
Faculté des Sciences Appliquées

Département d’Ingénierie Informatique

Reasoning about Agents
in Goal-Oriented

Requirements Engineering

Emmanuel Letier

22 Mai 2001

Thèse presentée en vue de
l’obtention du grade de

Docteur en Sciences Appliquées

Faculté des Sciences Appliquées

Département d’Ingénierie Informatique

Reasoning about Agents
in Goal-Oriented

Requirements Engineering

Emmanuel Letier

22 Mai 2001

Thèse presentée en vue de
l’obtention du grade de

Docteur en Sciences Appliquées

Jury : MM. A. De Herde, président
Y. Deville,
A. Finkelstein,
A. van Lamsweerde, promoteur,
T. Maibaum,
M. Sintzoff.

ctively
d for

them
uch as
ftware
rts the
ts of
een

bsta-
ess.

bility
ts;

sump-

n that
e in

e: the
em).
Abstract

The thesis proposes a number of techniques for elaborating requirements constru
from high-level goals. The techniques are based on the KAOS goal-oriented metho
requirements engineering. This method consists in identifying goals and refining
into subgoals until the latter can be assigned as responsibilities of single agents s
humans, devices and software. Domain properties and assumptions about the so
environment are also used during the goal refinement process. The method suppo
exploration of alternative goal refinements and alternative responsibility assignmen
goals to agents. It also supports the identification and resolution of conflicts betw
goals, and the identification and resolution of exceptional agent behaviors, called o
cles, that violate goals and assumptions produced during the goal refinement proc

The thesis enriches the KAOS framework through three kinds of techniques:

(a) techniques for identifying agents, goal refinements, and alternative responsi
assignments, and for deriving agent interfaces from such responsibility assignmen

(b) techniques for deriving operational requirements from goal specifications;

(c) techniques for generating obstacles to the satisfaction of idealized goals and as
tions, and for generating alternative obstacle resolutions.

The result is a coherent body of systematic techniques for requirements elaboratio
are both theoretically well-founded (a formal model of agent is defined) and effectiv
practice (the techniques are validated on two real case studies of significant siz
London ambulance despatching system, and the Bay Area Rapid Transit train syst

ack,
sible

m

and
Valu-
le at

or.

ence
thers,

ISCO
e la
Acknowledgments

Foremost, I thank my supervisor, Axel van Lamsweerde, for his meticulous feedb
helpful guidance, and precious experience. This work would not have been pos
without his human, technical and financial support.

I thank the members of the jury, A. De Herde, Y. Deville, A. Finkelstein, T. Maibau
and M. Sintzoff for their valuable comments and words of encouragements.

I benefited from many discussions with my colleagues students, Laurent Willemet
Christophe Ponsard, who with me struggled with the KAOS language and method.
able experience about the use of KAOS in industrial settings was provided by peop
CEDITI, in particular by Robert Darimont, Philippe Massonet and Emmanuelle Del

Sylvie Bourguignon, my wife, supported me throughout these years with all her pati
and love. I also thank my parents, grandparents, parents-in-law and Laurette, bro
brothers- and sisters-in-law, nephews and friends.

This research was supported by the “Communauté Francaise de Belgique” (FR
project, Action de Recherche Concertées Nr. 95/00-187 - Direction générale d
Recherche).

....... 5
....... 7
...... 8
....... 9

..... 11

.... 12

..... 12
.... 15
.... 15
..... 17
... 19
.... 19
.... 21
.... 22
.... 22
.... 24
.... 24
.... 24
..... 25
..... 26
.... 28
.... 29
.... 30
..... 30
..... 31
..... 31
..... 32
..... 32
.... 33
.... 33
..... 34
..... 34
Contents

1. Introduction 1

2. Goals and Agents in Requirements Modelling 5

2. 1. Foundations of RE ...
2. 2. Modelling Goals ...
2. 3. Modelling Agents ..
2. 4. Exceptional Behaviours ...

3. Goal-Oriented Requirements Engineering with KAOS 11

3. 1. Why a Goal-Oriented Approach? ..
3. 2. The KAOS Goal-Oriented Requirement Specification Language

3. 2. 1. Overview ..
3. 2. 2. Conceptual Modelling ...

The Meta, Domain, and Instance Levels ...
Characterizing meta-model components ..

3. 2. 3. Formal Specification of Timed Assertions ..
Qualitative Temporal Properties ...
Relative Real-Time Properties ..
Absolute Real-Time Properties ...
Flexible real-time Properties ...

3. 2. 4. The Goal Model ..
Defining Goals ..
Classifying Goals ..
Domain Properties ..
Goal Refinement ...
Goal Conflicts ..
Soft Goals and Optimization Goals ...

3. 2. 5. The Object Model ...
Objects ..
Entities ..
Events ...
Agents ...
Relationships ..
Attributes ...
Specialization ..
Invariants ..
Consistency rules between the object and goal model
1

....35

....35

......35

.....36
.....37
.....37
......38
....38
.....39
....39
.....40
.....41
...41
......42
....42
.....43
....43
.....44
.....44
.....45
......46
...46
....48
...52
....56
....58
...59
.....62
.....63
.....64
.....66
....66
.....67
.....68
......68

.....69
.....69
......70
.....71
....72
....72
.....75
...76
......76
......77
......78
3. 2. 6. The Agent Responsibility Model ...
Responsibility Links ..
Instance declarations ..
Semantics of Responsibility ..

3. 2. 7. The Operation Model ..
Domain Pre/Post and Required Pre/Trigger/Post Conditions
Inputs and Outputs ...
Initial Conditions ...
Performance Links ..
Operationalization Links ..
The responsibility meta-constraint ..

3. 2. 8. The Agent Interface Model ...
Monitoring and Control Links ..
Instance declarations ..
The “unique control” meta-constraint ..
The input/output meta-constraint ..
The realizability meta-constraint ...

3. 3. The Goal-Oriented Requirements Elaboration Method
3. 3. 1. Overview ..
3. 3. 2. The Mine Pump Example ...
3. 3. 3. Elaborating the goal and object models ...

Identifying preliminary goals ..
Formalizing Goals and Identifying Objects ...
Eliciting New Goals through WHY questions ..
Eliciting new goals through HOW questions ..

3. 3. 4. Elaborating Alternative Agent Models ..
Identifying potential responsibility assignments ..
Deriving agent interfaces ..
Operationalizing goals ..

3. 3. 5. Goal refinement and agent identification: an intertwined process
3. 3. 6. Goal-Oriented Analysis ..

Conflict Analysis ...
Obstacle Analysis ...
Alternative evaluation and selection ...

3. 4. Summary and Outlook ...

4. A Formal Model for Agents 69

4. 1. Towards a Formal Semantics for the KAOS Language
4. 1. 1. Motivation ..
4. 1. 2. Choosing a Semantic Domain ...
4. 1. 3. Overview of a semantics for the KAOS language

4. 2. The Underlying Agent Model ...
4. 2. 1. Preliminary Definitions: State Variables, States and Histories
4. 2. 2. Agent Interface ...
4. 2. 3. Agent Views and Indistinguishability ..
4. 2. 4. Agents Transition Systems ..
4. 2. 5. Agent Runs ..
4. 2. 6. Properties of Agent Runs ...
2

.... 79
..... 79
... 80
.. 80
... 82
. 86
...... 87

..... 89

... 91
. 92
... 93
.... 93
..... 95
.... 97
...... 97

...... 99

... 100

.. 103
... 103
.. 105
.. 106
107
.. 107
... 109
109
. 109
110

... 114
... 114
.. 115
.... 117
... 118
21

123
125
... 127
.. 128
.. 128
.. 129
.. 130
... 132
132
4. 2. 7. Agent Responsibilities ..
4. 2. 8. Relating agent responsibilities and the agent’s transition system

4. 3. Defining Realizability ..
4. 3. 1. Defining Realizability of single responsibility assignments
4. 3. 2. Semantic Conditions for Realizability ...
4. 3. 3. Defining Realizability of multiple responsibility assignments

4. 4. Summary ...

5. Identifying and Classifying Unrealizable Goals 89

5. 1. Viewing Goals as Relations ...
5. 2. A Complete Taxonomy of Realizability Problems ..
5. 3. Identifying Lack of Monitorability ..
5. 4. Identifying Lack of Control ...
5. 5. Identifying Unsatisfiable Goals ..
5. 6. Identifying References to the Future ..
5. 7. Identifying Unbounded Achieve Goals ..
5. 8. Summary ...

6. Agent-Driven Tactics for Elaborating Goal Models 99

6. 1. Basic Idea ..
6. 2. A First Example ...
6. 3. Benefits of Agent-Driven Tactics ...

6. 3. 1. Systematic elaboration of requirements ...
6. 3. 2. Exploration of alternatives ..
6. 3. 3. Formally complete goal refinements ...

6. 4. Building a Library of Agent-Driven Tactics ...
6. 4. 1. Identifying tactics ..
6. 4. 2. Coverage of the library ...

6. 5. Resolving Lack Of Monitorability ..
6. 5. 1. Add monitorability ...
6. 5. 2. Split lack of monitorability ...
6. 5. 3. Introduce Accuracy Goals ..

The basic tactic ...
Introduce tracking object ...
Introduce sensor agent ...
Deidealizing accuracy goals through tolerances and delays

6. 5. 4. Split Lack of Monitorability with Milestone .. 1
6. 5. 5. Split Lack of Monitorability by Chaining ...
6. 5. 6. Split Lack of Monitorability By Cases ..
6. 5. 7. Replace Unmonitorable States by Events ..

6. 6. Resolving Lack of Control ..
6. 6. 1. Add control ..
6. 6. 2. Split lack of control ...
6. 6. 3. Introduce Actuation Goals ..

Deidealizing actuation goals through tolerances and delays
6. 6. 4. Split Lack of Control with Milestone ..
3

.134

..135
....135
...136
.136
...137
.....138
....138
..138
...139
...140
....140
...141
..142
..143
....143
....143

...145
....145
...146
....148
...149
..149
..150
....151
...151
...152
...152
...153
..153
....153
...156

...161
....162
....162
.....164
....165
....166
....166
.....167
.....168
.....169
6. 6. 5. Split Lack of Control by Chaining ...
6. 6. 6. Split Lack of Control By Cases ...
6. 6. 7. Replace Uncontrollable State by Events ...

6. 7. Resolve Goal Unsatisfiability ...
6. 7. 1. Weaken goal with unsatisfiability condition ..
6. 7. 2. Prevent goal unsatisfiability ...

6. 8. Resolve References to the Future ...
6. 8. 1. Resolve References to Strict Future ..

Apply anticipation pattern ...
6. 8. 2. Resolve Synchronization problems ..

Replace current by previous ...
Introduce reactiveness hypothesis ...
Introduce mutual exclusion hypothesis ...
Apply mutual exclusion refinement pattern ...
Apply anticipation pattern ...

6. 9. Resolve Unbounded Achieve Goal ...
6. 10. Summary ...

7. Formal Patterns for Goal Operationalization 145

7. 1. Semantics of the KAOS operation model ..
7. 1. 1. Temporal semantics of operations ...
7. 1. 2. Semantics of Operationalization ...

7. 2. Operationalization Patterns ...
7. 3. Benefits of Operationalization Patterns ..

7. 3. 1. Hiding low-level proofs ...
7. 3. 2. Deriving operational requirements from goals ..
7. 3. 3. Checking operational requirements for completeness
7. 3. 4. Inferring goals from operations ..

7. 4. Building a Library of Patterns ..
7. 4. 1. Identifying Patterns ...
7. 4. 2. Coverage of the Library ..

7. 5. A Library of Operationalization Patterns ..
7. 5. 1. Achieve Goals ..
7. 5. 2. Maintain Goals ...

8. Obstacle Analysis 161

8. 1. Introduction ..
8. 2. Goal Obstruction by Obstacles ..

8. 2. 1. Obstacles to goals ..
8. 2. 2. Completeness of a set of obstacles ...
8. 2. 3. Obstacle refinement ...
8. 2. 4. Classifying obstacles ...
8. 2. 5. Goal obstruction vs. goals divergence ...

8. 3. Integrating Obstacles in the RE Process ...
8. 4. Generating Obstacles ..

8. 4. 1. Regressing goal negations ..
4

... 172
... 173
.. 174
... 177
. 179
.... 180
.. 181
.. 181
.. 182
... 182
.. 183
.. 185
... 185
.... 185
... 186
.. 186
.. 187
.... 187

... 189
.. 189
.. 191
. 191
196
04
7

.. 210
... 211
.... 213
... 220
.. 224
.. 224
224

. 230
.. 239
... 240
... 240
... 242
.... 244

. 249
.. 251
8. 4. 2. Completing a set of obstacles ...
8. 4. 3. Using obstruction refinement patterns ...

AND-refinement patterns ..
Complete OR-refinement patterns ..

8. 4. 4. Informal obstacle identification ...
8. 5. Resolving Obstacles ..

8. 5. 1. Obstacle Elimination ...
Goal substitution ..
Agent substitution ..
Obstacle prevention ..
Goal Deidealization ...
Domain transformation ..

8. 5. 2. Obstacle Reduction ..
8. 5. 3. Obstacle Tolerance ..

Goal restoration ..
Obstacle mitigation ..
Do-nothing ...

8. 6. Summary ...

9. Case Studies 189

9. 1. The London Ambulance Service System ...
9. 1. 1. Introduction ...
9. 1. 2. Elaborating the Goal Model ..

Identifying preliminary goals ...
Refining the goal Achieve[AmbulanceMobilization]
Refining the goal Achieve[AllocatedAmbulanceMobilized] 2
Refining the goal Maintain[AccurateAmbulanceAvailabilityandLocationInfo] 20

9. 1. 3. Goal Operationalization ..
9. 1. 4. Obstacle Analysis ...

Obstacles generation ..
Obstacles resolution ...

9. 2. The BART Train Control Case Study ...
9. 2. 1. Introduction ...
9. 2. 2. Identifying and Formalizing Preliminary Goals
9. 2. 3. Refining goals and identifying alternative responsibility assignments
9. 2. 4. Goal Operationalization ..
9. 2. 5. Obstacle Analysis ...

Generating Obstacles ..
Resolving Obstacles ...

9. 3. Discussion ...

10. Related Work 249

10. 1. Agent Responsibility, Monitoring and Control ...
10. 2. Exception Handling and Fault-Tolerance ...
5

....255

...257

...257
....258
..258
...259
..260
...260

....269

..270
11. Conclusion 255

11. 1. Contributions ...
11. 2. Limitations and Future Directions ..

11. 2. 1. Evaluating and Selecting Alternative Designs
11. 2. 2. Specialized Elaboration Tactics based on Goal Categories
11. 2. 3. A Rich Taxonomy of Formal Patterns for Requirements Elaboration ..
11. 2. 4. Tool Support ...
11. 2. 5. Goal-Oriented Elaboration of Software Architecture
11. 2. 6. Agent Refinement ...

References 261

Annex A. Proofs of Chapter 4 269

A. 1. Properties of Agent Runs ..
A. 2. Semantic Conditions for Realizability ..

Annex B. Proofs of Chapter 5 275
6

 Introduction

s. It
; the

ssign-
evices

steps
lders’
cations
epeat-
l76,

eases
the
ineer-

the
de a
plete
for

des a
ts to
y as

ans in
rocess

ess. It
gents
rform
tions
uni-
viors
ment

tion-
quire-
rs have
sibil-
isbe-
Chapter 1
Introduction

Requirement engineering(RE) is the very first step of the system development proces
is concerned with the identification of stakeholders’ goals about the intended system
specification of services and constraints that operationalize those goals; and the a
ment of responsibilities for the resulting requirements to agents such as humans, d
and software [Lam2Kc].

Requirements engineering is now widely recognized to be among the most critical
of system development. In order to implement a system that satisfies the stakeho
needs, those needs must be clearly understood and adequately mapped to specifi
of required software behaviour. Inadequate requirements engineering has been r
edly pointed out to be a major source of problems in software development [Be
Sta95, ESI96]. The cost of correcting errors or misconceptions in requirements incr
exponentially along the software life-cycle if such errors are not handled during
requirements engineering stage [Boe81]. It is thus essential that requirements eng
ing be done with great care and precision.

Goals play a prominent role in the requirements engineering process. Goals drive
elaboration of requirements to support them [Ros77, Dar91, Rub92]; they provi
completeness criterion for the requirements specification - the specification is com
if all stated goals are met by the specification [Yue87]; they provide a rationale
requirements - a requirement exists because of some underlying goal which provi
base for it [Dar91, Som97]; they are generally more stable than the requiremen
achieve them [Ant94]. In short, requirements “implement” goals much the same wa
programs implement design specifications.

Goals are to be achieved by the cooperation of variousagents. Such agents may include
software components that exist or are to be developed, external devices, and hum
the environment. The system being considered in the requirements engineering p
is thuscomposite [Fea87]; it includes both the software-to-be and its environment.

Reasoning about agents is a critical aspect in the requirements elaboration proc
involves reasoning about alternative responsibility assignments of goals to a
[Fea87, Dar93]; reasoning about the agent’s permissions and obligations to pe
actions to achieve the goals [Ken93, Mai93]; reasoning about the required interac
between the different agents in terms of information they monitor, control and comm
cate [Fea87, Par95, Heim98]; reasoning about possibilities of agents’ misbeha
[Lam98]; and reasoning about agents’ dependencies in an organizational environ
[Yu93].

The elicitation of goals, their organization into a coherent structure, and their opera
alization into requirements to be assigned to the various agents is at the core of re
ments engineering. The thesis addresses two key concerns requirements enginee
to cope with during requirements elaboration: the exploration of alternative respon
ity assignments of requirements to agents, and the handling of possible agents’ m
haviors.
1

 Introduction

gents
pon-
tities
ls it is
nitor-
d in
quite

ssoci-
anted
terna-
ol are
eas-

ting,
at sat-

nted
iented
iden-
onsi-

espon-
e
bili-
oni-

ation
the

.

-
il-
ded

f
ls by

r are

e next
e per-

s of
Exploring Alternative Agents Responsibilities

A critical step of the requirements engineering process is the identification of the a
that should play a role in achieving the goals of the system; the definition of their res
sibilities with respect to the goals to be achieved; and the identification of the quan
to be monitored and controlled by each agent in order to be able to achieve the goa
assigned to [Par95, Zav97]. Alternative decisions about agent responsibilities, mo
ing and control result in systems in which more or less functionality is automated an
which the interactions between the automated system and its environment may be
different. Such decisions have a critical impact on the performance, cost and risks a
ated with the composite system. Responsibility assignment, however, is taken for gr
by most specification techniques; no systematic support is available. As a result, al
tive, perhaps superior, decisions about agent responsibilities, monitoring and contr
not systematically explored; the rationale for such decisions is not made explicit for
ier evolution.

Our general objective in this thesis is to provide systematic techniques for elabora
from the high-level goals of the composite system, alternative agent assignments th
isfy those goals.

The exploration of alternative system proposals is at the heart of goal-orie
approaches to requirements engineering. Our work is based on an existing goal-or
requirements elaboration method, called KAOS. The core of the method consists in
tifying goals and refining them into subgoals until the latter can be assigned as resp
bilities of single agents [Dar93].

Extensions to the KAOS language are proposed to model and reason about agent r
sibilities, monitoring, and control. Arealizability consistency rule is introduced to relat
the responsibility of an agent for a goal to the agent’s monitoring and control capa
ties: the goal is realizable by an agent if it defines a relation between quantities m
tored and controlled by the agent.

Realizability is seen to play a central role in the goal-oriented requirements elabor
process: violations of the realizability rule drives the identification of new agents and
refinement of goals into subgoals until the latter are realizable by individual agents

We define ataxonomy of realizability problemsto support the identification and classifi
cation of violations of realizability. Realizability problems include: lack of monitorab
ity, lack of control, references to future, goal unsatisfiability, and time-unboun
achievement goals. This taxonomy is shown to be complete.

A library of specification elaboration tacticsis then defined to guide the resolution o
realizability problems. These tactics guide the elaboration of the requirements mode
identifying new agents and by recursively refining goals into subgoals until the latte
realizable by single agents.

