Consider the meeting scheduling problem and the golaikeve[ParticipantsC-
strRequested] defined by:

Intended(p,m) LI Scheduling(sch,m)

0 ¢ (Lcstr_req: CstrRequest):
cstr_req.Sent

Ucstr_req.MeetingName = ¢ m.Name
[cstr_req.delivery_address = @ p.address

Let us assume that in the current agent interface mod&dheduler agent lacks of con-
trol for the objectCstrRequest. The tacticadd control resolves this by declaring the fol-
lowing control link:

Control [Scheduler, CstrRequest]
InstDecl : Ctrl(sch, cstr_req.Sent)
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6.6.2. Split lack of control

The tacticsplit lack of control is symmetric to the tactisplit lack of monitorability. It is
defined as follows.

Tactic split lack of control

Motivation: resolve lack of control

Precondition: the agenag lacks control ot in order to realiz&y, ¢

Heuristics: the tactic should be applied whencannot be controlled ag.
PostCondition:

1. Object model elaboration: The object model is enriched with a new intermediate
variableo.

2. Goal model elaboration:The goalG is refined into the subgoas2,, ), that con-
strain the values of based on the values of and Gl (c\¢)oo) (S€€ Figure 6.14).
Note thatG1 does not refer to the uncontrollable variable

G, (c\e)0o) /C20.0)/

FIGURE 6.14 Split lack of control

(This description is slightly simplified. Tactics for resolving lack of control may
sometimes refing with more than two subgoals.)

3. Agent model elaboration:The new intermediate variablésnust be controllable
by ag. This ensures that the subg@ refers to less uncontrollable variables than the
parent goaG.

A first way to elaborate the agent model consists in identifyingpiatrolling agent
capable of controlling: and monitoringo, and in assigning the goal @z, to that

agent (Figure 6.15). In the context of control systems, actuators are typical examples
of such controlling agents.

Gl (c\o)o)

Controlling
agent
- °
agent
FIGURE 6.15Split lack of control with controlling agent

Alternatively, the new intermediate varialdecan also be declared as an internal vari-
able. This alternative elaboration of the agent model makes the goal refinement graph
more robust with respect to changes of controlling agent or agent interfaces (see Sec-
tion 6.5.2).
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Note that the tacticsplit lack of monitorability and split lack of control are symmetric.
Splitting lack of control for one agent often corresponds to splitting lack of monitorabil-
ity for another agent.

Example Consider the mine pump control system again and thegaakain[PumpOn-
WhenHighWaterl:

HighWaterSignal = ‘On’ O PumpMotor = ‘On’

The variablePumpMotor is an environment quantity that is not directly controlled by the
PumpController software agent.

An application of the tactisplit lack of control consists in elaborating the model as fol-
lows:

1. Object model elaboration: a new variablePumpSwitch that denotes a switch to
command the pump is identified;

2. Goal model elaboration:the goal is refined into the subgoasmpSwitchOn-
WhenHighWater andPumpOnWhenPumpSwicthOn, defined as follows:

HighWaterSignal = ‘*On’ O PumpSwitch ='0On’
PumpSwitch ='On’ 0 PumpMotor = ‘On’

3. Agent model elaboration:a PumpActuator agent controlling the pump motor and
monitoring the pump switch is introduced; it is assigned to the gaalpOnWhen-
PumpSwicthOn.

Specializations Specialized tactics for splitting lack of control define specialized pat-
terns for refining a goal so as to resolve lack of control of agents. These tactics vary
according to the pattern of the go@sG1, G2, and the nature of the intermediate varia-
ble 0. Specialized tactics for resolving lack of control are shown in Figure 6.16. These
tactics are symmetric to the tactics for resolving lack of monitorability.
split
lack of control

/\\

introduce split split split replace
actuation goal lack of control lack of control lack of control uncontrollable state
with milestone by chaining by cases by controllable events

FIGURE 6.16. Specializations of the tactic split lack of control

6.6.3. Introduce Actuation Goals

The tacticintroduce actuation goal is symmetric to the tactimtroduce accuracy goal. It
is defined as follows.

Tactic introduce actuation goal

Motivation : resolve lack of control

Precondition: the agenag lacks of control foc in order to realiz&sy ¢,
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Heuristics: the tactic should be applied when one can identify an intermediate vaoiable
that can be related to through some actuation goal. (The property relating ¢ can
also be a domain property.)

PostCondition:

1. Object model elaboration: The object model is enriched with a new variable
that denotes a quantity used to contol

2. Goal model elaboration: The unrealizable goal is refined into an actuation goal
relatingo to c, and a companion subgoal whose definition refers to the variables
instead ofc. Two alternative formal goal refinement patterns for the tactic are shown
in Figure 6.17.

0 (0 =c)// G {clo} P G{p/q}

(a) introduce actuation goal on variable (b) introduce actuation goal on predicate

FIGURE 6.17Introduce actuation goal

The patternsntroduce actuation goal on variable andintroduce actuation goal on predicate
correspond to alternative ways to apply the tactic.

Variants of these patterns dealing with non-ideal actuation goals involving tolerance
and delays are discussed in Section 6.6.3.1 below.

3. Agent model elaboration:The elaboration of the agent model is inherited from the
parent tacticplit lack of control.

Example 1 The refinement of the goallaintain[PumpOnWhenHighWater] in Section
6.6.2 corresponds to an application of the taeticoduce actuation goal on predicate
with the following instantiation:

p: PumpMotor = ‘On’ g: PumpSwitch = ‘On'.

Example 2 Consider a train control system and the gbalintain[SafeAcceleration]
requiring the acceleration of a train to be less than some value, the latter being a function
of its speed and distance with the preceding train:

Following(trl, tr2) O trl.Acc < F(trl.Loc, tr2.Loc, trl.Speed)

This goal is unrealizable by®ainController agent, because the latter lacks of control for
the actual acceleration of the train. An application of the taotioduce actuation goal

can be used to resolve such lack of control by identifying the variafai@.AccCmd
denoting the command used to control the acceleration of the train; and refining the goal
into:

Following(trl, tr2) O trl.AccCmd < F(trl.Loc, tr2.Loc, trl.Speed)
O (tr.Acc = tr. AccCmd)

This refinement is of course too ideal. The relation between a train acceleration and its
acceleration command is more complex than a simple equality. More precise definitions
for these goals will be given for the BART case study in Chapter 9.
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6.6.3.1. Deidealizing actuation goals through tolerances and delays

The specification of tolerance and delays for actuation goals is similar to the specifica-
tion of tolerances and delays for accuracy goals. The formal definition patterns in Table
6.1 can be used to specify such goals (see Section 6.5.3.4).

Example 1.Consider the ideal actuation goal for the mine pump control system:
O (PumpMotor = ‘On’ = PumpSwitch =*'0On’)

Thedelay pattern can be used to specify the delay needed for the pump motor to be on
once the pump switch is set to ‘On’. The deidealized goal can be formalized as follows:

B oump_delay PUMpSwitch = ‘On’ ' PumpMotor = ‘On’
O PumpSwitch = ‘Off’ ' PumpMotor = ‘Off’

The first assertion says that the pump motor is ‘On’ when the pump switch has been ‘On’
during the laspump_delay time units; the second assertion says that the pump motor
goes immediately off when the pump switch is turned off.

Example 2.Consider the railroad crossing problem and the duaihtain[GateClosed-
WhenTrainCrossing]:

InCrossing(tr, cr) 0 cr.Gate = ‘Closed’

The goal is not realizable by the GateController software agent because it lacks of con-
trol for the variablecr.Gate. Such lack of control, can be resolved by introducing the
variablecr.GateSignal and an actuation goal with delay:

B _gate_delay C-GateSignal = ‘down’ I cr.gate = ‘Closed’".
The companion subgoal refining the goal is then defined by:

InCrossing(tr, cr) U W gaie delaycl-GateSignal = ‘down’
6.6.4. Split Lack of Control with Milestone
The tacticsplit lack of control with milestone can be used to refine achieve goal so as
to resolve the lack of control for a variable appearing irctimsequentf the goal.
Tactic split lack of control with milestone
Motivation: resolve lack of control

Precondition: the unrealizable goal is aAchieve goal of the formC O ¢ T and the
agent lacks of control for a variable appearing in the consequent of that goal.

Heuristics: the tactic is worth being considered when an intermediate milestofu
reachingr from C can be identified.

Postcondition:

1. Object model elaboration the object model is enriched with the new variables
appearing in the definition of the milestavie

2. Goal model elaboration the Achieve goal is refined according to the following
milestone-driven goal refinement pattern [Dar95, Dar96]:
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FIGURE 6.18Split lack of control with milestone

Variants of this basic milestone-driven goal refinement patterns in Table 6.3, given
there for splitting lack of monitorability with milestone, can also be used for splitting
lack of control with milestone.

3. Agent model elaboration the elaboration of the agent model is inherited from
from the parent tactisplit lack of control.

Example 1.Consider the patient monitoring problem and the gaalieve[Nurselnter-
ventionForCriticalPulseRate]:

p.PulseRate [J p.SafePulse O (On: Nurse): Intervention(n,p)

This goal is unrealizable by theatientMonitoring software agent, because the latter
lacks of control for the nurse intervention. The tacipdit lack of control with milestone
can be applied with the following milestone:

M: (Oa: Alarm): a.Raised a.Loc = p.BedNbr
to generate the subgoals

Achieve[AlarmForCriticalPulseRate]

Achieve[NurselntervetionForAlarm]

Note that the same goal refinement had been generated in Section 6.5.4 by application of
the tacticsplit lack of monitorability with milestone; the latter was used for resolving lack
of monitorability ofNurse agents on patients’ pulse rates.

Example 2.Consider the meeting scheduling problem and the gohieve[PrtctsPres-
enceAtConvenientMeeting]:

Intended(p.m) O m.Planned O Convenient(p,m) O ¢ Participates(p,m)

This goal is not realizable by theéeetingScheduler agent because the latter lacks of con-
trol for the relationshigrarticipates. The tacticsplit lack of control with milestone can be
used to resolve such lack of control with the intermediate milestone

M:  Informed(p,m)
thereby generating the subgoals

Achieve[Prtcptsinformed]

Achieve[InformedPrctptsPresenceAtConvenientMeeting].

Again, the same goal refinement can be obtained by resolving lack of monitorability of
Participant agent on variables in the antecedent of the goal.
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6.6.5. Split Lack of Control by Chaining

The tacticsplit lack of control by chaining is symmetric to the tactisplit lack of monitor-
ability by chaining.

Tactic split lack of control by chaining

Motivation resolve lack of control

Precondition: the unrealizable goal ishaintain goal of the forrP 0 Q,P O [ Q,
or P 0 Q WR; and the agent lacks of control on variables referencegl ifWWwe assume
that constrained variables areQi

Heuristics: the tactic is worth being considered for resolving lack of control on a varia-
ble inQ when an intermediate conditidhcan be identified such thisit[l Q.

Postcondition:

1. Object model elaboration the object model is enriched with the new variables
appearing in the definition of the new prediadte

2. Goal model elaboration the Maintain goal can be refined by using one of the
chain-driven goal refinement patterns in Table 6.7 [Dar95, Dar96]. (Note that these
patterns are slightly different from those used to split lack of monitorability by chain-

ing.)

Parent Goal Subgoal Subgoal
POQ PO M MO Q
PO OQ PO OM MO Q
PO QWR PO MWR MO Q

Table 6.7. Split lack of control by chaining
3. Agent model elaboration the elaboration of the agent model is inherited from the

parent tacticplit lack of control.

Example. Consider the railroad crossing problem and the high-level goaid[Train/
CarCollisions]:

TrainInCrossing(tr, cr) O = (Oc: Car): CarInCrossing(tr, cr)

The goal is not realizable by thateController agent, because the latter lacks of control
on the relationshigarinCrossing. The tacticsplit lack of control by chaining can applied
with the following instantiation:

M: cr.Closed
to generate the subgoals
Maintain[GateClosedWhenTrainIinCrossing]

Maintain[NoCarlnClosedCrossing].
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6.6.6. Split Lack of Control By Cases

The tacticsplit lack of control by cases is symmetric to the tactisplit lack of monitorabil-
ity by cases.

Tactic split lack of control by cases

Motivation: resolve lack of control

Precondition: the agenag lacks of control foc in order to realiz&y, )

Heuristics: the tactic is worth being applied when different cases can be identified in
which lack of control foc can be resolved in specific ways for each case.

PostCondition:

1. Object model elaboration the object model is enriched with the new variables
appearing in the definition of the different cases.

2. Goal model elaboration the case-driven goal refinement patterns of Table 6.5 and
6.6, given there for splitting lack of monitorability by cases, can also be used for split-
ting lack of control by cases.

Example Consider the ambulance dispatching system and the goakve[Allo-
catedAmbulanceMobilized]:

Allocation(amb, inc) O 0.4 Mobilization(amb, inc)

TheMobilization relationship is controlled byxmbulanceStaff agents and not directly by
anAmbulanceAllocator agent. The goal is therefore not realizable byAheulanceAllo-

cator agent because the latter lacks of control on that relationship. Since the mobilization
of ambulances has to be handled differently dependent on whether the ambulance is
waiting at a station or somewhere on the road, the tagtitlack of control by cases is
applied by instantiating the second pattern in Table 6 as follows:

Cl: amb.OnRoad C2: (Ost: Station): AtStation(amb, st)
The following subgoals are thereby generated:

Allocation(amb, inc) [ AtStation(amb, st) O 0.4 Mobilization(amb, inc) ,

Allocation(amb, inc) 0 amb.OnRoad [0 0.4 Mobilization(amb, inc) ,
together with the domain property:

0 (amb.OnRoad [J(Ost: Station): AtStation(amb, st) ).

6.6.7. Replace Uncontrollable State by Events

The tacticreplace uncontrollable state by events is symmetric the tacticeplace unmon-
itorable state by events. It is defined as follows.

Tactic replace uncontrollable state by events

Motivation : resolve lack of control

Precondition: the agent lacks of control on variables in a predidateccurring in the
definition ofG.
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Heuristics: the tactic can be used when two evesitstP andstopP can be identified
which occur wherP becomes true and false, respectively.

PostCondition:

1. Object model elaboration the object model is enriched with two evemstartP
and stopP that occur whe® becomes true and false, respectively:

startP = @ P
stopP = @ - P

2. Goal model elaboration Using the above domain properties, the geas refined
into the subgoal

G{P/ = stopP SincestartP}
and the initial condition
initially - - P.

(In practice, further simplification of the generated subgoals may sometimes be neces-
sary to make the formal definition more readable.)

6.7. Resolve Goal Unsatisfiability

There are two tactics for resolving goal unsatisfiabiltggaken goal with unsatisfiability
condition andprevent unsatisfiability. The former consists in weakening the goal so as to
cover the unsatisfiability condition; the latter consists in refining the goal by requiring
the unsatisfiability condition to be avoided.

6.7.1. Weaken goal with unsatisfiability condition

Tactic weaken goal with unsatisfiability condition
Motivation: resolve goal unsatisfiability

Precondition: Gy, ¢y is unsatisfiable when the unsatisfiability conditioholds.

Heuristics: the tactic is worth being applied wh&his not safety-critical and the unsat-
isfiability condition can be tolerated.

PostCondition: The goal definition is weakened in® [1B. The weakening of the goal
has then to be propagated along the goal refinement links.

Example Consider the meeting scheduling problem and the gohieve[Convenient-
MeetingPlanned] defined by:

m.Requested

O ¢ (Od: Date):

(m.Date =d Od O m.DateRange

Oe (O p: Participant): Intended(p,m) — d O Constaint[p,m].exclset )
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This goal is unsatisfiable if there is no date inside the date range that satisfies all partici-
pants’ constraints. The unsatisfiability condition for this goal is thus;

¢ (Om: Meeting):
m.Requested
0 O - (Od: Date): d O m.DateRange
(O p: Participant): Intended(p,m) - d O Constaint[p,m].exclset

The tacticweaken unsatisfiability allows the problem to be solved by weakening the goal
definition into:

m.Requested O
(¢ (Od: Date): m.Date = d Od O m.DateRange

Oe (O p: Participant): Intended(p,m) - d O Constaint[p,m].exclset )
00 = m.Feasible

The predicaten.Feasible in this weakened formula is defined by:

m.Feasible <
- (Od: Date): d 0 m.DateRange
(O p: Participant): Intended(p,m) — d O Constaint[p,m].exclset

6.7.2. Prevent goal unsatisfiability

Tactic prevent goal unsatisfiability
Motivation: resolve goal unsatisfiability
Precondition: Gy, ¢y is unsatisfiable when the unsatisfiability conditioholds.

Heuristics: the tactic is worth being applied wh&his safety-critical and the unsatisfia-
bility condition cannot be tolerated.

PostCondition: The unsatisfiable goal is refined according to the refinement pattern in

Figure 6.19.

FIGURE 6.19. Prevent goal unsatisfiability
This pattern captures the general idea of the tactic. In practice, the formal definitions

generated by the strict application of this pattern may have to be adapted.

Example Consider an ambulance dispatching system and theAgb#ve[Ambulance-
MobilizedInSector] defined by:

inc.Reported O InSector(inc, s)
O Oc3m (ODamb: Ambulance):

Mobilization(amb, inc) [J e ( amb.Available [JInSector(amb, s) )
The domain of goal unsatisfiability of the goal is defined by:

¢ (Oinc: Incident, s: Sector):
inc.Reported O InSector(inc, S)
O Ocam — (Oamb: Ambulance): amb.Available O InSector(amb, s)
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Since the goal is safety critical, the tacpievent unsatisfiability is used to refine it. The
negation of the unsatisfiability condition is given by

inc.Reported O InSector(inc, S)
O Oc3m (Oamb: Ambulance):

amb.Available [ InSector(amb, s))

This assertion is then strengthened into the gashtain[AvailableAmbulancelnSector],
requiring that in every sector there is always an ambulance available.

O (Oamb: Ambulance): amb.Available [ InSector(amb, s)
The companion subgoal generated by the tactic is:

inc.Reported OInSector(inc, s)
O <>s3m

(Oamb: Ambulance): Mobilization(amb, inc) O e (amb.Available O InSector(amb, s) )
O
= (Oamb: Ambulance): amb.Available OInSector(amb, s)

This goal requires an available ambulance to be mobilized from the sector in which the
incident occurred, except if there is no ambulance available in that sector.

6.8. Resolve References to the Future

We now consider tactics for resolving references to the future. There are tactics for
resolving references to the strict future and tactics for resolving synchronization prob-
lems.

6.8.1. Resolve References to Strict Future

6.8.1.1. Apply anticipation pattern

References to the future can be resolved by identifying a condition that anticipates the
future values of monitored variables.

Tactic apply anticipation pattern

Motivation: resolve references to the future

Precondition: the goal constrains variables in terms of future values of monitored varia-
bles

Heuristics: the tactic should be considered when a condidonan be identified that
anticipates future values of monitored variables (this condition will be called anticipation
condition).

Postcondition

1. Object model elaboration the object model is enriched with the new variables
appearing in the definition of the anticipation condithon

2. Goal model elaboration the goal is refined into a first subgoal (or domain prop-
erty) that relates the condition on future states of monitored variables to the anticipa-
tion condition, and a second subgoal that constrains controlled variables based on the
anticipation condition.
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The following (semantically equivalent) ‘anticipation’ formulas can be used to refine
the goal by anticipating the conditidhon future states of monitored variables:

() MOmgA (i) #cg~ A ~ M
(i) O MO A (v) -~ A0 Og-M

The first formula says that M holds then the anticipation condition must have been
true for a least!’ time unit. The fourth formula says that if the anticipation condition
does not hold currently, thel will not hold during the nextd’ time units. These
assertions are all semantically equivalent; they define the same set of histories.

Table 6.8 shows some anticipation-driven refinement patterns that use these anticipa-
tion formulas.

Parent Goal Subgoal Subgoal Subgoal
UgagMDOC MO m_4 A m_,qA0C O(d=d)
OqMO C MO m_gA m_y4A0C |O(d=d)
MO m4C MO m_4 A m_,qA0C O(d=d)

Table 6.8. Anticipation-driven refinement patterns

Example Consider the railroad crossing problem and the ‘utility’ gaintain[GateO-
penWhenNoTrain]:

O<q =~ (Otr: Train): InCrossing(tr,cr) O cr.Gate = ‘opened’

This goal constrains the value of the variabl&ate based on future values of the varia-
ble InCrossing(tr,cr).

Such a reference to the future is resolved by using the property that if a train is in the
crossing, it must have been in the region of the crossing during some'tihmet depends

on the maximum speed of trains. One can apply the tapity anticipation pattern by
instantiating the first pattern in Table 6.8 as follows:

A:. InRegion(tr,cr)
The two subgoals generated by the pattern are then:
InCrossing(tr,cr) O m_g InRegion(tr,cr)

m_, 4 INRegion(tr,cr) O cr.Gate = ‘opened’
6.8.2. Resolve Synchronization problems

We now consider tactics for resolving synchronization problems (that is, a goal con-
strains the values of controlled variables based orctimeentvalues of monitored varia-
bles). The alternative tactics are:

« replace current by previous;

* introduce reactiveness hypothesis;

¢ introduce mutual exclusion assumption;

« apply mutual exclusion refinement pattern;
e apply anticipation refinement pattern.

These tactics are described successively.
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6.8.2.1. Replace current by previous

Tactic replace current by previous
Motivation: resolve synchronization problem

Precondition: the goal constrains the values of controlled variables based on the current
values of monitored variables.

Heuristics: this tactic should be considered when the definition of the goal is temporally
too strong.

Postcondition: The tactic consists in weakening the goal definition by replacing every
occurrence of the problematic monitored variatbldy the value of this variable in the
previous state. The weakened goal definition is then give@{by e m}. This weaken-

ing of goal definition must then be propagated along the refinement links of the goal
graph.

Example 1 Consider the mine pump control system and the ttz@htain[PumpSwitch-
OnWhenHighWaterDetected]:

HighWaterSignal = ‘On’ O PumpSwitch = ‘On’
An application of the tactieeplace current by previous yields the following goal defini-
tion:

e HighWaterSignal = ‘On’  PumpSwitch = ‘On’

Example 2 Consider the meeting scheduling problem and the goieve[Convenient-
MeetingPlanned] whose definition is given by:

m.Requested
O ¢ (Od: Date):
(m.Date =d O (O p: Participant): Intended(p,m) - d O Constaint[p,m].exclset )

An application of the tacticeplace current by previous yields the following goal defini-
tion:
m.Requested

0 ¢ (Od: Date):
(m.Date =d Oe (O p: Participant): Intended(p,m) — d O Constaint[p,m].exclset )

6.8.2.2. Introduce reactiveness hypothesis

The tacticintroduce reactiveness hypothesis corresponds to a standard technique for
resolving synchronization problems. It consists in assuming that an agent, usually a soft-
ware one can react infinitely fast to changes of variables in its environment. Such hypoth-
esis is a built-in one in the semantics of specification languages such as SCR [Heit96].

Such hypothesis is inconsistent with our formal model of agents, and can therefore not
be modelled in our framework. Therefore, the tagttcoduce reactivity hypothesis con-
sists in ignoring the synchronization problem by assuming that the agent can react infi-
nitely fast to changes of monitored variables.
For example, consider again the gé&dintainfPumpSwitchOnWhenHighWater] defined
by

HighWaterSignal = ‘On’ O PumpSwitch = ‘On’.
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The tacticintroduce reactiveness hypothesis consists here in assuming implicitly that
thePumpController agent can react infinitely fast to changes of itighWaterSignal var-
iable.

6.8.2.3. Introduce mutual exclusion hypothesis

The tacticintroduce mutual exclusion hypothesis consists in refining the goal by assum-
ing that changes of monitored and controlled variables cannot occur simultaneously.
Tactic introduce mutual exclusion hypothesis

Motivation: resolve synchronization problem

Precondition: the goal constrains the values of controlled variables based on the current
values of monitored variables.

Heuristics: this tactic should be considered when it candssumedhat states transi-
tions for monitored and controlled variables never occur simultaneously.

Postcondition: For a goal of the fornP [ Q, this tactic consists in applying the formal
goal refinement pattern in Table 6.9.

Parent Goal Subgoal Subgoal Subgoal DomProp/Ass

PO Q P.Q @P ® Q @-Q0 e -p | U~ (@PU@-Q)

Table 6.9. Introduce mutual exclusion hypothesis
Example Consider a system to control the opening of train doors, and the safety goal
Maintain[DoorsClosedWhileMoving]:
tr.Moving O tr.DoorsState = ‘Closed’

Suppose the variable.Moving is controlled by some agent, say theinDriver agent,
whereas the variable DoorsState is controlled by some other agent, say DhworCtrler
agent. TheboorCtrler agent cannot realize the goal because the latter constrains the vari-
abletr.DoorState based on the current value of the variabiéoving.

The tacticintroduce mutual exclusion hypothesis consists in making the assumption that
the opening of doors cannot occur simultaneously with the start of trains:

0 - (@ tr.Moving [ @ tr.DoorsState # ‘Closed’)
thereby generating the two subgoals

@ tr.Moving 00 e tr.DoorsState = ‘Closed’

@ tr.DoorsState # ‘Closed’ [ e - tr.Moving
together with an initial condition:

tr.Moving - tr.DoorsState = ‘Closed’

The first subgoal is then realizable by thainDriver agent, whereas the second one by
the DoorCtrler agent.

Note If we apply the alternative tactimtroduce reactiveness hypotheses, the goal
Maintain[DoorsClosedWhileMoving] could be assigned as responsibility of theorC-
trler agent alone; one should then be assume that this agent can close the doors infinitely
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fast when the train starts moving. Alternatively, the goal could be assigned as responsi-
bility of the TrainDriver agent only; one should then assume that this agent can stop the
train infinitely fast when the doors get open. In both cases, the assumptions are highly
unrealistic.

6.8.2.4. Apply mutual exclusion refinement pattern

The tacticapply mutual exclusion pattern is to be used to resolve synchronization prob-
lems by refining the goal so as to prevent simultaneous state transitions of monitored and
controlled variables.

Tactic apply mutual exclusion pattern
Motivation: resolving synchronization problem

Heuristics: this tactic should be considered for refining the goatdxyuiring (instead of
assuming) state transition of monitored and controlled variables to never occur simulta-
neously.

Precondition: the goal constrains the values of controlled variables based on the current
values of monitored variables.

Postcondition: for a goal of the formP [ Q, this tactic consists in applying the formal
goal refinement pattern in Table 6.10. This pattern is reminiscent of standard mutual
exclusion schemes, with the predicatplaying the role of the variable ‘turn’ indicating
which processor is allowed to enter its critical section.

Parent Goal | Subgoal Subgoal Subgoal

PO Q P-Q @PO e (QOT) @-QU e (=PO-T)

Table 6.10. Mutual-exclusion refinement pattern

Example.Consider again the go#laintain[DoorsClosedWhileMoving]. The tacticapply
mutual exclusion pattern can be used to resolve the synchronization problem discussed
before by introducing the following variable:

T:  GoSignal

The variableGoSignal would correspond to a signal between Tin@nDriver andDoorC-
trler agents or to a signal controlled by some other agent at the station where the train is
stopped. The following subgoals are thereby generated:

@ tr.Moving O e ( tr.DoorsState = ‘Closed’ [0 GoSignal )
@ tr.DoorsState # ‘Closed’ 0 e (=tr.Moving [0~ GoSignal )

together with the initial condition:
tr.Moving - tr.DoorsState = ‘Closed’

If the new variableGoSignal is monitorable by th@rainDriver andDoorCtrler agents, the
first subgoal is realizable by tieinDriver, and the second one by theorCitrler.
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6.8.2.5. Apply anticipation pattern

The tacticapply anticipation pattern defined to resolve reference to strict future can also
be used to resolve synchronization problems. Two anticipation-driven goal refinement
patterns for goals of the form Q are defined in Table 6.11.

Parent

Goal Subgoal Subgoal
POQ (POeM e MO Q
PDQ PD..SdM ..deDQ

Table 6.11. Anticipation-driven refinement pattern

Example. Consider the railroad crossing problem and the daaihtain[GateClosed-
WhenTrainCrossing]:

Crossing(tr, cr) [ cr.Gate = ‘closed’

The goal has a synchronization problem because it requires the gate to be closed simulta-
neously with a train entering the crossing. The taatiply anticipation pattern can be
used to resolve that problem by instantiating the first pattern in Table 6.11 as follows:

A: InRegion(tr,cr)
The two subgoals generated by the pattern are then:

InCrossing(tr,cr) J e ®m_4 InRegion(tr,cr)

e m_, InRegion(tr,cr) U cr.Gate = ‘opened’

6.9. Resolve Unbounded Achieve Goal

Consider a goal taking the form
caooT

This goal is not realizable because it does not constrain the finite runs of an agent
assigned to it. The tactiesolve unbounded achieve goal is to be applied to strengthen
the goal temporally into

CUOy4T o CUOUT

This tactic is generally applied at the last step of the goal-refinement process.

6.10. Summary

This chapter has proposed various specification elaboration tactics for resolving each
kind of realizability problem studied in Chapter 5. These tactics provide systematic guid-

ance for recursively refining goals into subgoals until the latter are realizable by single

agents, the tactics drive the identification of agents and objects during the goal refine-
ment process.

The systematic application of these tactics on two real case studies will be described in
Chapter 9.
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Chapter 7
Formal Patterns for Goal
Operationalization

Once goals have been refined into subgoals that are realizable by single agents, the next
step of the goal-oriented process consists in deriving (a) the operations that are relevant
to the goals, and (b) the requirements on these operations so that the goals are satisfied.

This chapter proposes a formal technique to support this derivation. The general princi-
ple is to reuse generic patterns. The use of generic patterns has already been studied and
applied for the upstream step of goal refinement [Dar95, Dar96]. Here, we explore the
use of specific patterns for the later operationalization step.

The definition of operationalization patterns is based on a formal semantics of operation-
alization defined in Section 7.1. Section 7.2 describes the basic idea of using operational-
ization patterns; Section 7.3 discusses the benefits of such patterns for goal-oriented
requirements engineering. Section 7.4 explains how patterns can be identified and organ-
ized for retrievability. Section 7.5 describes a few operationalization patterns that have
been defined so far.

7.1. Semantics of the KAOS operation model

The KAOS operation model has two semantics. The first semantics is defined in terms of
the transition systems introduced in Chapter 4. The second semantics is defined by trans-
lating fragments of operation specifications into temporal logic.

The two semantics are equivalent: the set of histories generated by the transition system
is equal to the set of histories covered by the temporal formulae. The temporal semantics
of operations is convenient for defining the semantics operationalization links that relate
operations to goals.

7.1.1. Temporal semantics of operations

An operation defines a relation over states; this relation is defined by the domain pre- and
post conditions of the operation. Formally, we introduce for every operafowhose
arguments are variablesg,, ...,arg, and results are variabless,, ...,res,,, a predicate

[| op |] defined as follows:

[| op |I(argy, ...,arg,, resy, ...,res,) =qef ® DomPre(op) [l DomPost(op)

For example, consider the following operation:

Operation SwitchPumpOn
Input PumpController {arg c}/ HighWaterSignal
Output PumpController / PumpSwitch
DomPre c.PumpSwitch = ‘Off’
DomPost c.PumpSwitch = ‘On’
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The predicate associated with this operation is:

[| SwitchPumpOn [] (C) =gef ® ¢.PumpSwitch = ‘Off’ L c.PumpSwitch = ‘On’

In the sequel, we will drop the brackets around such predicates andSmiittd\PumpOn
(c) instead of| SwitchPumpOn |] (c).

The semantics of required pre-, trigger- and post- conditions is then defined as follows.
Let P be a requirement on an operatiop; the temporal formula associated with it is
noted[|P|], and is defined as follows:

if P U ReqgPre(op), then[| P[] =gef (C*) [l Op |] T ® P
if P O ReqTrig(op), then[| P |] =gef ((*) @ P e DomPre(op) O [|op []
if P O ReqgPost(op), then[| P [] =ges (B*) [JOp [] T P

By unfolding the definition of predicafgop|], the semantics of required pre-, trigger- and
post- conditions can be rephrased as follows:

if P 0 ReqgPre(op), then[| P |] = (CU*) e DomPre(op) 0DomPost(op) 00 e P
if P O ReqTrig(op), then[| P [] = (O*) ¢ P Je DomPre(op) 0 DomPost(op)
if P 0 ReqPost(op), then[| P |] = (O*) e DomPre(op) O DomPost(op) O P

For example, consider the following required trigger condition on the operation intro-
duced above:

Operation SwitchPumpOn
ReqTrigFor Maintain[PumpSwitchOnWhenHighWaterDetected]
c.HighWaterSignal = ‘On’

The semantics of the required trigger condition is expressed by the following temporal
assertion:

e c.HighWaterFlag = ‘'On’ [J e c.PumpSwitch = ‘Off’ 0 SwitchPumpOn(c)

7.1.2. Semantics of Operationalization

Operationalization links relate realizable goals assigned to some agent to requirements
on operations the agent has to perform (see Section 3.2.7.5).

A set of required pre, trigger, and post conditions operationalizes a goal if the satisfaction
of the required conditions on the corresponding operations guarantees the satisfaction of
the goal.

Formally, a se{fP1, ..., Pn} of requirements on operations operationalizes a gGa#lthe
following conditions holds:

* [IPL]L..[IPn[I|I=G (Completeness)
* [Pl ... [IPn]]|#false (Consistency)
* GI=[IPL]], ... [IPn]] (Minimality)

The completeness condition for operationalization is similar to the corresponding condi-
tion for goal refinement [Dar95, Dar96]. A first important difference however is that the
semantics of goal operationalization does not rely on domain properties to guarantee the
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satisfaction of the goal. This is due to the fact that the agent responsible for the goal may
not rely on domain properties to realize the goal. A second important difference is in the
definition of the minimality condition. The minimality condition for operationalization
requires that the requirements operationalizing the goal are not stronger than required by
the goal.

The formal specification of goals and operations allows the completeness, consistency
and minimality of operationalization to be formally verified.

For example, consider the goaHaintain[PumpSwitchOnWhenHighWaterDetected]
defined as follows:

O c: PumpController
c.HighWaterSignal = ‘'On’ O O c.PumpSwitch = ‘On’

A complete, minimal, and consistent operationalization of the goal is given by the fol-
lowing requirements on the operati®witchPumpOn andSwitchPumpOff:

Operation SwitchPumpOn
Input PumpController {arg c}/ HighWaterSignal
Output PumpController / PumpSwitch
DomPre c.PumpSwitch = ‘Off’
DomPost c¢.PumpSwitch = ‘On’
ReqTrigFor Maintain[PumpSwitchOnWhenHighWaterDetected]
c.HighWaterSignal = ‘On’

Operation SwitchPumpOff
Input PumpController {arg ¢}/ HighWaterSignal
Output PumpController / PumpSwitch
DomPre c.PumpSwitch = ‘On’
DomPost c.PumpSwitch = ‘Off’
RegPreFor Maintain[PumpSwitchOnWhenHighWaterDetected]
- c.HighWaterSignal = ‘On’

The required trigger condition on the operat®witchPumpOn requires that the pump
must beswitched on when thelighwaterSignal is On; the required precondition on the
operationSwitchPumpOff requires that the pummay beswitched off only if theHigh-
WaterSignal is hotOn.

The completeness of this operationalization is established by proving the following
assertion:

SwitchPumpOn(c) = e c.PumpSwitch = ‘Off’ [Jc.PumpSwitch = ‘On’
SwitchPumpOff(c) < e c.PumpSwitch =‘On’ L] c.PumpSwitch = ‘Off’ ,
e c.HighWaterSignal = ‘On’ [J @ c.PumpSwitch = ‘Off’ 0 SwitchPumpOn(c) ,
SwitchPumpOff(c) O e - c.HighWaterSignal = ‘On’
I:
c.HighWaterSignal ='On’ 0 O c.PumpSwitch ='On’
Note that the required precondition on tB&itchPumpOff operation is necessary for the
operationalization to be complete.

The minimality condition is obtained by inverting the antecedent and the consequent in
the above formula, and can also be established formally.
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Agent Responsibility Model

o
N

Agent Interface Model Operation Model
Voc(P) Voc(Q) DomPre - Q DomPre Q
DomPost Q DomPost = Q

ReqTrig P
PerfBy Ag

RegPre -P
PerfBy Ag

FIGURE 7.1. Operationalization pattern ford O Q

7.2. Operationalization Patterns

Operationalization patterns capture operationalization links between an abstract goal
specification and abstract operation specifications. They are proved correct with respect
to the above semantics of operations. They can be used to derive required pre-, trigger-,
and post-conditions on operations from the formal definition of a terminal goal.

For each operationalization pattern, we also give the variables that need to be monitored
and controlled by an agent for the goal to be realizable by that agent.

As a first example, the operationalization pattern in Figure 7.1 provides a way to opera-
tionalize Achieve goals of the formP [0 [0 Q, whereQ is a state formula ang a past
formula.

In the agent interface model of that pattevag(P) andVoc(Q) denote the set of state var-
iables appearing in the assertithandQ, respectively.

The operation model in that pattern states that in order to operationalize 8 godll

Q, one has to define two operations: a first operation with domain pre/post conditions
given by the paif—~ Q, Q] and arequired trigger conditionstating that the operation
mustbe applied wher® holds; and a second operation with domain pre/post conditions
given by the paifQ, = Q] and arequired preconditiorstating that the operatiamaybe
applied only wherP does not hold.

This pattern is generic. It can be instantiated to completely different situations. For
example, the goallaintain[PumpSwitchOnWhenHighWaterDetected] can be operation-
alized by instantiating the operationalization pattern in Figure 7.1 as follows:

P : c.HighWaterSignal Q : c.PumpSwitch = ‘On’
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The specifications for the operatiowitchPumpOn and SwitchPumpOff in Section 7.1
are thereby automatically derived, together with the following agent interface model:

c.HighWaterSignal c.PumpSwitch
I e P

Our operationalization patterns generate a minimal and complete set of operations and
requirements on these operations to ensure the goal considered. In the example above, if
the operatiorswitchPumpOff had been left out of the specification, the operation model
would not have been complete with respect to the goal.

Use of operationalization patterns shortcuts tedious proofs of consistency, completeness,
and minimality. All patterns presented in this chapter were proved formally correct. Pat-
terns involving propositional qualitative temporal logic were proved correct using the
SteP verification tool [Man96]; whereas the others were proved “by-hand”.

A few operationalization patterns are proposed in [Dar93]. The patterns defined there are
not based on a formal semantics of operations, and do not ensure the completeness, con-
sistency and minimality of the operationalization links as defined in this thesis.

7.3. Benefits of Operationalization Patterns

Operationalization patterns are useful for the following reasons.

» They allow low-level formal reasoning to be hidden from requirements engineers.

» They provide constructive guidance for deriving operational requirements from goals.

» They enable one to detect incomplete operational requirements and provide guidance
on how to make the specification complete with respect to stated goals [Yue87].

» Operationalization patterns applied backwards allow formal goal specifications to be
inferred bottom-up from operational requirements.

Each point is discussed in turn.

7.3.1. Hiding low-level proofs

Formal languages allow properties of interest to be proved formally by use of inference
rules of the language. Proving properties using such inference rules is generally a tedi-
ous, complex and error-prone activity that requires high levels of expertise. Patterns are
intended to relieve specifiers of such low-level formal reasoning. Patterns amount to
high-level inference rulethat are proved correct once and for all. They can be reused
many times in many different contexts to solve commonly occurring problems.

An alternative technique to formal operationalization patterns would be a fully automatic
technique for deriving operational requirements from goals. Fully automatic techniques,
such as model checking, can be usededfy formal requirements models a posteriori;
however they do not provide automatic guidance to constructively elaborate the model.
Furthermore, such techniques generally require restricting the expressive power of the
language.
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7.3.2. Deriving operational requirements from goals

As mentioned before, operationalization patterns can be used constructively to (i) iden-
tify the operations relevant to the goals, and (ii) derive requirements on these operations
ensuring that the goals are satisfied.

A first example of this has been shown in Section 7.2. As another example, consider the
patient monitoring problem and the goalchieve[AlarmForCrticalPulseRatelnfo]
assigned as the responsibility of thatientMonitoring software agent. This goal is speci-

fied as follows:

pi.PulseRate [ pi.SafePulse [J Oggejqy (Ha: Alarm): a.Raised Ua.Loc = e pi.BedNbr

This goal is anAchieve goal involving real-time delays. An operationalization pattern
matching this goal definition is shown in Figure 7.2. (Note that this operationalization
pattern is an example of a first-order pattern involving real-time delays). The pattern
yields the following interface declaration for thatientMonitoring agent.:

_ <3atientMonitoring >
PatientInfo.PulseRate Alarm.Raised

Patientinfo.SafePulse Alarm.Loc
Patientinfo.BedNbr

The operational requirement resulting from the application of this pattern is:

Operation RaiseAlarm
Input Patientinfo {arg pi}/ PulseRate, SafePulse, BedNbr
Output Alarm {res a}/ Raised, Loc
DomPre - (Oa: Alarm): a.Raised a.Loc = e pi.BedNbr
DomPost a.Raised a.Loc = e pi.BedNbr
ReqTrig For AlarmForCrticalPulseRatelnfo
- (Oa: Alarm): a.Raised a.Loc = e pi.BedNbr
S delay -1 Pi-PulseRate [ pi.SafePulse

PerfBy PatientMonitoring
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7.3.3. Checking operational requirements for completeness

Operationalization patterns can be used to check whether some given operation specifi-
cations are complete operationalizations of given goals. This use of operationalization
patterns corresponds to the similar use of refinement patterns in [Dar96]; it is important
as intuitive operationalizations of goals produced by hand tend to be incomplete.

For example, consider the godHaintain[PumpSwitchOnWhenHighWaterDetected]
again. An intuitive operationalization of that goal might be given by the operation
SwitchPumpOn together with the required trigger condition:

ReqTrig For PumpSwitchOnWhenHighWaterDetected
c.HighWaterSignal

The goal definition and the operation match the operationalization pattern in Figure 7.1.
One can therefore derive that, in order to be complete, the operationalization should also
include the operatioBwitchPumpOff with the following required precondition:

RegPre For PumpSwitchOnWhenHighWaterDetected
- c.HighWater

7.3.4. Inferring goals from operations

Operationalization patterns can also be used backwards to elicit goals underlying some
operation specifications. This use of patterns is important as initial descriptions of
requirements tend to be given in very operational terms. Eliciting goals underlying such
operational specifications allows for various goal-level analysis such as checking that the
operations are complete with respect to the goals [Yue87], identifying and resolving con-
flicts at the goal level [Lam98Db], identifying and resolving obstacles to goals [Lam98a,
Lam2Ka], and exploring alternative system proposals.

Consider for instance the specification of a simple autopilot [But96]. The initial problem
statement defines the following informal requirements.

“If the pilot dials in an altitude that is more than 1,200 feet above the current altitude
and then presses the alt_eng button, the altitude mode will not directly engage.
Instead, the altitude engage mode will change to “armed” and the flight-path angle
select mode is engaged.”

The informal requirements refer to the operatidyageALTmode, ArmALTmode,
and EngageFPAmode together with required conditions on their applications. For
instance, the operatiditngageFPAmode can be specified as follows:

Operation EngageFPAmMode
Input AutoPilot {arg a}
ALTengageEvent {arg alt_eng}
Output Autopilot / FPAmode
DomPre a.FPAmode = 'off'
DomPost a.FPAmode = ‘on’
ReqTrig For <unknown goal>
alt_eng. occurs [JALTtarget - ALTactual > 1200
“if the pilot presses the alt_eng button when the target altitude is
more than 1,200 feet above the current altitude, the FPA mode is
engaged”
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One can then apply the operationalization pattern in Figure 7 below matching the domain
pre- and post conditions and the required trigger condition to infer the goal that justifies
this trigger condition:

Goal Achieve[FPAModeEngagedWhenHighTargetAltitutde]

FormalDef [ a: AutoPilot, alt_eng: ALTengageEvent

@ alt_eng. occurs O ALTtarget - ALTactual > 1200 O a.FPAMode = ‘off’
0 O a.FPAmode = ‘on’

Higher-level goals can then be identified by asking WHY questions. The resulting goal
graph will provide the rationale for the operations described in the initial problem state-
ment. Goal-level analysis can then be performed on the derived goal structure.

A formal technique for inferring goals from scenarios is described in [Lam98b]. The
starting point of the goal inference procedure discussed there and the use of patterns pre-
sented in this section are different. [Lam98b] starts from concrete scenarios of interac-
tion between agents, represented as instance-level trace diagrams. The inference of goals
with operationalization patterns starts from operational specifications.

7.4. Building a Library of Patterns

We now describe how relevant operationalization patterns can be identified and organ-
ized for retrievability. Currently, only a few representative patterns have been identified.
Further extension of the library is subject to further work.

7.4.1. Identifying Patterns

One way to identify operationalization patterns is to abstract them from concrete exam-
ples of goal operationalizations. Unfortunately, there is no large set of specifications
available from which patterns could be inferred. This is due to the fact that the construc-
tive elaboration of operational requirements from goals is not widely adopted yet; and
previous derivations of operational requirements from goals were done by hand without
a fully precise semantics for operationalization links.

We decided to explore the space of operationalizations based on the pattern of the goal to
be operationalized. For each pattern of goal specification, we derived the corresponding
operationalization pattern. In order to get a rich set of goal patterns, we extended and
specialized the high-levelchieve/Maintain patterns of the KAOS language with patterns
adapted from [Dwy99].

Currently, our library is composed of propositional patterns only. Further work is
required to extend it with first-order patterns.

Figure 7.3 shows the taxonomy of goal patterns that have been considered so far. Each
name in the hierarchy may have several variants of goal patterns. The figure shows a typ-
ical propositional goal pattern for each node. Further extensions of this taxonomy of goal
patterns will trigger the identification of further operationalization patterns in our library.
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Goal Patterns

/\

/Achieve Maintain/Avoid
Unbounded Bounded Immediate State/ Transition
Achieve Achieve Achieve Invariant Invariant
COOT COOy4T CcOOT /I\ TOeC
Global ‘After’ ‘Between’

Invariant Invariant Invariant
POQ cooQ CO QWR

FIGURE 7.3. A taxonomy of goal patterns
7.4.2. Coverage of the Library

Since operationalization patterns are identified from the pattern of thetgealpverage

of the library of operationalization patterns is relative to the coverage of the taxonomy of
goal patterns The effectiveness of our approach is based on the assumption that most
properties that occur in practice can be specified using a small set of goal patterns. This
assumption is partly supported by an empirical study reported in [Dwy99].

7.5. A Library of Operationalization Patterns

7.5.1. Achieve Goals

We first describe operationalization patternsAohieve goals. Propositional patterns for
specifications of Achieve goals include:

Unbounded Achieve: C O ¢ T
Bounded Achieve: C O 04 T
Immediate Achieve: CO O T, e CO T,CO-TOOT

SinceUnbounded Achieve goals are not realizable, there is no operationalization pattern
for such goals. Operationalization patterns Baunded Achieve goals andmmediate
Achieve goals are given in Figures 7.4 to 7.7. As mentioned before, further work is
required to define operationalization patterns for first-order variants of these goal pat-
terns. (An example of a first-order pattern wsunded Achieve goals was given in Fig-

ure 7.2.)
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FIGURE 7.4. Operationalization pattern forl] 0.y T
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FIGURE 7.5. Operationalization pattern ford O Q
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7.5.2. Maintain Goals

For Maintain goals, we distinguish betweearate invariants that constrain system states,
andtransition invariants that constrain system transitions. In the spirit of [Dwy99], we
also consider different temporal scopes of the invariagiohal invariant is required to
hold over all system states, aafter invariant is required to hold only after some condi-
tion C, and a betweeninvariant is required to hold between states in whicholds and
states in whichr holds.

For state invariantswe consider the following goal patterns:

Global Invariant: PO Q
After Invariant: cO OQ, CO OyQ

Between Invariant: CO QWR, e C0OQW(Q [R)

For aglobal invariantof the formP [0 Q to be realizable by an agent, the agent has to
control all variables appearing lmandQ; the operationalization of such goal is shown in
Figure 7.8. Note that state invariants are operationalizeeduyred post-conditions

Similarly, for an‘after’ invariant of the formC O 0 Q or C 0 U4 Q to be realizable by

an agent, the agent has to control all variables appeariggandQ; operationalization
patterns for such goals are given in Figures 7.9 and 7.10. These goals are operationalized
by (i) a required post-condition on an operation that makéasie, and (ii) a required pre-
condition on the operation that makgg$alse.

For a‘between’ invarianiof the formC [0 Q W R to be realizable by an agent, that agent
also has to control all variables appearind’jiQ andR; the operationalization of such a
goal is given in Figure 7.11.

A ‘between’ invariant of the forme C O Q W(Q [R) is realizable by an agent control-
ling Q and monitoringC andR. The operationalization of such goal is given in Figure
7.12. The operationalization consists of (i) a required trigger condition on the operation
that make®) true, and (ii) a required precondition on the operation that ntakaise.

For transition invariants we consider the following patterns:
required transition: C O O T, e COT, cO-1TOOT
allowed transition: @ T e C, TO e C

These patterns are realizable by an agent that controls the variables appeariagdin
monitors the variables appearing @ Therequired transition patterns are the same as
the immediate Achieve patterns. Operationalization patterns for tidlewed transition

goal patterns are given in Figure 7.13 and 7.14. The definition of first-order variants of
these patterns is subject to further work.
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FIGURE 7.8. Operationalization pattern férd Q
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Obstacle Analysis

Chapter 8
Obstacle Analysis

This chapter describes the anticipation and handling of exceptional agent behaviours dur-
ing the requirements elaboration process. It is largely based on [Lam2Ka].

8. 1. Introduction

One major problem requirements engineers are faced with is that first-sketch specifica-
tions of goals, requirements and assumptions tend to be too ideal; such assertions are
likely to be occasionally violated in the running system due to unexpected behavior of
agents like humans, devices, or software components [Lam95, Pot95, Fea98]. This gen-
eral problem is not really handled by current requirements elaboration methods.

Consider the mine pump system, for example; a first-sketch goal sudilams
tainfPumpOnWhenHighWater] is overideal and likely to be violated from time to time --
because, e.g., the water sensor may fail to correctly detect a high water level; the pump
may refuse to start; the pump controller may fail to produce correct input in time; etc. In
an ambulance dispatching system, a first-sketch goal susthise[MobilizedAmbulan-
cePromptlyAtincident] is overideal and likely to be violated because of, e.g., allocation of

a vehicle not close enough to the incident location; or too long allocation time; or impre-
cise or confused location; etc. In an electronic reviewing system for a scientific journal, a
first-sketch goal such aschieve[ReviewReturnedinFourWeeks] or an assumption such
asReviewerReliable are straightforward examples of overideal statements that are likely

to be violated on occasion; the same might be true for a security goal sudhias
tain[ReviewerAnonymity]. In a resource management system, a goal such as
Achieve[RequestedResourceUsed] or an assumption such &equestPendingUntilUse

are also overideal as requesting agents may change their mind and no longer wish to use
the requested resource even if the latter becomes available. In a meeting scheduler sys-
tem, a goal such a&chieve[ParticipantsTimeConstraintsProvided] is likely to be vio-

lated, e.g., for participants that do not check their email regularly thereby missing
invitations to meetings and requests for providing their time constraints. In a control sys-
tem, a goal such allaintain[AlarmissuedWhenAbnormalCondition] might be violated
sometimes due to unavailable data, device failure or deactivation by malicious agents.

Overidealization of goals, requirements and assumptions results in run-time inconsisten-
cies between the specification of the system and its actual behavior. The lack of anticipa-
tion of exceptional circumstances may thus lead to unrealistic, unachievable and/or
incomplete requirements. As a consequence, the software developed from those require-
ments will inevitably result in failures, sometimes with critical consequences for the
environment.

The purpose of this chapter is to introduce systematic techniques for deidealizing goals,
assumptions and requirements, and to integrate such techniques in the goal-oriented
requirements elaboration method in order to derive more complete and realistic require-
ments, from which more robust and flexible systems can be built.
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Our approach is based on the concepbbs$taclefirst introduced in [Pot95]. Obstacles

are a dual notion to goals; while goals capture desired conditions, obstacles capture
undesirable (but nevertheless possible) ones. An obstacle obstructs some goal, that is,
when the obstacle becomes true the goal may not be achieved. The term “obstacle” is
thus introduced here to denotgaal-orientedabstraction, at the requirements engineer-

ing level, of various notions that have been studied extensively in specific areas - such as
hazardsthat may obstruct safety goals [Lev95] threatsthat may obstruct security

goals [Amo094] -, or in later phases of the software lifecycle - sudaalssthat may pre-

vent a program from achieving its specification [Cri95, Gar99].

The chapter presents a formalization of this notion of obstacle; a set of techniques for
systematic generation of obstacles from goal specifications and domain properties; and a
set of alternative specification elaboration tactics that transform goal specifications so as
to resolve the obstacles generated.

Back to the example of the ideal goal nam&chieve[ReviewReturnedinFourWeeks],

our aim is to derive obstacle specifications from a precise specification of this goal and
from properties of the domain; one would thereby expect to obtain obstacles such as,
e.g., WrongBeliefAboutDeadline or ReviewRequestLost; UnprocessablePostscriptFile;

and so on. From there one would like to resolve those obstacles, e.g., by weakening the
original goal formulation and propagating the weakened version in the goal refinement
graph; by introducing new goals and operationalizations to overcome or mitigate the
obstacles; by changing agent assignments so that the obstacle is less likely occur; and so
on.

The rest of the chapter is organized as follows. Section 8.2 introduces obstacles to goals
and provides a formal characterization of this concept, including the notion of complete-
ness of a set of obstacles. Section 8.3 discusses a modified goal-oriented requirements
elaboration process that integrates obstacle analysis. Section 8.4 presents techniques for
generating obstacles from goal formulations. Section 8.5 then presents techniques for
transforming goals, requirements and/or assumptions so as to resolve the obstacles gen-
erated.

8. 2. Goal Obstruction by Obstacles

This section formally defines obstacles, their relationship to goals, and their refinement
links; a criterion is provided for a set of obstacles to be complete; a general taxonomy of
obstacles is then suggested. In the sequel, the general term “goal” will be used indiffer-
ently for a high-level goal, a requirement assigned to an agent in the software-to-be, or an
assumption assigned to an agent in the environment.

8. 2. 1. Obstacles to goals

Semantically speaking, a goal defines a set of desired behaviors, where a behavior is a
temporal sequence of states.Goal refinement yields sufficient subgoals for the goal to be
achieved.

Likewise, an obstacle defines a set of undesirable behaviors. Goal obstruction yields suf-
ficient obstacles for the goal to be violated; the negation of such obstacles yields neces-
sary preconditions for the goal to be achieved.
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Let G be a goal anddom a set of domain properties. An assertions said to be an
obstacleto G in Domiff the following conditions hold:

1. {O,Dom} |- =G (obstruction)

2. {O, Dom} |2 false (domain-consistency)
Condition (1) states that the negation of the goal is a logical consequence of the theory
comprising the obstacle specification and the set of domain properties available; condi-
tion (2) states that the obstacle may not be logically inconsistent with the domain theory.

Clearly, it makes no sense to reason about obstacles that are inconsistent with the
domain.

As a first simple example, consider a library system and the following high-level goal
stating that every book request should eventually be satisfied:

Goal Achieve [BookRequestSatisfied]
FormalDef [ bor: Borrower, b: Book
Requesting (bor, b)
O ¢ (Obc: BookCopy) [Copy (bc, b) O Gets (bor, bc)]

An obstructing obstacle to that goal might be specified by the following assertion:

Obor: Borrower, b: Book
¢ { Requesting (bor, b)
00 = (Obc: BookCpy) [Copy (bc, b) O Gets (bor, bc)] }

Condition() trivially holds as the assertion amounts to the negation of the goal (remem-
ber thatt 0 Qiff O (P - Q),and- O (P - Q),iff ¢ (P = Q),). This obstructing asser-

tion covers the classical starvation scenario [Dij71] in which, each time a copy of a
requested book becomes available, this copy gets borrowed in the next state by a bor-
rower different from the requesting agent.

To further illustrate the need for conditiqm), consider the following goal for some
device control system (expressed in propositional terms for simplicity):

Running O PressureTooLow [ AlarmRaised

Considering the domain property:
PressureTooLow [0 Startup O - AlarmRaised,

it is easy to see that conditian would be satisfied by the candidate obstacle
09 [ Running O PressureTooLow [ Startup]

which taken with the above domain property logically entails the negation of the goal;
however this candidate is inconsistent with another domain property stating that the
device cannot be both in startup and running modes:

Running O - Startup

Note that the above definition of an obstructing obstacle allows for the same obstacle to
obstruct several different goals; examples of this will be seen later on.

It is also worth noticing that, sincéchieve/Cease and Maintain/Avoid goals all have the
general fornT] GC, an obstacle to such goals will always have the general fo0@; in
the sequelGC andOC will be called goal and obstacle condition, respectively.
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8. 2. 2. Completeness of a set of obstacles

Given some goal formulation, defensive requirements specification would require as
many meaningful obstacles as possible to be identified for that goal; completeness is
desirable -at least for high-priority goals such as, 8ajety goals.

A set of obstacles Q ..., Q, to goal G in Dom isdomain-completevith respect to G iff
the following condition holds:
{= 04, .., 7 O, Dom} |= G (domain-completeness)

This condition intuitively means that if none of the obstacles in the set may occur then
the goal is satisfied.

It is most important to note that completeness is a notion relative to what is known about
the domain. To make this clear, let us consider the following example introduced in
[Jac95] after a real plane incident. The goal

MovingOnRunway [1 ReverseThrustEnabled

can be AND-refined, using the milestone refinement pattern [Dar96], into two subgoals:
MovingOnRunway OO WheelsTurning (Ass)
WheelsTurning O ReverseThrustEnabled (RQ)

The second subgoal is a requirement assigned to a software agent; the first subgoal is an
assumption assigned to an environment agent. Assumfutgmill be violated iff

¢ (MovingOnRunway [1- WheelsTurning) (N-Ass)

Assume now that the following necessary conditions for wheels to be turning are known
in the domain:

WheelsTurning O WheelsOut (D1)
WheelsTurning O - WheelsBlocked (D2)
WheelsTurning 00 - Agquaplaning (D3)

The following obstacles can then be seen to obstAsstin that domain since each of
them then entailbl-Ass

¢ (MovingOnRunway [0- WheelsOut) (01)
¢ (MovingOnRunway [1WheelsBlocked) (02)
¢ (MovingOnRunway [1 Aquaplaning) (03)

In order to check the domain completeness of these obstacles we take their negation:

MovingOnRunway [0 WheelsOut (N-O1)
MovingOnRunway [0 - WheelsBlocked (N-O2)
MovingOnRunway [0 = Aquaplaning (N-03)

Back to the definition of domain-completeness, one can see that the set of obstacles {O1,
02, O3} will be complete or not depending on whether or not the following property is
known in the domain:

MovingOnRunway
OWheelsOut [0 - WheelsBlocked [0 - Aquaplaning (D4)
0 WheelsTurning
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Obstacle completeness thus really depends on what valid properties are known in the
domain.

Note that if D4 is not a valid property in the domain, the negation of this property, i.e,

¢ ( MovingOnRunway
OWheelsOut 00—~ WheelsBlocked [0 - Aquaplaning (0O4)
- WheelsTurning)

is a further obstacle to the above assumption Ass. Furthermore, the set {01, 02, O3, O4}
is now complete wrt. Ass. In this case, no domain property is used to show the complete-
ness of the obstacles.

8. 2. 3. Obstacle refinement

Like goals, obstacles may be refinedip-refinement links may relate an obstacle to a set

of subobstacles (called refinement); this means that satisfying the subobstacles in combi-
nation is a sufficient condition in the domain for satisfying the obstawterefinement

links may relate an obstacle to an alternative set of refinements; this means that satisfy-
ing one of the refinements is a sufficient condition in the domain for satisfying the obsta-
cle. The obstacle refinement structure for a given goal may thus be represented by an
AND/OR directed acyclic graph.

A set of obstacles Q ..., Q, is ananp-refinementbf an obstacle O iff the following con-
ditions hold:

1.{0, 00, 0.. 00, Dom}|=0O (entailment)
2.{0, 00, 0... 00, Dom} |# false (consistency)

In general one is interested in minimal AND-refinements, in which case the following
condition has to be added:

2. for alli: {[1,0;, Dom} |# O (minimality)

A set of obstacles Q ..., G, is anor-refinemenof an obstacle O iff the following condi-
tions hold:

1. for all i: {O;, Dom} |= O (entailmeny
2. for alli: {O; , Dom} |# false (consistency)

In general one is interested in complete OR-refinements in which case the domain-com-
pleteness condition has to be added:

3.{-0,0..0-0,, Dom}-0O (completeness)

In the plane landing example above, the set {O1, 02, O3} is a complete OR-refinement
of the higher-level obstaclg-Ass in a domain comprising properba.

One may sometimes wish to consider all disjoint alternative subobstacles of an obstacle;
the following additional condition has to be added in such cases:

4.forallizj: {O;, O, Dom} = false  (disjointness)
Section 8.4.3 will present a rich set of complete and disjoint obstacle refinement patterns.
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Chaining the definitions in Sections 8.2.1 and 8.2.3 leads to the following straightfor-
ward proposition:

If O’ is a subobstacle within an OR-refinement of an obstacle O that obstructs some goal
G, then O’ obstructs G as well.

8. 2. 4. Classifying obstacles

As mentioned in Section 3.2.4, goals are classified by the type of requirements they will
drive about the agents concerned. For each goal category, corresponding obstacle catego-
ries may be defined. For example,

» Non-satisfaction obstacles are obstacles that obstruct the satisfaction of agent wishes
(that is,Satisfaction goals);

* Non-information obstacles are obstacles that obstruct the generic goal of making
agents informed about object states (thahfsymation goals);

* Inaccuracy obstacles are obstacles that obstruct the consistency between the state of
objects in the environment and the state of their representation in the software (that is,
Accuracy goals);

» Hazard obstacles are obstacles that obstBad¢ty goals;

» Threat obstacles are obstacles that obst8eturity goals.

Such obstacle categories may be further specialized into subcategoriemelisogetion
andCorruption obstacles are subcategoriesTofeat obstacles that obstruct goals in the
Confidentiality and Integrity subcategories ofecurity goals, respectively [Amo94];
WrongBelief obstacles form a subcategoryldiccuracy obstacles; and so on.

Knowing the (sub)category of a goal may prompt a search for obstructing obstacles in
the corresponding category. More specific goal subcategories will of course result in
more focussed search for corresponding obstacles. This provides the basis for heuristic
identification of obstacles, as discussed in Section 8.4.4.

8. 2. 5. Goal obstruction vs. goals divergence

In the context of handling conflicts between multiple goals, [Lam98b] introduced the
notion of divergent goals. Goals G1, G2, ..., Gn are said tdibergentiff there exists a
boundary condition that makes them logically inconsistent with each other in the domain
considered. We have shown that an obstacle corresponds to a boundary condition for the
degenerate case where n=1. As a consequence, there are generic principles common to
obstacle identification/resolution and divergence identification/resolution. However, han-
dling exceptions to the achievement of a single goal and handling conflicts between mul-
tiple stakeholders’ goals correspond to different problems and foci of concern for the
requirements engineer. For example, the above notions of completeness and refinement
are specifically introduced for obstacle analysis. The classification of obstacles and the
heuristic rules for their identification is specific to obstacle analysis (see Section 8.4.4).
As will be seen below, the common generic principles for identification/resolution yield
specific instantiations and specializations for obstacle analysis. For example, the goal
regression procedure can be simplified (see Section 8.4.1); the completion procedure is
specific to obstacle analysis (see Section 8.4.2); obstruction refinement patterns are dif-
ferent from divergence patterns (see Section 8.4.3).
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8. 3. Integrating Obstacles in the RE Process

First-sketch specifications of goals, requirements and assumptions tend to be too ideal;
they are likely to be occasionally violated in the running system due to unexpected agent
behavior [Lam95, Pot95]. The objective of obstacle analysis is to anticipate exceptional
behaviors in order to derive more complete and realistic goals, requirements and assump-
tions.

A defensive extension of the goal-oriented process model described in Section 3.3 is
depicted in Figure 8.15. (the arrows indicate data dependencies.) The main difference is
theobstacle analysis loomtroduced in the upper right part.

Goal Model
Elaboration

(obstacle identificat@1

Y

obstacle resolut@l

Object Model
Elaboration

Alternative
Agent Models
Elaboration

Alternatives
Evaluation and
Selection

v

FIGURE 8.15. Obstacle analysis in goal-oriented requirements elaboration

—>
data dependency

During elaboration of the goal graph by elicitation and by refinement, obstacles are gen-
erated from goal specifications. Such obstacles may be recursively refined. (Section 8.4
will discuss techniques for supporting the obstacle identification/refinement process.)

The generated obstacles are resolved which results in a goal structure updated with new
goals and/or transformed versions of existing ones. The resolution of an obstacle may be
subdivided into two steps [Eas94]: the generation of alternative resolutions, and the
selection of one among the alternatives considered. (Section 8.5 will discuss different
tactics for resolution generation.)

The new goal specifications obtained by resolution may in turn trigger a new iteration of
goal elaboration and obstacle analysis. Goals obtained from obstacle resolution may also
refer to new objects/operations and require specific operationalizations.

A number of questions arise from this process model.

» Obstacle identificationFrom which goals in the goal graph should obstacles be gen-
erated? For some given goal, how extensive should obstacle generation be?

— The more specific the goal is, the more specific its obstructing obstacles will be. A
high-level goal will produce high-level obstacles which will need to be refined signifi-
cantly into sub-obstacles in order to identify precise circumstances that lead to the vio-
lation of the goal. It is much easier and preferable to elicit/refine what is wanted than
what isnot wanted. We therefore recommend that obstacles be identifiedtéomi-
nal goals assignable to individual agents.
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— The extensiveness of obstacle identification will depend on the category and priority
of the goal being obstructed. For example, obstacle identification should be exhaustive
for safety Or security goals; higher-priority goals deserve more extensive identification
than lower-priority ones. Domain-specific cost-benefit analysis needs to be carried out
to decide when the obstacle identification process should terminate.

» Obstacle resolutionFor some given obstacle, how extensive should the generation of
alternative resolutions be? For some set of alternative resolutions, how and when
should a specific resolution be selected?

As will be seen in Section 8.5, the generation of alternative resolutions correspond to
the application of different tactics for resolving obstacles. The tactics include obstacle
elimination, with subtactics such as obstacle prevention, goal substitution, agent sub-
stitution, goal deidealization, or object transformation; obstacle reduction; and obsta-
cle tolerance, with subtactics such as obstacle mitigation or goal restoration. (Some of
these tactics have been studied in other contexts of handling problematic situations --
e.g., deadlocks in parallel systems [Cof71]; exceptions and faults in fault-tolerant sys-
tems [And81, Cri91, Jal94, Gar99]; feature interaction in telecommunication systems
[Kec98]; inconsistencies in software development [Nus96]; or conflicts between
requirements [Rob97, Lam98b]).

— The range of tactics to consider and the selection of a specific tactics to apply will
depend on the likelihood of occurrence of the obstacle, on the impact of such an
occurrence (in number of goals being obstructed by the obstacle), and on the severity
of the consequences of such an occurrence (in terms of priority of the goals being
obstructed). Risk analysis and domain-specific cost-benefit analysis need to be
deployed in order to provide a definite answer. Such analysis is outside the scope of
this thesis.

— The selection of a specific resolution should not be done too early in the goal/obstacle
analysis process. An obstacle identified at some point may turn out to be more severe
later on (e.g., because it then appears to also obstruct new important goals being elic-
ited). Premature decisions may stifle the consideration of alternatives that may appear
to be more appropriate later on in the process [Eas94].

» Goal-obstacle analysis iteratioWhen should the intertwined processes of goal elab-
oration and obstacle analysis stop?

The goal-obstacle analysis loop in Figure 8.15 may terminate as soon as the obstacles
that remain are considered acceptable without any resolution. Risk analysis needs
again to be carried out together with cost-benefit analysis in order to determine
acceptability thresholds.

8. 4. Generating Obstacles

According to the definition in Section 8.2.1, the identification of obstacles obstructing
some given goal in the considered domain proceeds by iteration of two steps:

(1) Given the goal specification, find some assertion that may obstruct it;

(2) Check that the candidate obstacle thereby obtained is consistent with the domain the-
ory available.
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Note that checking that the obstacle is consistent with the domain allows one to discard
obstacles that are known to be physically impossible in the domain. It does not allow one
to identify further obstacles.

We therefore concentrate on step (1) and present techniques for deriving candidate obsta-
cles whose domain consistency/feasibility can be checked subsequently. We successively
discuss:

» a formal calculus of preconditions for obstruction,

 the use of formal obstruction patterns to shortcut formal derivations,

» the use of identification heuristics based on obstacle classifications as a cheap, infor-
mal alternative to formal techniques.

8. 4. 1. Regressing goal negations

The first technique is based on the obstruction condition defining an obstacle in Section
8.2.1. Given the goal asserti@h it consists of calculating preconditions for obtaining

the negation~ G from the domain theory. Every precondition obtained defines a candi-
date obstacle. This may be achieved using a regression procedure which can be seen as a
counterpart of Dijkstra’s precondition calculus [Gri81] for declarative representations.
Variants of this procedure have been used in Al planning [Wal77], in explanation-based
learning [Lam91], and in requirements engineering to identify divergent goals [Lam98b].
We first explain the general procedure before showing how it can be specialized and sim-
plified for obstacle generation.

Consider a meeting scheduler system and the goal stating that intended people should
participate in meetings they are aware of and which fit their constraints:

Goal Achieve [InformedParticipantsAttendance]

FormalDef [0 m: Meeting, p: Participant
Intended (p, m) O Informed (p, m) O Convenient (p, m)
O ¢ Participates(p, m)

The initialization step of the regression procedure consists of taking the negation of this
goal, which yields

(NG) ¢ Om: Meeting, p: Participant
Intended (p, m) OInformed (p, m) O Convenient (p, m)
0 O - Participates(p, m)

(Such initialization may already produce precise, feasible obstacles in some cases; see
other examples below.)

Suppose now that the domain theory contains the following property:

0 m: Meeting, p: Participant
Participates(p, m) O Holds (m) O Convenient (p, m)

This domain property states that a necessary condition for a person to participate in a
meeting is that the meeting is being held and its date/location is convenient to her. A log-
ically equivalent formulation is obtained by contraposition:

(D) O m: Meeting, p: Participant
= [ Holds (m) O Convenient (p, m) ] O - Participates(p, m)
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The consequent i(D) unifies with a litteral in(NG); regressingNG) through(D) then
amounts to replacing i(NG) the matching consequent (D) by the corresponding ante-
cedent. We have thereby formally derived the following potential obstacle:

(O1) ¢ m: Meeting, p: Participant
Intended (p, m) O Informed (p, m) O Convenient (p, m)
0 O [ = Holds (m) O - Convenient (p, m) ]

This obstacle covers two situations, namely, one where some meeting never takes place
and the other where a participant invited to a meeting whose date/location was first con-
venient to her is no longer convenient when the meeting takes place. Using the OR-
refinement techniques described in Section 8.4.3 we will thereby obtain two subobstacles
that could be namedeetingPostponedindefinitely and LastMinutelmpediment, respec-

tively.

Assuming the domain theory takes the form of a set of ralesC, a temporal logic var-
iant of the regression procedure found in [Lam91] can be described as follows.

Initial step:
take O :=-G
Inductive step:
let A O C be the domain rule selected,
with C matching some subformula L in O whose
occurrences in O are all positive;

then u:=mgu (L, C);

O:=0|[L/AY]

This procedure relies on the following definitions and notations:

— for a formula schem¢(u) with one or more occurrences of the sentence sympah
occurrence ol is said to be positive i if it does not occur in a subformula of the
formp - gand it is embedded in an even (explicit or implicit) number of negations;

—mgu (F1, F2) denotes the most general unifieFafandr2;
— Fupdenotes the result of applying the substitutions from unifief;
—F [F1/ F2] denotes the result of replacing every occurrenéd of formulaF by F2.