Once goals have been refined into subgoals that are realizable by single agents, th
step of the goal-oriented elaboration process consists in deriving the operations to b
formed by the agents so as to satisfy the goals.Formal operationalization patternsare
proposed to derive complete operational requirements from the formal definition
realizable goals.
2

 Introduction

and
ved.
ptions

from
iors
soft-

poor

les to
eering

pos-
ptions
uch

ossi-

tion of
s. The
rating

ifi-
This

take

n

so

e

a
as

t size:
l sys-
Handling Exceptional Agent Behaviours

Another important aspect of the software development process is the anticipation
handling of potential agent misbehaviors that might prevent goals from being achie
The requirements elaboration process tends to produce requirements and assum
about agent behaviors are often too ideal. Some of them are likely to be violated
time to time in the running system. The lack of anticipation of exceptional behav
results in unrealistic, unachievable and/or incomplete requirements. As a result, the
ware developed from those requirements and assumptions will inevitably result in
performance, sometimes with critical consequences on the environment.

Our objective here is to provide systematic techniques for reasoning about obstac
the satisfaction of goals and assumptions elaborated in the requirements engin
process. A key principle is to tackle risks of unexpected agent behaviour as early as
sible in the development process, that is, at the goal level. By reasoning about exce
upfront in the development process, one is left with more freedom for resolving s
exceptions, for instance, by identifying alternative system proposals in which the p
bilities and consequences of agent misbehaviors are reduced.

The thesis describes systematic techniques for generating obstacles to the satisfac
idealized goals and assumptions, and for generating alternative obstacle resolution
latter transform the goal model by deidealizing goals and assumptions or by gene
new goals so as to avoid, reduce or tolerate the identified obstacles.

Contributions

The main contributions of the thesis are the following.

• A formal model of agentsthat provides the underlying semantic domain for a sign
cant part of the KAOS language related to agents and their responsibilities.
model provides the basis for a precise definition of therealizability consistency rule
that defines when an agent has sufficient monitoring and control capabilities to
responsibility for a goal.

• A taxonomy of realizability problemsthat allows one to identify unrealizable goals i
a systematic way. This taxonomy is shown to be complete.

• A library of agent-driven tacticsfor recursively elaborating goal models and agents
as to resolve violations of the realizability rule.

• a library ofoperationalization patternsfor deriving operational requirements from th
formal definitions of realizable goals.

• a precise definition of the concept ofobstacleto the satisfaction of goals,obstacle
identification techniquesfor systematically generating obstacles from goals, and
library of obstacle resolution tacticsfor transforming the goal and agent models so
to resolve generated obstacles.

• An assessment of the proposed techniques on two real case studies of significan
the LAS ambulance despatching system and the BART automated train contro
tem.
3

 Introduction

 in RE.

it also
nsibili-

antic
lity

unre-

fying

quire-

goal-

o fore-
Organization

The thesis is structured as follows.

Chapter 2 describes some background work on the modelling of goals and agents

Chapter 3 describes the KAOS goal-oriented specification language and method;
introduces extensions to the language to model and reason about agent respo
ties, monitoring, and control.

Chapter 4 defines a formal model of agents that provides the underlying sem
domain for the KAOS language; it also gives a formal definition for the realizabi
consistency rule that relates agent responsibility for goals to its interfaces.

Chapter 5 describes a complete taxonomy of realizability problems used to identify
alizable goals during the requirements elaboration process.

Chapter 6 defines agent-driven tactics for refining goals into subgoals and for identi
agents so as to resolve realizability problems.

Chapter 7 describes the use operationalization patterns for deriving operational re
ments from realizable goals.

Chapter 8 is based on [Lam2Ka] and describes the handling of obstacles during the
driven requirements elaboration process.

Chapter 9 illustrates and assesses the techniques described in the thesis on the tw
mentioned cases studies.

Chapter 10 discusses related work.

Chapter 11 concludes and discusses further work.
4

Goals and Agents in Requirements Modelling

oals
xcep-
etail

, it is
uire-
Jac95,

goals,
ships

t-
ties in

with

es in

uire-

ld

To

the

ed
is

are
Chapter 2
Goals and Agents
in Requirements Modelling

This chapter briefly reviews some background works related to the modelling of g
and agents in requirements engineering. Some background on the handling of e
tional behaviours is introduced as well. Related work will be discussed in further d
in Chapter 10.

2.1. Foundations of RE

Before discussing particular requirements specification languages and methods
essential to understand the foundations of RE. Two important frameworks of req
ments engineering have been proposed: the framework of Jackson and Zave [
Zav97], and the Four-Variable Model of Parnas [Par95].

The framework of Jackson and Zave [Jac95, Zav97] explains the precise nature of
requirements and domain properties, as well as the precise nature of the relation

among them1. In that framework, the termmachineis used to denote the hardware/sof
ware to be developed. The purpose of the machine is to bring about some proper
the environment; therefore requirements engineering should only be concerned
modelling properties in the vocabulary of environment.

When modelling the environment, it is essential to distinguish between the quantiti
the environment that aremonitoredby the machine, those that arecontrolled by the

machine, and those in the environment outside the interface with the machine2.

A further essential distinction is made between goals, domain properties and req
ments:

• A goal is a desired property about quantities in the environment.
• A domain property is a property that naturally holds in the environment, as it wou

be without or in spite of the machine.
• A requirementis a special kind of goal that constrains the behavior of the machine.

be a requirement, a goal must satisfy the following three properties:

(i) it is described entirely in terms of quantities monitored and controlled by
machine;

1. In order to keep a uniform terminology throughout the thesis, we changed the terminology us
by Jackson and Zave. In their terminology, a goal is called a requirement, and a requirement
called a specification.

2. In the terminology of Zave and Jackson, monitored variables are defined as variables that
sharedbetween the machine and its environment, and that arecontrolled by the environment;
controlled variables correspond tosharedvariables between the machine and the environment
that arecontrolled by the machine; environment variable outside the interface with the machine
are unshared variables controlled by the environment.
5

Goals and Agents in Requirements Modelling

red

ents.
nt,

tisfac-

rther

ed as

ired

raints

mon-

and its
e
e-
(ii) it constrains only quantities that are controlled by the machine;

(iii) the controlled quantities are not defined in terms of future values of monito
quantities.

The main role of domain properties is to help bridge the gap from goals to requirem
More precisely, ifG is the set of goals defined in terms of quantities in the environme
D the set of domain properties about the environment, andR the requirements on the
machine, the following properties must hold:

1. the requirements, together with the domain properties must guarantee the sa
tion of the goals:

D, R |= G

2. the requirements must be consistent with the domain properties:

D, R |≠ false.

The Four-Variable Model of Parnas [Par95] is a similar model that introduces a fu
distinction between environmental quantities that aremonitoredand controlled by the
system and the actualinputsandoutputsof the software. The termsystemis used here to
denote the software and its I/O devices.

This model, illustrated in Figure 1, emphasizes that requirements should be describ
a relation between monitored and controlled variables.Monitored variablesrepresent
environmental quantities that the system measures.Controlled variablesrepresent envi-
ronmental quantities that the system controls. A black-box specification of requ
behaviour is given as two relations,REQ andNAT, from the monitored to the controlled
variables.NAT defines natural constraints on the system behaviour, such as const
imposed by physical laws and the system environment.REQ defines additional con-
straints on the system to be built as relations the system must maintain between the
itored and the controlled variables.

If the term machine used by Jackson and Zave is meant to represent the software
I/O devices, theREQ relation of the Four-Variable Model is roughly equivalent to th
requirementsR in the previous framework. (A detailed comparison of these two fram
works can be found in [Gun2K].)

Environment

Monitored
Variables

Controlled
Variables

SoftwareInput
Devices

Output
Devices

Environment

Input
Variables

Output
Variables

System

 FIGURE 1. The Four-Variables Model

IN SOF OUT

REQ and NAT
6

Goals and Agents in Requirements Modelling

input
the

ation

sely
ntities

ttrac-
impli-
more

me-

t may
; the
ion of

ce the
tech-
uring
ana-
d of
eth-

ate-

ering
at sat-

have

The

ls
The Four-Variable Model introduces two additional sets of variables.Inputs variables
represent the values actually stored in the input registers of the software system.Output
variables represent the values of the output register of the software. A relationIN
between monitored and input variables is used to describe the behaviour of the
devices. A relationOUT between output and controlled variables is used to describe
behaviour of the output devices.

The behaviour of the software is then described by a relationSOF between input and
output variables. For the software to correctly implement the requirements, the rel
SOF must satisfy:

IN ∧ SOF ∧ OUT ∧ NAT ⇒ REQ.

Both frameworks insist on the well-known but often neglected importance of preci
defining the correspondence between mathematical variables and the physical qua
they denote.

The main advantage of these frameworks is that they providesimplemodels explaining
the nature of requirements engineering. Simplicity is what makes these models so a
tive and useful. Some aspects of requirements modelling have therefore been overs
fied, and some others have been ignored. In Chapter 4 of the thesis, we describe a
detailed, but more complicated, formal framework for requirements modelling.

A fundamental concern of requirements modelling is completely ignored in these fra
works: the engineering of requirements involves the exploration ofalternativesystem
proposals in which the boundary between the automated system and its environmen
be quite different. The above models characterize only the result of this exploration
boundary has been decided on and is frozen. Techniques supporting the explorat
alternative system proposals from goals is a central theme of the thesis.

2.2. Modelling Goals

The need to model WHY a system should be developed has been recognized sin
early days of RE [Ros77]. However, most requirements modelling notations and
niques focus on the “late-phase” of the requirements engineering process [Yu97], d
which initial statements of functional requirements are precisely reformulated and
lyzed for ambiguity, incompleteness and inconsistency. Methods supporting this kin
analysis range from semi-formal (e.g. structured methods [Ros77], object-oriented m
ods [Rum91, Rum98]) to formal (e.g. history-based [Man92, Lamp94, Koy92], st
based [Pot91, Jon90, Abr96], or transition based [Har87, Heit96] -- see [Lam2Kb]).

Goal modelling is intended to address the “early-phase” of requirements engine
during which stakeholders goals are explored and alternative system proposals th
isfy the goals are investigated.

Two complementary frameworks for goal-oriented requirements engineering
emerged: the first one is KAOS [Dar93, Lam2Kc]; it is mostly concerned with thegener-
ation of alternative system designs from high-level goals defined in temporal logic.
second one is the NFR framework [Myl92, Chu2K]; it is mostly concerned with theeval-
uation and selectionof alternatives with respect to qualitative ‘non-functional’ goa
such as usability, performance, accuracy, security, etc.
7

Goals and Agents in Requirements Modelling

ent
oals
terna-
uffi-

relate

po-

ional
tional

esign
ar-cut
inks
al
their
dure
enied
of a
cies.

n lan-

b95]
gents.

rocess.
sys-
ork is
hich
and

tem
ract-
on the

the

local
radi-
a87]
In the KAOS framework, goals are related to subgoals through AND/OR refinem
links. A goal is AND-refined into a set of subgoals when the satisfaction of all subg
ensure the satisfaction of the parent goal. OR-refinement links relate a goal to an al
tive set of AND-refinements; this means that satisfying one of the refinements is s
cient for satisfying the parent goal. Conflicts links between goals are also used to
goals that cannot be satisfied together.

An optional formal assertion layer is used to formally specify goals in a real-time tem
ral logic [Man92, Koy92]. The formal definition of goals allows one to

• prove the completeness of goal-refinements, and identify overlooked goals and
assumptions [Dar95, Dar96],

• identify conflicts between goals [Lam98b],
• generate obstacles from the definition of goals [Lam98a, Lam2Ka].

The NFR frameworkemphasizes the need to model and reason about non-funct
requirements such as usability, performance, accuracy, security, etc. Such non-func
requirements provide criteria for evaluating and selecting among alternatives d
decisions. The term “softgoal” is used to characterize goals that do not have a cle
criterion for their satisfaction. Weaker versions of goal refinement and goal conflict l
are introduced to model softgoal dependencies. Instead of goal satisfaction, softgosat-
isficing is introduced to express that lower-level softgoals are expected to achieve
parent softgoals within acceptable limits rather than absolutely. A labelling proce
has been defined to help determine the degree to which a softgoal is satisficed or d
by lower-level softgoals and requirements. The NFR framework is also composed
rich catalogue of generic expert knowledge about softgoals and softgoal dependen

2.3. Modelling Agents

The concept of agent has also been introduced in several requirements specificatio
guages and methods.

Formal agent-oriented languages such as structured MAL [Rya91], and AlbertII [Du
have been proposed to model and reason about systems made of interacting a
These languages are targeted to the “late phase” of the requirement elaboration p
They do not support the process of identifying which agents should play a role in the
tem and what requirements each agent should be responsible for. In contrast, our w
concerned with the “early phase” of the requirement engineering process during w
the goals of the system-to-be are identified and alternative operationalizations
responsibility assignments are still being investigated.

Our work has been significantly influenced by the paradigm of Composite Sys
Design proposed in [Fea87] for the development of systems involving multiple inte
ing agents. This approach consists in separately specifying the global constraints
behaviors of a multi-agent system and gradually deriving the local constraints on
behavior of individual agents. The notion ofresponsibilitywas identified there as playing
a major role in describing the stages of decomposition of global constraints into
constraints on agent behaviors. Different responsibility assignments may lead to
cally different designs. To support this kind of requirements elaboration process, [Fe
8

Goals and Agents in Requirements Modelling

gent
d to

sug-
dual
tified
. That
rating
mpiri-
rive

eakest
an
k of

xcep-

to get
dress
dary
idered,
nd81,
ques
, from
lving
gent
ality

t may

ck83]
vides

h as
nized

y may
taken
r, no
iques

ated
emat-
The
excep-
ormal
introduces a simple formal framework for modelling agents, agent interfaces, and a
responsibility for goals. An agent responsible for a goal is the only one require
restrict its behaviour so as to ensure the goal.

This framework has been defined further in [Fic92] where formal techniques are
gested for (i) identifying inconsistencies between operational specifications of indivi
agents and declarative specifications of global goals; and (ii) resolving the iden
inconsistencies by transformations of the operational and declarative specifications
paper describes a small core of specification elaboration operators capable of gene
a whole range of composite system designs. These operators were discovered e
cally by studying various existing composite systems and trying to rationally rede
their features.

The work reported in [Fea94] proposes another set of techniques based on the w
precondition calculus [Dij76] and finite differencing techniques; the aim is to derive
operational specification of agents from global goals. Informal reasoning about lac
agent monitoring and control capabilities is used to guide the derivation process.

2.4. Exceptional Behaviours

Exceptional agent behaviours might obstruct the achievement of goals. These e
tional behaviours will be called obstacles.

Reasoning about exceptions during software development is of utmost importance
high-quality software. There has been a lot of software engineering research to ad
this for the later stages of software architecturing or implementation, where the boun
between the software and its environment has been decided and cannot be recons
and where the requirements specifications are postulated correct and complete [A
Bor85, Per89, Cri91, Ros92, Jal94, Cri95, Aro98, Gar99]. In contrast, the techni
presented in the thesis work at the much earlier stage of requirements engineering
goal formulations, so that more freedom is left concerning adequate ways of reso
goal violations -- like, e.g., considering alternative requirements or alternative a
assignments that result in different system proposals, in which more or less function
is automated and in which the interaction between the software and its environmen
be quite different.

Some work has been done at specification level though. The JSD method [Ja
already recognized the need to anticipate and handle errors at that level. JSD pro
techniques for handling inputs which are not valid for a given specification (suc
meaningless inputs or inputs arriving in an unexpected order). Jackson also recog
that mistaken valid inputs cannot be handled by the proposed techniques, as the
require transformation of the whole specification, and that such errors should be
into account in the earlier steps of the specification elaboration process. Howeve
techniques are provided there to anticipate and resolve such errors. The techn
described in Chapter 8 are intended to fill that void.

Systematic techniques have been defined for analyzing a formal model of the autom
system for exceptional cases. The Z precondition calculus makes it possible to syst
ically identify exceptional cases in which an operation could be applied [Pot91].
operation can then be made robust by separately specifying responses to those
tional cases. The Z logical schema combination constructs are used to combine n
9

Goals and Agents in Requirements Modelling

plete
ther a

s have
ev95].
iden-

stem
fault

l and
ation
le to

ever
partic-
iques
g new

ay
os of
based
ce and
more
goals.
and exceptional cases. With the same objective of making a specification com
against all possible inputs, automatic techniques have been defined to check whe
state machine model handles all possible sequence of inputs [Heim96, Heit96].

For safety-critical systems, hazard analysis techniques such as fault-tree analysi
been developed to identify and reason about the causes of hazards of a system [L
The primary purpose of such techniques is to analyze the causes of hazards, not to
tify the hazards over which the analysis should start. A good understanding of the sy
is essential for identifying the top hazards to be analyzed, and for elaborating the
trees.

Deontic logics are formalisms that enable one to specify and reason about norma
abnormal situations by means of modal operators such as permission and oblig
[Mey93]. Such logics have been proposed for system specification, making it possib
specify what should happen if an abnormal situation occurs [Mai93, Ken93]. How
such approaches do not provide any guidance for elaborating the requirements, in
ular the requirements dealing with the abnormal situations. In contrast, the techn
discussed in Chapter 8 are based on goals which serve as a rationale for introducin
requirements to deal with the abnormal situations.

The concept ofobstaclewas first introduced in [Pot95] to describe situations that m
block the fulfilment of goals. Obstacles are identified there by exploration of scenari
interaction between software and human agents. This exploration is informal and
on heuristics. Some limited obstacle resolution strategies such as obstacle defen
obstacle mitigation are sketched there. Chapter 8 builds on that work by providing
systematic techniques for identifying and resolving obstacles to the satisfaction of
10

Goal-Oriented Requirements Engineering with KAOS

used
ring

uring
ted in
then

ary to

bil-

ire-
into

nsis-
iques
pec-

lan-
rigi-

ering
tive

ering
and
hich
letely

n the
wide

nt of
Goals

then
urther-
Chapter 3
Goal-Oriented Requirements
Engineering with KAOS

This chapter describes the KAOS goal-oriented specification language and method
in the dissertation. We first motivate our choice of a goal-oriented approach for explo
alternative responsibility assignments and for handling agent misbehaviours d
requirement engineering. The KAOS goal-oriented specification language is presen
Section 3.2. The KAOS goal-driven method for elaborating requirements is
described in Section 3.3.

The chapter also introduces extensions of the KAOS language that are necess
model and reason about agent responsibility, monitorability and control. Theagent inter-
face modelis added to the KAOS language to model the monitoring and control capa
ities of agents with respect to object attributes (Section 3.2.8). Arealizabilityconsistency
rule that relates agent responsibility for goals to agent interfaces is introduced.

The realizability consistency rule plays a significant role in the goal-oriented requ
ment elaboration process: violation of that constraint drives the refinement of goals
subgoals and the identification of new agents (Section 3.3.5). The realizability co
tency rule provides the basis for the formal techniques proposed in the thesis; techn
for identifying and resolving unrealizability are described in Chapters 5 and 6, res
tively.

Much effort was also put into clarifying and simplifying various other aspects of the
guage. Portions of the KAOS language that significantly differ from or extend the o
nal description of the language in [Dar93] are highlighted with a bar in the margin.

3.1. Why a Goal-Oriented Approach?

As mentioned in Chapter 2, goals play a prominent role in the requirement engine
process. In particular, they are well-suited to support the exploration of alterna
designs involving multiple agents and the handling of agent misbehaviours.

The exploration of alternative system designs is at the core of requirements engine
[Fea87, Fick92, Dar93, Myl99]. Alternative ways of refining goals into subgoals,
alternative responsibility assignments of goals to agents yield different designs in w
the boundary between the automated systems and its environment may be comp
different. Goals are also used to identify the agents which should play some role i
system. The introduction of a new agent arises from the need to fulfil some system-
goals.

Goals also provide the basis for identifying agent misbehaviours. The refineme
goals into subgoals involves making assumptions about agents in the environment.
and assumptions define the ideal behaviour of agents. Agent misbehaviours are
defined as exceptions which cause these goals and assumptions to be violated. F
11

Goal-Oriented Requirements Engineering with KAOS

lving
ponsi-

. Sec-
ptual
uire-
ying
of the

sev-

the
su-

hed-

rent
r93,

goal
ls

].

d for
s are

po-

t is
n-
red as

lared
more, handling agent misbehaviours at the goal level gives more freedom for reso
such exceptions, for instance by considering alternative goal refinements and res
bility assignments that yield different system designs.