The soundness of the regression procedure follows from a monotonicity property of tem-
poral logic [Man92, p.203]:

If all occurrences of in ¢(u) are positive, then

(PO 9 - (@O0 ¢@)

is valid.
Every iteration in the regression procedure produces potentially finer obstacles to the
goal under consideration; it is up to the specifier to decide when to stop, depending on
whether the obstacles obtained are meaningful and precise enough (i) to be able to asses
their probability of occurrence, and (ii) to see appropriate ways of resolving them
through tactics discussed in Section 8.5.
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In the example above only one iteration was performed. Regressing ofBtgcabove
further through a domain property like

Convenient (p, m) 0  m.Date in p.Constraints
Om.Location in p.Constraints

would have produced finer sub-obstacles to the goal
Achieve [InformedParticipantsAttendance],

namely, the date being no longer convenient or the location being no longer convenient
when the meeting takes place.

Exploring the space of potential obstacles derivable from the domain theory is achieved
by backtrackingon each domain rule applied to select another applicable one. After hav-
ing selected ruléD) in the example above, one could select the following other domain
rule stating that another necessary condition for participation is that the meeting date the
participant has in mind corresponds to the actual date of the meeting:

(D) O m: Meeting, p: Participant
Participates(p, m) U UM: Beliefy(m.Date = M) 'm.Date =M

TheBelief,g construct in this formalization is sometimes used to captecgracy goals
andinaccuracy obstacles; it is linked to thienows,4 construct by the following property:

Knows,4(P) = Beliefag(P) OP

where ag denotes an agent instance, a fact, and the KAOS built-in predicate
Knows,4(P) means that the truth value &in ag’s local memory coincides with the

actual truth value a®.

Regressing the goal negatittG) above through propert§p’) now yields the following
new obstacle:

(02) ¢ Om: Meeting, p: Participant
Intended (p, m) OInformed (p, m) O Convenient (p, m)
0 0 OM: - [ Beliefy(m.Date = M) m.Date = M |

This obstacle, in thimaccuracy category, could be named
ParticipantBelievesWrongDate.

Further backtracking on other applicable rules would generate other obstacles obstruct-
ing the goalAchieve[InformedParticipantsAttendance] such as, e.gRarticipantNotInfor-
medInTime, InvitationNotKnown, etc.

The examples above exhibitsemplified procedure for generating obstacles #chieve
goals of thefornc O ¢ T:

1. Negate the goal, which yields a pattern ¢ (C 0O - T);

2. Find necessary conditions for the target condition T in the domain theory;

3. Replace the negated target condition in the pattern resulting from step 1 by the
negated necessary conditions found; each such replacement yields a potential
obstacle. If needed, apply steps 2, 3 recursively.

A dual version of this simplified procedure can be used for goals having4lreain pat-
ternsCO T,CO OT,orC O TW N. For the plane landing example in Section 8.2.2, it
generates the obstacles O1, 02, and O3 to the assurApsiona straightforward way.
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In practice, the domain theory does not necessarily need to be very rich at the beginning.
Given a target conditioim in a goal such a€ [0 ¢ T, the requirements engineer may
incrementally elicit necessary conditiof T by interaction with domain experts and
clients.

To give a more extensive idea of the space of obstacles that can be generated systemati-
cally using this technique, Figure 8.16 shows a gidD-refinement tree, derived by
instantiation of a frequent refinement pattern from [Dar96], together with corresponding
obstacles that were generated by regression (universal quantifiers have been left
implicit).

Intended (p, m) O ¢ Participates(p, m)

Intended(p,m) Intended(p,m) Intended(p,m)
O Informed(p,m) 0 ¢[Informed(p,m) O O Intended(p,m)
OConvenient(p,m) OConvenient(p,m)]
O ¢ Participates(p,m) / \
O O, p: O O, p:
Intended(p,m) Intended(p,m)

00 = Informed(p,m) OO - Convenient(p,m)
LastMinutelmpediment ¢ 0, p:
ParticipantBelievesWrongDate Intended(p,m)
ParticipantNotinformedinTime 0¢ = Intended(p,m)

InvitationNotKnown
MeetingPostponedindefinitely

FIGURE 8.16. Goal refinement and obstacles derived by regression

8. 4. 2. Completing a set of obstacles

The domain-completeness condition in Section 8.2.2 suggests a procedure for complet-
ing a set of obstacles;Q.., Q, already identified for some goal G.

As noted in Section 8.2.1, G has the general far@C whereas ©has the general form
¢ OG. The completion procedure can be described as follows.

1. Form the complementary assertion
O*= ¢(-GCO-0C,0...O0-0Cy);
2. Check the consistency of O* with Dom;
3. If O* is domain-consistent and too unspecific, regress it through Dom or generate
subobstacles using refinement patterns, to yield finer obstacles SO* ;
4. If needed, apply steps 1-3 recursively to the SO*'s.

It is easy to check that the set {O*,;0Q.., Q} obtained by Step 1 satisfies the domain-
completeness condition in Section 8.2.2 in which the domain is temporarily not consid-
ered. Considering the domain in the next steps allows O* to be checked for consistency
and refined if necessary. A frequent simplification arises from Step 3 when O* has the
form P OP1 and a domain property is found having the faPmi P1. A one-step regres-

sion then yield® = P.
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Back to the plane landing example in Section 8.2.2, Step 1 of the completion procedure
applied to the assumption

MovingOnRunway [0 WheelsTurning (Ass)
and the obstructing obstacles

¢ (MovingOnRunway - WheelsOut)(O1)
¢ (MovingOnRunway OoWheelsBlocked)(02)
¢ (MovingOnRunway OoAquaplaning)(O3)

yields

O0=¢ (MovingOnRunway - WheelsTurning
0WheelsOut [ - WheelsBlocked [ - Aquaplaning)

This candidate obstacle is inconsistent with the domain if progeryis found inDom

(see Section 8.2.2). If not, further regression/refinement thraugh should be under-
taken to find out more specific causes/subobstacles of O* in order to complete the set
(01)-(03). Such refinement may be driven by patterns as we discuss now.

8. 4. 3. Using obstruction refinement patterns

As introduced in Section 8.2.3, obstacles mayAND/OR-refined into subobstacles.
AND-refinements yield more “primitive” obstacles, that is, obstacles for which (i) the
probability of their occurrences can be assessed, and (ii) effective ways of resolving them
can be envisioned more easily. On the other hand, domain-congre&finements are

in general desirable for critical goals; they yield a domain-complete set of alternative
subobstacles that can be made disjoint if necessary.

Section 8.4.1 already contained examples of obstacle refinements. The obaticle
Minutelmpediment was in factOR-refined into two alternative subobstacles using the
domain theory, namely, the date being no longer converoerthe location being no
longer convenient. Figure 8.16 also shows an examp@Refefinement of the obstacle
obstructing the goal in the middle of the goal tree; this obstacle, not explicitly repre-
sented there, has been formaldR-refined into the two subobstacles in the middle
(which could be named/eetingNeverNotified and MeetingNeverConvenient, respec-
tively). The latter subobstacles may be refined in turn. Similarly, the ob$tadieipant-
BelievesWrongDate that was derived in Section 8.4.1 could l@R-refined into
alternative subobstacles likeérongDateCommunicated, ParticipantConfusesDates, etc.

The AND/OR refinement of obstacles may be seen as a forgwd]-orientedform of
fault-tree analysis [Lev95] or threat-tree analysis [Am094]. Such analysis is usually done
in an informal way through interaction with domain experts and clients; our aim here is
to derive complete fault/threat-trees formally.

The regression procedure in Section 8.4.1 is a first technique to achieve this; alterna-
tively, one may use obstacle refinement patterns to shortcut the formal derivations
involved in the regression procedure.

The general principle is similar to goal refinement patterns [Dar96] and divergence
detection patterns [Lam98b]. A library of generic refinement patterns is built; each pat-
tern is a refinement tree where the root is a generic assertion to be refined and the leaves
are generic refining assertions. The correctness of each pattern is proved fantaly

and for all
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The patterns for goal obstruction are specific in that the roots of refinement trees are
negated goals. The generation of (sub)obstacles to some goal then proceeds by selecting
patterns whose root matches the negation of that goal, and by instantiating the leaves
accordingly. The requirements engineer is thus relieved of the technical task of doing the
formal derivations required in Section 8.4.1. The patterns can be seen as high-level infer-
ence rules for deriving finer obstacles.

All obstruction patterns in this paper were proved formally correct using the STeP verifi-
cation tool [Man96]. As we will see, the notion of correctness is differenafeb- and
OR-refinement patterns. We discuss them successively.

8. 4. 3. 1 anp-refinement patterns

Figures 8.17 to 8.19 show a sample of frequeND-refinement patterns for obstacles
that obstruciAchieve andMaintain goals, respectively.

o(Coo-T)

Z N\

[Top] PCOT-P] [ToP| [PCoo-TU-PI)

(1-step regression) (starvation)

o(Coo-T)

[cooTo Twm | [eCoo=M]

(milestone)
FIGURE 8.17 AND-refinement patterns for obstacles to the goal C

m O(COoAT)

[BOo-T||ocooB) [BOH-T|fo(cDoB)

(backward chain) (1-state back)

FIGURE 8.18 AND-refinement patterns for obstacles to the goal Cl

|<>(C|j(—.NU(—.ND—.T)))

BO-T 0(CcO(-~-NU (=-NOBY))

(1-step regression)

FIGURE 8.19 AND-refinement patterns for obstacles to the goal
CoOTWN

The root assertion in eaclAND-tree corresponds to the negation of the goal being
obstructed. (Remember that there is an implicit oltesperator in every strong implica-

tion; this causes the outéroperator to appear there.) Thedt child assertion may corre-
spond to a domain property, to another requirement/assumption, or to a companion
subobstacle. In the-step regression andstarvation patterns, it will typically correspond
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to a domain rule To P. In themilestone pattern, it defines a necessary milestdméor
reaching the target predicateThe left child assertion often guides the identification of
the subobstacle captured by tight child assertion.

Obstacle refinement patterns may thus help identifying lsatbobstaclesnd domain
properties Also note that thel-step regression pattern in Figures 8.17 and 8.19 corre-
spond to the regression procedure in Section 8.4.1 where only one iteration is performed.

As an example of using thetarvation pattern in Figure 8.17, consider a general resource
management system and the goal

[ u: User, r: Resource
Requesting (u, r) O ¢ Allocated (r, u)

The domain property
Allocated (r, u) 0 - Ou’ # u: Allocated (r u’)
suggests reusing thervation pattern with instantiations
C: Requesting (u, r)
T: Allocated (r, u) , P: = Ou'# u: Allocated (r, u”)
The following starvation obstacle has been thereby derived:

¢ Ou: User, r: Resource
Requesting (u, r) OO [ - Allocated (r, u) U = Ou'# u: Allocated (r, u’) 1

As an example of using thestep regression pattern in Figure 8.19, consider the LAS
ambulance dispatching system [LAS93] and the goal stating that an ambulance allocated
to an incident should remain allocated to that incident until it has arrived at the incident
scene. This goal may be formalized by

O a: Ambulance, inc: Incident
Allocation (a, inc) O Allocation (a, inc) W Intervention (a, inc)

We know from the domain that an ambulance can be allocated to at most one incident at
atime:

Allocation (a, inc) O - Oinc’ # inc: Allocation (a, inc’)

This property suggests using thestep regression pattern with the following instantia-
tions

C: Allocation (a, inc) , T: Allocation (a, inc)
N: Intervention (a, inc) , B: Oinc’ # inc: Allocation (a, inc’)

The following subobstacle is thereby derived:

¢ Oa: Ambulance, inc: Incident
Allocation (a, inc)
O - Intervention (a, inc) U
= Intervention (a, inc) JOinc’ # inc: Allocation (a, inc’)

This obstacle captures a situation in which an ambulance allocated to an incident
becomes allocated to another incident before its intervention at the first one.

A more extensive set of obstackND-refinement patterns is given in Tables 8.1-8.4.
Each table corresponds to a specific kind of goal. Each row in a table repres@&mb-an
refinement of the negation of the goal associated with the table. The lower a row is in a
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assertion subobstacle
l-stepregress | SO P O[ROO-P]
SOP O[RO(-SUO-P)]
starvation sOP O[ROO(-SU-P)]
missing source | RO0S O P O[RO-P]
non- ROOSO PWS O[RDO
persistence -SU((-PO-S)]
non- ROo0SO O[RO(-SU-P)]
persistence PW (P S)
milestone RO0SO -SWM O[ROO-M]
blocking BO O-S O[RO(-SUIB)]
substitution SO0-SOm-S |O[RO0S]
strengthening | RO¢0S O O[ROO-P]
o [P O(PWS)]
starvation ROOSO O[RO(-SUO-P])]
o [P OPWS)]
RO0SO O[RO
o [P OPWS)] -SU(=sO0-P)]

TABLE 8.1. Patterns of obstacles to the go® 0 ¢ S

assertion subobstacle
1-stepregress | QO C O[PO0-C]
backward CO¢-Q O[POOC]
1-state back COo-Q O[POOC]

TABLE 8.2. Patterns of obstacles to the go# 0 0 Q

assertions subobstacle
QOCOo0-Q, o[POQOC]
POCOoP
QUCOo0-Q, o[-POQOC]
-POCOOP
~-POCOOP, 0[-PO-QOC]
-QUOCOo0-Q

TABLE 8.3. Patterns of obstacles to the goal (P - Q)

assertion subobstacle
back state pdo-q op

TABLE 8.4. Patterns of obstacles to the goal q

table, the more specific the corresponding assertion and subobstacle are. The assertions
in the first column may represent a domain property, a requirement or a companion sub-
obstacle. Table 8.4 may be seen to correspond to the backward construction of a fault-
tree from a state machine [Rat9gJandq are intended to be state predicates there.
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All AND-refinement patterns in Tables 8.1-8.4 were proved correct using STeP [Man96] -
-by this we mean that the entailment and consistency conditions in Section 8.2.3 were
formally verified.

8. 4. 3. 2. Complet®r-refinement patterns

Figures 8.20 shows a pattern for refining the obstruction ofcaiave goalC 0O T into a
complete set of disjoint alternative subobstacles (see Section 8.2.3 for the definition of
completeness and disjointness). The goal negdti¢m [1 [0 = S ') is AND-refined into

two child nodes; the left child assertion may be a domain property, an assumption or a
requirement (in this case it defines what a milestone is); the right child noded&an
node refined into two alternative subobstacles.

0(CO0-T)
COOTO (-TWM)| >\

[eCoo=m] [plcoEmMUMoo-1)]]

(milestone)

FIGURE 8.20. OR-refinement pattern for obstacles to the gdal €T

As an example of using this pattern, consider the meeting scheduler system again and the
goal stating that participants’ time/location constraints should be provided if requested
[Lam95]:

0 m: Meeting, p: Participant
ConstraintsRequested (p, m) O ¢ ConstraintsProvided (p, m)

An obvious milestone condition for a participant to provide her constraints is that a
request for constraints is reaching her. This suggests usingjiéiene pattern in Figure
8.20 with the following instantiations:

C: ConstraintsRequested (p, m) T: ConstraintsProvided (p, m)
M: RequestReached (p, m)

The milestone pattern then generates the formalized domain property

0 m: Meeting, p: Participant
ConstraintsRequested (p, m) 0¢ ConstraintsProvided (p, m)
0 [ = ConstraintsProvided (p, m) W RequestReached (p, m) ]

together with a complete set of alternative subobstacles to the goal above:

¢ Om: Meeting, p: Participant
ConstraintsRequested (p, m) 00 - RequestReached (p, m)

or

¢ Om: Meeting, p: Participant
ConstraintsRequested (p, m) [
- RequestReached (p, m) U
( RequestReached (p, m) OO -~ ConstraintsProvided (p, m)
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The refinement may then proceed further to find out finer subobstacles in each alterna-
tive; this will yield causes for a request not reaching an invited participant and causes for
a participant not providing her constraints in spite of the request having reached her,

respectively.

assertion obstacle obstacle obstacle
S-POQ O[ROO-P] 0[ROO-Q] 0[R
OoP 00Q
O0-(POQ)]
sOP O[ROO-P] [[o[ROOP
00-S]
sOP O[RDO O[ROOP
-SUO-P] 00-S]
sOP O[RDO O[RDO
OESU-P) | o (WP OS))
00-S]
RO0S O[RO-P] O[ROP
OP Oo-S]
RO0S 0[RO-SU O[ROPWS
O PWS (~-PO-9)] 00-S]
RO0OSO O[RDO-SU O[ROO-S
PW (PLIS) -P] OPW (PCS) ]
RO0S o[ROO-M] |[0[RO-MU
0 - SWM MODO-9)]
BOO-S 0[RO-SUB] |[¢[ROO-S
0-BWS]
PODO-S O[ROOP] 0[ROO-S
Om =S O00-P]

TABLE 8.5. Obstacle OR-refinement for the goaR 0 ¢ S

obstacle
0[RO-Q2]

obstacle
0[RO-0Q1]

assertion I

Q-Qi0Q2 |

TABLE 8.6. Obstacle OR-refinement for the goatl (P - Q)

A more extensive set of complete and disjairtrefinement patterns is given in Tables
8.5-8.6. Each table corresponds to a specific kind of goal. Each row in a table represents
a refinement of the negation of the goal associated with the table; the thick vertical line
separator represents aND whereas the double line separators represel@RRnSome

of the patterns in these tables will be used in the obstacle analysis for the London Ambu-
lance System in Chapter 9.

All OR-refinement patterns in Tables 8.5-8.6 were proved correct using STeP [Man96] --
by this we mean that the entailment, consistency, disjointness, and domain-completeness
conditions in Section 8.2.3 were formally verified. In the latter case, the formulas in the
assertion column were taken as the generic domain property fobuoing
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8. 4. 4. Informal obstacle identification

Informal heuristics may be used to help identify obstacles without necessarily having to
go through formal techniques every time. Although they are easier to deploy, the result
will be much less accurate, and not guaranteed to be formally correct and complete.

Such heuristics are rules of thumb taking the forrhthe specification has such or such
characteristicthen consider such or such type of obstacle to it”. The general principle is
somewhat similar in spirit to the use of HAZOP-like guidewords for eliciting hazards
[Lev95] or, more generally, to the use of safety checklists [Jaf91, Som97].

Our heuristics are based on goal/obstacle classifications (see Section 3.4), on formal
obstruction patterns we have identified, and on past experience in identifying obstacles.
General heuristics are independent of any particular class of goals; more specific heuris-
tics are associated with some specific class.

General heuristicsefer to the KAOS meta-model only (see the concepts defined in Sec-
tion 3.2). Here are a few examples to illustrate the approach.

 If anagent has tomonitor someobject in order to guarantee thgpal it is assigned to
then consider the following types of obstacles:

— InfoUnavailable: the necessary information about thtgect state is not available to the
agent;

— InfoNotInTime: the necessary information about thdect state is available too late;

— WrongBelief: the necessary information about dmgct State as recorded in tlhagent’s
memory is different from the actual state of this object. (In the meeting scheduler
example, this heuristic might have helped identifying obstacles RikeicipantBe-
lievesWrongDate --see Section 8.4.1; for an electronic reviewing process an obstacle
like ReviewerBelievesWrongDeadline could be identified in a similar way.)

TheWrongBelief obstacle class can be further refined into subclasses such as:

— InfoOutDated: the information provided to thagent is no longer correct at the time of
use;

— InfoForgotten: the information provided to thegent is no longer available at the time
of use;

— Wronglnference: the agent has made a wrong inference from the information avail-
able;

— InfoConfusion: the agent confuses the necessary information about dhject state
with some other information.

InfoConfusion obstacles can be refined in turn, e.qg.,

— InstanceConfusion: the agent confuses the necessary information about dhgct
state with information abowtnotherinstance of object within the same class [Pot95]
(instance confusion is also related to the notion of ‘identity’ concern in [Jac2K]);

— ValueConfusion: the agent confuses different values for an attribute of the same
object;

— UnitConfusion: theagent confuses different units in terms of which values obhiject
attribute are expressed.

179



Obstacle Analysis

In the meeting scheduler example, these heuristics might have helped identify several
obstacles among those derived formally, e.g., participants confusing meetings or dates,
meeting initiators confusing participants which results in wrong people being invited,
confusion in constraints, etc. In an ambulance dispatching system, an obstacle like an
ambulance going to a wrong place could be identified thereby.

An important specialization oifnfoConfusion obstacles in the aviation domain is
ModeConfusion where pilot agents become confused about what the cockpit software
agent is doing; obstacles in this category receive increasing attention as they have been
recognized to be responsible for a significant number of critical incidents [But98].

» If anagent requires someesource in order to guarantee thgoal it is assigned to
then consider obstacles in the following categoriessourceUnavailable, Resource-
ToolLate, ResourceOutOfOrder, WrongResource, ResourceConfusion, and so on.

« If a persistent condition is necessary to reachtanget condition from thesource
condition in anAchieve goal, then consider an obstacle in which the persistent condi-
tion becomes false before reaching the target condition.

The latter heuristic rule corresponds to a natural language rephrasingmistieg per-
sistence pattern in Table 8.1; it suggests how similar heuristics can be formulated from
the other patterns.

More specific heuristicsefer to goal classifications. Here are a few examples.

» If aMessageDeliveredgoal in the Information goal category is considerethen con-
sider obstacles likeMessageUndelivered, MessageDeliveredAtWrongPlace, Mes-
sageDeliveredAtWrongTime, MessageCorrupted.

» If agoal being considered is in ti&imulusResponse categorythen consider the fol-
lowing types of obstacles:

— Stimuluslgnored, TooLatePickUp, IncorrectValue, or StimuliConfused obstacles to the
abstract goabtimulusPickedUp;

— NoResponse, ResponseToolLate, Responselgnored, or WrongResponse obstacles to
the abstract companion gd@¢sponseProvided.

Obstacles can also be identified by analogy with obstacles in similar systems, using ana-
logical reuse techniques [Mas97].

8. 5. Resolving Obstacles

The generated obstacles need to be resolved in some way or another. As discussed in
Section 8.3, the resolution process covers two aspectgetherationof alternative reso-

lutions and theselectionof one resolution among those identified. Which resolution to
apply and when to apply it will depend on risk/cost-benefit analysis based on the likeli-
hood of occurrence of the obstacle and on the severity of its consequences. We will not
discuss selection tactics here; we concentrate on the generation of alternative resolutions.

Such resolutions correspond to differesgecification elaboration tactichat may be
applied. They can be classified into three broad classes depending on whether the obsta-
cle is eliminated (Section 8.5.1), reduced (Section 8.5.2), or tolerated (Section 8.5.3).
Some of these tactics have been studied in other contexts of handling problematic situa-
tions --e.g., deadlocks in parallel systems [Cof71]; exceptions and faults in fault-tolerant
systems [And81, Cri91, Jal94, Gar99]; feature interaction in telecommunication systems
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Obstacle Resolution Tactics

_— N T

Eliminate Obstacle Reduce Obstacle Tolerate Obstacle
\ deidealize
goal
chose chose prevent transform mitigate Obstacle restore goal
alternative goal alternative agent obstacle domain / \
anticipate make remove  weakly mitigate Strongly mitigate
obstacle  obstacle obstruction Obstacle Obstacle

unfeasible  support

FIGURE 8.21. The library of obstacle resolution tactics

[Kec98]; inconsistencies in software development [Nus96]; or conflicts between require-
ments [Rob97, Lam98b]. The objective here is to specialize such tactics to the resolution
of obstacles to goals during requirements engineering, and to make them explicit in
terms of specification transformation rules in the formal framework of temporal logic.

The obstacle resolution process will result in a transformed goal structure, transformed
requirements specifications, and transformed domain properties in some cases.

The library of obstacle resolution tactics is shown in Figure 8.21.

8. 5. 1. Obstacle Elimination

Eliminating an obstacle requires one among the conditions defining an obstructing obsta-
cle in Section 8.2.1 to be inhibited; the obstruction should be avoided or the obstacle

should be made inconsistent/infeasible within the domain. The strategies below address
one of the conditions or the other.

8.5. 1. 1. Goal substitution

A most effective way of resolving an obstacle is to identifyaternative goal refine-
mentfor some higher-level goal, in which the obstructed goal and obstructing obstacle
are no longer present. In the meeting scheduler example, one may eliminate the obstacle
ElectronicAgendaNotMaintained that obstructs the godllectronicAgendaUpToDate by
choosing an alternative refinement for the father graadicipantsConstraintsknown (see

Figure 8.22); the alternative goal refinement consists in introducing the two companion
goalsConstraintsRequested (under responsibility of the meeting scheduling software)
and ConstraintsProvided (still under joint responsibility of participants and the email
system).

Choosing an alternative goal refinement will in general result in a different design for the
composite system.
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|ParticipantsConstraintsKnown |

RUN

ElectronicAgenda| | Constraintsknown| [Constraints | |Constraints
UpToDate FromAgenda Requested | | Provided
%obstructs

lectronicAgenda
NotMaintained
FIGURE 8.22. choose alternative goal

8. 5. 1. 2. Agent substitution

Another way of overcoming the obstacle is to consialégrnative agent assignmerge

that the obstacle scenario may no longer occur. This will in general result in different
system proposals, in which more or less functionality is automated and in which the
interaction between the software and its environment may be quite different.

Back to our meeting scheduler example, one might overcome the obBtadkgpant-
NotResponsive to the goalConstraintsProvided by assigning the responsibility for that
goal to the participant'Secretary instead (to overcome subobstacles suckrasilNot-
CheckedRegularly or ParticipantTooBusy), or by assigning the responsibility for the goal
ParticipantsConstraintsRequested to the meeting initiator (rather than the meeting
scheduling software) --through email, phone calls, etc.

In the electronic reviewing example, one could introduce a software agent for checking
that no occurrences of the reviewer's name are found in the review (to overcome the
obstacleNonAnonymousReview); a software agent for checking destination tables (to
overcome the obstachMessageSentToWrongPerson); and so on.

Agent substitution may entail goal substitution and vice-versa.

8. 5. 1. 3. Obstacle prevention

The tacticprevent obstacle resolves the obstruction adding a new goatequiring that
the obstacle be avoided.

Remember that a goal G has the general far@C whereas an obstacle O to G has the
general formd OC. To prevent O from being ever satisfied, the followiAgpid goal is
thus introduced:

G*: -o0c
AND/OR refinement and obstacle analysis may then be applied to the new goal in turn.
Back to our meeting scheduler example, consider the obskéedtingForgotten that
obstructs the goachieve [InformedParticipantsAttendance] in Figure 8.16. The tactics

prevent obstacle yields the new goakvoid [MeetingForgotten]. The latter may then be
refined into a requirememchieve [MeetingReminded] under responsibility of the meet-
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ing scheduling software. Another example of obstacle prevention in a train control sys-
tem is the introduction of an automatic brake facility (with corresponding goals and
agents) to prevent trains from exceeding their speed limit.

It may turn out, after checking with domain experts, that the asserntio@C introduced

for obstacle prevention is not a goal/requirement but a domain property that was missing
from the domain theoryom, making the obstacle unfeasible in the domain (see the
domain consistency condition in Section 8.2.1). In such cases the domain theory will be
updated instead of the goal structure, and the obstacle will be discarded.

The tacticanticipate obstacle is a subtactic for refining obstacle prevention goals. It is
applicable when some persistent condit®oan be found such th& must persist dur-
ing some time interval for the obstacle condition OC to become true:

oclO m 4P
In such a case, the obstacle prevention goal may be refined by introducing the subgoal
G: PO Oy-P
For obstacles teecurity goals, for example, one might have the following instantiations:

OC: InformationCorruptedByAgent
P: IntrusionUndetected

Obstacle anticipation patterns may be used when an event can be identified that necessar-
ily precedes the truth of the obstacle condition.

8.5. 1. 4. Goal Deidealization

It is often the case that obstacles are found to obstruct first-sketch goal formulations
because the latter are too ideal. Such goal formulations should then be deidealized so that
they cover the behaviors captured by the obstacle. The principldrnartsform the goal

being obstructed in order to make the obstruction disappear.

Let us suggest the technique via an example first.

Consider the obstaclearticipantNotinformedinTime in Figure 8.16 which obstructs the
goal

Intended (p, m) O Informed (p, m) O Convenient (p, m)
O ¢ Participates(p, m)

The idea is to make the obstructed goal more liberal, that is, to weaken it so that it covers
the obstacle. In this case the goal weakening is achieved by strengthening its antecedent:

Intended (p, m) O InformedInTime (p, m) O Convenient (p, m)
0 ¢ Participates(p, m)

The predicatenformedinTime (p, m) is derived from the corresponding obstacle; it
requires participants to be kept informed during a time period starting atNedays
before the meeting date:

InformedInTime (p, M) = W< (1, pate - Ng) INformed (p, m)
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Once this more liberal goal is obtained, the predicates that were transformed to weaken
the goal are to be propagated in the goal tree to replace their older version everywhere;
this generally results in strengthened brother goals and weakened higher-level goals. The
result of the change propagation in the tree shown in Figure 8.16 will produce a strength-

ened goal in the middle of the tree, namely,

Intended(p, m) O ¢ [ InformedInTime (p, m) [ Convenient(p, m) ]

The deidealization procedure is similar to the one used for weakening divergent goals
[Lam98Db]. It is simpler here as only one goal assertion has to be considered for weaken-
ing. The procedure has two steps:

(1) Weakenthe goal specification to obtain a more liberal version that covers the
obstacle. Syntactics generalization operators can be used here such as adding a dis-
junct, removing a conjunct, or adding a conjunct in the antecedent of an implication.

(2) Propagate the predicate changes in the goal AND-tree in which the weakened goal
is involved, by replacing every occurrence of the old predicates by the new ones.

The cardinality transformations in [Fea93] may be seen as a particular form of syntactics
generalization in step 1 of this simplified procedure. Step 2 can be done simply by updat-
ing the instantiations of the goal refinement patterns used to build the goal graph, when
such patterns have been used [Dar96].

Goal deidealization patternsiay also be used as formal support for the deidealization
process. Given the obstructed goal and the obstructing obstacle, they yield deidealized
versions of the goal. To illustrate the approach, Table 8.7 gives some patterns for some of
the obstacles from Table 8.1.

goal obstacle deidealized goal
RO¢S O[RO-P] ROPO®S
RO¢S O[ROO-P] ROMPWS)O ¢S
RO¢S O[RO(-SU-P)] ROMPWS)O ¢S
ROOS | o[RO(-SUO-P)] ROOOPO®S
RO¢CS | o[ROO(-SU-P)] | ROO(PW(POS))
0oS

TABLE 8.7. Deidealization patterns for Achieve goals

At the end of Section 8.4.3.1 we considered the resource manag&rhient goal

U u: User, r: Resource
Requesting (u, r) O ¢ Allocated (r, u),

and generated the starvation obstacle

¢ Ou: User, r: Resource
Requesting (u, r) OO [ - Allocated (r, u) U [’ # u: Allocated (r, u’) |

The goal and starvation obstacle match the last row of Table 8.7; we thereby generate the
deidealized goal specification

U u: User, r: Resource
Requesting (u, r) O (= [ # u: Allocated(ru’)) W Allocated(r,u)
O ¢ Allocated (r, u)
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The new goal version states thithe user requests the resource and the resource is sub-
sequently kept unallocated unless allocated to hémnéty the resource is eventually allo-
cated to her/it. The new conditiom W s that strengthens the antecedent has to be
propagated into the goakbp-tree. The goals that refer to this new predicate as target
condition might be operationalized through a reservation procedure.

8. 5. 1. 5. Domain transformation

This strategy consists in transforming the domain within which the software-to-be oper-
ates so as to make the obstruction disappear. The set of domain properties is modified so
as to make the obstacle either inconsistent with the domain (see the domain-consistency
condition in Section 8.2.1) or no longer obstructing the goal (see the obstruction condi-
tion in Section 8.2.1).

As an illustration of the first case, consider the gaethieve[AllocatedAmbulanceMobi-

lized] in an ambulance dispatching system. One obstacle to this goal corresponds to the
situation where an ambulance crew decides to mobilize another ambulance than the one
allocated by the system. The domain property making this possible is that mobilization
orders received by crews at ambulance stations mention the incident location. The obsta-
cle can then be eliminated by transforming the mobilization order so that it does no
longer mention the incident location; the latter information would then be provided by a
mobile data terminal inside the ambulance.

As an illustration of the second case, we can prevent the obstacle/enientLocation

from obstructing the goahformedParticipantsAttendance in the meeting scheduler sys-
tem by transforming the domain so that video conferencing is made possible; the con-
junct m.Location in p.Constraints would then be dropped from the domain property
stating necessary conditions for meetings to be convenient (see Section 8.4.1).

8. 5. 2. Obstacle Reduction

The difference between tactics for reducing obstacles and the previous one is that here
one tries toreduce the occurrences of the obstanistead of eliminating them com-
pletely.

Tactics that act on the motivation of human agents are instances of this class. The princi-
ple is to reduce the situations in which an agent acts abnormally or irresponsibly either
by dissuasion or by providing rewards. For instance, many library systems issue fines to
dissuade borrowers from late returns; insurance systems provide premium reduction for
good customers; some transportation companies issue rewards for crews arriving on
time; and so on.

8. 5. 3. Obstacle Tolerance
In cases where the obstacle cannot be thoroughly avoided, or where avoiding it is simply

too costly or not worthwhile, one may specify which behaviors will be admissible or tol-
erated in the presence of the obstacle.

185



Obstacle Analysis

8. 5. 3. 1. Goal restoration

The tacticrestore goal consists ohdding a new goastating that if the obstacle condition
oc becomes true then the obstructed goal assedishould be satisfied again in some
reasonably near future. This new goal thus takegdthive form

G OCl0¢G

This strategy could be followed for the obstadaperLost that obstructs the goal
Achieve[ReviewReturned]. A subgoal refining the restoration goal will Behieve[Lost-
PaperResent].

8. 5. 3. 2. Obstacle mitigation

Another alternative tactic to obstacle elimination is to seek effective ways of mitigating
the consequences of the obstacle. The principle adith a new goato attenuate the
effects of obstacle occurrences. Two forms of mitigation can be distinguished.

The tacticmitigate obstacle weakly consists in ensuring some weakened version G’ of
the obstructed goal G whenever the obstacle condition OC becomes true. A weak mitiga-
tion goal thus has the form

G* oco @G

where G’ is a deidealized version of G obtained using the specification transformations
described in Section 8.5.1.4.

To illustrate this, consider the obstadl@astMinuteimpediment generated in Section
8.4.1. The introduction of the weak mitigation goal

Achieve [ImpedimentNotified]

will ensure a weaker version of the goaformedParticipantsAttendance in Section
8.4.1, namely,

Intended (p, m) O Informed (p, m) O Convenient (p, m)
O ¢ [ Participates(p, m) O Excused (p, m) ]

(Note that in this case an obstacle prevention alternative to such weak mitigation would
yield a goal likeAchieve [MeetingReplanned].)

The tacticmitigate obstacle strongly consists in ensuring some parent goal G’ of G
whenever the obstacle condition OC becomes true, in spite of G being obstructed. A
strong mitigation goal thus has the form

G*: oco G
where the obstructed goal G is a subgoal of G'.
Figure 8.23 illustrates this on a mine pump system example [Jos95]. The goal
Avoid[MinerInOverfloodedMine]

strongly mitigates the obstackxcessiveWaterFlow that obstructs the goalaterFlow-
Limited by guaranteeing that the parent gdalid[MinerDrowning] will be satisfied.
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| Avoid[MinerDrowning] |

|Avoid[MineOverrooded] |

IAvoid[MinerInOverroodedMine]|
mitigates

|WaterExtracted| |WaterFIowLimited|

obstruct

iAIarmIssued| |MinerOutAfterAIarm|
(ExcessiveWaterFlow)

FIGURE 8.23. Obstacle mitigation

The distinction between strong and weak mitigation somewhat corresponds, at the
requirements engineering level, to two different, sometimes confused notions of fault tol-
erance [Cri91]: one where the program meets its specification in spite of faults, and the
other where the program meets a weaker version of the specification.

8. 5. 3. 3. Do-nothing

For non-critical obstacles whose consequences have no significant impact on the per-
formance of the system a last strategy is of course to tolerate its occurrences without any
resolution action.

8. 6. Summary

In order to get high-quality software, it is of upmost importance to reason about excep-
tional agent behavior during requirements elaboration --not only software agents, but
also the agents in the environment like devices, operators, users, etc.

The key principle underlying this chapter is that obstacle analysis needs to be done as
early as possible in the requirements engineering process, that is,gaaHevel. The
earlier such analysis is started, the more freedom is left for resolving the obstacles.
Moreover, goals provide a precise entry point for starting analysis in a more focussed
way like, e.g., the construction of fault-trees or threat-trees from negated goals.

Various formal and heuristic techniques were presented for obstacle generation and
refinement from goal specifications and domain properties; the generation of obstacle
resolutions is achieved through various tactics to eliminate, reduce, or tolerate the obsta-
cle.

When to apply such or such identification/resolution technigue may depend on the
domain, on the application in this domain, on the kind of obstacle, on the severity of its

conseqguences, on the likelihood of its occurrence, and on the cost of its resolution. Much
exciting work remains to be done with those respects.
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Chapter 9
Case Studies

This chapter illustrates and assesses the various techniques described in the preceding
chapters on real case studies of significant sizes. Two case studies have been performed.

The first one concerns the ambulance despatching system of the London Ambulance
Service (LAS) for which failure stories have been published [LAS93, Fin96]. The LAS
system was proposed as a common case-study for the 8th International Workshop on
Software Specification and Design (IWSSD-8). The initial document for this case study
is the “Report on the Inquiry into the London Ambulance Service” [LAS93].

The second one concerns an automated train control system for the San Francisco Bay
Area Rapid Transit (BART) system. The BART system is a recent benchmark proposed
to the formal specification community. The initial document was provided by an inde-
pendent source involved in the development [Win99].

These case studies are appealing for a number of reasons; they are real, safety-critical,
and distributed systems involving real-time, accuracy, and fault tolerance requirements.

For both case studies, the agent-driven tactics of Chapter 6 are used to generate alterna-
tive goal refinements, agent responsibilities and agent interfaces from high-level goals.
Obstacle Analysis is then performed on the resulting goal models. Various obstacle iden-
tification techniques are used to systematically generate obstacles from goals. Alterna-
tive obstacle resolutions are then explored through the systematic application of
obstacles resolution tactics. For the LAS case study, the list of potential obstacles that
have been generated are compared to the scenarios that actually occurred during the two
system failures in October-November 1992.

9. 1. The London Ambulance Service System

9. 1. 1. Introduction

The London Ambulance Service (LAS) has two main functions: responding to emer-
gency calls requiring the rapid intervention of an ambulance, and dealing with non-
urgent patient journeys. The case study is only concerned with the handling of urgent
calls.

The UK Government imposes performance standards (called ORCON) for accident and

emergency calls upon ambulance services. In 1992, when the first automated system for
LAS was put into use, the performance standard for the LAS was:

An ambulance must arrive at the scene within 14 minutes for 95% of the calls.

It was the difficulty of meeting that standard that motivated the need for a new system.
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Our elaboration of the goal model for the LAS is mostly based on a section of the Inquiry
Report that describes the rationale for a Computer Aided Despatch (CAD) system.
Excerpts from that section are reproduced below:

In order to understand the rationale behind the development of the CAD sys-
tem it is essential to understand the manual system that it would replace and its
shortcomings.

The Manual system operates as follows:
Call Taking

When a 999 or urgent call is received in the Central Ambulance Control (CAC)
room, the Control Assistant (CA) writes down the call details on a pre-printed
form. The incident location is identified from a map book, together with the

map reference co-ordinates. On completion of the call the incident form is
placed into a conveyor belt system with other forms from fellow CAs. The

conveyor belt then transports the forms to a central collection point within
CAC.

Resource ldentification

Another CAC staff member collects the form from the central collection point
and, through reviewing the details on the form, decides which resource alloca-
tor should deal with it (based on the three London Division - North East, North
West, and South). At this point, potential duplicate calls are also identified.
The resource allocator then examines the form for his/her sector and, using sta-
tus and location information provided through the radio operator and noted on
forms maintained in the “activation box” for each vehicle, decides which
resource should be mobilized. This resource is then also recorded on the form
which is passed to a despatcher.

Resource Mobilisation

The despatcher will telephone the relevant ambulance station (if that is where
the resource is) or will pass mobilisation instructions to the radio operator if
the ambulance is already away from the station.

According to the ORCON standards this whole process should take no more
than 3 minutes.

There are some clear deficiencies with a totally automated manual system
including:

a) identification of the precise location can be time consuming due to often
incomplete or inaccurate details from the caller and the consequent need to
explore a number of alternatives through the map books;

b) the physical movement of paper forms around the Control Room is ineffi-
cient;

€) maintaining up to date vehicle status and location from allocators’ intuition
and reports from ambulances as relayed to and through the radio operators is a
slow and laborious process;
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d) communicating with ambulances via voice is time consuming and, at peak
times, can lead to mobilization queues;

e) identifying duplicate calls relies on human judgement and memory. This is
error prone;

f) dealing with call backs is a labour intensive process as it often involves CA's
leaving their posts to talk to the allocators;

g) identification of special incidents needing a Rapid Response Unit or the hel-
icopter (or a major incident team) relies totally on human judgement.

A computer aided despatch system is intended to overcome most of these defi-
ciencies through such features as:

a) a computer based gazetteer with public telephone box identification;
b) elimination of the need to move paper around the control room;

c) timely and (in the case of location information) automated update of
resource availability information;

d) computer based intelligence to help identify duplicates and major incidents;

e) direct mobilization to the ambulance on the completion of the call thus
potentially, in simple cases, achieving mobilization inside one minute.

9. 1. 2. Elaborating the Goal Model
9. 1. 2. 1. Identifying preliminary goals

1. Identifying high-level performance goal

Form the ORCON standards, we extract the first-sketch idealizedhgb@le[Ambulan-
celntervention] that requires that an ambulance must arrive at the scene of an incident
within 14 minutedor every call

Goal Achieve[Ambulancelntervention]

InformalDef For every urgent call reporting an incident, there should be an ambu-
lance at the scene of the incident within 14 minutes.

FormalDef [ c: UrgentCall, inc: Incident

@ Reporting(c, inc) O 04 (Damb: Ambulance) Intervention(amb, inc)

This goal is idealized. Sometimes, an ambulance will not arrive on time. During obstacle
analysis, we will identify various obstacles to the satisfaction of this goal; and alternative
strategies for preventing, reducing or mitigating the consequences of these obstacles.

The fact that 95% of the calls must be responded to within 14 minutes defines the degree
to which this goal has to be satisfied. This degree of satisfaction is to be used to evaluate
alternative responsibility assignments and obstacle resolution strategies. This evaluation
step is currently not supported by the KAOS method.
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[incidentResolved]

/’ IncidentReported ] [Ambulancelntervention / f IncidentResolvedBylntervetion /\
Ambulance
Staff

FIGURE 9.24. Asking WHYAmbulancelntervention and uncovering assumptions

2. Asking WHY questions and uncovering assumptions

Asking a WHY question about the goathieve[Ambulancelntervention] drives the iden-
tification of the higher-level goachieve[IncidentResolved]:

Goal Achieve[lncidentResolved]

InformalDef Every incident requiring emergency service is eventually resolved.
FormalDef [ inc: Incident

inc.Happened O ¢ inc.Resolved

At this point, we remain voluntarily ambiguous about what is meant for an incident to be
resolved. We should however point out that ‘resolved’ here does not mean that no human
life is lost. It is a predicate that we assume to be given by government standards defining
the required services to be provided by emergency services such as the LAS.

The identification of this higher-level goal drives the identification of assumptions shown
in Figure 9.24. In this goal-graph, the assumpticgkehieve[lncidentReported] and
Achieve[lncidentResolvedBylIntervention] are elicited formally by matching a milestone-
driven refinement pattern to the formalization of the parent gahieve[lncidentRe-
solved], and to the formalization of the initial goachieve[Ambulancelntervention].
These new goals are defined as follows:

Assumption Achieve[lncidentReported]

InformalDef Every incident requiring emergency service is eventually reported to the
LAS.

FormalDef [ inc: Incident

inc.Happened O ¢ (Oc: UrgentCall) Reporting(c, inc)

Assumption Achieve[IncidentResolvedBylntervention]

InformalDef An incident is resolved by the intervention of a single ambulance.
FormalDef O amb: Ambulance, inc: Incident

Intervention(amb, inc) O ¢ inc.Resolved

The assumption that an incident is resolved by a single ambulance is of course highly
idealized; some incidents may require the intervention of several ambulances. This
assumption is idealized also because the resolution of incidents depends on the medical
resources carried in the ambulances, and on the availability of medical resources at hos-
pitals where patients are transported. Possible violations of this assumption will be sys-
tematically identified during obstacle analysis.

In the sequel, we begin by developing a requirement model that is based on this idealized
assumption, i.e. we assume that an incident is resolved by the intervention of a single
ambulance, and we are not concerned by the materials that need to be carried in ambu-
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[IncidentResolved

/{ IncidentReported [ [Ambulancelntervention / / IncidentResolvedByIntervetion ,\

Ambulance
N

[AmbulanceMobilization] [ MobilizedAmbulancelntervetion /\

Ambulance
Staff

FIGURE 9.25. Refining the goAichieve[Ambulancelntervention]

lances. During obstacle analysis, we will identify different obstacles to the satisfaction of
that assumption, and show how the idealized model can be transformed by weakening
that assumption, modifying previously identified goals, and identifying further goals.

Note that with a goal-oriented approach, such simplifying assumptions have to be
described explicitly in the model, and can be systematically identified by checking the
completeness of goal refinements.

3. Refining the goal Achieve[Ambulancelntervention]

The Inquiry Report describes a further performance standard that requires that for every
reported incident an ambulance must be mobilized for that incident within 3 minutes.
The following first-sketch goal definition is thereby identified:

Goal Achieve[AmbulanceMobilization]

InformalDef For every reported incident, there should eventually be an ambulance
mobilized for that incident; the mobilization delay should be less than 3 minutes.
FormalDef [ c: UrgentCall, inc: Incident

@ Reporting(c, inc) O O3 (Damb: Ambulance) Mobilization(amb, inc)

In Figure 9.25, this goal is declared as a subgoal of the aboveAgb@ve[Ambulan-
celntervention]. In this goal refinement, the companion subgbetlieve[MobilizedAmbu-
lancelntervention] is elicited formally by matching a milestone-driven refinement pattern
to the formal definitions of the previously identified goals. The generated formal defini-
tion for the goalAchieve[MobilizedAmbulancelntervention] is given by:

Mobilization(amb, inc) O ¢<;7- Intervention(amb, inc).

Note that this goal refinement corresponds to an application of the tpitidack of
monitorability with milestone that resolves lack of monitorability oAmbulanceStaff
agents for urgent calls.

Figure 9.25 also shows that the goAthieve[MobilizedAmbulancelntervention] is
assigned as the responsibility of thenbulanceStaff agents. However, this goal is not
realizable byAmbulanceStaff agents, because they cannot monitor for which incident
they are mobilized, they can only know for whitdtationthey are mobilized. As a first
step to solving this problem, we declare the relationshipisilization andintervention as
derived relationships that are defined as follows:

Mobilization(amb, inc) = amb.Mobilized [Jamb.Destination = inc.Location

Intervention(amb, inc) < amb.Intervention O amb.Location = inc.Location
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That is, an ambulance is mobilized for an incident iff it is mobilized and its destination is
the location of the incident; and an ambulance makes an intervention for an incident iff it
is in intervention mode and its location is the location of the incident. The attributes
Mobilized, Destination, and Intervention of the Ambulance entity are controlled by
AmbulanceStaff agents. Using these definitions, the goal

Achieve[MobilizedAmbulancelntervention]
can now be rewritten into:

O amb: Ambulance, loc: Location
amb.Mobilized O amb.Destination = loc
O 0<11- amb.Intervention Jamb.Location = loc

Note that this goal definition does not refer to theident entity any more. This goal def-
inition is now realizable byAmbulanceStaff agents, because they monitor the attributes
Mobilized and Destination of ambulances, and control the attributegrvention and
Location of ambulances.

However, the goal definition is too strong to be satisfiable in the domain. If the ambu-
lance is too far from the incident for which it is allocated, it may be physically impossi-
ble for ambulance crews to achieve the goal in time. Also, the goal is not satisfiable if the
ambulance is not available at the time it becomes mobilized. The availability of an ambu-
lance is defined as follows:

amb.Available < amb.InService 0 - amb.Mobilized

Therefore, the goal is weakened so that it must be satisfied only if the ambulance is avail-
able at the time of mobilization, and if the distance between the current location of the
ambulance and its destination is small enough so that it can be covered in less than 11
minutes. By applying the tactigeaken goal with unsatisfiability condition, we obtain the
following goal definition:

Goal Achieve[MobilizedAmbulancelntervention]

InformalDef An ambulance mobilized for an incident location, and able to arrive at
the incident scene within 11 minutes, should be at the location of the incident within
11 minutes.

FormalDef O amb: Ambulance, loc: Location

amb.Mobilized 00 amb.Destination = loc

00 e amb.Available

e TimeDist(amb.Location, amb.Destination) < 11’

O 0«11 amb.Intervention [J amb.Location = loc

In that formula, the function
TimeDist: Location x Location — TimeUnit

denotes an estimation of the time needed to go from one location to another. We assume
this function to be given as part of the domain knowledge. (Maybe that function has been
negotiated by representatives of the LAS and the ambulance crews.) This function is here
assumed to be time-independent. In the actual system, it is likely that this function will
be time-dependent to take into account traffic conditions at different moments of the day.

As a result of weakening the goathieve[MobilizedAmbulancelntervention], one must
now strengthen the goalkchieve[AmbulanceMobilization] so that the parent goal in Fig-
ure 9.25Achieve[Ambulancelntervention], is still satisfied. The strengthening of the goal
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is formally derived by applying the same milestone-driven refinement pattern instanti-
ated with a different milestone obtained from the antecedent of theAgbédve[Mobi-
lizedAmbulancelntervention].

After further minor simplification of the generated goal definition, we obtain the follow-
ing definition:

Goal Achieve[AmbulanceMobilization]

InformalDef For every urgent call reporting an incident, an available ambulance able
to arrive at the incident scene within 11 minutes should be mobilized. The ambulance
mobilization time should be less that 3 minutes.

FormalDef 0O c: UrgentCall, inc: Incident

@ Reporting(c, inc)

O 0«3 (Oamb: Ambulance)

amb.Mobilized 0 amb.Destination = inc.Location

[0 e amb.Available

[ e TimeDist(amb.Location, inc.Location) < 11’

It is this goal that will be further refined in the following sections.

In order to have a complete refinement of the gealieve[Ambulancelntervention], the
following assumption was also identified:

inc.Reported Oinc.Location = loc O O inc.Location = loc

That s, it is assumed that the location of an incident does not change. The validity of this
assumption needs to be checked with domain experts. (This assumption may not be valid
if someone uses a mobile phone to report an incident that happened in a train for
instance.)

4. Deriving the object model

As described in Chapter 3, objects are gradually derived from the formal definition of
goals. Figure 9.26 shows the object model derived from the definition of the goals identi-
fied so far. This model will be enriched with further objects and attributes during the goal
refinement process.

Intervetion

Incident Ambulance

Location Mobilization Loca‘tion‘

Happened Destination

Resolved Available
Intervention
Mobilized

Reporting
UrgentCall

FIGURE 9.26. Partiabbject model derived from the goals in Figarzs
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/AmbulanceMobilization /
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[ AccuratelncidentForm / AmbulanceMoblllzatlon
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to resolve lack of ctrl
/\ for amb. mobilization

AmbulanceAllocation [AllocatedAmbulanceMobilized /
BasedOnlIncidentForm

prevent unstasfiability /K

[ AmbulanceAvailablility / l AmbulanceAllocation /

BasedOnincidentForm
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introduce tracking object
to resolve lack of mon for ambulances

/ Accurate Ambulance AmbulanceAllocation

Availability and Location Info BasedOnIncidentForm
and Ambulancelnfo

WhenNearAmbAuvailable

FIGURE 9.27 Applying agent-driven tactics to recursively refine the goal
Achieve[AmbulanceMobilization]

9. 1. 2. 2. Refining the goal Achieve[AmbulanceMobilization]

We now consider the refinement of the geahieve[AmbulanceMobilization]. This goal

is unrealizable by LAS agents operating in the Central Ambulance Control (CAC) room.
In the sequel, we call such age@sCAgent. Specializations o0€ACAgent are, among
others, theControlAssistant, the ResourceAllocator, and theComputer Aided Despatch
software. Ambulance staff are not CAC agents.

The goalAchieve[AmbulanceMobilization] is unrealizable by CAC agents for several rea-
sons:

» lack of monitorability: CAC agents lack of monitorability for the attributésci-
dent.Location andAmbulance.Location;

» lack of control: CAC agents lack of control for the attribut@snbulance.Mobilzed
and Ambulance.Destination (these attributes are controlled bymbulanceStaff
agents);

» unsatisfiability: the goal is unsatisfiable if there is no available ambulance that is able
to reach the incident location within 11 minutes. That is, the domain of unsatisfiability
for the goal is given by:
¢ (Dinc: Incident, c: UrgentCall):

(@Reporting(c, inc) O Ocz = (Hamb: Ambulance): (amb.Available
O TimeDist(amb.Location, inc.Location) < 11"))
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Intervetion
Incident Ambulance
Mobilization
Reporting
UrgentCall Tracking
Encoding
Allocation
IncidentForm Ambulancelnfo

FIGURE 9.28. Partial object model derived from the goals in Figures 9.25 and 9.27
(attributes of objects are not shown)

Figure 9.27 shows a portion of the refinement graph that is obtained by recursively
applying agent-driven tactics so as to resolve these realizability problems. Figure 9.28
shows the portion of the object model derived from the goals in Figure 9.25 and 9.27.

Each goal refinement step is now described in turn.

1. Resolve lack of monitorability for incident location

We first resolve lack of monitorability for incident location. The tadticoduce tracking
object is used to generate the subgoals:

Achieve[AccuratelncidentForm]

Achieve[AmbulanceMobilizationBasedOnlIncidentForm].
(These goals are formally defined below.)

The object model is enriched with the new objéstidentForm that is used to record
details about incidents. In the manual system, such an object corresponds to a paper form
recording incident details noted by tl®entrol Assistant (CA) agents who handle emer-
gency calls. In an automated system, this object corresponds to an electronic version of
the paper form.

The agent model is elaborated by declaring@betrol Assistant (CA) agent, and assign-

ing the goalAchieve[AccuratelncidentForm] to that agent. This is a simplification. Actu-

ally, the goalAchieve[AccuratelncidentForm] needs to be further refined into subgoals
whose responsibilities will be assigned to theblic agent, theCA agents, and possibly
software agents such asviap Gazetteer used to help in locating incidents. In this case
study, we will not be concerned with further refinement of this goal. Note however that
failures to meet this goal - among others, due to the slow performance of the user inter-
face - contributed to the disaster at the LAS.
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The two goals generated by the tactic are formally defined as follows:

Goal Achieve[AccuratelncidentForm]

InformalDef For every urgent call reporting an incident, there is an incident form
recording details about the incident. The incident form should record the accurate
location of the incident and the time at which the call was taken. (Further details
about the incident such as the number of injured persons and the kind of emergency
services needed are ignored for the moment. We will need to include them later
when the model will be deidealized.)

The time needed to handle the call and fill the incident form should take no more than
“call_taking_delay” time units.

FormalDef [ c: UrgentCall, inc: Incident

Reporting(c, inc) U Occall_taking_delay (L if: IncidentForm): if.Encoded [J Encoding(if, c)
O

O inc: Incident, c: UrgentCall, if: IncidentForm

Reporting(c, inc) 0 Encoding(if, ¢) O if.Location = inc.Location Oif.CallTime = ¢.Time

Goal Achieve[AmbulanceMobilizationBasedOnIncidentForm]

InformalDef For every incident form, an ambulance able to arrive at the incident
scene within 11 minutes should be mobilized to the corresponding location. An
ambulance should be mobilized less that 3 minutes after the reception of the call.
(Note that if, due to duplicate calls, different incident forms refer to the same location,
a single ambulance can be mobilized in response to these different incident forms.)
FormalDef [ c: UrgentCall, if: IncidentForm

@ if.Encoded

0 O<it calTime+3 (Hamb: Ambulance)

amb.Mobilized 0 amb.Destination = if.Location

e amb.Available [0 e TimeDist(amb.Location, if.Location) < 11’

2. Resolve lack of control for ambulance mobilization

The goal Achieve[AmbulanceMobilizationBasedOnlIncidentForm] is not realizable by
CAC agents because they lack control of the mobilization of ambulances. (The mobiliza-
tion of ambulances is controlled by ambulance staff and not directly by CAC agents.)

The tacticsplit lack of control with milestone is then used to generate the subgoals:
Achieve[AmbulanceAllocationBasedOnlIncidentForm]
Achieve[AllocatedAmbulanceMobilized].

(The formal definitions of these goals are shown below.)

The first goal requires an ambulance toddecatedto the incident location; the second
goal requires the allocated ambulance to eventually be effectively mobilized.

Note that CAC agents cannot allocate ambulances by referring directly to the ambulance
instances (this is what Michael Jackson calls an ‘identity concern’ [Jac2Kk]); they can

only allocate ambulances by referring to some domain-level identifier such as their

license plate number, or some other identifier.
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We therefore introduce for thambulance entity, an attribute AmbID, that is used by
agents in the domain to uniquely refer to a particular ambulance instance. We also intro-
duce the new entitdimbulancelnfo with an attributeAmbld, and aTracking relationship
relatingAmbulance andAmbulanceinfo. This relationship is defined as follows:

Tracking(ai, amb) = ai.Ambld = amb.AmbID

The Allocation relationship is then defined as a relationship betweeidentForm and
Ambulancelnfo (as opposed to the relationshifobilization and Intervention that link
Incident andAmbulance). This relationship is defined in terms of the new attributis
cated andAll_Dest of theAmbulancelnfo entity:

Allocation(ai, if) = ai.Allocated O ai.All_Dest = if.Location
At this point, alternative refinement of the goal
Achieve[AmbulanceMobilizationBasedOnIncidentForm]

can be envisaged. These alternatives are generated by the application of alternative mile-
stone-driven refinement patterns in Table 6.2. The two subgoals mentioned above are
generated by applying the third pattern in that table. The subgoal

Achieve[AllocatedAmbulanceMobilized]

requires the mobilized ambulance to be exactly the one that has been allocated. By
applying the alternative fourth pattern in that table, one generates the alternative refine-
ment:

Achieve[AmbulanceAllocationBasedOnlIncidentForm]

Achieve[AmbulanceMobilizedForAllocation]

The first subgoal is the same as the one generated by the first pattern. The second subgoal
in this refinement allows ambulance staff to mobilize another ambulance than the one
allocated by the system provided that the mobilized and allocated ambulances are at the
same location -for instance, at the same ambulance station. This second alternative was
actually the one that was in use before the automated system was introduced. When an
ambulance waiting in an ambulance station was allocated, ambulance staff were allowed
to take some other ambulance from that station. With the introduction of the automated
system, ambulance staff were required to abandon this practice. This contributed signifi-
cantly to the disaster at the LAS since ambulance staff would not or even could not obey
this stronger requirement. This problem will be further discussed during obstacle analy-
sis.
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In the first alternative, the goals generated by the application of the formal refinement
pattern are after some further simplification defined as follows:

Goal Achieve[AmbulanceAllocationBasedOnlIncidentForm]

InformalDef For every incident form, an available ambulance able to arrive at the
incident scene within 11 minutes should be allocated to the corresponding location.
The ambulance allocation time should take no more than “allocation_delay” time
units.

FormalDef O c: UrgentCall, if: IncidentForm

@ if.Encoded

0 O<allocation_delay (U @iz Ambulancelnfo, amb: Ambulance):

ai.Allocated [ ai.AllocationDest = if.Location

Oai.AmbID = amb.AmbID

[Je amb.Available [Je - ai.Allocated

0 e TimeDist(amb.Location, if.Location) < 11’

Goal Achieve[AllocatedAmbulanceMobilized]

InformalDef When an ambulance is allocated to an incident location, it should even-
tually be mobilized to that location. This should take no more than
“mob_communication_delay” time units.

FormalDef 0O ai: Ambulancelnfo, amb: Ambulance, loc: Location

@ ai.Allocated [ ai.AllocationDest = loc

Oai.AmbID = amb.AmbID O e amb.Available

O <>smob_communication_delay
amb.Mobilized [0 amb.Destination = loc

The real-time delays in the above definitions must be defined such that:
allocation_delay + mob_communication_delay < 3’

The validity of the goal refinement is also dependent on the satisfaction of the following
goals that were formally identified when refining the goal:

Goal Avoid[LocationChangeOnincidentForm]

Definition The location on an incident form should not change.
FormalDef O if: IncidentForm, loc: Location

if. Encoded Oif.Location = loc O O if.Location = loc

Goal Maintain[AllocatedAmbulancelnServiceUntilMobilized]

Definition An allocated ambulance should remain in service until it is effectively
mobilized. (This goal could be violated if an allocated ambulance stops its shift before
it receives the mobilization order.)

FormalDef O ai: Ambulancelnfo, amb: Ambulance, loc: Location

ai.Allocated O amb.InService [ Tracking(ai, amb)

O amb.InService W amb.Mobilized

Goal Maintain[AllocatedAmbulanceNearTolncident]

Definition An allocated ambulance should remain close to the incident until it is
effectively mobilized. (This goal could be violated if an allocated ambulance gets
away from the incident location before it receives the mobilization order.)

FormalDef [ ai: Ambulancelnfo, amb: Ambulance

ai.Allocated O Tracking(ai, amb) O TimeDist(amb.Location, loc) < 11’

O TimeDist(amb.Location, loc) < 11' W amb.Mobilized
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These last two goals are quite idealized. The model will therefore need to be transformed
SO as to weaken these goals. In order to keep our description of the elaboration process
within bounds, we will not describe such transformations.

3. Resolve unsatisfiability

The goal Achieve[AmbulanceAllocationBasedOnlIncidentForm] still suffers from the
unsatisfiability problem inherited from his parent goals. Since the resolution of incident
is safety-critical, the tactiprevent unsatisfiability is used to resolve that unsatisfiability
problem, thereby generating the two subgoals:

Maintainf[AmbulanceAvailability]
Achieve[AmbulanceAllocationBasedOnIncidentForm WhenNearAmbAuvailable]
These goals are defined as follows.

Goal Maintainf[AmbulanceAvailability]

InformalDef For every location, there should always be an available ambulance able
to arrive at that location within 11 minutes.

FormalDef (U loc: Location): O (Camb: Ambulance, ai: Ambulancelnfo):
amb.Available - ai.Allocated [J Tracking(ai, amb) O TimeDist(amb.Location, loc) <
1v

Goal Achieve[AmbulanceAllocationBasedOnIncidentForm WhenNearAmbAvailable]
InformalDef For every incident form, an available ambulance able to arrive at the
incident scene within 11 minutes should be allocated to the corresponding location
except if there is no such ambulance available. The ambulance allocation time should
take no more than “allocation_delay” time units.
FormalDef 0O c: UrgentCall, if: IncidentForm
@ if.Encoded
0 O<aliocation_delay (U @iz Ambulancelnfo, amb: Ambulance):
(ai.Allocated O ai.AllocationDest = if.Location O ai.AmbID = amb.AmbID

(e amb.Available O e - ai.Allocated

(1 e TimeDist(amb.Location, if.Location) < 11’)
0= (Oamb: Ambulance, ai: Ambulancelnfo):

(amb.Available [ e = ai.Allocated [ Tracking(ai, amb)

O TimeDist(amb.Location, if.Location) < 11")

4. resolve lack of monitorability for ambulance availability and location
The goal

Achieve[AmbulanceAllocationBasedOnlIncidentForm WhenNearAmbAvailable]

is still unsatisfiable by CAC agents, because they lack of monitorability for the actual
locations and availability of ambulances. The tagtimduce tracking object is then used
to generate the subgoals:

MaintainfAmbulanceTracked]
Maintain[AccurateAmbulanceAvailabilityandLocationInfo],

Achieve[AmbulanceAllocatationBasedOnlIncidentFormandAmbulancelnfo
WhenNearAmbAvailable].
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These goals are defined as follows:

Goal Maintain[AmbulanceTracked]

InformalDef Every ambulance is tracked by exactly one Ambulancelnfo object.
FormalDef (O amb: Ambulance, (1 ai: Ambulancelnfo): Tracking(ai, amb)

00 amb: Ambulance, [! ai: Ambulancelnfo

Tracking(ai, amb) O O Tracking(ai, amb)

Goal Maintain[AccurateAmbulanceAvailabilityandLocationInfo]

InformalDef Informations about ambulances’ availability and location should be
accurate

FormalDef [0 amb: Ambulance, ai: Ambulancelnfo

Tracking(ai, amb)

O

ai.Available ~ amb.Available

ai.Location = amb.Location

Goal Achieve[AmbulanceAllocatationBasedOnlincidentFormandAmbulancelnfo
WhenNearAmbAvailable]

InformalDef For every incident forms, and based on ambulance information (status
and location), an available ambulance able to arrive at the incident scene within 11
minutes should be allocated to the corresponding location except if there is no such
ambulance available. The ambulance allocation time should take no more than
“allocation_delay” time units.
FormalDef [ c: UrgentCall, if: IncidentForm
@ if.Encoded
0 O<allocation_delay (@i Ambulancelnfo):
(‘ai.Allocated [Jai.AllocationDest = if.Location

[J e ai.Available [J e - ai.Allocated

O e TimeDist(ai.Location, if.Location) < 11')
0= (Qai: Ambulance): ( ai.Available [J e — ai.Allocated

[ TimeDist(ai.Location, if.Location) < 11’")

5. Handling ambulance mobilization when no near ambulances are available

The above refinement graph relies on the gaaintainfJAmbulanceAvailability] that was
introduces to resolve the unsatisfiability problem. This goal can be further refined and
operationalized by moving ambulances appropriately so as to ensure the availability of
near ambulances for every location. It may for instances involve the positioning of a suf-
ficient number of ambulances nearby locations where incidents are likely to happen. We
will not be concerned here with the refinement of this goal.

Nevertheless, this goal could still be violated from time to time. The handling of such
violations is part of the obstacle analysis loop. We feel however it is the right time to
describe how such violation is tolerated. The gblintainfJAmbulanceAvailability] is
obstructed by the obstacldoNearAmbulanceAvailble. This obstacle is resolved by
applying the tactieitigate obstacle, thereby generating the new goal

Achieve[AmbulanceMobilizationBasedOnIncidentForm WhenNoNearAmbAvailable].
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The precise definition of this goal has to be elicited from domain experts. This goal can
the be further refined by applying the same tactics as those used to refine the goal

Achieve[AmbulanceMobilizationBasedOnlIncidentForm WhenNearAmbAvailable]

in Figure 9.27, yielding a similar goal refinement graph.

6. Alternative Responsibility Assignments for ambulance allocation
At this stage, we identify alternative responsibility assignment for the goal

Achieve[AmbulanceAllocatationBasedOnlIncidentFormandAmbulancelnfo
WhenNearAmbAvailable].

concerned with the allocation of ambulances based on incident forms and ambulance
informations.

In the manual system, responsibility for this goal is split among seResdurceAlloca-
tor agent based on the division of London (North East, North West or South) in which the
incident is reported to have occurred. The goal is therefore refined into the subgoals:

Achieve[lncidentFormAssignedToRA]

Achieve[AllocationForAssignedincidentFormBasedOnAmbulancelnfo]

The first goal requires the incident form to be handed to the resource allocator of the
division in which the incident occurred. This goal is assigned as the responsibility of a
human agent collecting incident forms froBontrolAssistant’s at a central collection
point. The second goal is assigned as the responsibility oR#sdurceAllocator to
which the incident form is assigned. Note that there is an obvious reason for dividing
responsibility for incident forms based on the division of london in which it occurred; a
humanResourceAllocator agent would not be capable of managing alone all the inci-
dents and ambulances of London.

Such restriction does not apply taCAD software agent. In a fully automated system, the
leaf goal concerned with the allocation of ambulances would be directly assigned as the
responsibility of theCAD agent. This seems to be more or less the design chosen for the
1992 automated system. (The Inquiry Report mentions that only in the most complex
cases would a human allocator need to identify and allocate the best resource.)

Of course, many other alternatives, involving the cooperation of human agents and the
CAD software can be envisaged. For instanceshB agent could be responsible for
proposing the more appropriate ambulance toRbsource Allocator (or to theControl
Assistant) who would then accept the proposition or select another ambulance. As
another alternative, theAD software could be responsible for displaying incidents and
ambulances on a map on the screen ofRbsource Allocator, who would use that infor-
mation to allocate the most appropriate ambulance.

We are here crossing the boundary between requirements engineering and human-com-
puter interaction (HCI). Although in principle the concepts and techniques of goal-ori-
ented requirements engineering could be used to generate alternative designs at this level
of details, it is certainly not the most appropriate method to do so. The result of our goal-
oriented requirement elaboration process could be used as the starting point for HCI
design. The links between goal-oriented RE and HCI would be worth studying further.

203



Case Studies

[ AllocatedAmbulanceMobilized /

split lack of control by cases
to resolve lack of ctrl
for amb. mobilization

lAIIocatedAmbuIance/ AllocatedAmbulance
MobilizedAtStation MobilizedOnRoad

introduce accuracy goal
to resolve lack of mon
for AtStation

introduce accuracy goal
to resolve lack of mon
for AtStation

MobilizedOnRoad
BasedOnAtStationInfo

MobilizedAtStation

AllocatedAmbulance | [Accurate AtStaion Inio /
BasedOnAtStationInfo

FIGURE 9.29Refining the goalchieve[AllocatedAmbulanceMobilized]

9. 1. 2. 3. Refining the goal Achieve[AllocatedAmbulanceMobilized]

We now come back in Figure 9.27 to the previously identified goal
Achieve[AllocatedAmbulanceMobilized]

In the definition of this goal, the attribut@gnbulance.Mobilized and Ambulance.Desti-
nation are controlled byAmbulanceStaff agents; and the attribut@gnulancelnfo.Allo-
cated and Amulancelnfo.All_Dest controlled by CAC agents are not directly monitored
by AmbulanceStaff agents.

The goal is not realizable by CAC agent because they lack of control for the actual mobi-
lization of ambulances. Figure 9.29 shows a portion of the refinement graph for this goal
that is obtained by recursively applying agent-driven tactics.

1. Split lack of control by cases

Allocated ambulances have to be mobilized differently according to whether the ambu-
lance is waiting at a station or is somewhere on the roads. The tattitack of control
by cases is therefore used to generate the two goals:

Achieve[AllocatedAmbulanceMobilizedAtStation]

Achieve[AllocatedAmmbulanceMobilizedOnRoad]
These goals are formally defined as follows:

Goal Achieve[AllocatedAmbulanceMobilizedAtStation]

InformalDef When an ambulance waiting at an ambulance station is allocated to an
incident location, it should eventually be mobilized to that location. This should take
no more than “mob_communication_delay” time units

FormalDef [0 ai: Ambulancelnfo, amb: Ambulance, loc: Location

ai.Allocated O ai.AllocationDest = loc

Oai.AmbID = amb.AmbID [0 e amb.Available

O (Ost: AmbulanceStation): AtStation(amb, st)

O <>smob_communication_delay
amb.Mobilized 00 amb.Destination = loc
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Goal Achieve[AllocatedAmmbulanceMobilizedOnRoad]

InformalDef When an ambulance already in the road is allocated to an incident loca-
tion, it should eventually be mobilized to that location. This should take no more than
“mob_communication_delay” time units

FormalDef [ ai: Ambulancelnfo, amb: Ambulance, loc: Location

ai.Allocated O ai.AllocationDest = loc

Oai.AmbID = amb.AmbID [0 e amb.Available

O~ (Ost: AmbulanceStation): AtStation(amb, st)

U <>smob_communication_delay
amb.Mobilized [0 amb.Destination = loc
2. Resolve lack of monitorability for the relationship AtStation

The two goals above are unrealizable by CAC agents because they lack of monitorability
for the relationshiptStation. In both cases, the tactiatroduce accuracy goal is used to
resolve this lack of monitorability.