3.2. The KAOS Goal-Oriented Requirement Specification
Language

This section introduces the KAOS goal-oriented language used in the dissertation
tion 3.2.1 gives an overview of the language. Section 3.2.2 introduces the conce
modelling aspects of the language and the three levels of modelling involved in req
ment acquisition. Section 3.2.3 defines the temporal logic used in KAOS for specif
requirements formally. Sections 3.2.4 to 3.2.8 describe the various components
language in more detail.

3.2.1 Overview

The KAOS language is a multiparadigm language. A KAOS model is composed of
eral submodels related through inter-model consistency rules (Figure 3.1).

The goal modelis the driving model of the KAOS language. It declares the goals of
composite system. Agoal defines an objective the composite system should meet, u
ally through the cooperation of multiple agents. An example of goal for a meeting sc
uling problem is the goalAchieve[ConvenientMeetingHeld] requiring that every
requested meeting is eventually held with the presence of all intended participant.

Goal-refinementlinks relate a goal to a set of subgoals. A set of subgoals refines a pa
goal if the satisfaction of all subgoals is sufficient for satisfying the parent goal [Da
Dar95, Dar96]. As an example, the goalAchieve[ConvenientMeetingHeld] is refined in
Figure 3.1 into the subgoalsAchieve[PrtcptsCstrKnown], Achieve[ConvenientMeeting-
Planned], andAchieve[PrtcptsInformed].

A parent goal may be refined by alternative sets of subgoals. For instance, the
Achieve[PrtcptsCstrKnown] can alternatively be refined into the subgoa
Achieve[PrtcptsCstrRequested] and Achieve[RequestedCstrProvided] or into the sub-
goals Maintain[ElectronicAgendaUpToDate] and Achieve[PrtcpsCstrKnownFromA-
genda]. Note that alternative goal refinements may yield alternative system design.

In addition to goal refinements,conflicts between goals can also be captured [Lam98a

The goal model has a two-layer structure. An outer semantic net layer [Bra85] is use
declaring goals and goal links. An inner textual layer is used for defining goals. Goal
defined in natural language and may optionally be defined formally in a real-time tem
ral logic formalism similar to [Koy92] - see Section 3.2.3 hereafter.

The object modeldeclares the objects of interest in the application domain. An objec
classified asentity, relationship, eventor agentdependent on whether the object is auto
omous, subordinate, instantaneous or active. The object’s characteristics are decla
attributesand relationship links to other objects. Inheritance between objects is dec
throughISA relationships.
12

Goal-Oriented Requirements Engineering with KAOS
Object Model

PrtcptsCstrRequested

Goal Model

PrtcptsCstrKnown

AND

OR

AND

Prtcpt Meeting
Intended

Agent Responsibility Model

Agent Interface Model

Operation Model
Operation SendCstrRequest
DomPre ¬ CstrRequested(p,m)
DomPost CstrRequested(p,m)
ReqTrig For PrtcptsCstrRequested

Intended(p,m)

 FIGURE 3.1. Overview of the KAOS models

ConvenientMeetingHeld

PrtcptsInformedConvenient
MeetingPlaned

AND

Scheduler

InitiatorOR

Scheduler

Initiator

Prtcpt
CstrRequest

Intended

... ...
... ...

inter-model
consistency rule
13

Goal-Oriented Requirements Engineering with KAOS

side,
n the
el.

s.
vices,
stop-
agent
ough

-
d to

tion
d
-

individ-

to the

ach

-

pond-

s that
y

r for
s (such
er for-
ome

l lan-
AOS
There are inter-model rules between the object model and the goal model. On one
the object model declares the vocabulary to be used in the definition of goals; o
other side, these definitions bound the vocabulary to be declared in the object mod

The agent responsibility modeldeclaresresponsibilityassignments of goals to agent
Agents include software components that exist or are to be developed, external de
and humans in the environment. Responsibility assignment provides a criterion for
ping the goal refinement process. A goal assigned as the responsibility of a single
is not refined any further. Alternative responsibility assignments are captured thr
OR responsibility links. For instance, the goalAchieve[PrtcptsCstrRequested] could be
assigned theScheduler software agentor to theInitiator agent. The meaning of a respon
sibility assignment is that the agent responsible for a goal is the only one require
restrict its behaviour so as to ensure that goal [Fea87].

The operation modeldefines the state transitions in the application domain. Opera
are defined throughdomain pre- and post-conditions. For instance, the domain pre- an
post-conditions of theSendCstrRequest in Figure 3.1 minimally capture what any send
ing of a constraint request is about in the application domain.

Further requirements on operations are necessary to ensure the goals assigned to
ual agents. Such requirements are specified throughrequired pre-, trigger, and post- con-
ditions. They are related to the goal they ensure throughoperationalizationlinks. For
instance, the required trigger condition on theSendCstrRequest operation requires that a
constraint request must be sent to a participant when the participant is intended
meeting. This required trigger condition operationalizes the goalAchieve[PrtcptsCstrRe-
quested].

Each operation is also related to the agent that can initiate it through aperformance link.

The agent interface modeldeclares which objects are monitored and controlled by e
agent. In the agent interface model of Figure 3.1, theScheduler agent controls theCstr-
Requested relationship, and monitors theIntended relationship. Alternative agent inter
face models can be captured through OR monitorability and control links.

There is an inter-model consistency rule between the agent interface and the corres
ing responsibility assignment of a goal to an agent. Roughly speaking,a goal can be
assigned as the responsibility of an agent only if the goal is stated in terms of object
are monitorable and controllable by the agent. As will be seen later, this consistenc
rule, called therealizability rule, is a central concept of the thesis.

The KAOS language has a two-layer structure: an outer conceptual modelling laye
declaring concepts (such as goals, objects, agents, etc) and links between concept
as goal refinements, responsibility assignments of goals to agents, etc.); and an inn
mal assertion layer for formally defining concepts. Section 3.2.2 further introduces s
background material on conceptual modelling. Section 3.2.3 introduces the forma
guage used at the inner layer of the KAOS language. The various models of the K
language are then described in further detail in Sections 3.2.4 to 3.2.8.
14

Goal-Oriented Requirements Engineering with KAOS

then
f the

od-

ts are

of a

and

tances
d by
a-con-

ific

tant

docu-

ch as

ances
n of

i-
3.2.2 Conceptual Modelling

We first introduce the three levels of modeling involved in requirements acquisition;
we define more precisely conceptual modeling constructs relevant to the definition o
KAOS language.

3.2.2.1 The Meta, Domain, and Instance Levels

The KAOS approach to requirements engineering involves three different levels of m
elling: the meta-level, the domain-level, and the instance level (Figure 3.2).

The KAOS language is defined through a conceptual meta-model. Themeta-modelpro-
vides domain-independent abstractions in terms of which domain-specific concep
acquired. The meta-model is composed ofmeta-concepts(such asGoal, Agent, Relation-
ship, Operation, etc.);meta-relationships(such asRefinement betweenGoals, Respon-
sibility betweenAgent and Goal, Monitoring betweenAgent and Object, etc.); meta-
attributes of meta-concepts or meta-relationships (e.g.Definition of Goal, Priority of
Goal, DomPre- and DomPost conditions of Operation, etc.); andmeta-constraintson
meta-concepts and meta-relationships (e.g. “the vocabulary used in the definition
goal must be defined in the object model”).

The domain model is composed of domain-specific instances of meta-concepts
meta-relationships. In Figure 2, theMeeting concept is an instance of theEntity meta-
concept, the goalAchieve[PrtcptsCstrRequested] is an instance of theGoal meta-con-
cept, the operationSendCstrRequest is an instance of theOperation meta-concept, etc.
The components of a requirements model are thus acquired as domain-specific ins
of meta-concepts, linked by instances of meta-relationships, and characterize
instances of meta-attributes. These components must furthermore satisfy the met
straints of the meta-model.

The instance modelrefers to specific instances of domain-level concepts. A spec
meeting is an instance of the domain-level concept ofMeeting.

Role of the meta-model

In the context of requirements elaboration, the KAOS meta-model fulfills two impor
roles.

1. The KAOS meta-model determines the content and structure of the requirement
ments.

Concepts of the meta-model such asGoal, Operation, Agent, etc. define what infor-
mation must be included in the requirements model. Links between concepts (su
goal refinement links) provide structure to the requirements model.

2. The KAOS meta-model drives the requirements elaboration process.

The components of a requirements model are acquired as domain-specific inst
of meta-concepts. Meta-relationships between concepts guide the acquisitio
related concepts. For instance, theRefinement meta-relationship guides the acquis
tion of subgoals of a given goal.
15

Goal-Oriented Requirements Engineering with KAOS
 FIGURE 3.2. The meta, domain and instance levels

GOAL

goal-refinement

Operation

Agent Relationship Entity

Object

Responsibility

Performs

PrtcptsCstrRequested
Scheduler Meeting

SendCstrRequest

Scheduling

Intended

Responsibility

Performs

sch meeting xyz

SendCstrRequest
(jim, meeting xyz)

Scheduling

IntendedIntended

Performs

The domain level

The meta level

The instance level

ISA

InstOf

Prtcpt

john jim
16

Goal-Oriented Requirements Engineering with KAOS

ess.
olve
ns

ed in

ation
ys-
int

the
vari-
ilar-

s link-
lation-
made
ration

nce
-
tively

of
Meta-constraints play an important role during the requirement acquisition proc
The violation of a meta-constraint drives the elaboration of the model so as to res
the violation. For example, a violation of the meta-constraint linking goal definitio
to the object model drives the identification of objects and attributes to be declar
the object model.

As will be seen later, one of the key ideas of the thesis corresponds to an applic
of this general principle; it consists in refining goals and identifying agents by s
tematically identifying and resolving violations of the realizability meta-constra
that relates goals and agent interfaces.

From the point of view of tools, the KAOS meta-model determines the structure of
requirement database in which the requirements model is gradually elaborated. The
ous components of the meta-model also yield criteria for measuring conceptual sim
ity when requirements are acquired by analogy with other systems [Mas97].

3.2.2.2 Characterizing meta-model components

As mentioned above, the meta-model is made of meta-concepts, meta-relationship
ing meta-concepts, and meta-attributes attached to meta-concepts and meta-re
ships. What is meant by meta-concept, meta-relationship and meta-attribute is now
more precise. AND/OR meta-relationships are also introduced to support the decla
of alternative requirements options at the domain level, and anIsa relation between
meta-concepts is defined to support their specialization.

1. Meta-Concepts, meta-relationships and meta-attributes

A meta-conceptC denotes a set of concept instances. The fact that a concept instac
belongs to a conceptC is notedInstOf(c, C). Goal andObject are examples of meta-con
cepts of the KAOS meta-model. Specific domain-level goals and objects are respec
instances of theGoal andObject meta-concepts.

A meta-relationshipR is a mathematical relation betweenn conceptsC1,..., Cn; i.e.

R ⊆ C1 × ... × Cn

An instance of a relationshipR is a tuple<c1,..., cn> with eachci ∈ Ci. We use the nota-
tion R(c1,..., cn) to denote that the tuple<c1,..., cn> is an instance ofR. As an example,
Concern is a meta-relationship linking the meta-concepts ofGoal and Object. An
instance of theConcern meta-relationship is a pair<G, Obj> whereG is an instance of
Goal andObj an instance ofObject. It declares that the objectObj is referenced in the
definition of the goalG.

The cardinality of a conceptCi involved in a relationshipR is a pair<mincard, maxcard>
wheremincard andmaxcard denote the minimum and maximum number of instances
R in which every instance ofCi may participate, respectively.

A meta-attributeAtt of a meta-concept or meta-relationshipCR is defined as a function

Att: CR → D

whereD is called the domain of values of the attribute. For instance, theGoal meta-con-
cept has the meta-attributesname anddefinition. The domain of values of thedefinition
attribute of theGoal meta-concept is the set of natural language statements. Theformal
17

Goal-Oriented Requirements Engineering with KAOS

s
AOS

ative
l alter-
is an

s

-

rna-

-

n
and
same

efined
definition of a goal is also a meta-attribute of theGoal meta-concept. Its domain of value
is the set of logical formulas in the formal language used at the inner layer of the K
language.

2. And/Or meta-relationships

And/Or meta-relationships are introduced to support the declaration of altern
requirements fragments at the domain level. Since a goal can be refined into severa
native combinations of conjoined subgoals, the goal refinement meta-relationship
AND/OR meta-relationship.

An And/Or meta-relationshipR over conceptsC andD is a compound binary relation-
ship defined as follows [Dar93]:

R = AndR o OrR(“o” denotes relation composition)

with AndR ⊆ C × AltR, andOrR ⊆ AltR × D, whereAltR is a meta-concept that denote
the set of possible alternatives for the relationshipR. An instance ofR is a pair<c, {d1,...,
dn}> such that there exists an alternativealt ∈ AltR for which <c, alt> ∈ AndR and<alt,
di> ∈ OrR for i =1..n.

And/Or meta-relationships have aSelected attribute with “yes” and “no” as possible val
ues to record which alternatives are effectively selected.

And/Or meta-relationships are also subject to the following constraint:

for everyalt ∈ AltR there is exactly onec ∈ C such that<c, alt> ∈ AndR.

(In other words, the cardinality ofAltR in the relationAndR is (1:1).)

For theRefinement And/Or meta-relationship, the constraint requires that each alte
tive refinement has exactly one parent goal.

An Or meta-relationshipbetween conceptsC andD is an And/Or relationship that satis
fies the following additional constraint:

for everyalt ∈ AltR there is exactly oned ∈ D such that<alt, D> ∈ OrR

(In other words, the cardinality ofAltR in the relationOrR is (1:1).)

As will be seen below,Responsibility is an example of Or meta-relationship betwee
Agent andGoal; every alternative responsibility assignments links exactly one agent
one goal. (Several responsibility links may be used to assign several goals to the
agent.)

3. Meta-concepts specialization

Meta-concept specialization is captured through the binaryISA relation between con-
cepts. This relation is defined by

Isa(C1, C2) iff every instance ofC1 is also an instance ofC2.

A consequence of meta-concept specialization is that attributes and relationships d
on C2 are also defined onC1.
18

Goal-Oriented Requirements Engineering with KAOS

l con-
pre,

ntro-

oral
timed
ogic,
sulted
lysis

are
ther
ad-
ith-

time
rop-

be
volv-

for-
iven a
onse-
ithout
adapt
tem-

ntinu-

rs are
time

les of
3.2.3 Formal Specification of Timed Assertions

At the inner layer of the language, formal assertions can be attached to domain-leve
cepts. These assertions are values for the formal definition attribute of a goal; the
trigger, and post condition attributes of operations, etc. This section provides an i
duction to the formal logic used in this dissertation.

Time plays a critical role in requirement engineering. Goals define sets of temp
behaviours of the system. There are many competing formalisms for expressing
properties. The objective of the KAOS project has not been to define yet another l
but to choose among existing formal languages. The choice for such a language re
from a trade-off between the expressive power of the language and its formal ana
capabilities.

The logic used in KAOS is typed first-order real-time logic. Its real-time constructs
inspired by [Koy92]. It consists of the traditional temporal operators [Man92], toge
with additional real-time operators for specifying properties involving real-time de
lines. A key feature of the logic is its ability to model real-time properties concisely w
out referring explicitly to a time variable.

The temporal logic of [Koy92] has been extended with operators for specifying real-
properties referring to the absolute time of the system, and for specifying real-time p
erties in which the real-time bounds are allowed to change over time.

A limitation of the logic currently used in KAOS is that the time domain is assumed to
discrete. This makes it difficult to accurately capture and reason about properties in
ing time derivatives and integrals of time-continuous variables.

Note that the outer layer of the KAOS language is independent from the choice of
malisms at the inner layer of the language. The outer layer of the language can be g
precise semantics that is independent from the inner layer of the language. As a c
quence, one can learn and use the outer layer of the language in a precise way w
knowledge of the formal layer of the language. One can also more easily change or
the formalism used at the inner layer of the language, for instance, by replacing the
poral logic based on a discrete temporal domain by a temporal logic based on a co
ous time domain.

We now introduce the temporal operators used in the dissertation. These operato
classified into operators for specifying qualitative temporal properties, relative real-
properties, absolute real-time properties, and flexible real-time properties.

3.2.3.1 Qualitative Temporal Properties

Qualitative temporal properties are properties about sequences of states. Examp
such properties are:

“every request is eventually satisfied”

“every state satisfies some state invariant I”
19

Goal-Oriented Requirements Engineering with KAOS

rs of

ory is

l
te

:

Qualitative temporal properties are specified using the following classical operato
temporal logics [Man92]:

◊ (some time in the future) ♦ (some time in the past)
❑ (always in the future) ■ (always in the past)
W (always in the futureunless) B (always in the pastback to)
U (always in the futureuntil) S (always in the pastsince)

The semantics of such operators is defined over a linear temporal structure. An hist
a function

h: N → State,

whereN is a totally ordered set of time points, andState is the set of possible globa
states of the system. (Formally,State is the set of interpretation functions for the sta
variables of the model -- see Section 4.2.1.) In the sequel we takeN to be the set of natu-
ral numbers.

The notation

(h, i) |= P

is used to express that assertionP is satisfied at timei of historyh. An assertion is said to
be satisfied by an historyh iff it is satisfied at the initial time of the history, that is,

h |= P iff (h, 0) |= P.

The semantics of the above temporal operators is defined as follows [Man92]:

Future operators:

(h, i) |= ◊ P iff (h, j) |= P for some j≥ i
(h, i) |= ❑ P iff (h, j) |= P for all j ≥ i
(h, i) |= P U Q iff there exists a j≥ i such that(h, j) |= Q

and for every k, i≤k < j, (h, k)|= P

(h, i) |= P W Q iff (h, i) |= P U Q or (h, i)|= ❑ P

Past operators:

(h, i) |= ♦ P iff (h, j) |= P for somej ≤ i

(h, i) |= ■ P iff (h, j) |= P for all j ≤ i
(h, i) |= P S Q iff there exists a j≤ i such that(h, j) |= Q

and for every k, j< k ≤ i, (h, k)|= P

(h, i) |= P B Q iff (h, i) |= P S Q or (h, i) |= ■ P

The logic also uses the classical logical connectives∧ (and),∨ (or), ¬ (not),→ (implies),
↔ (equivalent), and the usual quantifiers∀ (for all), ∃ (exists).

We also use the following standard notations for entailment and strong equivalence

P ⇒ Q iff ❑ (P→ Q)
P ⇔ Q iff ❑ (P ↔ Q)

Note that there is an implicit❑-operator in every entailment.
20

Goal-Oriented Requirements Engineering with KAOS

lso be

les of

stem
l oper-
s are:

time
Since the temporal domain is assumed to be discrete, the following operators can a
introduced:

❍ (in the next state)●(in the previous state)

The semantics of these operators is defined as follows:

(h, i) |= ❍ P iff (h, i+1)|= P

(h, i) |= ● P iff (h, i-1)|= P and i>0

We also introduce the SCR-like notation @P to denote that an assertionP has just
become true:

@ P iff ● ¬ P ∧ P

The next and previous operators are also defined onterms of the language, i.e.,

VAL(h, i)(❍ T) = VAL(h, i +1)(T)

VAL(h, t)(● T) = VAL(h, i -1)(T) if i>0, otherwise it may have any value.

whereT is a term of the language, andVAL(h,i)(T) is the valuation function of termT at
time i of historyh.