The goalAchieve[AllocatedAmbulanceMobilizedAtStation] is therefore refined into:
Maintain[AccurateAtStationInfo]
Achieve[AllocatedAmbulanceMobilizedAtStationBasedOnAtStationinfo]

Similarly, the goaRAchieve[AllocatedAmmbulanceMobilizedOnRoad] is refined into:
Maintain[AccurateAtStationinfo]
Achieve[AllocatedAmbulanceMobilizedOnRaodBasedOnAtStationinfo]

3. Resolve lack of control for ambulance mobilization at station

Different alternatives can be generated to resolve lack of control for ambulance mobiliza-
tion when the ambulance is at a station. Theses alternatives are generated by applying the
tacticsplit lack of control with milestone with alternative milestones.

A first alternative consists in transmitting mobilization orders by phone to the adequate
station. The tactieplit lack of control with milestone is therefore applied with the follow-
ing milestone:

M:  (Omc: MobilizationCall): ReceivedAtStation(mc, st)
Omc.AmbMob = ai.Ambld 0O mc.MobDest = ai.AllDest

thereby generating the two goals
Achieve[MobilizationCalllssuedAtStation]
Achieve[AmbulanceAtStationMobilizedFromMobilizationCall]

The second subgoal is assigned as the responsibility ofrtfteilanceStaff agent The
first subgoal is further refined into:

Achieve[MobilizationCallRequestedToDespatcher]
Achieve[RequestedMobilizationCalllssuedAtStation]

that are respectively assigned to tResourceAllocator agent and the @espatcher
agent.
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FIGURE 9.30. Refinement and responsibility assignments for the goal
Achieve[AllocatedAmbulanceMobilizedAtStationBasedOnAtStationInfo]

split lack of control with milestone

Another alternative, the one chosen for the automated system of 1992, is shown in Figure
9.30. It consists in issuing mobilization order to a printer at the adequate station. The tac-
tic split lack of control with milestone is therefore applied with the milestone:

M:  (Omob_order: PrintedMobilizationOrder): PrintedAtStation(mob_order, st)
O mob_order. AmbMob = ai.Ambld
Omob_order.MobDest = ai.AllDest,

thereby generating the two goals
Achieve[MobilizationOrderPrintedAtStation]
Achieve[AmbulanceMobilizedFromPrintedMobilizationOrder]

The second goal is assigned as the responsibildynblilanceStaff agents.

For the first subgoal, since LAS agents cannot directly control the printers at station, two
further application of the tactaplit lack of control with milestone generate the subgoals:

Achieve[MobilizationOrderSentToStationPrinter]
Achieve[SentMobilizationOrderTransmittedToStation]
Achieve[TransmittedMobilizationOrderPrintedAtStation]

In the 1992 automated system, these goals are respectively assigned Adtheftware
agent, to th&€ommunication Infrastructure agent, and to therinter agent.
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FIGURE 9.31. Goal Refinement and responsibility assignments for the goal
Achieve[AllocatedAmbulanceMobilizedAtStationBasedOnAtStationInfo]

4. Resolve lack of control for ambulance mobilization on roads
The refinement of the goal
AchieveAchieve[AllocatedAmbulanceMobilizedOnRaodBasedOnAtStationinfo]

is similar. Lack of control for ambulance mobilization is resolved by applying the tactic
split lack of control with milestone. Alternative milestone are used to generate alternative
designs. A first alternative consists in transmitting mobilization orders to ambulances on
the road through radio communications. Another alternative, the one implemented in the
1992 automated system, consists in mobilizing ambulances on the roads through mes-
sages displayed on their Mobile Data Terminals (MDT'’s). The goal refinement graph and
responsibility assignments for the 1992 automated system is shown in Figure 9.31.

9. 1. 2. 4. Refining the goal Maintain[AccurateAmbulanceAvailabilityandLocation-
Info]
We now come back in Figure 9.27 to the accuracy goal
Maintain[AccurateAmbulanceAvailabilityAndLocationInfo].

This goal is not realizable by CAC agents because they lack of monitorability for the
actual availability and locations of ambulances.
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FIGURE 9.32. Goal Refinement and responsibility assignments for the goal
Maintain[AccurateAmbulanceAvailabilitylnfo]

We begin to split this goal by cases into the following subgoals:
Maintain[AccurateAmbulanceAvailabilityInfo]
Maintain[AccurateAmbulanceLocationinfo].

Each goal is then treated in turn.

1. Maintaining Accurate Ambulance Availability Information

Consider the above goallaintain[AccurateAmbulanceAvailabilitylnfo]. Figure 9.32

shows the goal refinement graph and responsibility assignments corresponding to 1992
the automated system. This refinement graph was again produced through the systematic
application of agent-driven tactics. This system relies on the us#obile Data Termi-

nals that act as intermediate agents betwgerbulance Staff agents and th€AD soft-

ware.

Further work is required to model formally the delays between the actual availability of
ambulances and information about this availability.

As an alternative to this fully automated system, information about ambulances availabil-
ity could be maintained through radio communications as it was done it the manual sys-
tem.
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2. Responsibility assignments for the goal Maintain[AccurateAmbulancelLocation-
Info]

In the fully automated system of 1992, the accuracy
Maintain[AccurateAmbulanceLocationInfo]

is assigned as the responsibility of amomatic Vehicle Location System (AVLS) agent.
Actually, the AVLS is not required to maintain such idealized relationship between the
actual locations of ambulances and the information about theses locations. The idealized
definition of the accuracy goal is therefore weakened into:

Tracking(ai, amb) 0 a.Location J ai.Location

In this definition, the attributémbulancelnfo.Location is now declared to be a set of
locations that must include the actual location of the ambulance. This deidealization is
then propagated in Figure 9.27 to the goal

Achieve[AmbulanceAllocatationBasedOnincidentFormandAmbulancelnfo
WhenNearAm-
bAvailable]

that is now defined as follows:

@ if.Encoded
O 0O<3 (Oai: Ambulancelnfo):
(ai.Allocated O ai.AllocationDest = if.Location

(e ai.Available (e - ai.Allocated

e (ai.Location O {I: Location | TimeDist(l, if.Location) < 11’ })
0= (Oai: Ambulance): (‘ai.Available J e - ai.Allocated

O ai.Location O {I: Location | TimeDist(l, if.Location)

<11'})

This deidealized definition requires that every possible locations (i.e. the locations in the
setai.Location) of the allocated ambulance is at less than 11 minutes from the incident
location. The parent goal of these two goals remains unchanged. (Note that the accuracy
goal could be further deidealized because one only needs location information about
available ambulances.)

As an alternative to the AVLS system, information about ambulances’ locations could be
maintained through radio communications as it was done in the manual system. Without
going into the details, the refinement graph for this goal together with alternative respon-
sibility assignments are shown in Figure 9.33. In this alternative, ambulances staffs com-
municate their new location when they stop at a new location; and communicate their
depart and destination locations when they leave a location. The requireémbalan-
ceOnNormalRoute assigned to ambulance staff is used to infer a set of possible location
for the ambulance based on the communicated depart and destination locations of the
ambulance.

209



Case Studies

/ AccurateAmbulancelocationInfo  /

OR

/ AccurateLocationinfo / AccurateLocationInfo
OfStationaryAmbulance / OfNonStationaryAmbulance /

Ambulance
OnNormalRoute

JAccurateStationarylnio/
Ambulance
/k Staff

NoLocChange
WhenStationary

Ambulance
Staff

Maintain AccurateLocInfo AccurateDepart/Destlnfo LocationInfo
[Previouslfoclnfo AtNeWLOC&tIO” AtDeparture BasedOn
WhenStationary] Depart/Destinationinfo

NewLoc_ation INewLocation EncodedNewLoc Depart/Dest Depart/Dest Encoded
Communicated Encoded Recorded Communicated Encoded Depart/Dest
' AtDeparture Recorded

OR
’Ambulance Radio 6 ;
< Staff > <Operat0r> m ﬂ

FIGURE 9.33. Goal Refinement and alternative responsibility assignments for the
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9. 1. 3. Goal Operationalization

Agents interfaces and operational requirements are now derived from the terminal goals
generated during the goal refinement process. Consider for instance the following termi-
nal goal appearing in Figure 9.27:

Goal Achieve[Amb.AllocatationBasedOnlincidentFormandAmbulancelnfo
WhenNearAmbAvailable]

FormalDef O c: UrgentCall, if: IncidentForm
@ if.Encoded
0 O<aliocation_delay (L @i: Ambulancelnfo):
(‘ai.Allocated Oai.AllocationDest = if.Location

(e ai.Available O e - ai.Allocated

[J @ TimeDist(ai.Location, if.Location) < 11")
0= (Qai: Ambulance): (ai.Available [J e - ai.Allocated

O TimeDist(ai.Location, if.Location) < 11")
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In the 1992 automated system, this goal is assigned as the responsibilityCHDheoft-
ware agent. The portion of the agent interface model derived from that responsibility
assignment is given by:

Ambulancelnfo.Allocated

IncidentForm ;
Ambulancelnfo.AllocationDest
»/ CAD .
|

Ambulancelnfo.Location
Ambulancelnfo.Available

From the formal definition of this goal, we also derive the following operation to be per-
formed by theCAD agent, together with required pre- and trigger conditions that guaran-
tees the satisfaction of the goal:

Operation AllocateAmbulance
PerfBy CAD
Input IncidentForm {arg if}
Ambulancelnfo/Location, Available
Output Ambulancelnfo {res ai}/Allocated, AllocationDest
Dompre - (ai: Ambulancelnfo): ai.Allocated O ai.Destination = if.Location
DomPost ai.Allocated [Jai.AllocationDest = if.Location
ReqTrigFor AllocatationBasedOnIncidentFormandAmbulancelnfowhenNearAm-
bAvailable
B _allocation_delay If-Encoded
RegPreFor AllocatationBasedOnIncidentFormandAmbulancelnfo WhenNearAm-
bAvailable
ai.Available [0 - ai.Allocated U TimeDist(ai.Location, if.Location) < 11" )
0= (Oai: Ambulance): (ai.Available - ai.Allocated
O TimeDist(ai.Location, if.Location)
<11')

Further agent interface, operations, and requirements on operations are similarly derived
from other goals assigned as the responsibility of single agents. Figure 9.34 shows the
agent interface model derived from the responsibility assignments corresponding to the
fully automated system of 1992. Alternative responsibility assignments lead of course to

alternative agent interface. These alternative models correspond to systems in which
more or less functions are automated. Note that switching from one model to another by
selecting alternative goal refinements, responsibility assignments and agent interfaces
corresponds to a staged introduction of automated capabilities.

9. 1. 4. Obstacle Analysis

We now derive obstacles for each terminal goals and assumptions generated during the
goal refinement process. Many of them are formalized; a mix of regression, obstruction
patterns and informal heuristics from Chapter 8 is used. We then compare the list of
potential obstacles thereby obtained with the scenarios that actually occurred during the
two system failures in October-November 1992. While our obstacles cover the various
problems that occurred during those failures (notablyccuracy problems), they also
cover many other problems that could (but did not) occur --see the comparison tables
below. Handling those obstacles during goal-oriented requirements elaboration would
have forced requirements engineers to raise issues whose resolution hopefully would
have resulted in making such scenariasd other$ infeasible. Finally we explore the
space of possible resolutions by application of the tactics discussed in Chapter 8.
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FIGURE 9.34. Partial Agent Interface Model Derived from Responsibility assingments in Figures
9.24 to 9.33 corresponding to the 1992 fully automated system
(the communication infrasturcture agent is omitted from the diagram)
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9. 1. 4. 1. Obstacles generation

1. Generating obstacles to the assumption Achieve[incidentResolvedBylntervention]

Let us illustrate some of the formal derivations first. Consider the following assumption
appearing in Figure 9.24:

Goal Achieve[lncidentResolvedBylntervention]
FormalDef 0O a: Ambulance, inc: Incident
Intervention (a, inc) O ¢inc.Resolved

Applying the regression procedure, we negate this goal to produce the high-level obsta-
cle

Obstacle IncidentNotResolvedBylIntervention:
FormalDef ¢ Oa: Ambulance, inc: Incident
Intervention (a, inc) 0O - Resolved (inc)

In order to identify further subobstacles, we look for domain properties that provides
necessary conditions for incident resolution. Suppose that the following properties are
identified:

For an incident to be considered resolved, the following conditions must be satisfied
() every patient injured in the incident receives the necessary urgent care at the
incident scene;

(ii) every patient injured in the incident is admitted at an hospital

These two properties may be formalized as follows:

Resolved (inc) O
(O p: Patient) Injured (p, inc) —» TreatedAtLocation(p,inc)

Resolved (inc) O
(O p: Patient) Injured (p, inc) —
(Oh: Hospital) AdmittedAt (p, h)

Regressing the high-level obstacle above through these two domain properties yields the
following two subobstacles:

Obstacle PatientNotTreatedAtLocation
InformalDef an ambulance makes an intervention at an incident, and some patient
does not receives the necessary urgent care at the incident scene.
FormalDef ¢ Oa: Ambulance, inc: Incident
Intervention (a, inc)
00 (Op: Patient, r: Resource)
Injured (p, inc) 00~ TreatedAtLocation(p,inc)

Obstacle PatientNotAdmittedToHospital
InformaDef A patient injured in the incident is not admitted at an hospital
FormalDef ¢ Oa: Ambulance, inc: Incident
Intervention (a, inc)
00 Op: Patient
Injured (p, inc) O (- Oh: Hospital) AdmittedAt (p, h)
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Considering the first subobstacle, we identify the domain property that a patient receives
the necessary urgent care at the location scene if the medical resources critically needed
by patients injured in the incident are effectively used on the patients:

TreatedAtLocation(p,inc) =
(O r: Resource) CriticallyNeeds (p, ) —
(Oru: ResourceUnit) Unit (ru, r) dUsedOn (ru, p)

Regressing the obstacleatientNotTreatedAtLocation through the domain property
yields the new subobstacle:

Obstacle CriticalCareNotGivenToPatient
InformalDef an ambulance makes an intervention at an incident, and medical
resources are not used on a patient that critically needs it.
FormalDef ¢ Oa: Ambulance, inc: Incident

Intervention (a, inc)

00 (Op: Patient, r: Resource)

Injured (p, inc) O CriticallyNeeds (p, 1)
- (Oru: ResourceUnit) Unit (ru, r) 0 UsedOn (ru, p)

In order to regress this obstacle further, we identify the domain property that in order to
use a medical resource on a patient, there must be a resource unit in the ambulance that is
not already used for another patient:

Intervention (a, inc)
OlInjured (p, inc) OUsedOn (ru, p)
O InAmbulance (ru, a)
O-(@p’: Patient) p° pOUsedOn (ru, p’)

Regressing the obstacleriticalCareNotGivenToPatient through the domain property
yields the new subobstacle:

Obstacle InsufficientResourcelnAmbulance
FormalDef ¢ [Oa: Ambulance, inc: Incident
Intervention (a, inc)
00 Op: Patient, r: Resource
Injured (p, inc) O CriticallyNeeds (p, 1)
O Intervention (a, inc)
0 (O ru: ResourceUnit) Unit (ru, r) -
InAmbulance (ru, a) -
(Op’: Patient) p° pOUsedOn (ru, p’)

By completing this refinement we obtain a new subobstacle to produce a domain-com-
plete set of subobstaclesGaticalCareNotGivenToPatient:

Obstacle AvailableResourceNotUsedOnPatient
FormalDef ¢ Oa: Ambulance, inc: Incident
Intervention (a, inc)
00 Op: Patient, r: Resource
Injured (p, inc) O CriticallyNeeds (p, r)
O Intervention (a, inc)
O (dru: ResourceUnit) Unit (ru, r) dInAmbulance (ru, a)
O- (Op”: Patient) p’ pdUsedOn (ru, p)
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Further refinement of the latter subobstacle by, e.g., use of the heuristics in Chapter 8,
yields new subobstacles such \&songinfoAboutPatient and ResourceOutOfOrder. In

the former case, one might find out that the incident form produced byathé&as inac-
curate or missing information.

The complete obstacle refinement tree derived is as follows:

IncidentNotResolvedByIntervention
~ CriticalCareNotGivenToPatient
~ InsufficientResourcelnAmbulance
~  WronglnfoAboutincident
- ResourceUnavailable
~  ResourceConfusion
~ AvailableResourceNotUsedOnPatient
~  WronginfoAboutPatient
~  ResourceOutOfOrder
~  PatientNotAdmittedToHospital
- PatientNotTransportedToHospital
~  PatientNotPutinAmbulance
~ InsufficientAmbulanceCapacity
~ PatientNotInAvailableAmbulance
~ PatientinAmbulanceNotPortedToHospital
- PatientAtHospitalNotAdmitted
~  NoBedAvailableAtHospital
~ AvailableBedNotAssigned

This tree amounts togoal-basedault tree.

2. Generating obstacles to the assumption Achieve[MobilizedAmbulancelntervention]
Consider now the following other assumption appearing in the goal graph in Figure 9.25:

Goal Achieve[MobilizedAmbulancelntervention]
Responsibility AmbulanceStaff

FormalDef O a: Ambulance, loc: Location
a.Mobilized [0 a.Destination = loc

e a.Available (] TimeDist (a.Location, loc) < 11
O 0«11 a.Intervention Oa.Location = loc

Negating the goal yields a high-level obstacle:

Obstacle MobilizedAmbulanceNotinTimeAtDestination
FormalDef ¢ Oa: Ambulance, inc: Incident

a.Mobilized O a.Destination = loc

e a.Available [ TimeDist (a.Location, loc) < 11
00<11m — a.Intervention O a.Location = loc

The non-persistence obstruction patterns of Table 8.3 in Chapter 8 suggest looking for
domain properties involving persistent conditiddghat must continuously hold, from
the time of allocation to the time of intervention:

a.Mobilized [0 a.Destination = loc

e a.Available [0 TimeDist (a.Location, loc) < 11
0o a.Intervention O a.Location = loc

O PW (P Oa.Intervention Oa.Location = loc)
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Three candidateB are suggested from the antecedent of the goal:

P1: a.InService
P2: a.Mobilized Oa.Destination = loc
P3: TimeDist (a.Loc, inc.Loc) < TimeDist (e a.Loc, inc.Loc)

These candidates produce three persistence conditions that are domain properties indeed:
the first property says that if a sufficiently close ambulance is mobilized and intervenes at
the location within 11 minutes, then it remains in service unless it intervenes at that loca-
tion; the second says that the ambulance remains mobilized for that location unless it
intervenes at the location; the latter says that the time distance between the mobilized
ambulance and the destination keeps decreasing unless the ambulance intervenes at the
location. We may therefore apply the secowd-persistence pattern in Table 8.3 to gen-

erate the three following obstacles (one for each persistent condition):

Obstacle MobilizedAmbulanceStopsServiceBeforelntervention
FormalDef ¢ Oa: Ambulance, loc: Location

a.Mobilized O a.Destination = loc

O e a.Available O TimeDist (a.Location, loc) < 11

U (- (a.Intervention O a.Location = loc) U<17- - a.InService)

Obstacle AmbulanceMobilizationRetracted

FormalDef ¢ Oa: Ambulance, loc: Location

a.Mobilized O a.Destination = loc

e a.Available [0 TimeDist (a.Location, loc) < 11

O (- (a.Intervention O a.Location = loc) U<q1 - (a.Mobilized [ a.Destination = loc))

Obstacle MobilizedAmbulanceStoppedOrinWrongDirection

FormalDef ¢ Oa: Ambulance, loc: Location

a.Mobilized O a.Destination = loc

O e a.Available O TimeDist (a.Location, loc) < 11

O (- (a.Intervention [0 a.Location = loc) U< ¢ TimeDist (a.Loc, loc) = TimeDist( o

a.Loc, loc) )
(In the above assertiord,)_,Q stands forpU Q oo4P.)

Further refinement of these formal obstacles based on regression, patterns, and heuristics
from Chapter 8 yield the following obstade-refinement tree:

MobilizedAmbulanceNotInTimeAtDestination
- MobilizedAmbulanceStopsServiceBeforelntervention
~  AmbulanceMobilizationRetracted
~  MobilizedAmbulanceDestinationChanged
~  LocationConfusedByCrew
~  MobilizedAmbulanceDestinationForgotten
~  AmbulanceMobilizationCancelled
- MobilizedAmbulanceStoppedOrinWrongDirection
~  AmbulanceStopped
~  AmbulanceBreakdownOrAccident
~  AmbulanceStoppedinTraffic
~ AmbulancelnWrongDirection
~ Ambulancelost
«  CrewlInUnfamiliarTerritorry
~  TrafficDeviation
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3. Generating Obstacles to the subgoals of Achieve[AllocatedAmbulanceMobilized]

We now consider obstacles to the requirements and assumptions generated by the refine-
ments of the goalchieve[AllocatedAmbulanceMobilized] in Figures 9.29 to 9.31.

For the terminal goaRmbulanceMobilizedFromPrintedMobilizationOrder appearing in
Figure 9.30, the obstacteR-refinement tree generated using our techniques is:

MobOrderNotTakenByAmbulance
~  MobOrderintendedForUnavailableAmbulance
~  MobOrderignored
- MobOrderTakenByOtherAmbulance

Many reported failures were in fact caused by inappropriate resolution of the latter sub-
obstacle [LAS93].

Obstacles should be identified not only from assumptions about human agents in the
environments, but also for requirements assigned to software agents. Consider for
instance the following goal appearing in Figure 9.31 and assigned to the CAD software
agent:

Goal Achieve[MobilizationOrderSentToMappedMDT]

FormalDef [ ai: Ambulancelnfo, loc: Location, mdt_id: MDT_ID

@ ai.Allocated [ ai.AllocationDest = loc Jai.MDTID = mdt_id

0 O(Omob_order: MDT_MobilizationOrder):

mob_order.Sent O mob_order.DestMDT = mdt_id [0 mob_order.AllocationDest = loc

Negating this goal yield the following obstacle:

Obstacle MobOrderNotSentToMappedMDT

FormalDef ¢ (ai: Ambulancelnfo, loc: Location, mdt_id: MDT_ID

@ ai.Allocated Oai.AllocationDest = loc O ai.MDTID = mdt_id

00 - (Omob_order: MDT_MobilizationOrder):

mob_order.Sent O mob_order.DestMDT = mdt_id [0 mob_order.AllocationDest = loc

That obstacle is then split into cases to generate the following complete set of subobsta-
cles:

Obstacle MobOrderNotSent

FormalDef ¢ Jai: Ambulancelnfo, loc: Location, mdt_id: MDT_ID
@ ai.Allocated

00 = (Omob_order: MDT_MobilizationOrder):

mob_order.Sent

Obstacle MobOrderSentWithwWrongMDTID

FormalDef ¢ Jai: Ambulancelnfo, loc: Location, mdt_id: MDT_ID
@ ai.Allocated O ai.MDTID = mdt_id

00 (Omob_order: MDT_MobilizationOrder):

mob_order.Sent O mob_order.DestMDT # mdt_id

Obstacle MobOrderNotSentWithWrongAllocationDest
FormalDef ¢ ai: Ambulancelnfo, loc: Location, mdt_id: MDT_ID
@ ai.Allocated [ ai.AllocationDest = loc Jai.MDTID = mdt_id
00 (Omob_order: MDT_MobilizationOrder):

mob_order.Sent 0 mob_order.AllocationDest # loc
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(A domain property saying that at most one MDT message can be sent simultaneously is
used to refine the parent obstacle.)

Further refinement of the last two obstacles yield the following obstacle refinement tree:

MobOrderNotSentToMappedMDT

— MobOrderNotSent

« MobOrderSentWithWrongMDTID
~ MobOrderSentToOtherMDT
~ MobOrderWithinvalidMDTID

« MobOrderNotSentWithWrongAllocationDest
~ MobOrderNotSentWithOtherValidAllocationDest
~ MobOrderNotSentWithinvalidAllocationDest

Tables 9.1 summarizes the obstacles generated for the various terminal goals in Figure
9.30 and 9.31. The table compares the set of obstacles generated systematically using our
techniques with the scenarios that actually occurred during the two major system failures
in October-November 1992 as reported in [Las93]. While our obstacles cover the various
problems that occurred during those failures, they also cover many other potential prob-
lems that could (but did not) occur. The table provides, for each requirement/assumption,
the responsible agent assigned to it, the (sub)obstacles derived, and features of the sce-
narios -covered by the obstacle - that occurred during the reported system failures.

Table 9.1: Obstacles to subgoals of the g@ahieve[AllocatedAmbulanceMobilized] (Fig. 9.30 - 9.31)

agent goal obstacle Oct/Nov’92 scenario

CAD MobOrderSent MobOrderNotSent no PSTN line free
ToStationPrinter

MobOrderSentToWrongStation
MobOrderSentTowrongAmbulance

MobOrderSentWith
WrongDestination

InvalidMobOrderSent

MobOrderSent MobOrderNotSent
To MappedMDT

MobOrderSentToOtherMDT

MobOrderNotSent
WithOtherValidAllocationDest

InvalidMobOrderSentToMDT

Communic. MobOrderTransmitted MobOrderNotTransmitted radio congestion,
Infrastructure ToStationPrinter radio blackspot

MobOrderDeliveredAtWrongStation

MobOrderCorruptedDuring
Transmission

«— WrongDestination

« WrongAmbulance

« InvalidMobOrder

MobOrderTransmitted MobOrderNotTransitted
ToMDT

MobOrderTransmittedAt
WrongMDT

MobOrderCorruptedDuring
Transmission

« WrongDestination

« OtherValidMsgDelivered
« InvalidMsgDelivered
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agent goal obstacle Oct/Nov’92 scenario
Station ReceivedMobOrder ReceivedMobOrderNotPrinted
Printer Printed ~ Paper Jammed
~Out of Paper
~Data Lost

PrintedMobOrderUnreadable

MDT ReceivedMobOrder ReceivedMobOrderNotDisplayed
DisplayedOnMDT OnMDT
IncorrectDestinationDisplayed
Ambulance AmbulaceMobilized AmbNotMobilized
Staff FromPrinted FromPrintedMobOrder
MobilizationOrder « MobOrderlgnored

«— AmbNOotAt Station
«— AmbNotAvailable

MobOrderTakenByOtherAmbulance crews take different
«— MobOrderConfuision vehicle from those
« AllocatedAmbNotAvailable allocated by CAD
« AllocatedAmbNotAtStation
« established work practice

LocationConfusedByCrew

AmbulanceMobilized AmbulanceNotMobilizedFrom
FromMobOrderOnMDT MobOrderonMDT

«~ MDTMobOrderlgnored

« CrewNotlnAmbulance

«— AmbulanceNotAvailable

AmbulanceMobilizedWithDifferent

DestinationThanMDTDestination

« LocationConfusedByCrew

« OtherMobilizationDestination
Pending

4. Generating obstacles to the accuracy goals

The accuracy goals play a critical role in the LAS system. In order to allocate appropriate

ambulances, the CAD software needs accurate informations about the locations and
availability of ambulances. Many reported failures were caused by inappropriate resolu-

tions of obstacles to these accuracy goals [Las93].

In the fully automated system, the gdahintain[AccurateAmbulanceLocationinfo] was
assigned as the responsibility of antomated Vehicle Location System (AVLS) agent.

From this goal, we generate the obstatiaccurateAmbulanceLocationinfo. Further
refinement of that obstacle would require further knowledge about properties of the
AVLS which were unavailable to us. Further refinement of that obstacle is also not nec-
essary for obstacle resolution since it is not necessary to know why the AVLS might fail
to locate ambulances accurately. Table 9.2 shows the obstacle to this goal, and actual fail-
ures scenarios covered by the obstacle.

Table 9.2: Obstacles to the goal Maintaim[AccurateAmbulancelLocationinfo]

agent goal obstacle Oct/Nov’'92 scenario
AVLS AccurateAmbulance InAccurateAmbulance AVLS equipment not working
Locationinfo LocationInfo Interference from vehicle equipment
Swapped callsigns
No AVLS exception reporting
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Consider now the goallaintain[AccurateAmbulanceAvailabilitylnfo] whose refinement is
shown in Figure 9.32. Table 9.3 summarizes the obstacles generated from each terminal
goals/assumption together with failures scenarios reported in [LAS93] satisfying those
obstacles. Again, our obstacles cover the various problem that occurred during the 1992
failures, and identify various other potential problems that could (but did not) occur.

Table 9.3: Obstacles to subgoals of the goal Achieve [AmbulanceMobilizationKnown]

agent goal obstacle Oct/Nov’'92 scenario
Ambulance AccurateAvailibilitylnfo AmbulanceStaffForgetTo crews don'’t press
Staff OonMDT EncodeAvailibilityOnMDT status buttons
AmbStaffPushWrongButton crews press buttons
ToEncodeAvailability in wrong order
MDT MDTInfoSent MDTInfoNotSent
MDTSendsOtherMsg
InvalidMDTInfoSent
Communic. MDTInfoTransmitted MDTInfoNotDelivered radio channel congestion
Infrastructure (particulalry bad at crew
log on/off),

radio blackspot

MDTInfoCorrupted

CAD ReceivedMDTInfoRecorded ReceivedMDTInfolgnored failure of system to catch
all data

ReceivedMDTInfoConfusedWith
OtherMsg

ReceivedMDTInfoRecordedFor
WrongAmbulance

9. 1. 4. 2. Obstacles resolution

We now discuss the application of various obstacle resolution tactics from Chapter 8 for
some of the obstacles generated.

1. Alternative resolutions for the obstacle MobOrderTakenByOtherAmbulance

Let us first consider the obstadi#éobOrderTakenByOtherAmbulance seen in the previ-
ous section to obstruct the g@ahbulanceMobilizedFromPrintedMobilizationOrder.

The tacticmitigate obstacle would result in letting the system know that the mobilization
order has been taken by the other ambulance. A mitigation goal is thus introduced to
resolve this obstacle, say,

MobilizationByOtherAmbulanceKnown.
This new goal may be refined into two subgoals, namely,
MobilizationByOtherAmbulanceSignalledToRadioOperator,
assigned t&mbulanceStaff, and
MobilizationStatusUpdated,

assigned tdradioOperator. (An alternative refinement/assignment would consist in let-
ting the change be signalled to the instead).

The tacticprevent obstacle would result here in the introduction of the new goal
Avoid [AmbulanceMobilizedWithoutOrder].
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A benefit of applying this strategy here is that the latter subgoal would also contribute to
the other goal

Avoid [DuplicateAmbulanceMobilization]

The new prevention goal might be under responsibility of a human agent at the station or
might be operationalized through an automatic system preventing ambulance departure
from station if the MDT is not mobilized. (Such resolution would however be quite risky

if moT's or ambulances are likely to break down.)

As suggested in Section 8. 5. 1 of Chapter 8, the tamntike obstacle infeasible in the

domain can be used resolve the same obstacle by changing domain properties of the
application domain. In this case, it would consists in transformingPtiveéedMobiliza-
tionOrder object so that it does not mention the incident location any more; the latter
information would only be given by theot inside the ambulance. (Such resolution also
seems quite risky #ot‘s or ambulances are likely to break down.)

The tacticchoose alternative goal would result in an alternative operationalization in
which mobilization orders sent to stations do not prescribe which particular ambulance
to mobilize but instead leave that decision to ambulance crews. In this case, this goes
together with an agent substitution and a domain transformatior{iagedMobiliza-
tionOrder objects no longer have an attribute indicating the target ambulance).

Finally, an application of the tacticeduce obstacle might consist here in trying to
change ambulance crew practice by a reward/dissuasion system.

2. Examples of goal/agent substitutions

The more efficient way to resolve an obstacle is to eliminate the problem completely by
choosing alternative goal refinement and responsibility assignments that do not involve
the obstructed goal any more.

A first example of goal substitution was given above to resolve the obsvati©rder-
TakenByOtherAmbulance.

As another example of goal substitution, the obstaeecurateAmbulanceLocationinfo
obstructing the gaohccurateAmbulanceLocationinfo assigned to thé&VLS system to
maintain accurate information about ambulances location can be resolved by selecting
another goal refinement and responsibility assignments in which informations about
ambulances locations are maintained through radio communications with ambulance
staffs (Figure 9.31). This is an example of both agent substitution and goal substitution.

Similarly, the obstaclesAmbStaffPressWrongButton or AmbStaffPressButtonin-
WrongOrder obstructing the goalccurateAvailibilityinfoOnMDT can be resolved by
choosing alternative goals and responsibility assignments in which ambulances availabil-
ity is maintained through radio communcations.

3. Examples of Obstacles Tolerance
We now illustrate the tacti@store goal. Consider the obstacle

MDTMobOrderlgnored

that appears at the bottom of Table 9.1. A low-level restoration goal would be to generate
an audible signal to make crews aware of the mobilization order.
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An alternative, complementary, higher-level resolution would consist in introducing a
higher-level restoration goal

FailedMobilizationRecovered
to resolve the higher-level obstacle
AllocatedAmbulanceNotMobilized

This goal would restore the higher-level g@dlbcatedAmbulanceMobilized through the
following goal refinement tree:

FailedMobilizationRecovered
- AmbulanceMobilizationKnown

~ UnrespondedAllocationRestored
« UnrespondedAllocationSignalled
~ SignalledUnrespondedAllocReallocated

This is the tactic that seems to have been followed for the 1992 system. A problem here
is that the operationalization of the restoration goal contributes to the obstacle in Table
9.1 MobOrderNotTransmitted (because of radio congestion). Since that obstacle obstruct
a subgoal ofAchieve[AllocatedAmbulanceMobilized], it may create a snowball effect.
This is exactly what happened in November 1992.

4. Deidealizing Goals/Assumptions Definitions
Finally, we illustrate thgoal deidealizatiorstrategy on the overideal goal

O a: Ambulance, inc: Incident
Mobilized (a, inc) O ¢ Intervention (a, inc)

The following obstacle was generated by a non-persistence pattern from Table 1:

¢ Oa: Ambulance, inc: Incident
Mobilized (a, inc)
O ( = Intervention (a, inc) U Breakdown (a) )

Using the third deidealization pattern of Table 7 in Section 8.5.1, we obtain the weak-
ened version for that goal:

O a: Ambulance, inc: Incident
Mobilized (a, inc) O ¢ Intervention (a, inc) O Breakdown(a)

The propagation will result in strengthened companion goals like

O inc: Incident, p: Person

Reported (inc, p) O

¢ Oa: Ambulance, inc: Incident

Mobilized (a, inc)

O ( -~ Breakdown(a) W Intervention (a, inc) )

to be refined and deidealized in turn.
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As another example, consider the idealized assumptiodentResolvedByIntervention
assuming that an incident is resolved by the intervention of a single ambulance. We iden-
tified that this assumption is obstructed by the obstaek&ntNotTreatedAtLocation
andPatientNotAdmittedAtHospital. In this case, the idealized assumption is removed and
replaced by the goal:

Achieve[EveryPatientTreatedAtLocationAndAdmitted ToHospital].
The goal refinement tree for the high-level gaaidentResolved is now given by:

IncidentResolved
~ IncidentReported
~ FastAmbulancelntervention
~ EveryPatientTreatedAtLocationAndAdmittedToHospital

In this goal refinement, the goghstAmbulanceintervention, a simple renaming of our

initial goal Ambulancelntervention, is concerned with the rapid intervention of a first
ambulance at the incident scene as required by the Government standard. The new sub-
goal address separately the problem of mobilizing sufficient ambulances carrying the
appropriate medical resources. Note that the dg@atAmbulancelntervention is con-

cerned with the intervention of an ambulant@m an incident whereas the goal
EveryPatientTreatedAtLocationAndAdmittedToHospital is concerned with the interven-

tion of an ambulancéor a patient(this refinement can be seen as decomposition by
views [Jac96]: the incident view and the patient view). This new goal will then be refined

in a way that is much similar to the refinement of the gastAmbulancelntervention.
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9. 2. The BART Train Control Case Study

9. 2. 1. Introduction

The second case study is concerned with the development of a portion of the new
Advanced Automatic Train Control system being developed for the San Francisco Bay

Area Rapid Transit (BART). The purpose of the new system is to serve more passengers
by running trains more closely spaced.