3.2.3.2 Relative Real-Time Properties

In requirement engineering, one often needs to specify real-time properties. Examp
such properties are:

“every request should be satisfiedwithin an hour”

“every borrowed book copy should be returnedwithin 2 weeks”

Relative real-time properties are properties referring to real-time delays between sy
states. In order to specify such properties, bounded versions of the above tempora
ators are introduced in the style advocated by [Koy92]. Examples of such operator

◊≤d (some time in the future within deadlined)
❑≤d (always in the future up to deadlined)

To define such operators, the temporal structureN is enriched with a metric domainD
and a temporal distance function

dist: N × N → D

which has all desired properties of a metric [Koy92]. We will take

D: { d | there exists a naturaln such that d = n× δ},
whereδ denotes some chosen time unit

dist(i, j): | j - i | × δ

The ❍-operator then yields the nearest subsequent time position according to the
unit.
21

Goal-Oriented Requirements Engineering with KAOS

wing

”

mpo-

on as

f

alues

vail-
The semantics of the real-time operators is then defined accordingly, e.g.,

Future operators:

(h, i) |= ◊≤d P iff (h, j) |= P for somej ≥ i with dist(i, j) ≤ d

(h, i) |= ❑≤d P iff (h, j) |= P for all j ≥ i such thatdist(i, j) ≤ d

(h, i) |= P U≤d Q iff (h, j) |= Q for somej ≥ i with dist(i, j) ≤ d

and for every k, i≤k < j, (h, k)|= P

(h, i) |= P W≤d Q iff (h, i) |= P U≤d Q or (h, i)|= ❑≤d P

Past operators:

(h, i) |= ♦≤d P iff (h, j) |= P for somej ≤ i with dist(j, i) ≤ d

(h, i) |= ■≤d P iff (h, j) |= P for all j ≤ i with dist(j, i) ≤ d

(h, i) |= P S≤d Q iff (h, j) |= Q for somej ≥ i with dist(j, i) ≤ d

and for every k, i≤k < j, (h, k)|= P

(h, i) |= P B≤d Q iff (h, i) |= P S≤d Q or (h, i)|= ■≤d P

3.2.3.3 Absolute Real-Time Properties

Some real-time properties refer to the absolute time of the system, as in the follo
example

“every borrowed book copy should be returnedby the end of the year for inventory.

In order to capture such properties, we introduce bounded versions of qualitative te
ral operators in which the real-time bounds refer to theabsolute time of the system, e.g.,

◊≤T (some time in the future beforetime T)
❑≤T (always in the future up totimeT)

To define such operators, the temporal structureN is enriched with a function

time: N → Time

which assign to each time point the current time at that point. We define such functi
follows:

time(i) =def time(0) + dist(0, i)

The time at the initial time point, i.e.time(0), is arbitrarily chosen. The semantics o
absolute real-time operators is then defined as follows, e.g.,

(h, i) |= ◊≤T P iff (h, j) |= P for somej ≥ i such thattime(j) ≤ T

(h, i) |= ❑≤T P iff (h, j) |= P for all j ≥ i such thattime(j) ≤ T

3.2.3.4 Flexible real-time Properties

Flexible real-time properties are properties involving deadlines and delays whose v
are not necessarily fixed and may be time-dependent, as in the following example:

“When a reviewer accepts to review a paper, the review of the paper should be a
able to the associate editor in charge of the paperwithin somedelay which has been
agreed between the associate editor and the reviewer.”
22

Goal-Oriented Requirements Engineering with KAOS

may

ment
at the
ds.)

mpo-
hose

r the

ne.
d, the
he

ere
efined

ated
king
rently
In this last example, the delay for returning the review is a variable whose value
change over time; it could be extended or shortened.

Flexible real-time properties are the most frequent real-time properties in require
engineering. Most often, the real-time bound is a time-dependent variable. (Note th
operators defined in the previous sections only allowed for constant real-time boun

In order to capture such properties, we introduce bounded versions of qualitative te
ral operators in which the relative or absolute real-time bounds refer to variables w
values may change over time, e.g.,

◊≤d P: P holds before delayd has expired,
whered is a time-dependent variable of typeD

◊≤T P: P holds before deadlineT is passed,
whereT is a time-dependent variable of typeTime

These operators are defined over the temporal structure previously introduced.

The formal definition of such operators requires some attention. We first conside
operator◊≤T P whereT is a time-dependentdeadline.

The operator is formally defined as follows:

(h, i) |= ◊≤T Piff there existsj ≥ i such that(h, j) |= P
and for allk such thati ≤k ≤j, time(k) ≤ VAL(h,k)(T)

whereVAL(h,k)(T) is the value of the time-dependent variableT at the time positionk of
historyh.

The definition asserts that there is a future time pointj at whichP holds and that form the
current time pointi up to j, the current time is less that the current value for the deadli
As a consequence, if the deadline is extended before the initial deadline is passe
assertion is satisfied providedP holds before the extended deadline. However, if t
deadline is extended after the initial deadline is passed, the assertion is violated ifP did
not hold before the first deadline.

This operator is similar to the bounded obligation operator in [Ken93]. It is defined h
for declarative temporal assertions, whereas the bounded obligation operator is d
for a logic of operations.

The operator◊≤d P whend is a time-dependentdelay is similarly defined as follows.

(h, i) |= ◊≤d Piff there existsj ≥ i such that(h, j) |= P
and for allk such thati ≤k ≤j, time(k) - time(i) ≤ VAL(h,k)(d)

The definition of the past temporal operators is much simpler. The deadline is evalu
in the current state of interpretation; this corresponds to the intuition that when tal
about the past, the deadline or delay mentioned is by default the deadline as cur
defined. As an example, the operator■≤d whend is a time-dependent delay is formally
defined as follows:

(h, i) |= ■≤d P iff (h, j) |= P forall j < i such thattime(i) - time(j) ≤ VAL(h,i)(d).
23

Goal-Oriented Requirements Engineering with KAOS

rtion
el.

t usu-
hed-

sence
fica-

ll

his-
histo-

s sat-
ing
l lan-

las-

The

goal
3.2.4 The Goal Model

Having introduced the conceptual modelling framework and the temporal asse
framework, we now detail the various submodels that together define a KAOS mod

3.2.4.1 Defining Goals

As mentioned before, a goal defines an objective the composite system should mee
ally through the cooperation of multiple agents. For example, a goal in a meeting sc
uling problem would be that each requested meeting is eventually held with the pre
of all intended participants. This ideal goal might be captured by the following speci
tion fragment.

Goal Achieve[ConvenientMeetingHeld]

Definition each requested meeting is eventually being held with the presence of a
intended participants.
FormalDef ∀ m: Meeting:
m.Requested
⇒ ◊
m.Holds∧ (∀ p: Participant): Intended(p,m) → Participates(p,m)

Each goal has aname, a natural languagedefinition, and an optionalformal definition.
The above goal is namedAchieve[ConvenientMeetingHeld] (the Achieve verb is a key-
word that will be explained below).

A goal defines a set of admissible histories in the composite system. Intuitively, an
tory is a temporal sequence of states of the system. Each goal is satisfied by some
ries and falsified by some other histories. The notation

h |= G

is used to express that historyh satisfies the goalG.

The definition of a goal is a natural language statement describing the set of historie
isfying the goal. The formal definition of a goal is a temporal logic formula describ
the same set of histories. (It is the specifier’s responsibility to ensure that the natura
guage and formal definitions of a goal describe the same property.)

3.2.4.2 Classifying Goals

A goal taxonomyis used to guide the acquisition and definition of goals. Goals are c
sified according to their pattern and category.

The pattern of a goal is based on the temporal behaviour required by the goal.
KAOS language distinguishes the following four goal patterns:

Achieve goals: goals requiring that some property eventually holds
Cease goals: goals requiring that some property eventually stops to hold
Maintain goals: goals requiring that some property always holds
Avoid goals: goals requiring that some property never holds

Goal patterns provide a lightweight way of declaring the temporal behaviour of a
without writing formal goal definitions.
24

Goal-Oriented Requirements Engineering with KAOS

ition
erns

the
l and
goal
is
llows.

ut

nt

tegory
labil-
urity

into
sys-

main
rtici-
main
The pattern of a goal can also be used to guide the specification of the formal defin
of the goal: goal patterns constrain the formal definition of goals [Dar98]. Goal patt
and corresponding temporal formula templates include the following:

Achieve: P ⇒ ◊ Q, P ⇒ ◊≤d Q, P ⇒ ❍ Q
Cease: P ⇒ ◊ ¬ Q, P ⇒ ◊≤d ¬ Q, P ⇒ ❍ ¬ Q
Maintain: P ⇒ Q, P ⇒ ❑ Q, P ⇒ Q W R
Avoid: P ⇒ ¬ Q, P ⇒ ❑ ¬ Q, P ⇒ ¬ Q W R

Goal categoriesprovide a further classification of goals that can be used to guide
acquisition, definition and refinement of goals. The idea is to reuse common goa
goal-refinement techniques found in various application area. As an example, the
Achieve[ConvenientMeetingPlanned] is an instance of a satisfaction goal because it
concerned with satisfying an agent wish. The category of the goal is declared as fo

Goal Achieve[ConvenientMeetingHeld]
InstOf SatisfactionGoal
...

Goal categories include the following:

• Satisfaction goals areAchieve goals concerned with satisfying agent wishes.
• Safety goals areMaintain goals concerned with avoiding hazardous states
• Security goals areMaintain goals concerned with avoiding threats to the system
• Information goalsareAchieve goals concerned with making an agent informed abo

some states in its environment.
• Accuracy goals areMaintain goals concerning the accuracy of the beliefs of an age

about its environment.

Goal categories are organized into a specialization hierarchy. For example, the ca
of security goal is specialized into subcategories such as confidentiality goals, avai
ity goals, authentication goals, etc. according to standard classification in the sec
domain [Amo94]. The declaration of the goal category is optional.

3.2.4.3 Domain Properties

As will be seen below, domain properties play a critical role when refining goals
subgoals. A domain property is a property that is naturally true about the composite
tem. Physical laws are typical examples of domain properties. An example of do
property for the meeting scheduling problem is the fact that a participant cannot pa
pate simultaneously in two different meetings. Domain properties are declared as do
invariants attached to objects in the object model (see Section 3.3.2.5).
25

Goal-Oriented Requirements Engineering with KAOS

figure

e

t
ection
ld be

satis-
c-
ning

that

al-
3.2.4.4 Goal Refinement

Goals are related to subgoals through goal refinement links. As an example, the
below shows that the goalAchieve[PrtcptsCstrKnown] is refined into the two conjoined
subgoalsAchieve[PrtcptsCstrRequested] andAchieve[RequestedCstrProvided].

A goal can be refined into severalalternative combinations of subgoals. The figur
below shows an alternative refinement for the goalAchieve[PrtcpsCstrKnown], in which
participants constraints are retrieved from electronic agendas of participants.

In case of alternative goal refinements, aSelected attribute attached to goal refinemen
links is used to capture which alternative refinements are actually chosen. (The sel
of OR-refinement links is not exclusive; more than one alternative refinement cou
selected.)

Semantics of goal refinements

Formally, a set of goals {G1, ..., Gn} refines a goalG in a domain theoryDom if the fol-
lowing conditions hold [Dar95]:

1. G1, ..., Gn , Dom |= G (completeness)

2. ∧ j≠i Gj , Dom |≠ G for each i ∈ [1..n] (minimality)

3. G1, ..., Gn , Dom |≠ false (consistency)

The first condition requires that the satisfaction of the subgoals together with the
faction of domain properties inDom is sufficient for satisfying the parent goal. The se
ond condition requires that if a subgoal is left out of the refinement, the remai
subgoals are not sufficient for satisfying the parent goal. The third condition requires
the conjunction of the subgoals is logically consistent with the domain theory.

The formal definition of goals allows one to verify formally the completeness, minim
ity and consistency of goal refinements.

Achieve
[PrctptsCstrRequested]

Achieve
[PrctpsCstrKnown]

Achieve
[RequestedCstrProvided]

Achieve
[PrtcptsCstr
Requested]

Achieve
[PrtcptsCstrKnown]

Achieve
[RequestedCstr

Provided]

AND

Maintain
[PrtcptsAgenda

UpToDate]

Achieve
[PrtcptsCstrKnown

FromAgenda]

AND

OR
26

Goal-Oriented Requirements Engineering with KAOS

e ana-

for-
ntails

a.

i-
i-
Refinement tactics and patterns

Goal refinement tactics and formal refinement patterns have been defined to help th
lyst produce complete, minimal and consistent goal refinements [Dar95, Dar96].

Formal goal refinement patternsare generic goal refinements between abstract goal
mulations. They are proved correct once and for all. Reusing a refinement pattern e
reusing its proof. Formal refinement patterns are classified according torefinement tac-
tics. The latter help selecting goal refinement patterns according to semantic criteri

Two important goal refinement tactics are worth pointing out: themilestone-drivenand
thecase-driven goal refinement tactics (see [Dar95, Dar96] for further details).

The milestone-drivenrefinement tactic refines anAchieve goal of the formC ⇒ ◊ T by
introducing an intermediate milestoneM for reaching a state satisfying the target cond
tion T from a state satisfying the conditionC. A Typical goal refinement pattern assoc
ated with this tactic is shown in Figure 3.3.

As an example of using the pattern in Figure 3, consider the goalAchieve[PrtcptsCstr-
Known] defined as follows:

Intended(p,m) ⇒ ◊ CstrKnown(p,m)

The pattern above can be used to refine the goal with the following instantiations:

C : Intended(p,m)
T : CstrKnown(p,m)
M : CstrRequested(p,m)

That is, the goal is refined by introducing the intermediate milestoneCstrRe-
quested(p,m). The following subgoals are thereby obtained:

Goal Achieve[PrtcptsCstrRequested]
FormalDef ∀m: Meeting, p: Prtcpt
Intended(p,m) ⇒ ◊ CstrRequested(p,m)

Goal Achieve[RequestedCstrProvided]
FormalDef ∀m: Meeting, p: Prtcpt
CstrRequested(p,m) ⇒ ◊ CstrKnown(p,m)

C ⇒ ◊ T

C ⇒ ◊ M M ⇒ ◊ T

 FIGURE 3.3. Milestone-driven goal refinement pattern
27

Goal-Oriented Requirements Engineering with KAOS

cal

goal
ut
g the

fine-

high

als
Thecase-drivengoal refinement tactic refines a goal by splitting it into cases. A typi
goal refinement pattern associated with this tactic is shown in Figure 3.4.

As an example of application of the case-driven goal refinement tactic, consider the
Achieve[PrtcptsCstrRequested]. If different constraint requests have to be sent o
according to the importance of the participant, one can refine the goal by instantiatin
case-driven refinement pattern in Figure 3.4 as follows:

P : Intended(p,m)
Q : ◊ CstrRequested(p,m)
C1: Intended[p,m].importance = ‘High’
C2: Intended[p,m].importance = ‘Low’.

The following subgoals are thereby obtained:

Goal Achieve[ImprtPrtcptsCstrRequested]
FormalDef ∀m: Meeting, p: Prtcpt
Intended(p,m) ∧ Intended[p,m].importance = ‘High’ ⇒ ◊ CstrRequested(p,m)

Goal Achieve[OtherPrtcptsCstrRequested]
FormalDef ∀m: Meeting, p: Prtcpt
Intended(p,m) ∧ Intended[p,m].importance = ‘Low’ ⇒ ◊ CstrRequested(p,m)

(Note that these subgoals form an AND-refinement of the parent goal, not an Or-re
ment.)

The third assertion resulting from the instantiation of the pattern, that is,

Intended(p,m)
⇒ Intended[p,m].importance = ‘High’ ∨ Intended[p,m].importance = ‘Low’

is a domain property stating that the importance of an intended participant is either
or low.

3.2.4.5 Goal Conflicts

Conflicts between goals can be recorded through instances of theConflict meta-relation-
ship. Intuitively, a set of goals are conflicting if they cannot be realized together.

As an example, consider a system to control a pump inside a mine [Jos96]. The go

Maintain[PumpOnWhenHighWater] andMaintain[PumpOffWhenCriticalMethane]

can be formally defined as follows

s.WaterLevel > ‘HighWater’ ∧ HasPump(s,p) ⇒ p.Status = ‘On’

s.MethaneLevel > ‘Critical’ ∧ HasPump(s,p) ⇒ p.Status = ‘Off’

P ⇒ Q

P ∧ C1 ⇒ Q P ⇒ C1 ∨ C2P ∧ C2 ⇒ Q

 FIGURE 3.4. A case-driven goal refinement pattern
28

Goal-Oriented Requirements Engineering with KAOS

ve the
e on

e two

istent

meth-
con-

goals

92,
-
goal
oals
-level

signs
eet-
ting.

i-

uch a
onic
erna-
These goals cannot always be realized together. Whenever the water level is abo
high water level and the methane level is critical, the first goal requires the pump to b
whereas the second one requires the pump to be off. A binary conflict between th
goals can be represented graphically as suggested in Figure 3.5.

Note that the two goals are not logically inconsistent. However, they become incons
whenever the following condition holds:

∃ s: Sump, p: Pump
◊ s.WaterLevel > ‘HighWater’ ∧ s.MethaneLevel > ‘CriticalMethane’ ∧ HasPump(s,p)

That is, the two goals are inconsistent when the water level is above high and the
ane level is critical. This assertion is called the boundary condition of the effective
flict. Such potential conflicts are called divergences.

Formally, a set of goals {G1, ..., Gn} is divergent if there exists aboundary conditionB
such that the following conditions hold [Lam98]:

1. {B, G1, ..., Gn , Dom} |= false (logical inconsistency)

2. for everyi: {B, ∧ j≠i Gj , Dom} |≠ false (minimality)

Further details about goal conflicts and divergences can be found in [Lam98b].

3.2.4.6 Soft Goals and Optimization Goals

In addition to goals that define a set of admissible histories, we also consider soft
and optimization goals.

Softgoalsare goals that do not have a clear-cut criterion for their satisfaction [Myl
Myl99]. Instead of goal satisfaction, goalsatisficingis introduced to express that lower
level goals or requirements are expected to contribute to the satisfaction of the
within acceptable limits rather than absolutely. Soft goals are generally high-level g
that need to be refined into more precise goals. Examples of softgoals are high
‘non-functional’ goals such as usability, flexibility, maintainability, etc.

Optimizationgoals are softgoals that enable one to compare alternative system de
through minimize/maximize operators. An example of an optimization goal in the m
ing scheduling problem is to minimize the interaction among participants to a mee
Such a goal might be captured by the following specification fragment.

Goal Minimize[ParticipantInteraction]
Definition minimize the number of meeting-related messages sent to partic

pants

Alternative designs for the meeting scheduling problem can be evaluated against s
goal. The alternative in which participants’ constraints are known through electr
agendas better contributes to minimizing interaction among participants than the alt
tive in which the participants’ constraints are explicitly requested.

Maintain
[PumpOffWhenCriticalMethane]

Maintain
[PumpOnWhenHighWater]

 FIGURE 3.5. Goal conflict: an example
29

Goal-Oriented Requirements Engineering with KAOS

con-
An
oning
elect-

are

ect
pecific

t

uld
r

e. A
n

mber
ously

o-
ecial-

ting
Softgoals and optimization goals can be And/Or refined like any other KAOS goals,
flicts between softgoals/optimization goals can also be captured [Myl92, Myl99].
important research issue concerns the precise definition of optimization goals, reas
techniques about soft goals and optimization goals, and the role of such goals in s
ing among alternative goal refinements.

In graphical representations of goal models, softgoals and optimization goals
depicted by cloud-like symbols.

3.2.5 The Object Model

3.2.5.1 Objects

An object instance is a “thing” that can be distinctly identified. A domain-level obj
describes a set of such instances that share some common characteristics. A s
meeting is an example of an object instance. The domain-level objectMeeting is a con-
ceptual abstraction characterizing all meeting instances.

For each domain-level objectObj, there is a built-in setmember(Obj) that denotes the se
of objects instances that are currently members of the domain-level object1. The notation
InstOf(o,Obj) is also used to denote that the object instanceo is currently a member of the
domain-level objectObj, i.e.,

InstOf(o,Obj) iff o ∈ member(Obj)

Each domain-level object has a name and a definition. Thenameof the object is used to
identify the object. Thedefinitionof an object is a natural language statement that sho
provide a precise interpretation for the setmember(Obj), so that one can tell whether o
not a particular object instance is currently an instance of the domain-level object.

The set of instances that are currently members of an object may change over tim
given person could be an instance ofStudent at some time, and could no longer be a
instance of that object at some later time.

Note also that objects are not necessarily disjoint. An object instance may be a me
of several objects simultaneously. As an example, a given person could simultane
be an instance of the two different objectsParticipant andInitiator.

The KAOS object meta-model distinguishes among different kinds of objects. AnObject
is anEntity, Relationship, Event or Agent, depending on whether the object is auton
mous, subordinate, instantaneous or active. Table 3.1 summarizes the different sp
izations of theObject meta-concept and lists a few examples of objects from the mee
scheduling problem.

Objects are always declared as being of one of the specializations of theObject concept.
These specializations are further described below.

1. The setmember(Obj) replaces the “Exists” attribute of the original KAOS language described in [Dar93].
30

Goal-Oriented Requirements Engineering with KAOS

t

ched-

ome

erty
3.2.5.2 Entities

An entity is an autonomous object. TheMeeting object is an example of an entity. I
might be declared in KAOS as follows

Entity Meeting
Definition An instance of Meeting is any actual meeting that has already
been held or any wished meeting (no matter whether it will actually be
held or not).

As a specialization ofObject, the meta-concept ofEntity inherits all features of object;
each entity is identified by anameand has adefinition that is used to define which
instances are currently a member of the domain-level entity.

3.2.5.3 Events

An event instance is an instantaneous object. An example of event in the meeting s
uling problem is the eventMeetingRequest, which may be specified as follows.

Event MeetingRequest
Definition An instance of MeetingRequest occurs when an initiator
requests a new meeting to be scheduled.

As any specialization of object, each domain-level event is identified by anameand has
adefinition which define its event instances.

An event instance is said to occur at the current time if it is currently an instance of s
domain-level event, i.e. we introduce the following notation:

ev.occurs iff InstOf(ev,E) for some domain-level eventE.

The instantaneous nature of event is captured by the following built-in domain prop
which says that an event instance occurs only once in any given history:

forall h: History, ev: EventInstance
if (h, t) |= ev.occurs then for all t’ ≠ t (h, t’) |≠ ev.occurs

In temporal logic, this property is defined by:

ev.occurs ⇒ ❍ ❑ ¬ ev.occurs ∧ ● ■ ¬ ev.occurs

Definition Examples

ENTITY autonomous object Meeting

AGENT active object Initiator, Scheduler, Participant

EVENT instantaneous object MeetingRequest

RELATIONSHIP subordinate object Intended (links Participant and Meeting)
Scheduling (links Scheduler and Meeting)

TABLE 3.1. Specializations of the Object meta-concept
31

Goal-Oriented Requirements Engineering with KAOS

agents
ple of
s fol-

artic-
ontrol
ctions
ibility

a
f

-

s an

hip.

ich a

ies. If
xplic-

that
operty
inality
3.2.5.4 Agents

Agents are active objects, that is, they are capable of performing operations. Such
may be software agents, hardware devices, or humans. The scheduler is an exam
software agent in the meeting scheduling problem. This agent may be declared a
lows.

Agent Scheduler
Definition A scheduler is a software agent assisting the meeting initiator
for meeting planning.

As a specialization of object, agents are declared by a name and a definition. The p
ular (meta-) features of agents are that they can perform operations, monitor and c
objects, and take responsibility for goals. Such features are described in the se
describing the operation model, the agent interface model, and the agent respons
model.

3.2.5.5 Relationships

A relationship is a mathematical relation betweenn objects. For example, theIntended
relationship linksParticipant andMeeting. It is specified as follows.

Relationship Intended
Links Participant role is_intended_to card 0:N

 Meeting role has_participant card 0:N
Definition the participant is intended to participate at the meeting.

As a specialization ofObject, the concept ofRelationship has aname and adefinition.

Each relationship also has an ordered set oflinks to specific entities, events or agents. If
relationshipRel has the set of links{Obj1, Obj2, ..., Objn}, the set of current instances o
the relationship is given by

member(Rel) ⊆ {<ob1,, obn> | InstOf(obi, Obji) for i ∈[1..n]}

The instances of the relationship are those tuples<ob1,..., obn> of object instances which
are linked by the relationship. Note that theObji in the above definition may not be dis
tinct. For example, the relationshipBrother links the objectPerson to itself.

The following notation is introduced to denote that a tuple of object instances i
instance of the relationshipRel:

Rel(ob1,..., obn) iff <ob1,...., obn> ∈ member(Rel)

Each link of a relationship to an object has a role and has cardinality constraints.

Therole of an object in a relationship is the function that it performs in the relations

The cardinality of an object in a relationship link is a pair(mincard, maxcard) that
denotes the minimum and maximum number of instances of the relationship in wh
given object instance can be involved simultaneously, respectively.

Cardinality constraints in the object model can only be used to state domain propert
a cardinality constraint is a goal rather than a domain property, it must be stated e
itly in the goal model. For instance, consider a train control system, and the property
two trains should never be at the same time on the same track segment. This pr
defines a goal rather than a domain property. It should not be declared as a card
constraint in the object model.
32

Goal-Oriented Requirements Engineering with KAOS

les of

, the
d

f the

a par-

utes
3.2.5.6 Attributes

Objects may have attributes. The date and date range of a meeting are examp
attributes of theMeeting entity. Such attributes are declared in KAOS as follows.

ENTITY Meeting
Definition ...
Has
date_range: SetOf[Date]

the set of dates within which the meeting should take place
date: Date

the planned date of the meeting. If the meeting is not planned, the
date is undefined.

Each attribute has aname, a rangeof values, and adefinition. The above attributes are
nameddate_range and date; their range of values areSetOf[Date] and Date, respec-
tively.

The semantics of an attributeAttr declared for an objectO with a rangeD is a function

Attr: member(O) → D.

The function defined by an attribute is not necessarily total. In the example above
date attribute of theMeeting entity is a partial function. A meeting that is not yet planne
does not have a date.

The definition of an attribute is a natural language description of the meaning o
attribute.

Note that relationships may also have attributes. As an example, the importance of
ticipant for a meeting can be declared as follows:

Relationship Intended
Links Participant role is_intended_to card 0:N

 Meeting role has_participant card 0:N
Definition Intended(p,m) iff participant p is intended to participate at meet-
ing m.
Has
importance: {High, Low}

3.2.5.7 Specialization

Inheritance between objects can be declared through instances of theIsA meta-relation-
ship. As an example, theParticipant agent can be declared as a specialization of thePer-
son agent.

The semantics ofIsA links between objects is membership inclusion, i.e.

If IsA(Obj1, Obj2) thenmember(Obj1) ⊆ member(Obj2)

Inheritance of object features is a consequence of this definition. That is, attrib
declared forObj2 are defined on instances ofObj1 as well; and relationships linkingObj2
link instances ofObj1 as well.
33

Goal-Oriented Requirements Engineering with KAOS

invari-

vari-

s:

oal
mal
3.2.5.8 Invariants

Domain properties that are naturally true about objects can be declared as domain
ants.

As an example, consider theMeeting entity specified as follows:

ENTITY Meeting
Definition ...
Has
date: Date

the planned date of the meeting. If the meeting is not planned, the
date is undefined.

planned: Bool
a meeting is planned if there exists a date for the meeting

DomInvar
m.planned ⇔ (∃ d: Date) m.date = d

The above invariant formally defines what a planned meeting is in the domain.

Cardinality constraints are short-cuts for specifying a restricted class of domain in
ants.

3.2.5.9 Consistency rules between the object and goal model

As mentioned before, there is a meta-constraint relating the goal and object model

Every vocabulary element used in the formal definition of goals must be declared
in the object model.

Consider for instance the goalAchieve[PrtcptsCstrRequested] defined above as follows:

∀m: Meeting, p: Prtcpt
Intended(p,m) ⇒ ◊ CstrRequested(p,m)

The formal definition references the sortsPrtcpt and Meeting, and the predicates
Intended and CstrRequested. In order to satisfy the meta-constraint between the g
and object models, the following portion of the object model is derived from the for
definition of the goal:

In the KAOS meta-model, aConcern meta-relationship linkingGoal to Object is used to
keep track of the objects concerned by the goal.

Prtcpt Meeting
Intended

CstrRequested
34

Goal-Oriented Requirements Engineering with KAOS

als to
ment
d fur-

goal

si-

d an

goal.
hich
bject

tions.
3.2.6 The Agent Responsibility Model

The agent responsibility model is used to declare responsibility assignments of go
agents. Responsibility assignments provide a criterion for stopping the goal refine
process. A goal assigned as the responsibility of a single agent must not be refine
ther.

3.2.6.1 Responsibility Links

Responsibility is an OR meta-relationship that links agents to goals.Responsibility links
declare potential responsibility assignment of goals to agents.

Examples of responsibility assignment are shown in Figure 3.6. In the figure, the
Achieve[PrtcptsCstrRequested] is potentially assigned to theInitiator agentor to the
Scheduler agent. The goalAchieve[RequestedCstrProvided] is potentially assigned as
the responsibility of theParticipant agent.

Responsibility links have aSelectedattribute used to indicate which alternative respon
bility assignments are actually chosen.

A goal effectively assigned to an agent in the software-to-be is then called aRequire-
ment, whereas a goal effectively assigned to an agent in the environment is calle
Assumption.

3.2.6.2 Instance declarations

At the outer-level, responsibility links declare the agent class responsible for the
Instance declarations attached to responsibility links specify more precisely w
instance of the agent class is responsible for the goal instantiated to specific o
instances. The following example illustrates the need for such instance declara
Consider an air traffic system, and the goalMaintain[PlaneInRegionOnCourse] whose
definition is given by

∀ pl: Plane, atc: AirTrafficController

InRegion(pl, atc) ⇒ pl.OnCourse

Achieve
[PrctptsCstrRequested]

Achieve
[PrctpsCstrKnown]

Achieve
[RequestedCstrProvided]

Participant

Initiator

Scheduler

OR

Resp

Resp Resp

 FIGURE 3.6. Responsibility assignments
35

Goal-Oriented Requirements Engineering with KAOS

troller

more
t is,
hose

l for-
ndent
sally
e fol-

ility
f

to
traffic

its
sible

t the
as to

 are.

ra-
nts is
raint
trained
eta-
Suppose that the goal can be assigned as the responsibility of the air traffic con
agent. Such responsibility assignment could be declared as follows:

Responsibility [AirTrafficController, PlaneInRegionOnCourse]

Instance Declaration∀ atc: AirTrafficController, pl: Plane

Responsibility [atc, InRegion(pl, atc) ⇒ pl.OnCourse]

The outer level declaration declares that agents that are instances ofAirTrafficController
are responsible for maintaining planes on course. The instance declaration defines
precisely which instance of air traffic controller is responsible for which plane, tha
each instance of air traffic controller is responsible for maintaining on course only t
planes which are in the region it controls.

TheResponsibilityoperator relates a term denoting an agent instance to a tempora
mula. (This does not introduce second-order into the language.) It is a time-indepe
declaration of responsibility assignment at the instance level. It can only be univer
quantified, i.e. instance declarations attached to responsibility links must have th
lowing form:

(∀ ag: Agent, ob1: Obj1, ..., obn: Objn): Responsibility(ag, G(ag, ob1, ..., obn)).

(The Responsibilityoperator can only be used to define instance-level responsib
assignments attached toResponsibility links; it cannot be used in the formal definition o
goals.)

Note that even though theResponsibilityoperator is time-independent, it enables one
declare time-dependent responsibility assignments. In the example above, an air
controller is responsible for maintaining a plane on course while the plane is in
region. When the plane leaves its region, the air traffic controller is no longer respon
for maintaining that plane on course.

3.2.6.3 Semantics of Responsibility

The (intuitive) meaning of a responsibility assignment of a goal to an agent is tha
agent responsible for a goal is the only one required to restrict its behaviour so
ensure the goal [Fea87].

As an example, consider the goalAchieve[PrtcptsCstrRequested] assigned to theSched-
uler agent. This declaration of responsibility means that theScheduler must restrict its
behaviour so as to ensure this goal, no matter what the behaviours of other agents

The meaning of responsibility assignments is made explicit throughoperationalization
links that relate goals to requirements on operations and through theresponsibility meta-
constrainton such links. Intuitively, a set of requirements on the application of ope
tions operationalize a goal if the temporal behaviours produced by such requireme
included in the set of histories admitted by the goal; the responsibility meta-const
requires that only operations assigned to the agent responsible for a goal are cons
so as to operationalize that goal. Operationalization links and the responsibility m
constraint are further discussed in Sections 3.2.7.5 and 3.2.7.6.
36

Goal-Oriented Requirements Engineering with KAOS

tate
stinc-
ate

ls are

e

e
where
has a

lusion
goal
a-
e

ra-

ica-

be

to

a-

ger,
3.2.7 The Operation Model

An operationis an input-output relation over objects; operation applications define s
transitions. Operations are characterized by pre-, post-, and trigger conditions. A di
tion is made betweendomainpre/postconditions, which capture the elementary st
transitions defined by operation applications in the domain, andrequired pre/trig-
ger/postconditions, which capture additional strengthenings to ensure that the goa
met.

As an example, the operationPlanMeeting in the meeting scheduling problem may b
defined as follows.

Operation PlanMeeting
Input Meeting {arg m}

 Intended
Constraint

Output Meeting /{Planned, Date}
DomPre ¬ m. Planned
DomPost m.Planned
ReqPostFor Maintain[ConvenientMeetingDate]
(∀ p: Participant): ● Intended(p,m) → m.Date ∉ ● Constraint[p,m].exclset

The operation above is namedPlanMeeting. Its domain pre and post condition captur
elementary state transitions corresponding to the operation, namely, from a state
the meeting is not planned to a state where the meeting is planned. The operation
required post condition which states that the meeting date must be outside the exc
set of all intended participants. This required post condition operationalizes the
Maintain[ConvenientMeetingDate]. The Input/Output clauses provide signature inform
tion (in particular, the output ofPlanMeeting is restricted to two specific attributes of th
Meeting object).

3.2.7.1 Domain Pre/Post and Required Pre/Trigger/Post Conditions

In addition to its name, each operation is characterized by the following features1:

• A domain preconditioncharacterizing the states before any application of the ope
tion;

• A domain postconditiondefining a relation between states before and after appl
tions of the operation;

• Required preconditionsdefining those states in which the operation is allowed to
applied;

• Required trigger conditionsdefining those states in which the operation is obliged
be immediately applied provided the domain precondition is true;

• Required post conditionsdefining additional conditions that applications of the oper
tion must satisfy.

Required pre, trigger and post conditions are related to goals throughoperationalization
links further described below (Section 3.2.7.5).

1. This description of the operation model is slightly different from the one in [Dar93] where required pre-, trig
and postconditions are defined as attributes of a meta-relationship relating operations to goals.
37

Goal-Oriented Requirements Engineering with KAOS

ity
rts the

e dif-
indi-

nter-
itions

on is
ondi-
rue,

ired

te in
pera-

resp.

rtions

up

tes
d by an

very
con-
f sin-
Operations denote atomic state transitions. In case where one needs to model an activ
that lasts over several states, it is necessary to model one atomic operation that sta
activity, one atomic operation that ends the activity (or several operations if there ar
ferent ways in which the activity can terminate), and one additional state variable to
cate that the activity currently holds.

Several operations can occur concurrently. This non-interleaving semantics is mostly
motivated by the semantics of trigger conditions as immediate obligations. With an i
leaving semantics, an operation model would be inconsistent when the trigger cond
of two (or more) operations are true at the same time.

A formal semantics for the operation model is defined in chapter 7.

Note the difference betweenrequired preconditionand required trigger condition.
Required preconditions define permissions to apply the operation. If the operati
applied, the required preconditions of the operation must be true. Required trigger c
tions define immediate obligations to perform the operation. If a trigger condition is t
the operation must be applied (provided that the domain precondition is true).

A meta-constraint of the language is that required trigger conditions must imply requ
preconditions, that is,

ReqTrig ⇒ ReqPre.

Violations of that constraint yield inconsistent operation models. If there is a sta
which a required trigger condition is true and a required precondition is false, the o
tion must be applied immediately whereas it may not be applied at the same time.

3.2.7.2 Inputs and Outputs

Operations are related to objects throughInput/Output links. An object is among the
inputs (resp. outputs) of an operation if it is among the sorts making up the domain (
codomain) of the relation defined by the operation.

For thePlanMeeting operation above, the objectsMeeting, Intended andConstraint are
declared asInput of the operation, whereas the objectMeeting is declared asOutput of
the operation.

The Input and Output meta-relationships have optionalArgumentand Result meta-
attributes, respectively, to declare instances of variables referenced in the asse
attached to the corresponding operation.

Input andOutput links may also declare more precisely which object attributes make
the domain and codomain of the operation. In the example above, thePlanned andDate
attributes of theMeeting entity are declared as outputs of the operation. Attribu
declared as outputs of an operation are the only ones whose value can be change
application of the operation.

3.2.7.3 Initial Conditions

One can also define initial conditions that must be satisfied at the initial state of e
history. Initial conditions can be declared as domain properties or as goals. Goals
straining the initial state of the system are also to be assigned as the responsibility o
gle agents.
38

Goal-Oriented Requirements Engineering with KAOS

is

n-
nment

oper-
ects).

e to

meta-

ation

nd
pre,
s on

zation
3.2.7.4 Performance Links

An operation is related to the agent that can initiate it through aPerformance link. Per-
forming is an OR meta-relationship linking agents to operations.

As an example, the operationPlanMeeting could be alternatively assigned to theSched-
uler agent or to theInitiator agent.

As an OR meta-relationship, it has aSelected attribute used to denote which agent
effectively assigned to which operation in the selected alternative.

Instance declarations attached toPerformance links are used to declare specific assig
ments of operations to specific agents at the instance level. For example, the assig
of the operationPlanMeeting to theScheduler agent can be declared as follows:

Performance [Scheduler, PlanMeeting]
InstDecl ∀ sch: Scheduler, m: Meeting
Scheduling(sch, m) ⇒ Performance(sch, PlanMeeting(m))

ThePerformance operator relates an agent instance to an operation instance (i.e. an
ation with its arguments and results instantiated to instances of input and output obj
Instance declarations forPerformance links have the form:

R(ag, ob1, ..., obn) ⇒ Performance(ag, op(ob1, ..., obn)

whereR is a domain-specific predicate relating a term denoting an agent instanc
instantiation of the arguments and result of the operation.

“Unique performer” meta-constraint

In some given alternative, an operation is associated with exactly one agent. In the
model, this is captured by defining the cardinality constraint of theOperation concept in
thePerformance relationship to be (1:1). At the instance level, the predicateR must sat-
isfy the following constraint:

R(ag, ob1, ..., obn) ∧ R(ag’, ob1, ..., obn) ⇒ ag = ag’

3.2.7.5 Operationalization Links

Required pre-, trigger, and postconditions are related to goals through operationaliz
links.

TheOperationalization meta-relationship is an AND/OR relationship between goals a
required pre, trigger, and post conditions of operations. Intuitively, a set of required
trigger, and post conditions operationalizes a goal if satisfying the required condition
operations guarantees that the goal is satisfied. A formal semantics of operationali
links is defined in Chapter 7.

As an example, the above required post condition on the operationPlanMeeting is intro-
duced to ensure the goalMaintain[ConvenientMeetingDate].

As another example, consider a mine pump control system and the goalMaintain[Pump
SwitchOnWhenHighWaterDetected]. This goal defined as follows:

∀ c: PumpController
● c.HighWaterSignal = ‘On’ ⇒ c.PumpSwitch = ‘On’
39

Goal-Oriented Requirements Engineering with KAOS

on-

p

d to
on of

al to
so as
onsi-
nal-

i-

ust
An operationalization of that goal is given by the following required trigger and prec
ditions on the operationsSwitchPumpOn andSwitchPumpOff:

Operation SwitchPumpOn
Input PumpController {arg c}/ HighWaterSignal
Output PumpController {res c} / PumpSwitch
DomPre c.PumpSwitch = ‘Off’
DomPost c.PumpSwitch = ‘On’
ReqTrigFor Maintain[PumpSwitchOnWhenHighWaterDetected]

c.HighWaterSignal = ‘On’

Operation SwitchPumpOff
Input PumpController {arg c}/ HighWaterSignal
Output PumpController {res c} / PumpSwitch
DomPre c.PumpSwitch = ‘On’
DomPost c.PumpSwitch = ‘Off’
ReqPreFor Maintain[PumpSwitchOnWhenHighWaterDetected]

¬ c.HighWaterSignal = ‘On’

The required trigger condition on theSwitchPumpOn operation requires that the pum
must beswitched on when theHighWaterSignal is On; the required precondition on the
SwitchPumpOff operation requires that the pumpmay beswitched off only if theHigh-
WaterSignal is notOn.

The formal definition of operationalization links defined in Chapter 7 can be use
show that those requirements constitute a complete and minimal operationalizati
the goal.

3.2.7.6 The responsibility meta-constraint

As mentioned in Section 3.3.2.6.3, the semantics of assigning responsibility for a go
an agent is that only the agent responsible for the goal should restrict its behaviour
to ensure the goal [Fea87]. This is captured in the meta-model by the following resp
bility meta-constraint on operationalization links. It requires that the goal be operatio
ized by strengthening only the operations performed by the responsible agent:

if Responsibility(Ag, G) andOperationalization({P1, ..., Pn}, G)
thenPerformance(Ag, Operation(Pi)) for all n =[1..n]

whereOperation(Pi) denotes the operation constrained by the requirementPi.