The case study description [Win99] focuses on those aspects of BART that are necessary
to control the speed and acceleration for the trains in the system. The problem is to
develop the speed/acceleration control system whose responsibility is to get trains from
one point to another as fast and smoothly as possible, subject to the following safety con-
straints:

« A train should not enter a closed gate. (In the context of the BART system, a gate is
not a physical gate, but a signal, received by the speed/acceleration control system,
that establish when a train has the right to enter a track segment.)

« A train should never get so close to a train in front so that if the train in front stopped
suddenly (e.g., derailed) the following train would hit it.

A train should stay below the maximum speed that track segment can handle.

9. 2. 2. Identifying and Formalizing Preliminary Goals

1. Identifying goals from the initial document

The first step of the elaboration method consists in identifying high-level goals from the
initial problem statement. Figure 9.35 shows a portion of the goal graph identified after a
first reading of the initial document. The goals were obtained by searching for keywords
such as “purpose”, “objective”, “intent”, “in order to”, and so forth. In this graphical
specification, clouds denote softgoals and optimization goals (used in general to select
among alternatives - see Section 3.2.4.6), parallelograms daclaitsre/Maintain/Avoid

goals that constrain the behaviours of the system.

The objective of the new BART system is to serve more passengers. Figure 9.35 shows
this high-level goal $erveMorePassenger) together with alternative subgoals that con-
tribute to its satisfaction. Two alternative subgoals contributing to the $@akMore-
Passenger are to run trains more closely spacéacdinsMoreCloselySpaced) and to add

more tracksNewTracksAdded).

Another goal of the system is to minimize costs, which is refined into the two subgoals
Minimize[DvlptCosts] andMinimize[OperationalCosts]. The figure also records a conflict
between the godewTracksAdded and the goallinimize[DviptCosts].
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Minimize[Costs]
ServeMorePassenger

Minimize
[OperationalCosts]

Minimize[DvlptCosts]

rainsMoreClosely

NewTracksAdded
Spaced

Minimize Minimize
[StressOnEquipme [PowerUsage

moothMovement

PassengerComfort

SafeTransport

Avoid
[TrainEnteringClosedGate]

Maintain Maintain
[WCSDistBetweenTrains] [TrackSegmentSpeedLimit]

FIGURE 9.35. Preliminary goal graph for the BART system

Another import aspects of the BART system concern the safety of transport. The initial
problem statement defines three safety goals that the system must satisfy:

Goal Maintain[WCSDistBetweenTrains]
Definition A train should never get so close to a train in front so that if the train in
front stopped suddenly (e.g., derailed) the (following) train would hit it.

Goal Avoid[TrainEnteringClosedGate]
Definition A train should not enter a closed gate.

Goal Maintain[TrackSegmentSpeedLimit]
Definition A train should stay below the maximum speed the track segment can han-
dle.

Finally, not only should trains run fast and safely, they should also run smoothly. Figure
9.35 shows the go@moothMovement and its goal dependencies mentioned in the case
study description: the smooth movement of trains contributes to the passengers’ comfort,
but also minimize wear stress on equipment and power usage. These last two goals con-
tributes to the satisfaction of the gdihimize[OperationalCosts].
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2. Formalizing Goals and ldentifying Objects

The three safety goal identified in the previous section may be defined more precisely.
The goalMaintain[TrackSegmentSpeedLimit] is formally defined as follows:

Goal Maintain[TrackSegmentSpeedLimit]

Definition A train should stay below the maximum speed the track segment can han-
dle.

FormalDef [ tr: Train, s: TrackSegment

On(tr, s) O tr.Speed < s.SpeedLimit

The predicates, objects, and attributes appearing in this goal formalization give rise to the
following portion of the object model:

On
Train TrackSegment
Speed SpeedLimit

The goalMaintain|WCSDistBetweenTrains] is also defined formally:

Goal Maintain[WCSDistBetweenTrains]

Definition A train should never get so close to a train in front so that if the train in
front stopped suddenly (e.g., derailed) the following train would hit it.

FormalDef O trl, tr2: Train

Following(trl, tr2) O tr2.Loc - trl.Loc = tr1. WCSDist

In this definition, the attribut&®/CSDist denotes the actual worst case stopping distance
of a train based on thghysical speedf the train. The definition of the worst case stop-
ping distance of a train is given as part of the domain knowledge. (Note that the initial
document defines a worst case stopping distance based coortireanded speetf the

train rather then on the physical speed.)

We assume that the location of a train is given by its position on a given track. (For sim-
plicity, we also assume that trains have no length.) The predieaitewing(trl, tr2)
appearing in this definition is then formally defined by:

Following(trl, tr2) =
(Otrack: Track): OnTrack(trl, track) 0 OnTrack(tr2, track) Otrl.Loc < tr2.Loc
0= (Otr3: Train): OnTrack(tr3, track) Otrl.Loc < tr3.Loc Otr3.Loc < tr2.Loc

Note that according to this definition, two trains linked by Badlowing relationship are
necessarily on the same track.
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The initial portion of the object model is now enriched from these definitions:

Track
OnTrack
Following ComposedOf
On

Train TrackSegment

Speed SpeedLimit

Loc

WCSDist

Finally, the goalAvoid[TrainEnteringClosedGate] can be given the following first-sketch
definition:

Goal Avoid[TrainEnteringClosedGate]

Definition A train should not enter a closed gate.
FormalDef [ g: Gate, s: TrackSegment, tr: Train
g.Status = ‘Closed’ O HasGate(s,g) 0 - @ - On(tr, s)

Note that gates are placed at the end of some track segments. The formal definition says
that a train should not leave a track segment if the gate ending that segment is closed.
(Remember that gates are not physical gates.)

The portion of the object model derived from the formalization of the goals is given by:

Track
Following OnTrack
CompogedOf
On
Train TrackSegment HasGate Gate
Speed SpeedLimit Loc
Loc Status
WCSDist
ISA
Switch
position

The above definition of the goaloid[TrainEnteringClosedGate] is too strong to be sat-
isfiable in the domain. A train cannot stop instantaneously, therefore if a gate becomes
closed when the train is too close to the gate, it will be impossible for the train to stop in
time. In the actual BART system, the definition of that goal is weakened so that a train is
allowed to enter a closed gate if the gate has become closed when the distance between
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the train and the gate was too short for the train to stop in time. (Note that this correspond
to an application of the tactigeaken goal with unsatisfiability condition). The actual def-
inition of the goakvoid[TrainEnteringClosedGate] is therefore given by:

Goal Avoid[TrainEnteringClosedGate]

Definition A train should not enter a closed gate provided that the gate has been
closed when the distance between the train and the gate was more than the worst
case stopping distance of the train.

If the gate is open when the distance between the train and the gate is less than the
worst case stopping distance of the train, the train may ignore the gate, even if it
becomes closed later.

FormalDef [ g: Gate, s: TrackSegment, tr: Train

(g.Status = ‘Closed’ B (g.Loc - tr.Loc) = tr. WCSDist )

O HasGate(s, g)

O -@ - On(tr, s)

Allowing trains to enter a closed gate if the gate becomes closed when it is impossible
for the train to stop in time is not necessarily unsafe. The rationale for such weakening of
the goal can only be understood by identifying the higher level goal that this goal refines.
This is done in the next section.

3. ldentifying new goals trough WHY questions

Asking WHY question about the goAloid[TrainEnteringClosedGate] yields a new por-
tion of the goal graph, shown in Figure 9.36.

Maintain
[TrainOnCorrectLine] Avoid
[TrainDerailment]

\
Avoid .
[TrainOnSwitchinWrongPosition]
WHY
Avoid Maintain
[TrainEnteringClosedGate] [GateClosedInTime
WhenSwitchinWrongPosition]

FIGURE 9.36. Asking WHY questions for the gdatoid[TrainEnteringClosedGate]

The graph shows that the purpose of not entering closed gates is to keep trains from pass-
ing through switches that are not appropriately positioned:

Goal Avoid[TrainOnSwitchinWrongPosition]

InformalDef A train should not enter a switch if it is not appropriately positioned.
FormalDef [0 tr: Train, sw: Switch, track: Track

ApproachingSwitchOnTrack(tr, sw, track) [0 sw.Position # tr.Direction 0 - @ On(tr,
sSw)

In this goal graph, the definition of the goal

Maintain[GateClosedInTimeWhenSwitchInWrongPosition]
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is elicited formally by matching a chain-driven refinement pattern to the formalization of
the parent goal Avoid[TrainOnSwitchinWrongPosition] and of the initial goal
Avoid[TrainEnteringClosed Gate]. After further simplification of the generated formal
assertion, the goal is defined as follows:

Goal Maintain[GateClosedInTimeWhenSwitchInWrongPosition]

InformalDef When a switch is not appropriately positioned for a train approaching
the switch on a given track, the gate guarding the switch on that track must be closed
in time so that it is still possible for the train to stop before the switch.

FormalDef [ tr: Train, sw: Switch, s: TrackSegment, g: Gate, track: Track
ApproachingSwitchOnTrack(tr, sw, track) [0 sw.Position # tr.Direction

O NextSegmentOnTrack(track, s, sw)

O HasGate(s, Q)

O

g.Status = ‘Closed’ B (g.Loc - tr.Loc) = tr. WCSDist

The following domain properties were also identified and used to produce this goal defi-
nition:

every track segment leading to a switch is ended with a gate

NextSegmentOnTrack(track, s, sw) 00 ([0g: Gate): HasGate(s, g)

a train enters a switch iff it leaves a track segment preceding the switch

@ On(tr, sw)

= (Otrack: Track, s: TrackSegment): NextSegmentOnTrack(track, s, sw) 0@ — On(tr,
s)

The object model derived from these definitions is given by:

Track
OnTrack —
Following Compogedof —4 NextSegmentOnTrack )
On
Train TrackSegment Gate
Speed SpeedLimit HasGate Loc
Loc Status
WCSDist
ISA
- " Switch
ApproachingSwitch \ —
OnTrack position

Similarly, asking WHY questions about the goalsintain[TrackSegmentSpeedLimit]
and Maintain[WCSDistBetweenTrains] yield respectively the goalévoid[TrainDerail-
ment] andAvoid[TrainsCollisions] (Figure 9.37).
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Avoid Avoid
[TrainDerailment] I [TrainsCollisions]
WHY
Maintain Maintain
[TrackSegmentSpeedLimit] [WCSDistBetweenTrains]

FIGURE 9.37. Asking WHY questions for the goals
Maintain[TrackSegmentSpeedLimit] andMaintain[WCSDistBetweenTrains]

9. 2. 3. Refining goals and identifying alternative responsibility assignments

We now illustrate the use of agent-driven tactics for refining the Badltain[WCSDist-
BetweenTrains] until all leaf goals are realizable by single agents. Figure 9.38 gives an
overview of the goal refinement graph and responsibility assignments that will be gener-
ated.

The refinement graphs for the other safety goaisjid[TrainEnteringClosedGate] and
Maintain[TrackSegmentSpeedLimit], can be generated in a similar way.

1. Split lack of control by cases

The goalMaintain[WCSDistBetweenTrains] constrains the speed and location of the fol-
lowing train based on the location of the preceding train. It is therefore not realizable by
the TrainControlSystem agent, because it lacks of monitorability and control for the
actual speed and location of trains.

In order to resolve such realizability problem, the goal is first split by cases according to
whether in the previous state the two trains are already on the same track or not. The tac-
tic split lack of control by cases is therefore used to generate the subgoals:

Maintain[WCSDistBetweenTrainsOnSameTrack]
Avoid[ViolationOfWCSDistWhenTrainEntering Track]

The second subgoal is further split by cases according to whether it is the preceding train
or the following train that enters the common track, yielding the two goals:

Avoid[TrainEnteringTrackinFrontOfCloseTrain]
Avoid[TrainEnteringTrackBehingCloseTrain]

The figures below show two states of the system from which each of these two goals
could be violated. In staté, the traintr2 is about the enter the track in front oft,

thereby violating the goalvoid[TrainEnteringTrackinFrontOfCloseTrain]; in stateB, the

traintrl is about the enter the track behitid, thereby violating the goaivoid[TrainEn-
teringTrackBehingCloseTrain]. Although the initial document is silent about this, the sat-
isfaction of the first subgoal is probably taken care of by the interlocking system that
manages track switches and associated signals. For the second subgoal, it is less clear
whether the train control system may rely on the interlocking system to satisfy that goal.
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Maintain
[WCSDistBetweenTrains]

split lack of control by cases

Avoid Avoid Maintain
[TrainEnteringTrack [TrainEnteringTrack [WCSDistBetweenTrains
InFrontOfCloseTrain] BehindCloseTrain] OnSameTrack]
split lack of control
/ N for train speed/location
Maintain Maintain Avoid
[SafeAccCmd [WCRespOfFollowingTrain / [BackwardTrain] /
) OfFollowingTrain] ToAccCmd
introduce accuracy goal
to resolve lack of moA
for train speed/location
Maintain Maintain
[AccurateSpeed/Location [SafeAccCmdOfFollowingTrain
Estimates] BasedOnSpeed/LocationEstimates]

TrainTracking
System

introduce actuation goal
to resolve lack of ctrl
for acceleration command

Maintain Maintain
[CmdMsgTransmittedInTime] [ReceivedCmdMsgExercised]

OnBoard
TrainController
Maintain

Achieve Achieve
[CmdMsgSentinTime] [SafeAcc/SpeedCmd [SentCmdMsgDeliveredinTime]

split lack of control
with milestone

INCmdMsg]

Communication
Infrastructure

TrainControl
System

FIGURE 9.38. Goal refinement graph and responsibility assignments for the goal
Maintain[WCSDistBetweenTrains]
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track2 track? : S
trl S tr2
trackl trackl
A. train entering track in front of close train B. train entering track behind close train

These two goals may be formally defined as follows:

Goal Avoid[TrainEnteringTrackinFrontOfCloseTrain]

Definition A train should not enter a track in front of another train if it violates the
worst case stopping distance between the two trains.

FormalDef [ tr2: Train, track: Track

@ OnTrack(tr2, track)

O - (dtrl: Train):

tri#tr2 0 OnTrack(trl, track) Ltr2.Loc = trl.Loc Otr2.Loc - trl.Loc = tr1. WCSDist

Goal Avoid[TrainEnteringTrackBehingCloseTrain]

Definition A train should not enter a track behind another train if it violates the worst
case stopping distance between the two trains.

FormalDef O trl: Train, track: Track

@ OnTrack(trl, track)

0 - (Otr2: Train):

trl#tr2 0 OnTrack(tr2, track) Otr2.Loc = trl.Loc [Jtr2.Loc - trl.Loc = tr1.WCSDist

The goal Maintain[WCSDistBetweenTrainsOnSameTrack] is defined formally as fol-
lows:

Goal Maintain[WCSDistBetweenTrainsOnSameTrack]

Definition If a train is following another so that the distance between the two trains is
safe, then the distance between the two trains must remain safe in the next state.
FormalDef O trl, tr2: Train, track: Track

e (Following(trl,tr2) Otr2.Loc - trl.Loc = tr1.WCSDist)

O Following(trl, tr2)

1l

tr2.Loc - trl.Loc = trl. WCSDist

This goal is further refined in the following sections.

2. split lack of control for train location
The above goal
Maintain[WCSDistBetweenTrainsOnSameTrack]

constrain the speed and location of the following train based on the location of the pre-
ceding train. It is unrealizable by the centraliz&dinControlSystem agent because it
lacks of control for the speed and location of the following train, and lack of monitorabil-
ity for the location of both trains.
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The tacticsplit lack of control is used to resolve lack of control for the acceleration of the
following train, by identifying the new intermediate attribti@in.AccCmd that denotes

the acceleration command controlled by theBoardTrainController!, and generating
the following subgoals:

Maintain[SafeAccCmdOfFollowingTrain]
Maintain[WCRespOfFollowingTrainToAccCmd]

Avoid[BackwardTrain]

The first subgoal defines an upper bound on the acceleration command of the following

train. In order to define such upper bound, it is necessary to make some assumptions
about the behaviours of the preceding and following trains. The second subgoal is a

worst case assumption that relates the physical acceleration of the following train to its

acceleration command. The third subgoal is a worst case assumption on the behaviour of
the preceding train, i.e. it may not go backward (but could suddenly stop).

A definition of the worst case assumption on the following train will look something like
this:

tr.AccCmd =0 O tr.Acc < tr. AccCmd
U® cpmcpelay trAccCmd <0 O tr.Acc <0

Htr.AccCmd <0 U~ B ycpelay trAccCmd <0 [ tr.Acc < e tr.Acc

This definition says that: (i) if the acceleration command of the train is positive, the
actual acceleration of the train is less than the commanded acceleration, (ii) if the accel-
eration command of the train has been negative during theMasgielay time units,
whereMCDelay is the delay needed to go into braking mode, the train is actually deceler-
ating, and (iii) if the acceleration command is negative but has not been negative for the
lessMCDelay time units, we assume that the acceleration of the train is not increasing.
This definition is given here as an example. Further elicitation from and validation by
domain experts are required to define that assumption more accurately. It is important to
note that the definition of that assumption is not intended to capture the exact relation
between the actual acceleration of a train and the acceleration command of the train, but
only some worst case assumption on those quantities.

The third goal defines a worst case assumption on the preceding train. The initial docu-
ment says that collisions between trains has to be avoided even if the preceding train
stopped suddenly (e.g. because of derailment). Therefore, the worst case assumption for
the preceding train is that it does not go backward:

O (tr2.Loc = e tr2.Loc)

1. Note that the acceleration command denotes here a quantity controlled by the
OnBoardTrainController. It correspond to the state of the acceleration and brak-
ing commands of the train. It should not be confused with the acceleration
command in a command message sent by TianControlSystem to the
OnBoardTrainController.
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Finally, the formal definition of the goalaintain[SafeAccCmdOfFollowingTrain] looks
like this:

Goal Maintain[SafeAccCmdOfFollowingTrain]
Definition The acceleration command of a train trl should be less than
F(trl.Loc, tr2.Loc, trl.Speed),
where tr2 is the train preceding trl. The value of that function is calculated so that it
ensures a worst case distance is maintained between the two trains.
FormalDef O trl, tr2: Train
e Following(trl,tr2)
[l
tr.AccCmd < F(trl.Loc, tr2.Loc, trl.Speed)

In this goal, the functiorF(trl.Loc, tr2.Loc, trl.Speed) defines an upper bound for the
acceleration command of the train. It must be calculated so that the parenwvigoal,
tain[WCSDistBetweenTrainsOnSameTrack], is satisfied provided that the two other
assumptions in the goal refinement are satisfied. This function is the solution of a differ-
ential equation. We assume that such solution can be given by domain experts.

This goal is further refined in the next section.

3. Resolve lack of monitorability for trains’ speed and location
The goal
Maintain[SafeAccCmdOfFollowingTrain]

constrains the commanded acceleration of a train based on the speed and position of that
train and on the position of the preceding train. This goal is unrealizable Qydin€on-
trolSystem, because it lacks monitorability for the trains’ speed and locations.

The tacticintroduce tracking object is applied to resolve such lack of monitorability by
generating the subgoals:

Maintain[AccurateSpeed/LocationEstimates]

Maintain[SafeAccCmdBasedOnSpeed/LocationEstimates]

The second subgoal is an accuracy goal that relates the actual speed and locations of
trains to the estimated speed and locations of trains. That goal is assigned as the respon-
sibility of a TrainTrackingSystem agent mentioned in the initial document. The second
goal constrain the value of the acceleration command of the following train based on the
position estimates of the following and preceding train, and on the speed estimate of the
following train.
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These goals refer to the new intermediate objeaininfo that denotes informations
about trains speed and location. At this stage, such object is defined as follows:

Entity TrainInfo
Has
TrainID: TrainlD_Domain
Trackld: TracklD_Domain

the track on which the position of the train is given
Loc: LocationUnit

the mean location estimate of the train
LocDev: LocationUnit

the standard deviation from the mean location
Speed: SpeedUnit

the mean speed estimate of the train
SpeedDev: SpeedUnit

the standard deviation from the mean speed

The formal definition of the subgoals generated by the tactic are given by:

Goal Maintain[AccurateSpeed/LocationEstimates]
Definition The actual speed and location of a train should be within the mean and
standard deviation of the speed and position estimates of that train.
FormalDef [0 tr: Train, ti TrainIinfo
Tracking(ti, tr)
O
(O track: Track, track_id: TracklD_Domain):
(ti. Trackld = track_id ~ OnTrack(tr, track) [ track.TracklD = track_id)
Oti.Loc - ti.LocDev < tr.Loc < ti.Loc + ti.LocDev
Oti.Speed - ti.SpeedDev < tr.Speed < ti.Speed + ti.SpeedDev

Goal Maintain[SafeAccCmdBasedOnTrainSpeed/PositionEstimates]
Definition The acceleration command of a train trl should be less than
F(til.Loc + til.LocDev, ti2.Loc - ti2.LocDeyv, til.Speed + ti2.SpeedDev)
where til denotes the object tracking trl and ti2 denotes the object tracking the pre-
ceding train.
FormalDef [ trl, tr2: Train, til, ti2: TrainInfo
Tracking(til, trl) O Tracking(ti2, tr2)
O e Followinginfo(til,ti2)
O
trl.AccCmd < F(til.Loc + til.LocDeyv, ti2.Loc - ti2.LocDey, til.Speed + ti2.SpeedDev)

Note that the definition of the last subgoal assumes the worst-case for the speed/position
estimates. For the following train, the worst-case speed and position are respectively
til.Speed + til.SpeedDev andtil.Loc + til.LocDev. For the preceding train, the worst-
case position ii2.Loc - ti2.LocDev.

These goal definitions are first-sketch approximations of the actual goals of the BART
system. In the actual system, tlminTrackingSystem issues speed and location esti-
mates every 1/2 seconds. Further work is therefore required to define those goals more
precisely.

The above goal refinement is also based on the following goal requiring that every train
is tracked by exactly oneaininfo instance, and that theacking relationship is static:

O tr: Train O O ti: Tracking(ti, tr)
(O tr: Train, ti; Traininfo): Tracking(ti, tr) O O Tracking(ti, tr)
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4. Resolve lack of control for the acceleration command of trains
The goal
Maintain[SafeAccCmdBasedOnSpeed/LocationEstimates]

is still unrealizable by th@rainControlSystem because it lacks of control for the acceler-
ation command of the train. (the acceleration command is a quantity controlled by the
OnBoardTrainController, and that is used by that agent to command the actual accelera-
tion of the train.) This goal is also unrealizable by theBoardTrainController because it
lacks of monitorability for th@raininfo entities.

At this point, alternative system design are generated through alternative applications of
agent-driven tactics.

A First Centralized Design

In a first alternative, the tactiatroduce actuation goal is used to resolve lack of control
of theTrainControlSystem agent for the acceleration command of the train, by generating
the subgoals:

Maintain[SafeCmdMsgReceivedIinTime]
Maintain[ReceivedCmdMsgExercised]

The first goal requires that every 1/2 second,@n8oardTrainController receives a com-

mand message from tffeinControlSystem. (The 1/2 second delay requirement is taken
from the initial case study description. It corresponds to the frequency at which speed/
location estimates of trains are received by TrenControlSystem.) The command mes-

sage has an acceleration command attribute that defines the acceleration command to be
applied by thednBoardTrainController. The second subgoal is an actuation goal assigned

to the OnBoardTrainController. It requires the acceleration command of the train to be
equal to the value of the acceleration command contained in the last received command
message.

Note that in this alternative, the acceleration command of the train is fully calculated by
the centralizedrainControlSystem. This alternative is not exactly the one chosen for the
BART system. The actual design for the BART system will be discussed later.

The first subgoal is given the following first-sketch definition:

Goal Maintain[SafeCmdMsgReceivedInTime]
Definition The OnBoardTrainController should receive a command message from the
TrainControlSystem every 1/2 second. The value of the acceleration command in the
command message must be safe, i.e. it should be less than

G(til.Loc + til.LocDey, ti2.Loc - ti2.LocDey, til.Speed + ti2.SpeedDev)
where attributes of til denote speed/position estimates about the following train and
attributes about ti2 denote speed/position estimates about the preceding train.
FormalDef O trl, tr2: Train, til:Traininfo
Tracking(til, trl)
e FollowinglInfo(til,ti2)
0 O<1/2sec (Hecmd_msg: CommandMessage):
Received(cmd_msg, tr)
0 cmd_msg.AccCmd < G(til.Loc + til.LocDey, ti2.Loc - ti2.LocDey, til.Speed +
ti2.SpeedDev)
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Note that the upper bound on the acceleration command has been strenghte(tdd to

ti2) (whereG(ti1, ti2) < F(ti1, ti2)) to take into account the 1/2 second delay in the recep-
tion of the command message. The funct®rhas to be calculated by making some
worst case assumption on the behaviour of the following train during this 1/2 second
delay.

The second subgoal is defined as follows:

Goal Maintain[ReceivedCmdMsgExercised]
Definition The acceleration command of the train should be equal to the acceleration
command of the last received command message.
FormalDef [ tr: Train, cmd_msg: CommandMessage
Received(cmd_msg, tr)
0= (Ocmd_msg’: CommandMessage): cmd_msg’ # cmd_msg
[(Received(cmd_msg’, tr) S Received(cmd_msg, tr))
O
tr.AccCmd = cmd_msg.AccCmd

In order to reach subgoals assignable to single agents, the first goal in this alternative is
further refined as follows:

Maintain[SafeCmdMsgReceivedInTime]
~ Achieve[CmdMsgSentInTime]
~ Maintain[SafeAccCmdInCmdMsg]

~ Maintain[SentCmdMsgDeliveredinTime]

The first and second subgoals are assigned as the responsibility Déiti@ontrolSys-
tem agent; the third is assigned as the responsibility @oenmuncationinfrastructure
agent.

A Fully Distributed Design

An alternative design can be generated by applying the tmtticluce accuracy goal to
resolve lack of monitorability of th@nBoardTrainController for the Traininfo objects. An
application of this tactic refines the gosllaintain[SafeAccCmdBasedOnSpeed/Loca-
tionEstimates] into the subgoals:

Maintain[TraininfoMsgDeliveredInTime]
Maintain[SafeAccCmdBasedOnTrainInfoMsg]

The first subgoal requires that tmBoardTrainController of a given train receives peri-
odically information messages from tieinControlSystem (or directly from theTrain-
TrackingSystem agent). These information messages contain informations about the
position of the train and the position of its preceding train. (Information about the speed
of the train is not necessary as it can be obtained byothgoardTrainController.) The
second subgoal is assigned as the responsibility obtioardTrainController. It con-

strain the value of the acceleration command of the train based on the informations con-
tained in the last received train information message.

This alternative correspond to a fully distributed system in which the acceleration com-
mand of trains are calculated by tb@BoardTrainController’s rather than by the central-
ized TrainControlSystem.
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The BART Design

The design for the BART system described in the initial document is based on yet
another alternative. That design shows an interesting split of responsibilities between the
centralizedTrainControlSystem and theOnBoardTrainController: the acceleration com-
mand of a train is partly calculated by the centraliZeainControlSystem and partly by

the OnBoardTrainController’s.

In this design, the command messages seftri®oardTrainController’s contains both a
commanded acceleration and a commanded speed. The commanded speed is used by the
OnBoardTrainController to ensure a smooth acceleration of the train toward that speed,

and to minimize mode changes when the train seeks to maintain that'spemdtiva-
tion for this design is therefore that it contributes to the g@rabothMovement in Figure
9.35.

The commanded speed is also used in the BART system as a way to strengthen the safety
of the system. The commanded speed is used as an upper bound of the actual speed when
calculating an acceleration command that ensure a worst case stopping distance between
the trains. In order for this to be safe, the commanded speed should always be bigger
than the actual speed of the train. (When deceleration is commanded, the commanded
speed should still be bigger than the actual speed, and the commanded speed is not used
by theOnBoardTrainController.)

The goal
Maintain[SafeAccCmdBasedOnSpeed/LocationEstimates]
is therefore refined as follows:

~ Maintain[SafeCmdMsgReceivedInTime]
~ Achieve[CmdMsgSentInTime]
~ Maintain[SafeAcc/SpeedCmdInCmdMsg]
~ Maintain[SentCmdMsgDeliveredIinTime]
~ Maintain[ReceivedCmdMsgExercised]

In this alternative, the godhaintain[ReceivedCmdMsgExercised] defines the behaviour

of the OnBoardTrainController in response to the speed and acceleration commands in
the received command messages; the general form for the/gdahin[SafeAcc/Speed-
CmdInCmdMsg] will look something like this:

Goal Maintain[SafeAcc/SpeedCmdInCmdMsg]

FormalDef O cmd_msg: CommandMessage, til, ti2: Traininfo
cmd_msg,.Sent 00 cmd_msg.Trainld = til.Trainld

O e FollowingInfo(til, ti2)

O

cmd_msg.AccCmd < F(til, ti2)

Ocmd_msg.SpeedCmd < G(til, ti2)

Ocmd_msg.SpeedCmd > til.Speed + til.SpeedDev

1. When given a positive acceleration command,@mBoardTrainController will accelerate
the train at the given rate until the actual speed is within 7 mph of the commanded speed.
When the actual speed is within 7 mph of the commanded spee@nBoardTrainCon-
troller will limit its acceleration to smoothly reach a speed at 2 mph below the commanded
speed. Once a speed at 2 mph below the commanded speed is reacl@dBihardTrain-
Controller will try to maintain that speed, although there may be some small fluctuations.
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In our model, a single instance of tMainControlSystem agent is responsible for issuing

safe command messages for all trains. In the actual BART design, the handling of trains
is split among multiple instances of tlieainControlSystem agent. (This design can be
generated by splitting the goalaintain[SafeCmdMsgReceivedInTime] into cases).
Decisions about the number of instancesT@iinControlSystem agent, the number of

trains to be handled by each instance, and the required delays for sending command mes-
sages are fundamental design decisions that have critical impacts on the performance,
safety and costs of the system. These decisions are at the boundary between require-
ments engineering and architectural designs. Techniques such as those of the Architec-
ture TradeOffs Analysis Method [Kaz99] are relevant to make such decisions and record
their rationale.

9. 2. 4. Goal Operationalization

Agents interfaces and operational requirements are now derived from the terminal goals
generated during the goal refinement process. Consider for instance the above terminal
goal

Maintain[SafeAcc/SpeedCmdInCmdMsg]

assigned as the responsibility of theinControlSystem agent. The portion of the agent
interface model derived from that responsibility assignment is given by:

TrainInfo TrainControl CommandMessage -
System

From the formal definition of that goal, we also derive the following operation to be per-
formed by theTrainControlSystem agent, together with the required post conditions that
guarantees the satisfaction of the goal:

Operation SendCommandMessage
PerfBy TrainControlSystem
Input TrainInfo {arg til, ti2}
Output CommandMessage {res cmd_message}
Dompre - cmd_msg.Sent
DomPost cmd_msg.Sent O cmd_msg.Trainld = til.Trainld
ReqgPostFor Maintain[SafeAcc/SpeedCmdinCmdMsg]
e FollowinglInfo(til, ti2)
cmd_msg.AccCmd < F(til, ti2)
Ocmd_msg.SpeedCmd < G(til, ti2)
Ocmd_msg.SpeedCmd > til.Speed + til.SpeedDev

From the formal definition of the goalchieve[CmdMsgSentinTime], we derive a further
required trigger condition on that operation:

ReqTrigFor Achieve[CmdMsgSentinTime]
W15 sec © (Ocm2: CommandMessage): cm2.Sent Jcm2.TrainID = til.Trainld
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Further operations and agent interfaces are derived from other responsibility assign-
ments. Figure 9.39 shows the agent interface model derived from the responsibility
assignments in Figure 9.38.

Train.Speed

Train.Speed
Train.Loc

TrainTracking
System

Traininfo

Train.AccCmd

OnBoard
TrainController
CommandMessage

TrainControl
System

FIGURE 9.39. Portion of the agent interface model derived from the responsibility assignments in
Figure 9.38

9. 2. 5. Obstacle Analysis

We now apply obstacle identification techniques to generate obstacles for the terminal
goals and assumptions generated during the goal refinement process. Several of the gen-
erated obstacles correspond to problems that are anticipated in the initial case study
description; other obstacles correspond to problems that are not raised in this document.

Next, we apply obstacle resolution tactics to generate alternative resolutions for the gen-
erated obstacles. Several of the new requirements generated by these tactics correspond
to features of the BART system mentioned in the initial document. We also generate
alternative requirements corresponding to alternative ways to resolve obstacles antici-
pated in the initial document; and further new requirements to tolerate obstacles that are
not mentioned in this document.

9. 2. 5. 1. Generating Obstacles

Obstacles were identified by applying a mix of formal techniques and heuristics from
Chapter 8. For example, consider the assumphmimtain|WCRespOfFollowingTrain-
ToAccCmd] appearing in Figure 9.38:

Assumption MaintainfWCRespOfFollowingTrainToAccCmd]
FormalDef [ tr: Train

tr.AccCmd =0 [ tr.Acc < tr.AccCmd

U'® cMcpelay trAccCmd <0 O tr.Acc <0

Htr.AccCmd <0 U~ ® ycpelay trAccCmd <0 [ tr.Acc < e tr.Acc
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The negation of this assumption yield the obst&ddRespOfTrainToAccCmd, which is
then OR- refined into the subobstacles:

Obstacle ExcessiveAccelerationinRespToAccCmd

FormalDef ¢ Otr: Train

(tr.AccCmd Otr.Acc > tr. AccCmd)

O

trAccCmd <0 0~ ®ycpelay trAccCmd <0 [tr.Acc > e trAcc

Obstacle BadBraking
FormalDef ¢ Otr: Train
B _\iCDelay t/AccCmd < 0 Utr.Acc 20

A further subobstacle of the obstadt@cessiveAccelerationinRespToAccCmd is men-

tioned in the initial case study description: since trains accelerometers cannot sense
acceleration due to gravity, the actual acceleration of a train on a downgrade will be big-
ger than commanded. Therefore the condi#@neleratingTrainOnDownGrade is a sub-
obstacle of ExcessiveAccelerationinRespToAccCmd. Another subobstacle of
ExcessiveAccelerationinRespToAccCmd is that the acceleration command of the train is
malfunctioning. The following obstacle refinement is thereby obtained:

ExcessiveAccelerationInRespToAccCmd
~ AcceleratingTrainOnDownGrade
~ AccelerationCommanddMalfunction

From the formal definition of the obstackadBraking, we also generate the following
obstacle refinement graph:

~ BadBraking
~ TrainDoesNotReconfigureForBraking
~ ExcessiveModeChangeDelay
~ NoBrakingInBrakingMode

Other obstacles generated from the terminal goals and assumptions of the goal refine-
ment graphs in Figure 9.38 are summarized in Table 9.4.