As an example, if the goalMaintain[ConvenientMeetingDate] is assigned as the respons
bility of the Scheduler agent, the operationPlanMeeting whose required postcondition
operationalize the goal must be assigned to the sameScheduler agent.

Similarly, if the goalMaintain[PumpSwitchOnWhenHighWaterDetected] is assigned as
the responsibility of thePumpController agent, the operationsSwitchPumpOn and
SwitchPumpOff whose required trigger and pre conditions operationalize that goal m
be performed by thePumpController agent.
40

Goal-Oriented Requirements Engineering with KAOS

ed by
nts is
ntities
AOS

the

te
about

ent
s an
ider

t a

t are
that
bles

agent

ones

t the
eans
t rep-
3.2.8 The Agent Interface Model

The agent interface model is used to declare the quantities monitored and controll
each agent. Declaring which quantities are monitored and controlled by which age
important as the requirements assigned to an agent must be defined in terms of qua
monitored and controlled by the agent [Fea87, Par95, Jac95, Zav97]. In the K
framework, such quantities correspond to object attributes and links.

3.2.8.1 Monitoring and Control Links

Agent interfaces are declared throughMonitoring andControl links between agents and
objects’ attributes.

The meaning of aMonitoring link between an agent and an object attribute is that
agent directly monitors (“reads”) the value of the attribute.

As an example, theScheduler software agent does not directly monitor the actual da
constraints of the intended participants of a meeting; but it monitors the messages
constraints that it receives from participants.

The meaning of aControl link between an agent and an object attribute is that the ag
directly controls (“writes”) the value of the attribute. In other words, an agent control
attribute if it is capable of controlling state transitions for that attribute. We also cons
that attributes controlled by an agent are observable by that agent as well.

As an example, theScheduler agent does not control the presence of participants a
meeting, but it could be declared to control the planned date of meetings.

In addition to monitored and controlled variables, we also consider variables tha
internal to an agent. An internal attribute of an agent is an attribute controlled by
agent and monitorable by no other agents. (The motivation for having internal varia
in addition to interface variables is discussed in Section 6.5 of Chapter 6.)

To simplify the description of the model, we use the syntactic convention thatMonitoring
(resp.Control) links can also be declared between an agent and an object when the
monitors (resp. controls) all attributes of the object.

For instance, the declarations below state that theScheduler agent monitors theMeet-
ingRequest event controlled by theInitiator agent; and theScheduler agent controls the
date of theMeeting object.

Monitors [Scheduler, MeetingRequest]
Control [Initiator, MeetingRequest]
Control [Scheduler, Meeting.Date]

Graphically, agent interfaces are represented by context diagrams similar to the
used in Structured Analysis [Dem78].Monitoring andControl links are represented by
arrows labelled with attributes (or objects). An arrow leaving an agent means tha
agent controls the attributes attached to the arrow; an arrow pointing to an agent m
that the agent monitors the attributes attached to the arrow. Internal variables are no
resented on the graphical view of the model.
41

Goal-Oriented Requirements Engineering with KAOS

as

can
sented

e for

nce.

s:

urrent

e. It is
ample,
TheMonitoring andControl links in the example above will be represented graphically
follows.

Monitoring andControl are Or meta-relationships. Alternative agent interface models
be represented. In the graphical view, alternative agent interface models are repre
by separate, alternative agent interface diagrams.

3.2.8.2 Instance declarations

Instances declarations attached toMonitoring and Control links enable one to describe
more precisely which agent instance monitors or controls the values of the attribut
which object instance.

For example, the instance declaration attached to the followingControl link declares that
the scheduler instancesch scheduling the meetingm controls the date of that meting.

Control [Scheduler, Meeting.Date]
InstanceDeclaration (∀ sch: Scheduler, m: Meeting):
Scheduling(sch,m) ⇒ Ctrl(sch, m.Date)

TheMon andCtrl operators relate an agent instance to an attribute of an object insta
Instance declarations forMonitoring andControl links have the form

R(ag, o) ⇒ Mon(ag, o.Attr)
R(ag, o) ⇒ Ctrl(ag, o.Attr)

whereR is a domain-specific predicate betweenag ando.

3.2.8.3 The “unique control” meta-constraint

TheControl meta-relationship must satisfy theunique control constraintrequiring that in
each alternative an object’s attribute is controlled by at most one agent.

At the outer-level of the language, the unique control constraint is defined as follow

if Control(ag, Ob.Attr) then there is noag’ ≠ ag such thatControl(ag’, Ob.Attr).

At instance-level, the unique control constraint requires that the predicateR involved in
an instance declaration of the form

R(ag, o) ⇒ Ctrl(ag, o.Attr)

satisfies the following condition:

R(ag, o) ⇒ ¬ (∃ ag’) ag’ ≠ ag ∧ R(ag’, o).

The unique control constraint is used to avoid interference problems between conc
executions of agents.

The unique control constraint is an important and necessary feature of the languag
necessary to be able to assign goals as the responsibility of single agents. As an ex
consider a goal requiring that a predicateP never holds:

❑ ¬ P

Initiator Scheduler
MeetingRequest Meeting.Date
42

Goal-Oriented Requirements Engineering with KAOS

n
agent

two

fol-

resp.
g the

bility
efined
c95,

goal
eld
o the
s and

oal is
oni-

sign-
to
If the predicateP is controlled both by the agentsag1 andag2, none of these agents ca
alone guarantee the goal: if the goal is assigned as the responsibility of the unique
ag1, nothing prevents the other agent from making the predicateP true, thereby violating
the goal.

The unique control constraint sometimes requires a single variable controlled by
agents to be split into two variables, each controlled by a single agent.

3.2.8.4 The input/output meta-constraint

In a given alternative, theMonitoring andControl links of an agent are related to theInput
andOutput links of the operations performed by the agent. This is captured by the
lowing input/output meta-constraint of the language:

(i) if Input(Ob.Attr, Op) and Performance(Ag, Op)
then Monitoring(Ag, Ob.Attr) or Control(ag,

Ob.Attr)
(ii) if Output(Ob.Attr, Op) and Performance(Ag, Op) then Control(Ag, Ob.Attr)

These constraints capture the facts that every attribute which is part of the input (
output) of the operation must be monitored (resp. controlled) by the agent performin
operation.

3.2.8.5 The realizability meta-constraint

The monitoring and control capabilities of agents constrain the possible responsi
assignments of goals to agents: for a goal to be assignable to an agent, it must be d
in terms of variables monitored and controlled by the agent [Fea87, Par95, Ja
Zav97].

As an example, consider the meeting scheduling problem and the ideal
Achieve[ConvenientMeetingHeld] requiring that requested meetings are eventually h
with the presence of all intended participants. That goal is clearly not assignable t
Scheduler software agent, because it constrains the actual occurrence of meeting
the presence of participants at meetings; these are not controllable by theScheduler
agent.

As another example, consider the goalAchieve[ConvenientMeetingPlanned] requiring to
find a date for the meeting that satisfies the constraints of the participants. This g
also not assignable by theScheduler software agent because the scheduler has no m
toring capabilities on the actual date constraints for participants to the meeting.

Consider on the other hand the goalAchieve[PrtcptsCstrRequested] requiring that a con-
straint request is sent to every participant intended for the meeting. That goal is as
able to theScheduler agent provided it controls the sending of constraint requests
participants and it monitors which participants are intended for the meeting.
43

Goal-Oriented Requirements Engineering with KAOS

ies

n be
real-
.

ss. It
ides a
raint
a sin-
lizable
rther

w of
their

le of
ction

the
ctiv-

, with
een
. This

at the
The realizability meta-constraintcaptures this relation between agent responsibilit
and agent interfaces. A goal is said to berealizableby an agent if an operationalization
of the goal that satisfies the responsibility and input/output meta-constraints ca
found1. The realizability meta-constraint requires that a goal assigned to an agent is
izable by that agent. A formal definition of this meta-constraint is given in Chapter 4

The realizability meta-constraint plays a significant role in the goal refinement proce
defines what is meant for a goal to be assignable to an agent, and therefore prov
precise criterion for stopping the goal refinement process. Violations of that const
drive the elaboration of the goal and agent models; a goal that is not realizable by
gle agent has to be further refined so as to eventually reach subgoals that are rea
by single agents. The role of this meta-constraint in the goal refinement process is fu
described in Section 3.3.5 below.

3.3. The Goal-Oriented Requirements Elaboration Method

This section discusses the KAOS goal-oriented method. It first gives a brief overvie
the method, then further describes the various steps of the method and illustrates
application on a small case study, the mine pump control system. The important ro
the realizability meta-constraint in this goal-oriented process is then discussed in Se
3.3.5.

3.3.1 Overview

The KAOS goal-oriented requirements elaboration method consists in deriving
requirements for a future system from high-level goals. It consists in the following a
ities (Figure 3.7).

The activities are ordered by data dependencies; they are running concurrently
much intertwining between them. In particular, there is significant intertwining betw
the elaboration of the goal model and the elaboration of alternative agent models
intertwining is further discussed in Section 3.3.5.

1. This concept of realizable goal is the equivalent at the goal level of the concept of realizable specification
design level: a specification is realizable if there exists a program that implements it [Aba89].

Goal Model
Elaboration

Elaboration of
Alternative

Agent Models

Object Model
Elaboration

Evaluation and
Selection

of Alternatives

 FIGURE 3.7. The goal-driven requirement elaboration process

data dependency
44

Goal-Oriented Requirements Engineering with KAOS

enti-
ents,
f bot-
about
The
the

con-

r-
ential
ment
gents.
e satis-
teps

s are
void
tion

illus-
ment,
1. Elaborating the goal model and identifying objects. The first activity consists in
identifying goals and elaborating the goal refinement graph. Preliminary goals are id
fied from various sources available (documentation, high-level objective statem
interviews, scenarios, and so forth). Further goals are identified by a combination o
tom-up and top-down processes. Subgoals are identified by asking HOW questions
the goals already identified; parent goals are identified by asking WHY questions.
identified goals are given formal definitions from which the objects concerned by
goals are identified.

In summary, the activities of elaborating a goal model and identifying the objects
cerned by the goals consist of the following activities:

1.1 identifying preliminary goals
1.2 formalizing goals and identifying objects
1.3 eliciting further goals through WHY questions
1.4. eliciting further goals through HOW questions

2. Exploring Alternative Agent models.Alternative agent responsibilities, agent inte
faces and operation models are gradually elaborated from the goal model. Pot
responsibility assignments of goals to agents are identified during the goal refine
process. Agent interfaces are derived form responsibility assignments of goals to a
Operations relevant to the goals and requirements on operations that guarantee th
faction of the goals are identified during the operationalization step. The following s
are thus performed for elaborating alternative agent models from goals:

2.1. Identifying potential responsibility assignments
2.2. Deriving agent interfaces from responsibility assignments
2.3. Operationalizing goals

3. Evaluation and selection of Alternatives. This activity consists in making choices
among alternative goal refinements and responsibility assignments. Such choice
based on non-functional or softgoals [Myl92] such as reduce costs, minimize risks, a
agents’ overloading, maximize flexibility, etc. Relevant techniques for such an evalua
and selection process are described in [Fea91], [Rob90] and [Myl99].

3.3.2 The Mine Pump Example

The following problem statement for a mine pump is used as a running example to
trate the KAOS goal-oriented requirements elaboration method. The problem state
taken from [Jos96], is reproduced below.

Water percolating into a mine is collected in a sump to be pumped out of the
mine (see. Figure 3.8). The water level sensorsD andE detect when water is
above a high and below a low level, respectively. A pump controller switches
the pump on when the water reaches the high water level and off when it goes
below the low water level. If, due to a failure of the pump, the water cannot be
pumped out, the mine must be evacuated within one hour.

The mine has other sensors (A, B, C) to monitor the carbon monoxide, meth-
ane and airflow levels. An alarm must be raised and the operator informed
within one second of any of these levels becoming critical so that the mine
can be evacuated within one hour. To avoid the risk of explosion, the pump
must be operated only when the methane level is below a critical level.
45

Goal-Oriented Requirements Engineering with KAOS

rom
atic

ioned

ine
initial
nitial

nition.
d

more
Human operators can also control the operation of the pump, but within lim-
its. An operator can switch the pump on or off if the water is between the low
and high water levels. A special operator, the supervisor, can switch the pump
on or off without this restriction. In all cases, the methane level must be
below its critical level if the pump is to be operated.

Readings from all sensors, and a record of the operation of the pump, must be
logged for later analysis.

3.3.3 Elaborating the goal and object models

3.3.3.1 Identifying preliminary goals

The first step of the elaboration method consists in identifying preliminary goals f
various sources: interviews, analysis of available documentation to find out problem
issues with the existing system, objectives that are explicitly stated about the envis
one, usage scenarios, operational choices whose rationale has to be elicited, etc.

Mine Pump Examples

Figure 3.9 gives the preliminary goals identified from the initial statement of the m
pump case-study. These goals correspond to properties explicitly stated in the
problem statement. The goals are listed in the order in which they appear in the i
problem statement.

At this stage, elicited goals are given a name and a tentative natural language defi
The temporal pattern (Achieve/Maintain) of the goal is also identified. Goal names an
definitions will gradually be made more precise as the specification evolves and
knowledge is gained about the system.

Pump
Controller

Pump

Sump

D

E

C

B

A

Log

Operator A Carbon monoxide sensor
B Methane Sensor
C Airflow sensor
D Highwater sensor
E Lowwater sensor

 FIGURE 3.8. Mine pump and control system
46

Goal-Oriented Requirements Engineering with KAOS
Goal Maintain[PumpOnWhenHighWater]
Definition The pump must be On when the water level in the sump is above the

high water level.

Goal Maintain[PumpOffWhenLowWater]
Definition The pump must be Off when the water level in the sump is below the

low water level.

Goal Achieve[MineEvacuatedWhenPumpFailure]
Definition If, due to a failure of the pump, the water cannot be pumped out, the

mine must be evacuated within one hour.

Goal Achieve[AlarmRaisedWhenCriticalGazLevel]
Definition If the carbon monoxide level, methane level or airflow level becomes

critical, an alarm must be raised and the operator must be informed within one sec-
ond.

Refines Achieve[MineEvacuatedWhenCriticalGazLevel]

Goal Achieve[MineEvacuatedWhenCriticalGazLevel]
Definition If the carbon monoxide level, methane level or airflow level becomes

critical, the mine must be evacuated within one hour.

Goal Maintain[PumpOffWhenCriticalMethane]
Definition The pump must be off when the methane level is above a critical level.
Refines Avoid[Explosion]

Goal Avoid[Explosion]
Definition No explosion should occur in the mine.

Goal Maintain[OperationsLogged]
Definition Readings from all sensors, and a record of the operation of the pump,

must be logged for later analysis

 FIGURE 3.9. Preliminary goals for the mine pump
47

Goal-Oriented Requirements Engineering with KAOS

ing

ve the
steps:

fi-
oal.
gory
ing

-
ation
ulary
and

e
].

e
the

d to

n of
sorts
ject
hip
are
Only a portion of the goal graph is elicited. Further goals will be identified by ask
WHY and HOW questions.

3.3.3.2 Formalizing Goals and Identifying Objects

The next step in the specification elaboration process is to formalize goals and deri
objects concerned by the goals. This step consists of the following intertwined sub

(i) Formalize goals. The informal definitions of goals are translated into formal de
nitions. The formalization of goals is guided by the pattern and category of the g
The pattern of a goal drives the choice of a pattern of temporal formula. The cate
of the goal is intended to further guide the formalization of the goal by provid
generic formalizations of goals specific to the goal category.

(ii) Derive objects from goal definition. The definition of goals drives the identifica
tion of objects and attributes to be declared in the object model. Through applic
of the consistency rule between the goal model and object model, the vocab
used in the formal definition of goals gives rise to the declaration of objects
attributes in the object model.

(iii) Define objects and attributes. The identified objects and attributes must b
defined by relating them to the real-world quantities they denote [Par95, Zav97

Mine Pump Examples

Consider the goalMaintain[PumpOnWhenHighWater]. TheMaintain pattern of the goal
suggests using one of the formal patterns forMaintain goals (see Section 3.2.4.2). Sinc
the goal requires a property to hold globally, the formal definition of the goal has
general form

P ⇒ Q,

whereP andQ are state formulae. The abstract definition pattern is then instantiate
yield the following definition:

∀ s: Sump, p: Pump:
s.WaterLevel ≥ ‘HighWater’ ∧ HasPump(s,p) ⇒ p.Motor = ‘On’

The vocabulary appearing in the definition of the goal gives rise to the declaratio
objects and attributes shown in Figure 3.10. The formal definition references the
Sump andPump, which drives the declaration of the corresponding entities in the ob
model. TheHasPump predicate drives the declaration of the corresponding relations
betweenSump andPump. The sump’s water level and the status of the pump motor
declared as attributes of the corresponding entities.

Sump
WaterLevel: DepthUnit

Pump
Motor: { On, Off }

HasPump

 FIGURE 3.10. Preliminary object model derived from the goal
Maintain[PumpOnWhenHighWater]
48

Goal-Oriented Requirements Engineering with KAOS

bject
For

f the

tion
hin

this

The
ect

the
ss as
In addition to declaring the vocabulary relevant to the goals of the system, the o
model should also include precise the interpretation for the vocabulary used.
instance, the entitiesSump andPump could be defined as follows:

Entity Sump
Definition Bottom portion of a mine, into which water percolating into the mine
is collected in order to be pumped.
Has
WaterLevel: DepthUnit
the actual water level in the sump

Entity Pump
Definition Device used to pump water out of the mine.
Has
Motor: {On, Off}
the status of the motor of the pump

The formalization of the other goals in Figure 3.9 gives rise to further elaboration o
object model. Consider the goalAchieve[MineEvacuatedWhenPumpFailure]. The
Achieve pattern of the goal suggests defining the goal with one of the formal defini
patterns forAchieve goals. Since the goal requires a property to eventually hold wit
some real-time bound, the following pattern of goal definition is chosen:

P ⇒ ◊≤d Q

The goal is then formally defined as follows:

∀ p: Pump, m: Mine
p.Failure ∧ PumpInMine(p,m) ⇒ ◊≤1h ¬ (∃ miner: Miner): InsideMine(miner,m)

The initial portion of the object model is now enriched with the vocabulary used in
definition (Figure 11).

The formalization of other goals gives rise to further elaboration of the object model.
formal definition of all the preliminary goals is given in Figure 3.12. The derived obj
model is shown in Fig. 3.13.

The activities of formalizing goals and deriving the corresponding fragments of
object model are performed continuously during the requirement elaboration proce
new goals are being identified.