Table 9.4: Obstacles to subgoals of the goal Maintain [WCSDistBetweenTrainsOnSameTrack]

agent goal/assumption obstacles
-- Avoid [BackwardTrain] BackwardTrain
- WCRespOfFollowingTrain BadRespOfTrainToAccCmd
ToAccCmd ~ ExcessiveAccelerationinRespToAccCmd

~ AcceleratingTrainOnDownGrade

~ AccelerationCommanddMalfunction
~ BadBraking

~ TrainDoesNotReconfigureForBraking

~ ExcessiveModeChangeDelay

~ NoBrakingInBrakingMode

TrainTracking AccurateSpeed/Location InaccurateSpeed/LocationEstimates

System Estimates ~ NoSpeed/PositionEstimates

~ OutOfDateSpeed/LocationEstimates

~ InaccurateRecentSpeed/LocationEstimates
~ ImpossibleChangelnSpeed/LocationEstimates
~ PlausiblelnaccurateSpeed/PositionEstimates

OnBoard ReceivedCmdMsgExer- BadRespToCmdMsg

TrainController cised ~ CmdMsglgnored

~ ExcessiveAccelerationCommanded
ByOnBoradtrainController
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Infrastructure

DeliveredInTime

agent goal/assumption obstacles
TrainControl CmdMsgSentinTime CmdMsgNotSentInTime
System ~ CmdMsgNotSent
~ CmdMsgSentLate
~ CmdMsgSentToWrongTrain
SafeAcc/SpeedCmd UnsafeCmdMsg
INCmdMsg ~ UnsafeAccinCmdMsg
~ CmdSpeedinCmdMsgExceedsSpeedEstimate
Communic. SentCmdMsg SentCmdMsgNotDeliveredIinTime

~ SentCmdMsgNotDelivered

~ SentCmdMsgDeliveredLate
~ SentCmdMsgDeliveredToWrongTrain
~ DeliveredCmdMsgCorrupted
~ DeliveredCmdMsgWithInvalidSpeed/AccCmd
~ DeliveredCmdMsgWithCorruptedValidSpeed/
AccCmd

9. 2. 5. 2. Resolving Obstacles

For each generated obstacles, one should identify alternative obstacle resolutions propos-
als for preventing, reducing or tolerating the obstacle. In the sequel, we illustrate various
obstacle resolution tactics applied to the BART system. These tactics generate further
goals and requirements, some of which correspond to fault tolerance requirements
described in the initial document. Other goals generated by our tactics correspond to
alternative resolutions for the obstacles that are anticipated in the initial document, or to
resolutions of obstacles not covered in that document.

1. Goal Substitution

As an example of goal substitution, consider the obstabi@MsgSentLate that
obstructs the goafmdMsgSentinTime under the responsibility of th&ainControlSys-

tem agent. This obstacle occurs when the centralized system is not able to send com-
mand messages in time for every trains.

One possible resolution for this obstacle is generated by applying thedheotise alter-
native goal. It consists in eliminating the problem thoroughly by choosing the alternative
fully distributed design in which command acceleration are computed by the
OnBoardTrainController's instead of the centraliz&itinControlSystem.

2. Obstacle Prevention

As an example of obstacle prevention, consider the obstaslafeCmdMsg obstructing

the goalMaintain[SafeAcc/SpeedCmdInCmdMsg] assigned as the responsibility of the
TrainControlSystem. An application of the tactiprevent obstacle generate the new goal
Avoid[UnsafeCmdMsgSent]. In the actual BART system, this new goal is assigned as the
responsibility of aVvital Station Computer agent. This new goal introduces a form of
redundancy: the (non-vitaljrainControlSystem agent is responsible for issuing safe
command messages in time, tieal Station Computer agent is responsible for blocking
command messages issued by Th@nControlSystem if these messages contain unsafe
speed/acceleration commands. Note thatTHaéhControlSystem is to be operated on
hardware that is reliable enough to meet performance related goals, but not safety-related
goals; whereas theital Station Computer agent is slower but reliable enough to meet
safety-related goals.
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As another example of obstacle prevention, consider the obstagtasibleChangeln-
Speed/LocationEstimates that obstructs the goallaintain[AccurateSpeed/PositionEsti-
mates]. That obstacle covers situations in which changes in speed position estimates
correspond to movement that are known to be physically impossible (for instance, a train
IS on a given track at one instant, and on a different unrelated track at the next instant.)
Such obstacle can be resolved by applying the tgetieent obstacle which generate the

new goal

Avoid[ImpossibleChangelnSpeed/LocationEstimates]

which could be assigned as the responsibility of TiaénTrackingSystem. This new goal
corresponds to a standard technique in safety critical system for verifying that validity of
the inputs of the system with respect to possible values in the environment. Alternatively,
the same obstacle could be resolved by applying the texfizate obstacle and generat-

ing the new goal

Avoid[CmdMsgBasedOnlmpossibleChangelnSpeed/LocationEstimates]

which could be assigned as the responsibility of Th@nControlSystem agent. In this
alternative, th@rainControlSystem is responsible for not issuing a command message if
the train speed position estimates are impossible in the domain.

3. Goal Deidealization

As an example of deidealization, consider the obstacteleratingTrainOnDownGrade
obstructing the assumptiaviaintainfWCRespOfFollowingTrainToAccCmd]. In this case,

the obstacle may be resolved by deidealizing the assumption so that it takes into account
the acceleration due to the grade of the track. Such deidealization will then be propa-
gated to the other goals in Figure 9.38. It will ultimately result in a modification of the
goal Maintain[SafeAcc/SpeedCmdInCmdMsg]], in which the acceleration in command
messages will have to take into account the grade of the track segment of the following
train.

4. Obstacle Mitigation

As an example of obstacle mitigation, consider the obst&#esgCmdMsgNotDelivered
andSentCmdMsgDelivedLate that obstructs the go#laintain[SentCmdMsgDeliveredIn-
Time]. The tactianitigate obstacle can here be used to generate the new goal

Avoid[TrainsCollisionsWhenCmdMsgNotTransmittedInTime].

This new goal ensures the higher level safety gweald[TrainsCollisions]. This new goal
is also used to mitigate the other obstaCledMsgNotSent and CmdMsgSentLate that
obstructs the goaAchieve[CmdMsgSentinTime] assigned to thélrainControlSystem

agent.

The newly generated goal can then be refined into subgoals that are realizable by single
agents:

Avoid[TrainsCollisionsWhenCmdMsgNotTransmittedInTime]
~ FullBrakingWwhenNoCmdMsgReceivedDuring2Seconds
~ FullBrakingTrainStoppedWithinWCSDist
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The second assertion in this refinement is a domain property characterizing the worst-
case stopping distance of a train. To satisfy that domain property, the worst case stopping
distance is calculated by taking into account the distance that the train will travel during
the 2 second delay before applying the emergency brake.

Note that this delay of 2 seconds is an important design decision that is not documented
in the initial case study description. Choosing a shorter delay (e.g. 1 sec) would allow for

a shorter distance between trains, but may result in more frequent emergency braking
when command messages are not transmitted in time. The probability that a train will not
receive a command message in time should therefore be used to choose the most appro-
priate trade-off for this delay.

The other obstacleOutOfDateSpeed/LocationEstimates, obstructing the goalccu-
rateSpeed/LocationEstimates assigned to thdrainTrackingSystem agent, is resolved
similarly by applying the tactimitigate obstacle to generate the new goal

Avoid[TrainsCollisionsWhenOutOfDateSpeed/LocationEstimates].
This goal is refined in turns:

Avoid[TrainsCollisionsWhenOutOfDateSpeed/LocationEstimates].
~ FullBrakingWhenOutOfDateTrainInfo
~ FullBrakingWhenMOTTinCmdMsgExpired
~ AccurateMOTTinCmdMsg
~ FullBrakingTrainStoppedWithinWCSDist

This strategy allows one to derive new requirements and/ttesage Origination Time
Tag (MOTT) attribute mentioned in the initial case study description and attached to
Traininfo andCommandMessage entities.

9. 3. Discussion

Our experience in using the KAOS goal-oriented requirement elaboration method and
the techniques presented in the thesis for the LAS, the BART and other systems revealed
a number of issues that are worth pointing out. Future work required by some these
issues is discussed in the concluding chapter.

Eliciting and formalizing high-level goals

» The goal-oriented requirements elaboration method relies ondtwification of
high-level goals For the LAS and the BART case studies, such goals were easily
identified as they were explicitly defined in the initial documents.

» The method also relies on thearly formalization of goals and assumptiomsthe
environment. Such formalization allows for the systematic derivation of objects from
goal definitions, the verification of the correctness of goal refinements, the detection
of conflicts between goals and the generation of obstacles from goals and assump-
tions. Such early formalization of high-level goals and assumptions is desirable and
feasible. High-level goals and assumptions about the environment are actually easier
to define (both formally and informally) than lower-level goals and requirements
expressed at the interface of the software. The reason for this is obvious; higher-level
goals are more abstract properties that are not concerned with the details of the
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requirements at the interface of the software. In the LAS case study, for example, the
definition of a high-level goal such ashieve[Ambulancelntervetion] is simple and
given in the initial problem statement. The definition of requirements assigned to the
CAD software agent involves many more details, and would be quite hard to specify
formally without constructive guidance.

» The availability of obstacle analysis techniques was felt to be essential to the practi-
cality of the goal-oriented requirements elaboration method. It allows orstatd
from idealized definitions of goals and assumptjcersd to consider more realistic
definitions later in the requirements elaboration process. Without obstacle analysis,
writing realistic goal definitions seems very hard, if at all possible. Considering ideal-
ized goal definitions first is also essential as it allows one to avoid premature, implicit,
and possibly not optimal compromises about the required behaviour of the system
(see Section 3.3.3.2 of Chapter 3).

Agent-Driven Tactics: Benefits and Issues

* The systematic identification and resolution of violations of the realizability meta-
constraint was felt to provide useful, practical guidance for elaborating goal refine-
ments graphs and responsibility assignments. Although it should be further enriched,
the library of agent-driven tactics of Chapter 6 already provides rich and detailed sup-
port for refining goals and identifying agents. We also observed that by applying these
tactics systematically, we have been able to build fairly large goal refinement graphs
significantly faster than before.

» Labelling the goal refinements with the tactics applied to produce them makes the
goal grapheasier to understandceach refinement step is motivated by the resolution
of a realizability problem, and the tactic applied to produce this goal refinement
describes how the problem is solved. Knowing the definition of a high-level goal,
someone familiar with the library of agent-driven tactics can easily infer the definition
of all its subgoal from the tactics used to produce them.

» Agent-driven tactics are no “silver bullets”. Much creative thinking and domain
knowledge is required to generate alternative goal refinements and responsibility
assignments from high-level goals. The tactics provide a way to organize such crea-
tive thinking; they do not generate automatically all possible alternative designs by
themselves.

» For a goal raising several realizability problems, it is not a priori clear in what order
each of these problems should be solM@dring the actual elaboration of the require-
ments for the LAS and the BART system, we frequently switched the order in which
agent-driven tactics were applied. This did not result in different requirements at the
end the requirements elaboration process, but had an impact on the definition of inter-
mediate goals and on the presentation of the goal graph. The order of application of
agent-driven tactics that was finally chosen was mostly driven by the objective of
making the goal graph and the formal definitions of goals as easy to understand as
possible. The effort of producing a well-structured goal graph could be significantly
reduced by a tool supporting such transformations.
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The number of alternativeshat can be generated during the goal refinement and
responsibility assignment process may become quite large. Techniques and tools to
manage large numbers of alternatives are definitely required.

Frequently, thestrict application of formal goal refinement patterns produces first-
sketch formal definitionghat need to be adapted to fit the details of the particular
application domain. This may limit the amount of support for the automated applica-
tion of tactics.

Accuracy goalsvere seen to play an important role in the two significant case studies
we have worked on. The role of accuracy goals is often neglected in formal specifica-
tions. Further work is required to identify specific tactics for refining and operational-
izing accuracy goals. The formal specification of and reasoning about accuracy goals
involving tolerances and delayis also a difficult issue that requires further work. The
work reported in [Smi2K] is an interesting first step in that direction.

The boundary between the activities of elaborating requirements and designing a
software architecturés known to be blurred. This was clearly seen during the elabo-
ration of the requirements for the BART train control system; we generated several
alternative responsibility assignments and agent interfaces that ranged from a fully
distributed system in which the trains’ accelerations are computed by a centralized
train controller software agent, to a fully distributed system in which the trains’ accel-
earations are computed by on-board train controllers. We need to investigate further
how the techniques developed for requirements engineering and for software architec-
tures can be integrated. In particular we should investigate how goal-oriented tech-
niques can be used to systematically derive a software architecture from a set of
functional and non functional requirements.

* The boundary between requirements engineering and human-computer interaction
was also seen to be an issue. When elaborating requirements for the London Ambu-
lance Service system, we identified alternative responsibility assignments for a goal
such as

Achieve[AmbulanceAllocationBasedOnlIncidentFormAndAmbulancelnfo].

The later is concerned with the allocation of ambulances based on incident and ambu-
lance informations. These alternative responsibility assignments corresponded to (i)
the previous paper-based system in which decisions about ambulance allocation were
made by human resource allocators, (ii) a fully automated decision procedure for
ambulance allocation, or (iii) to many various forms of cooperation between the auto-
mated system and the human resource allocator. The detailed specification of and rea-
soning about such alternatives was felt to fall outside the scope of what could be
practically handled by the KAOS method; it was left to more specialized techniques
of Human Computer Interaction design. Techniques are needed to integrate or bridge
the gap between the results of a goal-oriented requirements elaboration process and
the techniques developed in the area of Human Computer Interaction.
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The real elaboration process and implications for tool support

» The elaboration process for the LAS and BART case studies described in this chapter
is idealized. The actual elaboration process went as follows.

- We started by quickly elaborating preliminary, incomplete and possibly inconsist-
ent models through the rough application of the agent-driven tactics. During this
phase, many details were left unspecified; preliminary formal definitions were
written (they helped in deriving the object and guided the refinement of goals), but
no attempt was made to have fully accurate definitions (sometimes, only proposi-
tional logic was used).

- In a second phase, much effort was spent on filling in the details and polishing the
models. This included finding better names for goals, objects and attributes; revis-
ing our preliminary definitions (formal and informal); restructuring the goal graph
(for instance by applying agent-driven tactics in a different order as discussed
above); identifying and correcting incomplete goal refinements; etc. During this
phase, the manual propagation of changes throughout the model was a particularly
tedious task.

The way we actually build requirements models has implications on the kind of auto-
mated support a requirements elaboration tool should offer.

- The usability of the editing facilities of the tool is a critical requirement. The tool
should allow users to quickly elaborate requirements models that may be left
incomplete and inconsistent; it should allow users to freely and easily switch
between different activities of the method.

- The tool should help users in detecting and keeping track of various incomplete-
ness and inconsistencies of the models. Such incompleteness and inconsistencies
range from simple syntactical problems (such as inconsistent use of goal names or
object names; vocabulary used in the definition of goals but not declared in the
object model; etc.) to formal semantic problems (such as incomplete goal refine-
ments, divergences between goals, etc.).

- The tool should guide the user in resolving the various incompleteness and incon-
sistency problems. For instance, it could help in propagating changes of goals and
object names throughout the models; in applying formal goal refinement patterns
to complete incomplete goal refinements [Dar95, Dar96]; in applying agent-driven
tactics to generate goal refinements, etc.

In brief, we favor a tool based on the “inconsistency implies action” paradigm of the
viewpoint-oriented software development framework [Fin94, Hun98]. A preliminary
prototype tool, called GRAIL/KAOS, has been developed at CEDITI [Dar98]. This tool
was not used for the case studies described in this chapter. Using such a tool may have
helped in editing the requirements models and keeping track of various simple syntacti-
cal inconsistencies, such as inconsistent use of goal names, object names, etc.

The possibilities of automating the techniques described in the thesis are further dis-
cussed in the concluding chapter.
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Obstacles analysis

» For a number of goals, obstacle identification only involved a small number of regres-
sion steps --sometimes it did not go further than just negating the goal. For example,
the obstacle to the go@ccurateAmbulanceLocationinfo under responsibility of the
AVLS agent was obtained just by negation; regressing this negation further would have
required detailed knowledge about properties of this agent which were unavailable to
us. In this case, further regression was anyway not necessary for obstacle resolution
since it is not necessary to know why tRéLS might fail to locate ambulances accu-
rately.

* Finer agent granularity requires goals to be refined further and thus allows more
detailed obstacles to be derived. There is a trade-off here between the level of abstrac-
tion of the specification and the level of detail of obstacle analysis; the finer-grained
the agents are, the more RE work is required, but the more detailed obstacle analysis
will be.

» Deciding when to stop obstacle refinement is not always easy. The refinement process
may be stopped when an adequate resolution can be selected among those generated,;
the risk and impact of the obstacle should become acceptable with respect to the cost
for resolving it. More knowledge about the causes of the obstacle, that is, its subobsta-
cles, may result in the generation of better resolutions.

« Domain-complet@®R-refinement of obstacles as discussed in this chapter allows one
to stop looking for alternative obstacles.

 ltis often the case that a new goal is introduced to ressdweralobstacles simulta-
neously; the new goal actually resolves an obstacle to some higher-level goal which
might be obstructed by the many obstacles to its subgoals. For example, the new goal
Avoid[InaccurateAmbAvailabilitylnfo] may resolve both obstaclésccurateAmbAvail-
abilityOnMDT andEncodedMDTAvailabilityNotTransmitted.
This suggests an heuristics for resolution selection: favor resol®ioover R2if at
similar costR1resolves more obstacles thRa

* Itis often the case that an obstacle is resolved by the introductisemeirainew goals
--e.g., a combination of reduction, mitigation, and restoration goals.

« Identifying all the goals obstructed by the same obstacle is necessary for assessing the
impact of this obstacle and thereby for deciding on an appropriate resolution. To sup-
port this, a cause-effect graph could be built from the geéihement graph, the
obstacleaefinement graph, and thebstruction relation.

» A specific combination of multiple obstacles may sometimes increase their individual
effects. This was clearly the case during the two LAS failures. In such cases one
should clearly favor resolutions that address such combinations.

+ Identifying the implications of an obstacle resolution is a serious issue. A new goal
introduced for resolution may resolve critical obstacle combinations; but it may also
interfere with other goals in the goal graph. A new cycle of conflict analysis [Myl92,
Lam98b] may therefore be required.
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Chapter 10
Related Work

10.1. Agent Responsibility, Monitoring and Control

As mentioned in Chapter 2, our work has been significantly influence by the paradigm of
Composite System Design described in [Fea87]. A composite system is a system of mul-
tiple interacting agents that collaborate to achieve some global behavior. The paper
describes a requirement elaboration method in which requirements on the behaviour of
individual agents are gradually derived from constraints on the behaviours of the global
system. The method is based on a simple formal framework for modeling agents, agent
interface and agent responsibilities. The formal model of agents described in Chapter 4 is
similar to the framework of [Fea87]. The presentations of the two models are slightly dif-
ferent; [Fea87] describes the semantics of agent behaviours in terms of a generate-and-
prune paradigm, while our model is described in terms of a more traditional notion of
transition systems. Besides this difference of presentation, the important concept of
agent responsibility for goals and its relationship to the operational model the agents are
taken from [Fea87]. We have then added to the model of [Fea87] a precise definition of
the realizability meta-constraint relating agent responsibility for goals to agent inter-
faces.

Formal techniques supporting the Composite System Design approach have been pro-
posed in [Fic92]. These techniques consist in (i) identifying inconsistencies between
operational specifications of individual agents and declarative specifications of global
goals; and (ii) resolving the identified inconsistencies by transformation of the opera-
tional and declarative specifications. That paper describes a small core of specification
elaboration operators capable of generating a whole range of composite system designs.
These operators were discovered empirically by studying various existing composite sys-
tems and trying to rationally rederive their features. In contrast to that work, the method
described in the thesis consists in identifying and resolving violations of the realizability
consistency rule between goals and agent interfaces. This yields three advantages over
the more operational approach of [Fic92]: (i) the elaboration of the goal model can be
performed without dealing with the intricacies of operational models; (ii) the agent-
driven tactics for resolving realizability problems are structured according to the kind of
realizability problems to be solved, providing bettetrievability of tactics; (iii) the
complete taxonomy of realizability problems provides a map for the systematic identifi-
cation of specification elaboration tactics, providing betmrerageof the space of tac-

tics than with an empirical identification of tactics only.

The work of Zave and Jackson on the foundation of RE [Jack95, Zav97] is also closely
related to ours. In particular, their work discusses the importance of identifying which
actions are controlled by the environment, which actions are controlled by the machine,
and which actions of the environment are shared with the machine. This is clearly similar
to our model of agent monitorability and control, with the difference that our model is
based on states rather than actions and that we consider multi-agent systems instead of
only two agents: the machine and the environment. [Zav97] also describes three proper-

249



Related Work

ties that must be satisfied for a requirement to be implementable (realizable): (i) the
requirement must not be stated in terms of actions that are not shared with the machine,
(i) the requirement must not constrain an action that is controlled by the environment,
and (iii) the requirements must not be stated in terms of the future. The first condition
can be checked directly from the syntax of the requirement. The second condition is
defined in the context of Buchi automata. The third condition lacks a precise definition.
However, these conditions are given as primitives, without an underlying definition of
what is meant for a requirement to be “implementable”. As a result, it is not clear
whether the three stated properties are complete. (Can there be other reasons for which a
requirement cannot be realized by the machine alone?) The work reported in Chapters 4
and 5 has the same objective as the work of Zave and Jackson. We aim at defining condi-
tions that have to be met by a goal for the goal to be assignable to a single agent. For this
purpose, we have first proposed a formal definition of realizability that was lacking in
[Zav97]. Next, we have defined formal conditions that a goal must satisfy in order to be
realizable, and we have shown that these conditions are complete. Our conditions for
unrealizability are similar to the one presented in [Zav97]. For our first theorem of realiz-
ability (see Section 4.2.2), conditions (i) and (ii) are semantic conditions that are similar
to conditions (i) and (ii) of [Zav97]. Note that reference to the future, which is presented
as a separate condition in [Zav97], is in our view a special case of a constraint on the
environment. For our second theorem (see Section 5.2), note that unsatisfiability is not
identified in [Zav97]. Actually, unsatisfiability could also be seen a special case of con-
strain on the environment. Our conditions of unrealizability are therefore more special-
ized than those of [Zav97]. This is a key advantage, as it allows one to define more
specialized requirements elaboration techniques for each category of unrealizable goal.
Other important points are that all our conditions are defined formally, and are proven to
be complete. A requirements elaboration process that consists in using domain properties
to gradually refine goals by resolving lack of monitorability, lack of control, and refer-
ence to future is also outlined in [Jac95, Zav97]. A fundamental difference with our work

is that this process assumes that agent interfaces are given at the beginning of the require-
ments elaboration process, whereas the method described in the thesis is concerned with
the exploration of alternative agent responsibility and interfaces. Furthermore, the agent-
driven tactics described in Chapter 6 provide much richer elaboration tactics than the
high-level principles outlined in [Jac95, Zav97]. Our tactics are also described in a more
formal framework.

The Four-Variable Model underlying the SCR method also emphasizes that the require-
ments must be described as a relation between monitored and controlled quantities
[Par95]. However, the description of this relation is not sufficiently precise: it does not
explicitly require that the controlled variables do not depend offitthiee values of mon-

itored quantities. The more detailed semantic domain for the SCR notation presented in
[Heit96] solves this problem. A similar semantic domain has also been defined for the
RSML notation [Heim96]. Unlike our goal-oriented method, all these models are only
concerned with operational specification at the interface of the automated system. They
are not concerned with the specification of goals that describe properties on quantities
that are not at this interface, the refinement of such goals into realizable requirements,
and the derivation of alternative agent responsibilities and interfaces.

Some of the tactics described in Chapter 6 drives the identification of sensor and actua-
tion devices. The resulting requirements model has a structure that corresponds to the
standard structure of control system, such as in the Four-Variable Model [Par95] or in the
requirements state machine model for process-control system [Jaf91].
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Related ground work has also been carried out in the context of concurrent programs.
The concept of realizability defined in [Aba89] is similar to the one presented in this dis-
sertation. A temporal specification is said to be realizable if there exists an operational
specification that satisfies the temporal specification. However, the concept of opera-
tional specification used in [Aba89] differs from ours in several aspects. First, it is based
on an interleaving semantics with fairness conditions, whereas our semantics is based on
true concurrency. More importantly, [Aba89] does not consider agent monitorability and
control. This line of work is concerned with the specification and derivation of concur-
rent programs rather than with requirements engineering. Agent monitorability and con-
trol are important concepts of RE that are missing from that framework.

In the KAOS framework, the use of formal goal refinement patterns and tactics has first
been proposed in [Dar95, Dar96]. A library of refinement patterns has been built by
extracting patterns from a wide variety of case studies, and by deriving further patterns
top-down from basic patterns according to weakening/strengthening relationships
between patterns. Goal Refinement tactics are also proposed for selecting appropriate
patterns based on semantic criteria. The tactics identified are classified into milestone-
driven tactics, case-driven tactics, and agent-driven tactics. The agent-driven tactics pro-
posed there are only defined in a sketchy way and are not related to violations of the real-
izability meta-constraint.

The library of agent-driven tactics proposed in the thesis builds on that work by provid-

ing further guidance for selecting appropriate patterns. Specification elaboration tactics
are considered for each kind of realizability problem. Appropriate refinement patterns
are then retrieved by browsing the library of agent-driven tactics based on the kind of
realizability problem to be solved.

Our library of agent-driven tactics also provides a systematic way to enrich the library of
goal refinement patterns. For each agent-driven tactic, we considered whether appropri-
ate goal refinement patterns already existed in the library. New goal refinement patterns
have been identified when no appropriate patterns could be found. For instance, the tactic
introduce_accuracy_goal (Section 6.5.1) led to the identification of new refinement pat-
terns based on the substitutivity property of temporal logic. Other formal refinements
patterns identified are the patterns associated with the taetiolve reference to strict

future, andresolve synchronization problems (Section 6.8);esolve unsatisfiable goal
(Section 6.7); andeplace unmonitorable/uncontrollable states by events (Sections 6.5.5

and 6.6.5).

10.2. Exception Handling and Fault-Tolerance

In order to get high-quality software, it is of utmost importance to reason about excep-
tions and faults during software development. There has been a lot of software engineer-
ing research to address this for the later stages of architectural design or implementation.

Rigorous definitions of various concepts underlying exception handling can be found in
[Cri95, Gar99] --such as specification, program correctness, exception, robustness, fail-
ure, error, fault, fault tolerance, and redundancy. Exception handling for modular pro-
grams structured as hierarchies of data abstractions is also discussed in [Cri95],
including the issues of exception detection and propagation, consistent state recovery,
and masking. A failure is defined as a deviation between the actual behavior of the sys-
tem and that required by its specification [And81, Gar99]. An error is a part of the system
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state which leads to failure. The cause of an error is a fault. The objective of fault-toler-
ance is to avoid system failures, even in the presence of faults [Jal94], or to precisely
define the acceptable level of system behavior degradation when faults occur, if the
former objective is not realizable [Cri91].

The notion of ideal fault-tolerant component provides a basis for structuring software
systems [And81, Ran95]. A system is viewed as a set of interacting components that
receive requests for services and produce responses. An idealized fault-tolerant compo-
nent should in general provide both normal and exceptional responses. Three classes of
exceptional situations are identified: interface exception, local exception and failure
exception. Different parts of the system are responsible for handling each class of excep-
tion.

The concepts involved in fault tolerance are put on more formal grounds in [Aro93,
Gar99]. What is meant for a program to tolerate a certain class of fault is formally
defined in [Aro93]. This paper also illustrates how fault-tolerant programs can be sys-
tematically verified and designed. A compositional method for designing programs that
tolerate multiple fault classes is described in [Aro98]. The method is based on the princi-
ple of adding detector and corrector components to intolerant programs in a stepwise and
non-interfering manner. Various forms of fault-tolerance are discussed in [Gar99]; they
are based on whether a program still satisfies its safety properties, liveness properties, or
both. Detection and correction are also discussed there as the two main phases in achiev-
ing fault-tolerance.

In the database area, [Bor85] describes language mechanisms for handling violations of
assumptions in a database. Using such mechanisms, programs can be designed to detect
and handle exceptional facts, or the database can adjust its constraints to tolerate the vio-
lation.

All the work reviewed above addresses the later phases of architectural design or pro-
gramming. At those stages, the boundary between the software and its environment has
been decided and cannot be reconsidered; the requirements specifications are postulated
realistic, correct and complete --which is rarely the case in practice. Empirical studies
have suggested that the problem should be tackled much earlier in the software lifecycle
[Lut93]. Our work follows that recommendation by addressing the problem of handling
abnormal behaviors at requirements engineering time. Reasoning at this stage, in a goal-
oriented way, provides much more freedom on adequate ways of handling abnormal
behaviors --like, e.g., producing more realistic and more complete requirements, and/or
considering alternative requirements or alternative agent assignments that achieve the
same goals but result in different system proposals.

There are however clear analogies between exception handling at program level and
obstacle analysis at requirements level. The objective of fault-tolerance is to satisfy the
program specification despite the presence of faults whereas the objective of obstacle
analysis is to satisfy goals despite agent failures. Some of the obstacle resolution strate-
gies are conceptually close to fault-tolerant techniques lifted and adapted to the earlier
phase of requirements engineering. The obstacle prevention strategy introduces a form of
redundancy where a new goal is introduced to prevent an obstacle from occurring. The
obstacle anticipation substrategy is reminiscent of the fault detection and resolution
phases for fault-tolerance. (Note, however, that one should not confuse obstacle identifi-
cation, which is performed at specification time and takes an “external” view on the sys-
tem, with obstacle detection which is performed at run-time by agents “inside” the
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system [Fea98].) The goal restoration and obstacle mitigation strategies also introduce

new redundant goals to ensure higher-level goals in spite of the occurrence of obstacles.

On the other hand, there are important obstacle resolution strategies, such as goal substi-
tution and agent substitution, that are specific to requirements engineering because of the
freedom still left.

In their work, de Lemos et al have also recognized the need for moving towards the
requirement analysis phase many of the concerns that may arise during later phases of
software development --particularly, the possibility of system faults and human errors
[Lem95, And95]. They propose an approach based on an incremental and iterative analy-
sis of requirements for safety-critical systems in the context of system faults and human
errors. Their scheme is similar to ours in that it consists of incrementally and iteratively
identifying the defects of a requirement specification being elaborated; they use the iden-
tified defects to guide the modification of the specification. However, no systematic tech-
niques are provided there for generating the possible faults from the elaborated
requirement specification, and for transforming the requirement specification so as to
resolve the identified faults. Another difference is that their scheme is based on the pro-
gressive decomposition of system entities while we favor goal refinement. (See also
[Ber98] for a comparison of this work with ours.)

Many specification languages provide constructs for specifying software functionalities
separately for normal and abnormal cases, and then in combination. The Z logical
schema combination constructs are typical examples of this [Pot91].

We have tried to convince the reader about the importance of exception handling at the
requirements engineering level and, more specifically, at the goal level. Although there
are no other formal techniques at the goal level that we are aware of, there has been a lot
of work addressing the later stages of RE where a detailed operational model of the soft-
ware is already available (typically under the form of state machine specifications).

For example, the completeness techniques in [Heim96, Heit96] are aimed at checking
whether the set of conditions guarding transitions in a state machine cover all possible
cases.

Model checking techniques generate counter examples showing that a temporal logic
specification is violated by a finite state machine specification [Hol97, McM93]. In the
same vein, planning techniques can be used to exhibit scenarios showing the inconsist-
ency between an abstract property and an operational model [And89, Fic92, Hal97]. One
might expect such techniques to be able to generate the scenarios satisfying our obstacles
as traces that refute a goal assertion conjoined with the domain theory. However, we cur-
rently envision two problems in applying these techniques directly for our purpose. On
one hand, we want to conduct the analysis at the goal level for reasons explained
throughout the thesis; model checking requires the availability of an operational descrip-
tion of the target system, or of relational specifications [Jac96] that do not fit our higher-
level formulation of goals in terms of temporal patterns of behaviour. On the other hand,
for the purpose of resolution we need to obtain a formal specification of the obstacle
rather than an instance-level scenario satisfying it. A derivation calculus on more abstract
specifications seems therefore more appropriate, even though instance scenarios gener-
ated by a tool like Nitpick [Jac96] could provide concrete insights for identifying obsta-
cles to relational specifications.

Another important stream of work at the operational specification level concerns the gen-
eration of fault trees from a detailed operational model of the system. The technique in
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[Lev87] generates fault trees from a Petri-net model. This technique has been adapted to
generate fault trees from a state machine model expressed in RSML [Rat96, Mod97].
Several other techniques have also been proposed to generate other standard hazard anal-
ysis models from RSML specifications [Rat96, Mod98]. Those techniques can however
be applied only once a complete operational specification of the system has been
obtained. Furthermore, a very detailed operational specification of the environment of
the system would be needed to identify faults caused in the environment (e.g., a detailed
model of the behavior of human operators). In contrast, our techniques are intended to be
used earlier in the requirements engineering process when a complete specification of the
system is not yet available and alternative system boundaries are still being explored. It
allows obstacles to be generated from partial declarative specifications that may be grad-
ually elicited during the obstacle identification process. (Note that the generation of fault
trees from a state machine model is similar to a recursive application dfstate-back
obstacle refinement pattern.) Furthermore, goals provide a precise entry point for starting
hazard analysis.

The heuristics proposed in this paper for identifying obstacles are somewhat related in
spirit to safety requirements checklists [Lev95], in that they embed experience about
known forms of obstruction. General criteria corresponding to such checklists have been
identified in [Jaf91]. These criteria cover exceptional circumstances such as unexpected
inputs, computer error, environmental disturbances, etc. Good RE practices also consider
checklists that cover unexpected inputs, operator errors, and other faults or exceptional
circumstances [Som97]. Our heuristics are in fact closer to HAZOP-like guidewords that
can be used to elicit hazards [Lev95]; such guidewords are made more specific here
thanks to our requirements meta-model and specific goal classifications. More formal
HAZOP-based techniques have been proposed for forward propagation of perturbations
from input variables to output variables in operational specifications [Ree97].

Our work builds on Potts’ paper which was the first to introduce the notion of obstacle as

a dual notion to goals [Pot95]. Obstacles are identified there by exploration of scenarios
of interaction between software and human agents. This exploration is informal and
based on heuristics (some of these have been transposed to this thesis, see Section 8.4.4).
Obstacle resolution is not studied there.

[Sut98] also builds on Potts’ work by proposing additional heuristics for identifying pos-
sible exceptions and errors in such interaction scenarios --e.g., scenarios in which events
happens in the wrong order, or in which incorrect information is transmitted. Influencing
factors such as agent motivation and workload are also used to help anticipate when
exceptions may occur and assign probabilities to abnormal events. Generic requirements
are attached to exceptions to suggest possible ways of dealing with the problem encoun-
tered. The heuristics proposed in [Sut98] are close in spirit to ours; their generic excep-
tion handling requirements share the same general objective as our obstacle resolution
strategies. Their work is largely informal and centred around the concept of scenario.
This provides little systematic guidance compared with the range of obstacle generation/
resolution techniques that can be precisely defined through rigorous reasoning on declar-
ative specifications of goals.
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Chapter 11
Conclusion

Reasoning about alternatives is at the heart of the software development process. At the
implementation stage, the choice of algorithms and data structures may have a critical
impact on the performance of the software. During the architectural design stage, the
choice of one architecture among several alternatives has a critical impact on competing
guality attributes (such as performance, availability, maintainability, security, etc.).

At those stages, the boundary between the automated system has been decided and can-
not be reconsidered.

At the requirements engineering stage, alternative decisions consist in:

« alternative refinements of goals into subgoals;

 alternative responsibility assignments of goals to agents, leading to alternative agent
interfaces;

« alternative resolutions of conflicts between goals; and

 alternative resolutions of obstacles to the satisfaction of goals.

Choosing among those alternatives generates alternative systems proposals that may be
quite different. Choices may have a critical impact on the performance, cost and risks
associated with the system. This step, however, is taken for granted by most specification
techniques. As a result, alternative, perhaps superior, decisions are not systematically
explored; and the rationale for such decisions is not made explicit for easier evolution.

The thesis has described systematic supportjémeratingalternative system proposals
at the RE level. More specifically, it describes systematic techniques supporting

(i) the generation of alternative goal refinements, responsibility assignments and agent
interfaces;

(i) the derivation of operational requirements from goal formulations;

(iii) the identification of obstacles to the satisfaction of goals and the generation of alter-
native obstacle resolutions through the deidealization of initial goals and assumptions
and through the generation of new goals to prevent, reduce or tolerate the identified
obstacles.