Miner
InsideMine

Mine

PumpInMine

Sump
WaterLevel: DepthUnit

Pump
Motor: {On, Off }
Failure: Bool

HasPump

FIGURE 3.11. Object model derived form the goal Achieve[MineEvacuatedWhenPumpFailure]
49

Goal-Oriented Requirements Engineering with KAOS
Goal Maintain[PumpOnWhenHighWater]
Definition The pump must be On when the water level in the sump is above the high water level.
FormalDef ∀ s: Sump, p: Pump:
s.WaterLevel ≥ ‘HighWater’ ∧ HasPump(s,p) ⇒ p.Motor = ‘On’

Goal Maintain[PumpOffWhenLowWater]
Definition The pump must be Off when the water level in the sump is below the low water level.
FormalDef ∀ s: Sump, p: Pump:
s.WaterLevel ≤ ‘LowWater’ ∧ HasPump(s,p) ⇒ p.Motor = ‘Off’

Goal Achieve[MineEvacuatedWhenPumpFailure]
Definition If, due to a failure of the pump, the water cannot be pumped out, the mine must be evacuated
within one hour.
FormalDef ∀ p: Pump, m: Mine
p.Failure ∧ PumpInMine(p,m) ⇒ ◊≤1h ¬ (∃ miner: Miner): InsideMine(miner,m)

Goal Achieve[AlarmRaisedWhenCriticalGazLevel]
Definition If the carbon monoxide level, methane level or airflow level becomes critical, an alarm must be
raised and the operator must be informed within one second.
FormalDef ∀ m: Mine

(m.MethaneLevel ≥ ‘CriticalMethane’
∨ m.COLevel ≥ ‘COCritical’
∨ m.AirFlow ≤ ‘CrticalAirflow’)
⇒ ◊≤1sec
m.Alarm = ‘On’
∧ (∀ op: Operator): OperatingMine(op,m) → op.Informed

Goal Achieve[MineEvacuatedWhenCriticalGazLevel]
Definition If the carbon monoxide level, methane level or airflow level becomes critical, the mine must be
evacuated within one hour.
FormalDef ∀ m: Mine
(m.MethaneLevel ≥ ‘CriticalMethane’
∨ m.COLevel ≥ ‘COCritical’
∨ m.AirFlow ≤ ‘CrticalAirflow’)
⇒ ◊≤1h ¬ (∃ p: Miner): InsideMine(p,m)

Goal Maintain[PumpOffWhenCriticalMethane]
Definition The pump must be off when the methane level is above a critical level.
FormalDef ∀ s: Sump, p: Pump:
s.MethaneLevel ≤ ‘CriticalMethane’ ∧ HasPump(s,p) ⇒ p.Motor = ‘Off’

Goal Avoid[Explosion]
Definition No explosion should occur in the mine.
FormalDef (∀ m:Mine): ❑ ¬ m.explosion

Goal Maintain[OperationsLogged]
Definition Readings from all sensors, and a record of the operation of the pump, must be logged for later
analysis
FormalDef <not specified at this stage>

 FIGURE 3.12. Formal definitions for the preliminary goals
50

Goal-Oriented Requirements Engineering with KAOS

cess.
n the

t def-

re

odel
know
s they
hen

s of
ause
us on
at is
gain,

ment
ained
ons
Living with ambiguities

Ambiguities are inevitable in the early stages of the requirement elaboration pro
Two places where ambiguities arise are in the definition of objects/attributes and i
definition of goals.

At the early stages of the requirement elaboration process, it is not always clear wha
initions should be given to objects and attributes. For instance, theFailure attribute of the
Pump entity is not precisely defined in the initial problem statement. A pump failu
could have at least one of the following different meanings:

• the motor of the pump refuses to go on;

• the motor of the pump is on but the pump is not pumping water;

• the motor of the pump refuses to go off;

• all or some of the above.

Failing to write a precise definition for objects and objects’ attributes makes the m
useless. The model cannot be criticized or validated, because it is impossible to
exactly what it means. However, such ambiguities need not be solved as soon a
arise. It is often preferable to solve them after further elaboration of the model, w
more knowledge is gained about the system.

Another source of ambiguity arises in the translation of natural language definition
goals into formal definitions. Natural language definitions are often ambiguous bec
of the inherent ambiguity of natural languages. They are also sometimes ambiguo
purpose when one does not want to commit oneself to a fixed description of wh
exactly required, but rather leaves some freedom about what should be achieved. A
such ambiguities need not be fully resolved in the very early stages of the require
elaboration process; they should be resolved gradually as more knowledge is g
about the system. In order to do this, it is helpful to start with idealized formal definiti
of goals.

 FIGURE 3.13. Object model derived from the preliminary goals

Miner
InsideMineMine

MethaneLevel
COLevel
Airflow
Alarm
Explosion

PumpInMine

Sump
WaterLevel

Pump
Motor
Failure

HasPump

Operator
Informed

OperatingMine
51

Goal-Oriented Requirements Engineering with KAOS

eal-
ketch
lities,

ke it
use a
pump
ted in
ns are

re-
ther
goals,
when

iours
com-

ifying
cifi-
pti-

tacles
ribed

nale
ini-
ed in

7a].

the
goal

erns
Being Idealist

First-sketch goal definitions tend to be idealistic; it is generally impossible to write r
istic goal definitions at the beginning of the requirement elaboration process. First-s
goals will be impossible to achieve due to agent misbehaviour, limited agent capabi
or conflicts with other goals. Consider for instance the goalMaintain[PumpOnWhen-
HighWater]. The goal is idealized because delays to switch on the pump may ma
impossible for the pump to be on as soon as the water level is above “high”, or beca
critical methane level may prevent the pump for being operated, or yet because the
may fail to start when commanded. Such exceptional cases cannot be all anticipa
the early phases of the requirement elaboration process; idealized goals definitio
thus inevitable.

It is actuallydesirableto start from idealized goal definitions. The reason is simple: p
mature compromises of what is ideally required prevents the identification of fur
goals and the exploration of alternatives, such as alternatives ways of deidealizing
or to make trade-offs between conflicting goals. Therefore, one should be idealist
writing first-sketch goal definitions.

This recommendation amounts to the traditional advice of specifying ideal behav
first, and to consider exceptional cases later. For operational specifications, this re
mendation makes the specification easier to read and write. At the goal level, spec
the ideal behaviour first is important not only to make the process of writing the spe
cation simpler, but more importantly, to avoid premature, implicit, and probably not o
mal compromises.

Systematic techniques for handling idealized goals are studied in Chapter 8 on obs
analysis. Techniques for identifying and resolving conflicts between goals are desc
in [Lam98a].

3.3.3.3 Eliciting New Goals through WHY questions

Asking WHY questions enables one to identify higher-level goals that provide ratio
for the initial goals. Identifying higher-level goals is important for understanding the
tial goals, and for identifying other important subgoals that may have been overlook
the first place.

There are no clear-cut criteria for knowing when to stop asking why questions [Zav9
The quest for higher-level goals should remain within the system’s subject matter.

Mine Pump Examples

Asking WHY questions about the goalMaintain[PumpOffWhenLowWater] yields the
goal graph shown in Figure 3.14. If the pump motor is on when no water flows into
pump, there is a risk of the pump being burned out. Thus, the goal refines the
Avoid[PumpOnWhenEmpty] which in turn refines the goalAvoid[PumpBurnedOut]. The
dots in the goal graph indicate that the refinements are not complete.

Companion subgoals can be formally elicited through formal refinement patt
[Dar96]. In the goal graph above, the new goalAvoid[PumpOnWhenEmpty] is formally
defined as follows:

p.Empty ⇒ p.Status = ‘Off’
52

Goal-Oriented Requirements Engineering with KAOS

sub-

d to a
. The
The following formal goal refinement pattern can be used to identify companion
goals [Dar95].

The formal definitions of the goalsMaintain[PumpOffWhenLowWater] andAvoid[Pum-
pOnWhenEmpty] matches that pattern with the following instantiations:

P(x): p.Empty Q(x): p.Motor = ‘Off’
T(y):s.WaterLevel ≤ ‘Low’R(x,y): HasPump(s,p)

The instantiation of the pattern yields the following new assertions:

(∀ p: Pump, s: Sump):
p.Empty ∧ HasPump(s,p) ⇒ s.WaterLevel ≤ ‘Low’

(∀ p: Pump, ∃ s: Sump): ❑ HasPump(s,p)

The second assertion is a domain property stating that every mine pump is relate
sump. The first assertion is a new goal constraining the value of the low water level
following companion subgoal has thereby been elicited formally:

Goal Maintain[AppropriateLowWaterLevel]
Definition The low water level must be defined so that if the water level in the
sump is above the low level, the water can flow into the pump.
FormalDef ∀ p: Pump, s: Sump
p.Empty ∧ HasPump(s,p) ⇒ s.WaterLevel ≤ ‘Low’

 FIGURE 3.14. WHY questions:Maintain[PumpOffWhenLowWater]

Avoid
[PumpOnWhenEmpty]

Avoid
[PumpBurnedOut]

Maintain
[PumpOffWhenLowWater]

...

...

WHY ?

∀x: P(x) ⇒ Q(x)

∀ x, y:
P(x) ∧ R(x,y) ⇒ T(y)

∀ x, y:
T(y) ∧ R(x,y) ⇒ Q(x)

∀ x, ∃y: ❑ R(x,y)
53

Goal-Oriented Requirements Engineering with KAOS

ith
about
.

is

ed
m

fine-
not

ilure
f

his
nt to
ump

e is a
r that
Asking WHY questions about the other goals will similarly enrich the goal model w
higher-level goals and companion subgoals. For instance, asking a WHY question
the goalMaintain[PumpOnWhenHighWater] yields the goal graph shown in Figure 3.15
The rationale for the goalMaintain[PumpOnWhenHighWater] is the goalAvoid[Over-
flowedSump] which in turn refines the goalAvoid[OverflowedMine].

Companion subgoals are elicited as well. For the goalMaintain[PumpOnWhenHighWa-
ter] to ensure the goalAvoid[OverflowedSump], one has to assume that (i) the pump
actually pumping water out of the mine when the pump motor is on (Maintain[Water-
PumpedOutWhenPumpOn]), (ii) the rate at which water flows into the sump is bound
(Maintain[LimitedWaterFlow]), and (iii) the capacity of the pump is above the maximu
rate of water that flows into the sump (Maintain[SufficientPumpCapacity]).

Asking WHY questions also allows one to consideralternative subgoalsto the one ini-
tially described. This is illustrated by the following example.

Consider the initial goalAchieve[MineEvacuatedWhenPumpFailure]. Asking a WHY
question about that goal yields the parent goalAvoid[MinerInOverflowedMine].

Through applications of formal refinement patterns, one identifies that the goal re
ment is complete provided that when there is no pump failure, the mine remains
overflowed for at least one hour (Maintain[MineNotOverflowedWhenNoPumpFailure]),
and provided that miners do not enter the mine when there is a pump fa
(Avoid[MinerEnteringMineWhenPumpFailure]) -- see the And-refinement on the left o
Figure 3.16.

The refinement is based on the assumption, calledMaintain[MineNotOverflowedWhen-
NoPumpFailure], that only pump failures could cause the mine to be overflowed. T
assumption is not valid, for instance, when the capacity of the pump is not sufficie
pump the water that flows into the mine, or when the methane level prevents the p
from being operated.

Note also that the initial goal requires the mine to be evacuated as soon as ther
pump failure. This may lead to unnecessary evacuations of the mine if the wate
flows into the mine is low.

 FIGURE 3.15. WHY questions:Maintain[PumpOnWhenHighWater]

Avoid
[OverflowedSump]

Maintain
[PumpOnWhenHighWater]

Maintain
[WaterPumpedOut

WhenPumpOn]

Maintain
[SufficientPumpCapacity]

Avoid
[OverflowedMine]

Maintain
[LimitedWaterInFlow]

WHY ?
54

Goal-Oriented Requirements Engineering with KAOS

ires
ertain

ant

the

to the

ithin
This suggests looking for an alternative refinement of the higher-level goalAvoid[Min-
erInOverflowedMine].

An alternative refinement of the goal is shown in Figure 3.16. This alternative requ
the mine to be evacuated when the water level in the sump remains high during a c
period of time:

Goal Achieve[MineEvacuatedWhenCriticalWater]

Definition If the water level in the sump remains high during a period of ‘Criti-
calDelay’ time units, the mine should be evacuated within one hour.
FormalDef ∀ m: Mine, s: Sump

■≤CriticalDelay s.WaterLevel ≥ ‘High’ ∧ SumpInMine(s,m)
⇒ ◊≤1h ¬ (∃ p: Miner): InsideMine(p,m)

To summarize, identifying higher-level goals through WHY questions is import
because:

• it provides a rationale for the initial goals;

• it enables one to formally identify companion subgoals that were overlooked in
first place;

• it enables one to explore alternative subgoals that may provide better solutions
higher level goals.

The quest for higher-level goals and alternative subgoals should of course remain w
the system’s subject matter.

 FIGURE 3.16. Asking WHY questions and identifying alternative subgoals

Avoid
[MinerInOverflowedMine]

Achieve
[MineEvacuated

WhenPumpFailure]

Maintain
[MineNotOverflowed

WhenNoPumpFailure]

Avoid
[MinerEnteringMine
WhenPumpFailure]

Achieve
[MineEvacuated

WhenCriticalWater]

Maintain
[MineNotOverflowed

WhenWaterLevelNotCritical]

Avoid
[MinerEnteringMine
WhenCriticalWater]

ORWHY ?
55

Goal-Oriented Requirements Engineering with KAOS

until
ed by

new

ed to
3.3.3.4 Eliciting new goals through HOW questions

Another step of the requirements elaboration process consists in refining goals
reaching subgoals that can be assigned to individual agents. Subgoals are identifi
asking HOW questions about the goals already identified.

Mine Pump Examples.

For example, a HOW question about the goalMaintain[PumpOnWhenHighWater] yields
the goal-refinement shown in Figure 17.

The first subgoal is formally defined as follows:

Goal Maintain[HighWaterDetected]

InstOf AccuracyGoal
Definition TheHighWaterSignal must be on when the water level in the sump is
above high.
FormalDef ∀ s: Sump, c: PumpController
s.WaterLevel ≥ ‘High’ ∧ HasCtrler(s,c) ⇒ c.HighWaterSignal = ‘on’

That goal is an accuracy goal relating the actual water level in the sump to a
attribute,HighWaterSignal, denoting a signal received by thePumpController agent from
a HighWaterSensor agent. The second subgoal is defined as follows.

Goal Maintain[PumpOnWhenHighWaterDetected]

Definition The pump must be on when theHighWaterSignal is on.
FormalDef ∀ p: Pump, c: PumpController
c.HighWaterSignal = ‘on ∧ CtrlPump(c,p) ⇒ p.Status = ‘on’

The goal refinement also uses the two following domain properties:

∀ s: Sump, ∃ c: PumpController: ❑ HasCtrler(s,c)

∀ s: Sump, c: PumpController, p: Pump
HasCtrler(s,c) ∧ HasPump(s,p) ⇒ CtrlPump(c,p)

The formalization of the two subgoals together with the above properties may be us
prove that together they entail the parent goalMaintain[PumpOnWhenHighWater] for-
malized before.

 FIGURE 3.17. Refinement of the goal Maintain[PumpOnWhenHighWater]

Maintain
[PumpOnWhenHighWater]

Maintain
[HighWaterDetected]

Maintain
[PumpOnWhenHighWaterDetected]

HOW
56

Goal-Oriented Requirements Engineering with KAOS

re

entail

imes
the

,

rive

nsor.
Similarly, asking a HOW question about the generated subgoalMaintain[PumpOnWhen-
HighWaterDetected] yields a new portion of the goal-refinement graph shown in Figu
18.

The new subgoals are defined as follows.

Goal Maintain[PumpSwitchOnWhenHighWaterDetected]

Definition The pump switch must be set to on when theHighWater flag of the
pump controller is on.
FormalDef ∀ p: Pump, c: PumpController
c.HighWater = ‘on’ ∧ CtrlPump(c,p) ⇒ p.Switch = ‘on’

Goal Maintain[PumpOnWhenSwitchOn]

Definition The pump motor is on when the pump switch is set to on.
FormalDef ∀ p: Pump
p.Switch = ‘on’ ⇒ p.Motor = ‘on’

This goal refinement also leads to the identification of a newPump.Switch attribute.

Again, the formalization of these subgoals can be used to prove that together they
the parent goalMaintain[PumpOnWhenHighWaterDetected] formalized before.

Note that the above definitions are first approximations. They do not take reaction t
into account. In fact, the pump motor cannot start running instantaneously when
pump switch is set to on. IfPumpDelay is the time taken to switch the pump motor on
the last goal above can be formalized as follows:

● ■ ≤ PumpDelay p.Switch = ‘on’ ⇒ p.Status = ‘on’

It asserts that if the pump switch has been on for the lastPumpDelay time units, then the
pump motor is on. (The● operator is a formal “noise” necessary in a later stage to de
operational requirements satisfying the goal.)

Similarly, the goal Maintain[PumpSwitchOnWhenHighWaterDetected] requires the
pump controller to react synchronously to the values received from the high water se
If the reaction time of the pump controller is assumed to be a positive constantCtrlrDe-
lay, the goal is temporally weakened as follows:

● ■ ≤CtrlrDelay [c.HighWater = ‘on ∧ CtrlPump(c,p)]⇒ p.Switch = ‘on’

 FIGURE 3.18. Refinement of the goal Maintain[PumpOnWhenHighWaterDetected]

Maintain
[PumpOnWhenHighWater]

Maintain
[HighWaterDetected]

Maintain
[PumpOnWhenHighWaterDetected]

Maintain
[PumpSwitchOn

WhenHighWaterDetected]

Maintain
[PumpOnWhenSwitchOn]

HOW
57

Goal-Oriented Requirements Engineering with KAOS

o

lt, the

fy the

ships

ships.

at
ssign-

ure

ty of

d, the
the

hasizes
ponsi-
ntrol
nts of
Finally, the goalMaintain[HighWaterDetected] is also temporally weakened to take int
account the delay of the water sensor:

● ■ ≤WaterSensorDelay [s.WaterLevel ≥ ‘High’ ∧ HasCtrler(s,c)]
⇒
c.HighWater = ‘on’

The weakening of these goals is then propagated along the goal graph. As a resu
goalMaintain[PumpOnWhenHighWater] is now defined by

■ ≤SafetyMargin [s.WaterLevel ≥ ‘High’ ∧ HasPump(s,p)] ⇒ p.Status = ‘On’

For the goal refinements to be complete, the delays and safety margin must satis
following constraint:

SafetyMargin ≥ PumpDelay + CtrlrDelay + WaterSensorDelay + 3 δ .

(δ is the smallest time unit. The term 3δ comes from the● operator in the definitions of
the subgoals.)

The safety margin is also defined so that the goalMaintain[PumpOnWhenHighWater]
still ensures its parent goalAvoid[OverflowedSump] in Figure 15. The validity of the goal
refinements in Figure 15 also relies on the domain properties that the relation
HasPump, HasCtrler, andCtrlPump do not change over time, i.e.

HasPump(s,p)⇔ ❑ HasPump(s,p)
HasCtrler(s,c)⇔ ❑ HasCtrler(s,c)
CtrlPump(c,p)⇔ ❑ CtrlPump(c,p)

These assertions are captured as domain properties on the corresponding relation

The goalMaintain[PumpOnWhenHighWater] has now been refined into subgoals th
can be assigned as the responsibility of single agents (the potential responsibility a
ments of goals to agents is considered below).

The goals Maintain[PumpOffWhenLowWater] and Maintain[PumpOffWhenCritical-
Methane] are refined in a similar way. Their goal refinement graphs are shown in Fig
3.19.

3.3.4 Elaborating Alternative Agent Models

Alternative agent models are gradually elaborated for the goals elicited. The activi
elaborating alternative agent models consists in the following steps:

1. Identify potential agents and responsibility assignments of goals to agents;
2. Derive agent interfaces from responsibility assignments of goals to agents;
3. Operationalize goals through operations and associated requirements.

For the purpose of presenting the goal-oriented requirements elaboration metho
identification of agent monitoring and control capabilities is here delayed until after
goals have been assigned as responsibilities of single agents. This process emp
that alternative agent interfaces are a result of alternative goal refinements and res
bility assignments. In fact, considerations about possible agent monitoring and co
capabilities influence the goal refinement process. For instance, the above refineme
58

Goal-Oriented Requirements Engineering with KAOS

f

ng is

ntified
the goalMaintain[PumpOnWhenHighWater] were driven by the need to resolve lack o
monitoring and control capabilities of thePumpController agent. The activities of elabo-
rating the goal and agent models are therefore much intertwined. Such intertwini
further described in Section 3.3.5.

3.3.4.1 Identifying potential responsibility assignments

Potential agents and potential responsibility assignments of goals to agents are ide
during the goal refinement process.

Mine Pump Examples

Potential responsibility assignments for the goal refinement graph of the goalMain-
tain[PumpOnWhenHighWater] are given in Figure 3.20; the goalMaintain[HighWaterDe-
tected] is assigned to aHighWaterSensor agent described in the initial problem
statement; the goalMaintain[PumpSwitchOnWhenHighWaterDetected] is assigned to the
PumpController software agent; and the goalMaintain[PumpOnWhenSwitchOn] is
assigned to aPumpActuator agent.

Responsibility assignments for the subgoals of the goalsMaintain[PumpOffWhenLow-
Water] andMaintain[PumpOffWhenCriticalMethane] are shown in Figure 3.21.