11.1. Contributions

The work reported in the thesis is based on an existing goal-oriented requirements elabo-
ration method, called KAOS. The thesis enriches the KAOS framework through three
sets of techniques:

1. The first set of techniques provides systematic guidance to constructively explore
alternative agent responsibilities and interfaces from high-level goals.
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These techniques are grounded on a formal model of agent responsibility, monitora-
bility and controllability. In particular, our model definesrealizability meta-con-
straint between an agent responsibility for a goal and its interfaces. The meta-
constraint formally captures what is meant for a goal to be assignable as the responsi-
bility of a single agent.

The realizability meta-constraint has been seen to play a central role in the goal-
driven requirements elaboration process. Violations of that meta-constraint drives the
identification of new agents and the refinement of goals into subgoals until the latter
are realizable by single agents.

A taxonomy of realizability problemsas defined to guide the identification and clas-
sification of realizability problems. The realizability problems were thereby seen to be
related to lack of monitorability, lack of control, goal unsatisfiability, references to the
future, and unbounded achievement goals. This taxonomy is based on the formal defi-
nition of realizability, and was proved to be complete.

A library of agent-driven tacticsvas then proposed to provide systematic guidance
for identifying agents and recursively refining goals into subgoals. Applications of
these tactics are prompted by the need to resolve realizability problems. The applica-
tion of alternative agent-driven tactics allows one to explore alternative goal refine-
ments, alternative responsibility assignments of goals to agents, and alternative agent
interfaces.

2. When a goal is realizable by a single agémtal operationalization patternsan be
used to derive, from the formal definition of the goal, the operations that are relevant
to the goal, and the requirements on those operations that ensure that the goal is satis-
fied.

3. A third set of techniques was described to identify obstacles to the satisfaction of ide-
alized goals and assumptions, and to generate alternative obstacle resolutions.

We have defined a library afbstacle identification patterns and heuristfos identi-

fying obstacles from goals; and a library albstacle resolution tacticthat transform

the goal model by deidealizing goals and assumptions or by generating new goals so
as to avoid, reduce or tolerate the identified obstacles.

We have also contributed to a fourth set of techniques, not presented in the thesis, to
identify conflicts between goals, and to generate alternative conflict resolutions
[Lam98Db].

The techniques were applied to two real case studies: the LAS ambulance despatching
system, and the BART automated train control system.
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11.2. Limitations and Future Directions

The KAOS framework and the techniques described in the thesis require extensions in
several directions.

11. 2. 1. Evaluating and Selecting Alternative Designs

The techniques presented in the thesis can be usgeneratea set of alternative deci-

sions. For goal refinement, we have defined different elaboration tactics for introducing
alternative agents and for generating alternative goal refinements. The selection of which
tactics to apply may depend on numerous criteria such as performance, cost, safety, secu-
rity, and so on. For obstacle analysis, we have defined different elaboration tactics for
avoiding, reducing or tolerating obstacles. In this case also, the selection of which tactics
to apply will depend on the kind of obstacles, on the severity of its consequences, on its
probability of occurrence, and on the cost of its resolution.

Alternative responsibility assignments and alternative obstacle resolutions result in alter-
native system designs. The evaluation of the generated alternatives and the selection of
an “optimal” design is a critical step for which much further work is required. Issues that
need to be addressed include the following:

* What are the criteria to be used for evaluating and selecting among alternative design
decisions?

As mentioned before, the evaluation and selection of alternative design decisions is
based on multiple competing ‘non-functional’ requirements such as performance,
cost, risk, usability, maintainability, etc. The NFR framework provideslitative
reasoning schemes for evaluating alternative system designs against non-functional
requirements described at a very high-level of abstraction [Myl92, Chu2K]. This
framework could be extended witjuantitativetechniques that would evaluate alter-
native design decisions with respect to optimization goals defined in termgaf
surable properties of the system. For instance, in the LAS case study, alternative
design decisions would be evaluated against the expected percentage of incidents for
which an ambulance will arrive at the incident scene within 14 minutes.

 When and how should such evaluation of alternatives be carried out?

The activities of generating alternative design decisions and deciding which alterna-
tives will actually be selected should be clearly distinguished and separated to pre-
vent premature evaluation from stifling generation of new suggestions [Eas94]. On
the other hand, it is necessary to discard some alternatives early in order to keep the
generation of alternative designs within reasonable bounds. It is also likely -and even
desirable- that non-functional requirements used to evaluate alternatives lead to the
generation of further alternatives. The generation and evaluation phases are therefore
clearly intertwined, and proceed iteratively.
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» How detailed and formal does the specification of generated alternatives need to be in
order to evaluate them accurately?

Specifying every possible alternative design in detail is clearly not justified at this
early stage of the development process. One needs to make trade-offs between the
effort spent in generating and evaluating alternative designs, on the one hand, and the
confidence in the design decisions being made, on the other. Again, an iterative
model seems to be the most sensible approach. Some high-level design decisions can
be made early based on high-level non-functional requirements, before specifying
the alternatives in full detail; other design decisions may require more detailed
knowledge about the domain and the proposed system.

Some issues are also specific to the selection of obstacle resolution tactics; e.g. how to
determine the severity of the consequences of an obstacle, and how to determine the con-
sequence of theombinationof obstacles? How to determine the probabilities of occur-
rences of obstacles?

11. 2. 2. Specialized Elaboration Tactics based on Goal Categories

The various techniques described in the thesis progatesralstrategies for generating
alternative goal refinements and alternative responsibility assignments, and for generat-
ing and resolving obstacles to goals and assumptions. As a result, their application still
requires much work from the user, whereas more specialized tactics would provide more
specific guidance.

The adaptation and extension of these techniques to specific goal categories, such as sat-
isfaction, information, accuracy, safety, or security would provide such a specialized
guidance in elaborating requirements models. In particular, the specialization of obstacle
analysis techniques to security goals would allow for the systematic identification of
potential threats to the system. The basic idea for such specialized tactics based on goal
categories would be similar to the idea of using problem frames [Jac95b, Jac2K].

11. 2. 3. A Rich Taxonomy of Formal Patterns for Requirements Elaboration

The techniques presented in the thesis are based on formal patterns for goal refinement,
goal operationalization, and goal obstructidime coverage of these patterns is relative

to the coverage of a taxonomy of goal definition pattefffse efficiency of our tech-
niques in practice rely on the assumption that most properties occurring in practice can
be specified using a small set of goal patterns. This assumption is partly supported by an
empirical study reported in [Dwy99].

Further work is required to validate that assumption, to identify an appropriate taxonomy
of relevant formal goal patterns, and to define a language that would allow one to use
such patterns without writing formal assertions in temporal logic. The long-term objec-
tive is to be able to completely hide (or disguise) the formal assertion layer from users of
the method while keeping its mathematical rigour.
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11. 2. 4. Tool Support

The construction of adequate tool support for the goal-oriented requirements process is
an ongoing research project. A preliminary prototype tool called KAOS/GRAIL has
been developed at CEDITI [Dar98].

Further work is required to integrate the various techniques presented in the thesis in
such a tool. We discuss the possibilities of automated support for the various techniques
presented in the thesis.

1. Identifying realizability problems

Identifying lack of monitorability and lack of control is straightforward as these prob-
lems are purely syntactical. References to the future and unsatisfiability are defined as
semantic conditions and are more difficult to identify automatically. For references to
future, we have identified a set of recurrent patterns of goal definitions with such a prob-
lem. These patterns can be used to identify references to the future from the syntactical
definition of the goal; however, this set of patterns is probably not complete. Further
work could investigate the definition of general techniques for computing references to
future and for determining unsatisfiability.

Theorem 1 could also provide the basis for automatically checking whether a goal is
realizable by an agent on some restricted subset of the language. For instance, one could
try to define syntactical conditions on Buchi automata (similar to those presented in
[Zav9]) that are equivalent to the conditions of Theorem 1 in Chapter 4. This would
allow one to automatically check the realizability of a goal defined over a limited, finite
state space.

2. Selecting applicable agent-driven elaboration tactics

Once realizability problems are identified, a tool could automatically identify the tactics
whose preconditions holds, and allow users to browse the library of applicable tactics.

3. Applying agent-driven elaboration tactics

Tool support could be investigated to help users in applying a selected tactic. The follow-
ing problems will limit the amount of automated support that can be provided to apply
the tactics:

 the strict application of tactics produces first-sketch goal definitions that need to be
adapted manually;

» the number of variants of formal goal refinement patterns associated to a tactic may
make the automatic application of tactics impractical.

One approach toward reducing these problems would be to restrict the language in which
goals are defined to a small set of goal patterns. This require the preliminary definition of
an adequate taxonomy of goal patterns as discussed above.

4. Applying operationalization patterns

Applying operationalization patterns is not different from applying goal refinement pat-
terns; applicable patterns can be retrieved automatically by matching goal formulations
to patterns in the library [Dar96].
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5. Generating obstacles from goals

Relevant obstruction patterns can also be automatically retrieved by matching goal for-
mulations to patterns in the library. This will prompt users to identify appropriate domain
properties needed to derive the obstacles.

6. Selecting and applying obstacle resolution tactics

Tool support for the selection and application of obstacle resolution tactics would be
based on the same principles as those used to select and apply agent-driven tactics. The
same limitation apply; the strict application of tactics produces first-sketch goal defini-
tions that need to be adapted manually.

7. Using the semantics proposal as a basis for animation and dedicated checks

The formal model of agents and the formal semantics of operations provides the basis for
the construction of further tool support such as an animation tool and a tool to check the
completeness and consistency of operational models of agents in the spirit of SCR
[Heit96] and RSML [Heim96].

11. 2. 5. Goal-Oriented Elaboration of Software Architecture

The systematic derivation of a software architecture from a set of functional and non-
functional requirements is an important research issue that has received fairly little atten-
tion so far. Recently, goal-based and agent-based approaches have been proposed for the
constructive elaboration of software architectures [Lam2Kc, Myl2K].

By viewing components of a software architecture as agents of finer granularity, the tech-
niques described in the thesis could be specialized and adapted to the generation of alter-
native software architectures from goals assigned as responsibilities of software
components. The evaluation of alternative software architectures would also be based on
non-functional requirements identified during the requirements elaboration process.

11. 2. 6. Agent Refinement

The KAOS method and the techniques described in the thesis assume agents of fixed
granularity. Such agents correspond to concrete agents (such as software, people, and
hardware devices) that can be found in the application domain. Sometimes one may need
to reason about agents at different levels of abstraction. For example, in the BART sys-
tem, one might view the system formed of the train tracking system, the train controllers
at the stations, and the on-board train controllers as a single (composite) agent. This
would allow responsibility assignments to be made earlier on more abstract goals. One
could then refine such goals assigned to abstract agents into subgoals assigned to agents
of finer granularity. As another example, the derivation of a software architecture from
requirements will also require to represent and reason about agents at different levels of
granularity; a software agent would be refined into several agents corresponding to soft-
ware components of finer granularity. This sort of agent refinement process would be
similar in spirit to the refinement of Abstract Machines in the B method [Abr96]. Future
work could extend the KAOS language and method to support a requirements elabora-
tion process in which goals and agents are refined in parallel.
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Annex A. Proofs of Chapter 4

A. 1. Properties of Agent Runs

Property 1 (interface restriction) -- For alla;, 0, [J Run(ag), s U State(V),
if 0p Hoc(ag) 02 thenoy+s [0 Run(ag) iff o,+s [0 Run(ag)

Proof: Letoy, 0, [J Run(ag), ands [ State(V), such that; Lgc(ag)O2-
1. Suppose that;+s 0 Run(ag), we show that,+s [1 Run(ag).

0;+s U Run(ag)
implies {definition ofRun(ag)}
< O1)voc(ag) » S|ctri(ag) > L Next(ag)
implies {o; Qyoc(ag) 02}
< O2)voc(ag) + S|ctri(ag) > 1 Next(ag)
implies {0, U Run(ag), definition ofRun(ag)}
0,+s U Run(ag)

2. By symmetry, we also have thatif+s [J Run(ag), theno;+s [ Run(ag).

Property 2 (control restriction) -- For allo [0 Run(ag), s1, S, [J State(V),
if 51 Ltriag) S2 theno +s; U Run(ag) iff o +s; Ll Run(ag)

Proof: Leto [ Run(ag), ands, s, [J State(V), such thas, Cetri(ag) S2-

1. Suppose that +s; 0 Run(ag), we show that +s, [J Run(ag).

The proof is done by cases, dependent on whether the mdmpty or not.

Case 10 =<>.
s; U Run(ag)

implies {definition ofRun(ag)}
S1|Ctri(ag) U Init(ag)

implies {s1 Ceyiiag) S2)
So|ctri(ag) U Init(ag)

implies {definition ofRun(ag)}
s, [l Run(ag)

Case 20 # <>.

0 +s; J Run(ag)
implies {definition ofRun(ag)}

< O}voc(ag) +S1|Ctri(ag) - Next(ag)
implies {s; [ki(ag)S2}

< O}voc(ag) +S2|Ctri(ag) | Next(ag)
implies {definition ofRun(ag)}

0 +s, LI Run(ag)
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2. By symmetry, we also have thatifrs, 0 Run(ag), theno +s; [ Run(ag).

Property 3 (finitely violable) -- For allh [ History(V),
if h [ Behaviour(ag) then there exists a finite prefixof h such that 0 Run(ag)

Proof: Leth O History(V), such thah [J Behaviour(ag).
By definition ofBehaviour(ag), if h [J Behaviour(ag), then

h(0)\ctri(ag) U Init(ag)
or there exists[J Nat such that
< h[i-1]jvoc(ag)y: N |ctriag) > U Next(ag)

If 1(0),cii(ag) U Init(ag), thenh(0) is a finite prefix ofh such thah(0) [ Run(ag). Other-
wise, there existsl] Nat such that([i] is a finite prefix oh such thah[i] J Run(ag).

The following corollary will be used in the proof of Theorem 2 of Chapter 5. Its proof is
similar to the proofs of Properties 1 and 2.

Corollary 1. For allhy, h, O Hist(V),
if hy Hoc(ag)h2 thenh, [0 Behaviour(ag) iff h, [ Behaviour(ag).

A. 2. Semantic Conditions for Realizability

The following lemmas are used in the proof of Theorem 1.

Lemma 1.Let A(ag) = <Init(ag), Next(ag)> be a agent transition system.dfl] Run(ag)
then every prefix off is also among the agent runs.

Proof. The lemma follows directly from the definition Rfin(ag).

Lemma 2. Let A(ag) = <Init(ag), Next(ag)> be a agent transition system. Every finite run
o [J Run(ag) can be extended to an infinite behaviolt Behaviour(ag).

Proof. The lemma follows from the fact thasext(ag) is a total relation -- see Section
4.2.4.

Lemma 3. Let G O History(V) and letA(ag) = <Init(ag, Next(ag)> be an agent transition
system If

Behaviour(ag) = G,
then for allo O Path(V),

o O Run(ag) iff 0 |= G.
Proof:
1. If o O Run(ag), theno |= G.

0 J Run(ag)
implies {Lemma 2}

there exists an infinite sufftkxof o such that [0 Behaviour(ag)
iff { Behaviour(ag) = G}

there exists an infinite suffkxof o such thah |= G
iff {definition of o |= G}

ol=G.
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2.1f o |= G, theno O Run(ag).
ol=G
iff {definition of o |= G}
there exists an infinite suffixof o such thah |= G
iff { Behaviour(ag) = G}
there exists an infinite sufflxof o such thah [0 Behaviour(ag)
implies {Lemma 1}
0 [J Run(ag).

Theorem 1 (Semantic Conditions for Realizability).Let G [J Hist(V) such thaiG # ¢.
G is realizable by an ageay iff the following conditions hold:

(1) for alloy, 0, O Path(V), s [ State(V),
if 01 Dloc(ag)02 thena+s |=G iff 0,+s|=G

(2) for allo O Path(V), s1, so [J State(V),
if 51 Ltri(ag)S2 theno +s, [=G iff 0 +s5|=G

(3) for allh O History(V)
if h |£G then there exists a finite prefixof h such that |2 G

Proof;

1. The fact that conditions (1) to (3) hold when G is realizable follows directly from
Lemma 3 and the properties of agent runs in Section 4.2.6.

1.1.1f G is realizable byg then Condition (1) holds.
Letay, o, U Path(V), s U State(V), such thaty Boc(ag)T2-

0,+s |=G

iff { Behaviour(ag) = G, Lemma 3}
0,+s 0 Run(ag)

iff {Property (1),01 Byoc(ag)O2}
0,+s J Run(ag)

iff { Behaviour(ag) = G, Lemma 3}
O,+s|=G

1.2.1f G is realizable byg then Condition (2) holds.
Leto U Path(V), andsy, s, [ State(V), such thas; Lcyiag) S2.

0 +54|=G

iff { Behaviour(ag) = G, Lemma 3}
0 +s,0 Run(ag)

iff {Property (2),s1 Letriag) S}
0 +s,0 Run(ag)

iff { Behaviour(ag) = G, Lemma 3}
0+s,=G
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1.3.1f G is realizable byg then Condition (3) holds.
Let h [J History(V) such that |G

h [£G
iff { Behaviour(ag) = G}
h [ Behaviour(ag)
iff {Property (3)}
there exists a finite prefx of h such that [0 Run(ag)
iff { Behaviour(ag) = G, Lemma 3}
then there exists a finite prefixof h such that |# G

2. If Conditions (1) to (3) hold, thé is realizable byg.

To show that these conditions are sufficient for a goal to be realizable, we exhibit an
agent transition system characterized by the following properties:

s¢Olnit(ag) iff s|=G foralls [ State(V) such thascyag) = Sc

< Om, S¢ > U Next(ag) iff o+s|=Gorol#G forall o such thabjygc(ag) = Om
for all s such thad|cy(ag) = Sc

Steps 2.1 and 2.2 show that the set of behaviours generated by this transition system is
eqgual to the set of histories admitted by the goal. Step 2.3 show that this transition system
is well-defined, that ighit(ag) # ¢, andNext(ag) is a total relation. (Steps 2.1 and 2.2 do

not rely on Step 2.3.)

2.1.1f h 0 Behaviour(ag) thenh |= G
By contraposition of Condition (3), we show thgt G, by showing that
o |= G for every finite prefixes of h.
The proof is done by induction on the length of the prefixés of
(Initial Cas@. h[0] |= G
h [ Behaviour(ag)
implies {satisfaction ofnit(ag)}
h(0)|ctri(ag) U Init(ag)
iff {definition of Init(ag)}
s|=G foralls O State(V) such thatlcm(ag) = h(0)|CtrI(ag)

implies {instantiatings to h(0)}
h©) =G

(Inductive Step if h[i] |= G thenh[i+1] |= G for alli O Nat

h [ Behaviour(ag)
implies {satisfaction ofNext (ag)}

< h[ilvoc(ag) » Ni*+1)|ctriag) > U Next(ag)
iff {definition of Next(ag)}

o+s|=Goral# G for all o such that|ycag) = hlilvoc(ag)

for all s such thaB|Ctr|(ag) = h(i+1)|CtrI(ag)

implies {instantiatingo to h[i] ands to h(i+1)}

h[i+1] |= G or h[i] |# G.
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2.2.1f h |= G thenh [ Behaviour(ag)
By definition,h [0 Behaviour(ag) iff

(Satisfaction of Injt h(0),cyiag) U Init(ag)
(Satisfaction of next< h[iljyoc(ag) » N(i+1)|ciri(ag) > O Next(ag) for alli O Nat
Each condition is proved in turn.
2.2.1.(Satisfaction of Injt if h |= G thenh(0)|ci(ag) U Init(ag)
hj=G
implies {from definition ofo |= G}
h(0) |= G
implies {Condition (2)}
s|=G for all s [ State(V) such thah(O)lcm(ag) = S|ctri(ag)
iff {definition of Init(ag)}
h(0)\ctri(ag) U Init(ag)

2.2.2.(Satisfaction of Nextif h |= G
then< h[i]|Voc(ag) ) h(i+1)|CtrI(ag) > [ Next(ag) for all'i O Nat

h|=G
implies {from definition ofo |= G}

h[i]+h(i+1) |= G
implies {Condition (1)}

o+h(i+1) |= G for all o such that ~\c(ag) hli]
implies {Condition (2)}

o+s |=G for all o such that ~ygc(ag) il

for all s such thas~cy(aq) h(i+1)

implies {definition ofNext}

< h[ijvoc(ag) » N(i*+1)ctriag) > U Next(ag)

2.3. We now show that this transition system is well-defined, thamigag) # ¢, and
Next(ag) is a total relation.

2.3.1.Init(ag) # @

SinceG # @, there existé such thah |= G.

Form Step 2.2.1, we have tHg0),cyag) U Init(ag). Therefore|nit(ag) # ¢.

2.3.2.Next(ag) is a total relation

Let o, O Path(Voc(ag)). We prove that there existsall State(Ctrl(ag) such that
< Op,, Sc > U Next(ag).

The proof is done by cases.

Case 1 Suppose that |# G, for all o 0 Path(V) such thabyoy(ag) = Om.

By definition ofNext(ag),
< Op, Sc > [ Next(ag) for anys, U State(Ctrl(ag)
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Case 2 Suppose that |= G, for someo [ Path(V) such thatocag) = Om.
Sinceo |= G, there existé [ History(V), suffix ofo, such thah |= G.
Let n = length(o). We haveh[n]jvociag) = Om.
We define:
S¢ = h(n+1)cri(ag)
We show thak o,,,, s;> [ Next(ag) as follows:

h|=G
implies {Step 2.2.2}
< h[n]jvoc(ag) » N(N+1)ctriag) > [l Next(ag)
implies {h[n]jvoc(ag) = Om, andsc = h(n+1)cyiag)}t
<04y, Sc U Next(ag)
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Annex B. Proofs of Chapter 5

Definition. Let G be an assertion/oc(G) is defined as the smallest set of state variables
X satisfying the following property:

for all h, h’ [J Hist(V)
if h~¢h’,thenh |=Giff i |=G
Example.Let G be defined by
POQORO-R)
Then,Voc(G) = {P, Q}.
Lemma 4.Let G be a goal, an@ 1 Voc(G) andM = Voc(G)\C.
For allh O Hist(V),
hi=G  iff  (hyw he) OGuc
Proof:
1.1f h |= G ther(hyy, hic) O Gyy.c)-

h|=G
impliles {definition ofVoc(ag)}

h' |= G for all " such that’ ~y,¢ ) h
implies {M O C = Voc(G)}

h’ |= G for all b’ such thatr, = hy, andh’ic = hic
iff {definition of Gy ¢)}

(hpms hie) B Gic

2.1f (th, th) 0 G(M,C) thenh |= G.

(s hie) B Gic
iff {definition of Gy )}

h' |= G for allh’ such that')y, = hjy andh’;c = h,c
implies {instantiatingh’ to h}

h|=G
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Lemma 5.Condition (iv) of Theorem 2 is equivalent to the following condition (iv’):

For allhy, h'y, O dom Gy cyandi= 0
if i =0 or h'[i-1] = hpy[i-1]
then for allh, O Hist(C)
if (hm, he) U Gm,c)
then there exists'; U Hist(C) such that'[i] = h¢[i] and(h'y,, h'c) O Gy c).-

Proof:
1. (iv) implies (iv’)
Lethy, W'y O dom Gy c) andi 2 0 such that=0 or h'[i-1] = hpy[i-1].
Let he O Hist(C) such thathy, he) U Gy c).-
(hm, he) U Gu,c)

implies {definition ofGy, ¢ (hm) [iT}
he[i] U G, ¢y (hm) [i]
implies {Condition (iv) of Theorem 2}
heli] 0 Gm, ¢y (W) il
implies {definition ofGy, ¢) (') [i]}
existsh’c U Hist(C) such thatc[i] = he[il and(h', h'e) O G ¢

2. (iv’) implies (iv)
Lethy, W'y O dom Gy ) andi 2 0 such that=0 or h'[i-1] = hpy[i-1].

We show thaGy, ¢) (hy) [11 0 Gyu, ¢y (') [i]- The inverse inclusion follows by symme-
try.
oc U Gm, ¢ () [1]
iff {definition of Gy, ¢y (hm) [iT}
existsh, [ Hist(C) such that[i] = o, and(hm, he) 0 G ¢
implies {Condition (iv")}
existsh’; 0 Hist(C) such thatv'([i] = o and(h', h'e) U Gyu ¢
iff {definition of Gy ¢) ('m) [il}
0c U Gow, ¢) (h'm) [i]
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Theorem 2 --Let G [ Hist(V) andag an agent with monitoring and control capabilities
given byMon(ag) andCtrl(ag), respectivelyG is realizable byag if, and only if, there
existsC [0 Voc(G) andM = Voc(G)\Ctrl(ag) such that the following conditions hold:

() the agent has sufficient monitoring capabilities
M [ Voc(ag)
(i) the agent has sufficient control capabilities
C 0 Ctrl(ag)
(iii) Gyu,c) is a total relation, that is,
for all hy, O Hist(M) there exist$; [ Hist(C) such thathp, he) U Gy o)

(iv) Gu,c) does not refer to future values Wi, that is, the values at timeof variables in
C only depend on the previous values of variableg up to timei -1.

(v) G is finitely violable, i.e.
for all h O History(V), if h |# G then there exists a finite prefixof h such that |£ G

Condition (iv) is formally captured by the following property requiring that if two arbi-
trary histories of variables iNl are equal up to time- 1, then they accept the same path
of variables inC up to timei:

for all hy, hy' O dom Gy ) andi=0
if hy,'[i-1] = hy[i-1] ori =0 thenGy, ¢y (hy) [i] = Gw, ¢ (h) []

Proof. The structure of the proof is similar to the one of Theorem 1.

1. If G is realizable byag, then Conditions (i) to (v) hold for some set of variablsC
0 Voc(G).

Let C = Voc(G) n Ctrl(ag) andM = Voc(G)\C. We show that iiG is realizable byag, then
conditions (i) to (v) hold.

1.1.1f Gis realizable byg, thenM [ Voc(ag).
By definition,M [ Voc(G). We will show thatvoc(G) O Voc(ag).
From Corollary 1 of Chapter 4, we have that

for all hy, h, O Hist(V),
if hy Doc(ag)h2 thenhy U Behaviour(ag) iff h, U Behaviour(ag).

Since G is realizable by ag, Behaviour(ag) = G. The above formula is therefore equiva-
lent to:

for all hy, h, O Hist(V),
|f hl D\/oc(ag)hZ thenhl |= G |ff h2 |= G.

By definition,Voc(ag) is the smallest sé&t satisfying the property:

for all h, h’ 0 Hist(V)
if h~¢ h',thenh |=Giff h"|=G

ThereforeVoc(G) [ Voc(ag).
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1.2.1f Gy, ) is realizable byg, thenC [ Ctrl(ag).
This follows directly from the definition a, that is,C = Voc(G) n Ctrl(ag).
1.3.1f G is realizable byg, thenGy, ¢ is a total relation.

Let h,, O Hist(M). We will show the existence of am, [J Hist(C) such thatf,, , h;) U
G .
M, C)

SinceCtrl(ag) n M = @, Init(ag) # ¢, andNext(ag) is a total relation, there exists an his-
tory h [0 Hist(V) such that:

th = hm
h(0)|ctri(ag) U INit(ag)

and for alli >0, the states(i)|cyiag) @re defined by induction such that:
< hliljvoc(ag) , N(i+1)|ctriag)™> U Next(ag).

By construction,h [0 Behaviour(ag). Therefore, sinceBehaviour(ag) = G, and using
Lemma 4, we have that(;, hic) 0 Gy, ¢)-

Takingh; = h|c, we havelfy, , he) O Gy, ¢)-
1.4.1f Gis realizable byg, thenGy, ¢) does not refers to the future
Using Lemma 5, we show th&y, ¢, does not refer to the future by proving Condition
(iv').
Lethy, 'y O dom Gy ) andi 2 0 such that=0 or h'[i-1] = hpy[i-1].
Let h, O Hist(C) such thathy, he) U Gy c).-
We will show the existence of &), O Hist(C) such that
hefil = hefil and @', h'e)OG oy, ¢)-
Leth O Hist(V) such thah, = hy, andh,c = he. Using Lemma 4, we have that
h|=G;
and sinceBehaviour(ag) = G, we have that
h U Behaviour(ag).

SincecCtrl(ag) n M = ¢, andNext(ag) is a total relation,
there exists an histoty [1 Hist(V) such that:

h'm=h'm
P’ |ctri(ag)ll] = hictri(ag)li]

and for allj > i, the states’())|cyiag) are defined by induction such that:
< h’[[jvoc(ag) , N'(+D)|ctri(ag)™ U Next(ag).

Takingh'c = h'|c, we show that'c[i] = hefi] and @', ') U Gy, ¢)-
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1.4.1.0'[i] = helil.

By definition ofh’.,
h'eli] = hiclil.

Sinceh’|cyigag)lil = hiciriag)lil @ndC O Ctrl(ag), we have:
h'\cli] = hyclil-

And, by definition of h,
hiclil = he[i].

Thereforeh'([i] = h[il.

1.4.2.(0Wy, o) O G, ¢

(', o) O G, ¢

iff { W' jm = ', ¢ =h'e, Lemma 4}
h|=G

iff { behaviour(ag) = G}
h’ [1 Behaviour(ag)

We prove that' [ Behaviour(ag) by showing that it satisfies the initial condition and the
next state relation.

1.4.2.1.Satisfaction of Inith’(0),cyiag) O Init(ag).

'(0)|ctri(ag) = N(O)|ciri(ag) O INit(ag) becausé Ll Behaviour(ag);
1.4.2.2.Satisfaction of Nex& h'[[]jyoc(ag) , N'(+1)|ctri(agy> O Next(ag) for all j O Nat.
For allj <i:

< P llljvoc(ag) , N'(*+1)|ctriagy™ = < hlilvoc(ag) , N0+1)|ctri(ag)™> U Next(ag)
becausé [ Behaviour(ag).

For allj>i:

< h’leoc(ag) ) h,(j+1)|CtrI(ag)> [l Next(ag) by definition ofh’.
1.5.1f Gy, ¢ Is realizable byg, thenG is a ‘safety’ property
This has been proved in Step 1.3 of Theorem 1.

279



2. If Conditions (i) to (v) hold for some for some set of variablsC [1 Voc(G), thenG
is realizable byg.

We define a transition system characterized by the following properties:

scOlInit(ag) iff  s|=G forall s U State(V) such thascyag) = Sc

< Om, S¢c > UNext(ag) iff o+s|=Gorojg G forallo such thabyceag) = Om
for all s such thmlcm(ag) =S¢

Steps 2.1 and 2.2 show that the set of behaviours generated by this transition system is
equal to the set of histories admitted by the goal. Step 2.3 show that this transition system
is well-defined, that ighit(ag) # ¢, andNext(ag) is a total relation. (Steps 2.1 and 2.2 do

not rely on Step 2.3.)

2.1.1f h 0 Behaviour(ag) thenh |= G

The proof is similar to Step 2.1 in the proof of Theorem 1; it follows from the definition
of Init(ag) andNext(ag), and uses Condition (v) only.

2.2.1f h |= G thenh [ Behaviour(ag)

By definition, h [J Behaviour(ag) iff it satisfies the initial condition and the next state
relation. Each condition is proved in turn.

2.2.1.(Satisfaction of Injt if h |= G, thenh(0),cyiag) U Init(ag)

h(0)\ctri(ag) U Init(ag)
iff {definition of Init(ag)}

s |= G for all s I State(V) such thaB|Ctr|(ag) = h(0)|CtrI(ag)
iff {definition of s |= G}

foralls O State(V) such thaB|Ctr|(ag) = h(0)|CtrI(ag)

there exist$’ such that'(0) =s andh’ |= G

Lets [J State(V) such that

S|ctriag) = N(0)|ctri(ag)-
SinceC 0 Ctrl(ag), we also have that:
sic =h(0)c )
We will define arh’ such that'(0) = s andh’ |= G.
We have that:
hj=G
implies {Lemma 4}
(hims hic) B Gmo
implies {Condition (iv") (instantiating to 0)}
for allh’y, 0 dom Gy ¢
there existsr; such that'(0) =h\c(0) and(h',, ') U Gyu ¢
implies {Condition (jii), i.e.dom Gy ¢y = Hist(M)}
for all h’,, O Hist(M)
there exist$r; such that'(0) =h\c(0) and(h',, h'e) U Gyu ¢
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Instantiating this last formula with a@r},, O Hist(M) such that

h'm(0) = Sjm (2)
yields that there exists. such that

h'¢(0) =hic(0) and(h’'m, h'e) U Gm,c) 3)
We defineh’ [J Hist(V) as follows:

h()=s (4)

(v = W m() foralli=1

(i) = (i) foralli=1

We have to show that |= G.

By construction of’, we have:

WM =h'm
because: h'(0)m = Spm = h'm(0) {4, 2}
(@) = () foralli=1 {4}
h'c =h'¢
because: h'(0)c = sic = h|c(0) =h'¢(0) {4,1, 3}
N[ = h'm(0) foralli=1 {4}

And, since(h’',, ') 0 Gy c), we have:
(h'm, h’e) U Gu,c)
implies {h'jm = ', , andh’c = h'c}
(h'jms ') B Guc

implies {Lemma 4}
h'|=G

2.2.2.(Satisfaction of Next
if h |= G, then< h[i]|VOC(ag) ) h(i"'l)lCtrI(ag) > [ Next(ag) for alli O Nat

Leti O Nat. We have:

< h[ilvoc(ag) » N(i*+1)|ctriag) > U Next(ag)
iff {definition of Next(ag)}
o+s|=Gorolz G for allo such thabyec(ag) = hliljvoc(ag)

for all s such thascyiag) = h(i+1)|ciri(ag)
Let o such that
Ovoc(ag) = Nliljvoc(ag)
SinceM [ Voc(ag), andC [ Ctrl(ag), we also have that:

Ojm = hlilm (5)
ojc = hlilic (6)

Lets such that

S|ctriag) = h(i+1)|ctri(ag)

281



SinceC [ Ctrl(ag), we also have that:
sic = h(i+1)c (7)
We will show thato+s |= G by finding anh’ such that’[i] = o andh’(i+1) = s andh’ |= G.
We have:
hj=G
implies {Lemma 4}
(him, hie) G e
implies {Condition (iv")}
for all h'y, O dom Gy ¢y such that'[i] = hymi]
there existd’; such that' [i+1] = hic[i+1] and(h'm, ') U G ¢
implies {Condition (iii), i.e.dom Gy ¢y = Hist(M)}
for all h'y, O Hist(M) such thab'[i] = hywli]
there existd’; such that' [i+1] = hic[i+1] and(h'm, ') U G ¢
Instantiating this last formula with ar},, O Hist(M) such that
h'm[i] = hywli] (8)
h’'m(i+1) = Sm 9)
yields that there exists. such that
hli+1] = hicli+1] (10)
("'m, h'e) U Gmc)
We definen’ O Hist(V) as follows:

hlil=o (11)
h(i+1) = s

h'(@m = N'm() for allj > i+1

h(i)ic = h'e(i) for allj = i+1

We have to show that |= G.

By construction of h’, we have:

h'\w=hm
because: hil = opm = hymli] = W'yl {11, 5, 8}
h(i+1)m = S = W(i+1) {11, 9}
h'(m = 'm() forallj=i+1 {11}
hc=h
because: h[i]ic = 0,c = hicli] = h'c[i] {11, 6, 10}
h'(i+1)c = s|c = h(i+1)|c = h'¢(i+1) {11, 7, 10}
(v = Wm() forallj=i+1 {11}
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Since(h'm, h'c) 0 Gy c), we have:

('m, ') U Gm,c)

implies {h',y = h', , andh’|c = h'c}
(W', P'ie) B Guc

implies {Lemma 4}
h|=G

2.3.The proofs thamit(ag) is not empty and thatext(ag) is a total relation are similar to
the corresponding proofs for Theorem 1.
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