Maintain
[PumpOffWhenLowWater]

Maintain
[LowWaterDetected]

Maintain
[PumpSwitchOff

WhenLowWaterDetected]

Maintain
[PumpOffWhenSwitchOff]

Maintain
[PumpOffWhenCriticalMethane]

Maintain
[Accurate

MethaneMeasure]

Maintain
[PumpSwitchOff

When
CriticalMethaneMeasure]

Maintain
[PumpOffWhenSwitchOff]

 FIGURE 3.19. Refinement of the goals Maintain[PumpOffWhenHighWater] and
Maintain[PumpOffWhenCriticalMethane]
59

Goal-Oriented Requirements Engineering with KAOS
 FIGURE 3.20. Responsibility assignments for the subgoals of
Maintain[PumpOnWhenHighWater]

Maintain
[PumpOnWhenHighWater]

Maintain
[HighWaterDetected]

Maintain
[PumpOnWhenHighWaterDetected]

Maintain
[PumpSwitchOn

WhenHighWaterDetected]

Maintain
[PumpOnWhenSwitchOn]

HighWater
Sensor

Resp

Pump
Controller

Resp

Resp

Pump
Actuator

Maintain
[PumpOffWhenLowWater]

Maintain
[LowWaterDetected]

Maintain
[PumpSwitchOff

WhenLowWaterDetected]

Maintain
[PumpOffWhenSwitchOff]

Maintain
[PumpOffWhenCriticalMethane]

Maintain
[Accurate

MethaneMeasure]

Maintain
[PumpSwitchOff

When
CriticalMethaneMeasure]

Maintain
[PumpOffWhenSwitchOff]

FIGURE 3.21. Responsibility assignments for the subgoals of Maintain[PumpOffWhenLowWater]
and Maintain[PumpOffWhenCriticalMethane]

LowWater
Sensor

Resp

Pump
Controller

Resp

Pump
Controller

Resp

Methane
Sensor

Resp

Resp

Pump
Actuator

Resp

Pump
Actuator
60

Goal-Oriented Requirements Engineering with KAOS

ement.
lored.

as

ure
d for

is
par-

rther
l be
stem
These responsibility assignments are the ones suggested by the initial problem stat
Alternative goal refinements and responsibility assignments could have been exp
For instance, the goalMaintain[PumpOnWhenHighWater] could have been alternatively
refined into the subgoalsMaintain[AccurateWaterMeasure] and Maintain[PumpOn-
WhenHighWaterMeasure] defined as follows:

Goal Maintain[AccurateWaterMeasure]

InstOf AccuracyGoal
Definition The water measure should equal the actual water level in the sump.
FormalDef ∀ s: Sump, p: Pump, c: PumpController
CtrlPump(c,p) ∧ HasPump(s,p) ⇒ c.WaterLevelMeasure= s.WaterLevel

Goal Maintain[PumpOnWhenHighWaterMeasure]

Definition The pump must be on when the water measure is above high.
FormalDef ∀ p: Pump, c: PumpController
c.WaterLevelMeasure ≥ ‘High’ ∧ CtrlPump(c,p) ⇒ p.Motor = ‘on’

The goalMaintain[AccurateWaterMeasure] is an accuracy goal that can be assigned
the responsibility of a water sensor agent. This goal refers to aWaterLevelMeasure
attribute instead of theHighWaterSignal attribute referenced in the goalMaintain[High-
WaterDetected]. The resulting alternative responsibility assignments are shown in Fig
3.22. Similarly, alternative refinements and responsibility assignments can be define
the goalMaintain[PumpOffWhenLowWater]. In this alternative, a unique water sensor
responsible for measuring the water level in the sump, and the responsibility of com
ing the measured water level to theHigh andLow water levels is now given to thePump-
Controller.

More complex systems generally have much more radical alternative designs. Fu
examples of alternative goal refinements and responsibility assignments wil
described for the LAS ambulance dispatching system and the BART train control sy
in Chapter 9.

 FIGURE 3.22. Alternative refinement and responsibility assignments for
Maintain[PumpOnWhenHighWater]

Maintain
[PumpOnWhenHighWater]

Maintain
[AccurateWaterMeasure]

Maintain
[PumpOnWhen

HighWaterMeasure]

Maintain
[PumpSwitchOn

WhenWaterMeasureAboveHigh]

Maintain
[PumpOnWhenSwitchOn]

Water
Sensor

Pump
Controller

Pump

Resp

Resp

Resp

OR... ...
61

Goal-Oriented Requirements Engineering with KAOS

ility
eta-
faces

-

the

inter-
water
3.3.4.2 Deriving agent interfaces

This step consists in deriving agent monitoring and control links from their responsib
assignments. The derivation will be informal here; it is guided by the realizability m
constraint introduced in Section 3.8.2. Formal techniques for deriving agent inter
from responsibility assignments are described in Chapter 7.

Mine Pump Examples

Consider the goalMaintain[PumpSwitchOnWhenHighWaterDetected] assigned as the
responsibility of thePumpController agent. To fulfil its responsibility, the pump control
ler must monitor theHighWaterSignal attribute and control the value of theSwitch
attribute of the pump. The followingMonitoring andControl links are thereby derived:

Monitoring [PumpController, PumpController.HighWaterSignal]
InstDecl ∀ c: PumpController
Mon(c, c.HighWaterSignal)

Control [PumpController, Pump.Switch]
InstDecl ∀ c: PumpController
CtrlPump(c,p) ⇒ Ctrl(c, p.Switch)

Through similar reasoning, the agent interface model in Figure 23 is derived from
responsibility assignments of Figure 3.21.

Note that alternative responsibility assignments generally yield alternative agent
faces. For instance, the alternative in which the water level is measured by a single
sensor yields the agent interface model of Figure 3.24.

Pump
Actuator

Pump
Controller

HighWater
Sensor

Pump.Switch

PumpCtrler.HighWaterSignal

LowWater
Sensor

Methane
Sensor

 FIGURE 3.23. Agent interface model derived from the responsibility
assignments of Figures 3.20 and 3.21

PumpCtrler.LowWater

PumpCtrler.MethaneMeasure

Sump.WaterLevel

Pump.Motor
Sump.WaterLevel

Sump.MethaneLevel

Water
Sensor

Methane
Sensor

 FIGURE 3.24. Alternative agent interface model derived from the
alternative responsibility assignments in Figure 3.22

PumpCtrler.WaterMeasure

PumpCtrler.MethaneMeasure

Sump.WaterLevel

Sump.MethaneLevel

Pump
Actuator

Pump
Controller

Pump.Switch Pump.Motor
62

Goal-Oriented Requirements Engineering with KAOS

uire-

en-
pre-

ith

goals

out

o as

-

is
3.3.4.3 Operationalizing goals

This step consists in identifying operations relevant to the goals and deriving req
ments on operations so that the goals are satisfied. there are two sub-steps:

1. Identify operations. Specific state transitions referred to in goals formulation are id
tified. Only elementary domain pre- and post-conditions are identified. Such domain
and post- conditions do not ensure the goal from which they are derived.

2. Derive requirements on operations. The identified operations are strengthened w
required pre-, trigger, and post conditions so that the goals are satisfied.

Formal techniques for deriving operations and requirements on operations from
will be explored in chapter 8.

Mine Pump Examples

The goalMaintain[PumpSwitchOnWhenHighWaterDetected] assigned to thePumpCon-
troller agent constrains the value of thePump.Switch attribute. The following operations
are then identified from that goal.

Operation SwitchPumpOn
PerfBy PumpCtrler {arg c}
Input Pump {arg p}
Output Pump {res p} / Switch
DomPre p.Switch = ‘Off’ ∧ CtrlPump(c,p)
DomPost p.Switch = ‘On’

Operation SwitchPumpOff
PerfBy PumpCtrler {arg c}
Input Pump {arg p}
Output Pump {res p} / Switch
DomPre p.Switch = ‘On’ ∧ CtrlPump(c,p)
DomPost p.Switch = ‘Off’

These definitions minimally capture what the switching on and off of the pump is ab
in the application domain.

The following required conditions on the applications of the operations are derived s
to ensure the goal:

Operation SwitchPumpOn
...
ReqTrigFor Maintain[PumpSwitchOnWhenHighWaterDetected]
■≤ CtrlrDelay c.HighWaterSignal = ‘On’

Operation SwitchPumpOff
...
ReqPreFor Maintain[PumpSwitchOnWhenHighWaterDetected]
¬ ■≤ CtrlrDelay c.HighWaterSignal = ‘On’

The required triggercondition on theSwitchPumpOn operation requires that the opera
tion must be applied when theHighWaterSignal has beenOn for a delay ofCtrlrDelay.
Therequired preconditionon theSwitchPumpOff operation requires that the operation
not applied if theHighWaterSignal has beenOn for a delay ofCtrlrDelay.
63

Goal-Oriented Requirements Engineering with KAOS

ts on
from

n

t

alter-
ason
as the

vail-

nt;

ntial

sec-
bgoals
Other goals assigned to the pump controller agent give rise to further requiremen
these operations. For instance, the following operational requirements are derived
the goals Maintain[PumpSwitchOffWhenLowWaterDetected] and Main-
tain[PumpSwitchOffWhenCriticalMethaneMeasure]:

Operation SwitchPumpOn
...
ReqPreFor Maintain[PumpSwitchOffWhenLowWaterDetected]
¬ ■≤ CtrlrDelay c.LowWaterSignal = ‘Off’

ReqPreFor Maintain[PumpSwitchOffWhenCriticalMethaneMeasure]
¬ ■≤ CtrlrDelay c.MethaneMeasure ≥ ‘CriticalMethane’

Operation SwitchPumpOff
...
ReqTrigFor Maintain[PumpSwitchOffWhenLowWaterDetected]
■≤ CtrlrDelay c.LowWaterSignal = ‘Off’

ReqTrigFor Maintain[PumpSwitchOffWhenCriticalMethaneMeasure]
■≤ CtrlrDelay c.MethaneMeasure ≥ ‘CriticalMethane’

Note that the derived requirements on these operations violate the meta-constraint

ReqTrig ⇒ ReqPre.

For the operationSwitchPumpOn, the required trigger condition for the goalMain-
tain[PumpSwitchOnWhenHighWaterDetected] can be true while the required conditio
for the goal Maintain[PumpSwitchOffWhenCriticalMethaneMeasure] is false. This
inconsistency is due to a conflict at the goal level between the goalsMaintain[PumpOn-
WhenHighWater] andMaintain[PumpOffWhenCriticalMethane]; it needs to be solved a
that level. The handling of conflicting goals is briefly described later.

3.3.5 Goal refinement and agent identification: an intertwined process

As mentioned before, the activities of refining goals into subgoals and generating
native agent responsibilities and interfaces are much intertwined. The principal re
for refining goals into subgoals is to eventually reach subgoals that can be assigned
responsibility of single agents. Preliminary information about agents potentially a
able is therefore needed to guide the goal refinement process.

The goal refinement process is guided by the following principles [Dar93]:

1. Stop refining a goal when it can be assigned as the responsibility of a single age

2. Refine goals into subgoals so that the latter require the cooperation of fewer pote
agents.

The first principle provides a criterion for stopping the goal-refinement process. The
ond principle ensures the convergence of the goal refinement process towards su
that can be assigned to single agents.
64

Goal-Oriented Requirements Engineering with KAOS

ent

ment
can be

s is
nd

mu-
in the

g the

and
tically

ck
able
goal

aliz-
ies
s of
f that

e
ability
sub-

l in
The following activities are therefore recursively performed during the goal-refinem
process.

Identifying potential agents and their capabilities -- Preliminary information about
potential agents and their capabilities is needed to determine when the goal refine
process may stop, and to guide the refinement process towards subgoals that
assigned to individual agents.

Preliminary information about agents and their monitoring and control capabilitie
identified from initial goals by asking WHO could play a role in achieving the goals a
WHO is capable of monitoring and controlling the objects referenced in the goal for
lations. Such information about agents and their capabilities is also often described
preliminary materials describing the envisioned system.

It is important to note that the result of this preliminary identification is apartial agent
interface model that may includealternativemonitorability and control links. Further
agents and agent capabilities are then gradually and systematically identified durin
goal-refinement process.

Mine Pump Example

For example, asking WHO could play a role in achieving the goalMaintain[PumpOn-
WhenHighWater] may lead to the identification of thePumpController software agent.
Other agents such as theHighWaterSensor and thePumpActuator could also be iden-
tified at this preliminary stage by asking WHO could be capable of monitoring
controlling the objects referenced in this goal. These agents can also be systema
identified later during the goal refinement process.

Identifying goal unrealizability-- Every time a goal is produced one has to che
whether the goal is realizable by a single agent already identified. If the goal is realiz
by an agent, it may be potentially assigned as the responsibility of that agent. If the
is not realizable by a single agent, the model has to be elaborated further.

Mine Pump Example.

Consider the goalMaintain[PumpOnWhenHighWater]. It describes a relation between
the water level in the sump and the status of the pump motor. This goal is not re
able by thePumpController software agent, because it lacks monitoring capabilit
for the actual water level in the sump; and it lacks control capabilities for the statu
the pump motor. Therefore, the goal cannot be assigned as the responsibility o
agent, and the model has to be elaborated further.

Resolving goal unrealizability-- Once realizability problems have been identified, th
model has to be elaborated so as to resolve theses problems. Resolution of realiz
problems drives the identification of new agents and the refinement of goals into
goals.

Mine Pump Examples

As mentioned above, the goalMaintain[PumpOnWhenHighWater] is not realizable by
thePumpController software agent because it cannot monitor the actual water leve
the sump and cannot control the status of the pump motor.
65

Goal-Oriented Requirements Engineering with KAOS

trol-

The

this
ormal
ques

lving
eme
ment

tlined
in the

gent
ts are

and
r the
den-
ed in
In order to resolve the lack of monitoring capabilities of thePumpController for the
actual water level in the sump, the goalMaintain[PumpOnWhenHighWater] was
refined into the subgoals:

Maintain[HighWaterDetected]

Maintain[PumpOnWhenHighWaterDetected].

During this requirement elaboration step, we also identified the newHighWaterSignal
attribute monitorable by thePumpController agent, and theHighWaterSensor agent
capable of monitoring whether the water level in the sump is above high and con
ling the HighWaterSignal attribute. The generated subgoalMaintain[HighWaterDe-
tected] can then be assigned as the responsibility of that agent.

The goalMaintain[PumpOnWhenHighWaterDetected] is still not realizable by the
PumpController because it cannot control the variablePump.Motor. In order to resolve
this realizability problem, the goal is refined into the subgoals:

Maintain[PumpSwitchOnWhenHighWaterDetected]

Maintain[PumpOnWhenSwitchOn].

During this requirement elaboration step, we also identified the newPump.Switch
attribute controllable by thePumpController agent; and thePumpActuator agent capa-
ble of monitoring the pump switch and controlling the status of the pump motor.
generated subgoalsMaintain[PumpSwitchOnWhenHighWaterDetected] and Main-
tain[PumpOnWhenSwitchOn] are now realizable by thePumpController and thePum-
pActuator agents, respectively.

A contribution of this thesis is to provide formal support to assist users in applying
intertwined goal refinement and agent identification process. Chapter 5 describes f
techniques for identifying realizability problems; Chapter 6 describes formal techni
for refining goals and identifying agents so as to resolve realizability problems.

Note that this process of elaborating the requirement model by identifying and reso
violations of the realizability meta-constraint is an application of a more general sch
that consists in using meta-constraints from the meta-model to guide the require
elaboration process (see Section 3.2.2).

3.3.6 Goal-Oriented Analysis

There is more to goal-oriented requirements engineering than what has been ou
above. Three important aspects of requirements engineering have not been covered
previous sections: (i) the handling of conflicts between goals, (ii) the handling of a
misbehaviour, and (iii) the evaluation and selection of alternatives. These aspec
now briefly discussed.

3.3.6.1 Conflict Analysis

During the elaboration of the goal model, conflicts between goals are identified,
alternative conflict resolutions are proposed. The selection of one alternative ove
others is performed during the alternative evaluation activity. Formal techniques for i
tifying conflicts between goals and for generating alternative resolutions are describ
[Lam98b].
66

Goal-Oriented Requirements Engineering with KAOS

nce
igure

thane

iver-

e

con-

p and

to be
r sen-
e to
ts in

s to
new

bed in
es of
is an
Mine Pump Example

The conflict between the goalsMaintain[PumpOnWhenHighWater] and Maintain[Pum-
pOffWhenCriticalMethane] has been described in Section 3.3.2.4.5. The diverge
between these goals, and the boundary condition for the divergence is recalled in F
3.5.

The boundary condition states that the two goals become inconsistent when the me
level is critical while the water level is above high.

Various techniques for resolving divergences are described in [Lam98b]. Here, the d
gence is resolved by weakening the goalMaintain[PumpOnWhenHighWater]:

Goal Maintain[PumpOnWhenHighWater]

Definition The pump must be On when the water level in the sump is above th
high water levelexcept if the methane level is critical.
FormalDef ∀ s: Sump, p: Pump:
s.WaterLevel ≥ ‘HighWater’ ∧ HasPump(s,p)
⇒
p.Motor = ‘On’ ∨ s.MethaneLevel ≥ ‘CriticalMethane’

Note that the goal is weakened by adding the boundary condition as a disjunct in the
sequent of the goal.

Once the goal is weakened, the transformation of the goal definition is propagated u
down along the goal refinement and operationalization links.

3.3.6.2 Obstacle Analysis

Goals produced during the refinement process tend to be idealized. They are likely
violated due to exceptional agent behaviours. In the mine pump example, the wate
sors may fail to detect correctly the high and low water level; the pump may refus
start or stop running; the pump controller may also fail to produce correct outpu
time; etc.

The identification such exceptional situations drives the elicitation of further goal
prevent them or to mitigate their consequences. For instance, one could identify a
goal specifying what should happen if the pump refuses to stop. Some goals descri
the initial problem statement were already introduced to mitigate the consequenc
agent failures. The goal requiring the mine to be evacuated in case of pump failure
example of such goals.

Maintain
[PumpOffWhenCriticalMethane]

Maintain
[PumpOnWhenHighWater]

◊ ∃ s: Sump
s.WaterLevel ≥ ‘HighWater’
∧
s.MethaneLevel ≥ ‘CriticalMethane’

 FIGURE 3.25.Conflict between the goalsMaintain
[PumpOnWhenHighWater] and Maintain[PumpOffWhenCriticalMethane]
67

Goal-Oriented Requirements Engineering with KAOS

sta-

n and
ed on
inary
l99].
e the-

labo-
hem
. The

ponsi-
hich

ferent.

posed

ity
een

ire-
ents
dual

ers:

s for
nd
agent

, and

s that
Exceptional situations that prevent the fulfilment of goals are calledobstacles. The pre-
cise definition of obstacles, and the definition of formal techniques for identifying ob
cles and for resolving them are described in Chapter 9.

3.3.6.3 Alternative evaluation and selection

Another important aspect that has been left out up to now concerns the evaluatio
selection of alternatives. As mentioned before, the selection of alternatives is bas
softgoals and optimization goals such as reduce costs, minimize risks, etc. Prelim
techniques for evaluation and selection are described in [Fea91], [Rob90], and [My
This is an area where much research remains to be done; we will not address it in th
sis.

3.4. Summary and Outlook

The work reported in the thesis is based on an existing goal-oriented requirement e
ration method, called KAOS. This method consists in identifying goals and refining t
into subgoals until the latter can be assigned as responsibilities of single agents
method supports the exploration of alternative goal refinements, and alternative res
bility assignments of goals to agents, resulting in alternative system proposals in w
the boundary between the automated system and its environment may be quite dif

This chapter has described the KAOS goal-oriented language and methods, and pro
extensions of the language to modelagent interfacesthrough monitoring and control
links. We also introduced arealizabilitymeta-constraint relating an agent’s responsibil
for a goal to its interface: a goal is realizable by an agent if it defines a relation betw
objects monitored and controlled by the agent.

The realizability meta-constraint plays a significant role in the goal-oriented requ
ments elaboration process: violations of realizability drive the identification of ag
and the refinement of goals into subgoals until the latter are realizable by indivi
agents.

Extensions to the KAOS goal-oriented method will described in the following chapt

• Chapters 5 and 6 extend the KAOS goal-oriented method with formal technique
identifying realizability problems and for resolving them by identifying agents a
refining goals into subgoals. These techniques are based on a formal model of
responsibility, monitorability, and control defined in Chapter 4.

• Chapter 7 describes techniques for deriving operational requirements from goals
for deriving agent monitoring and control links from responsibility assignments.

• Chapter 8 describes formal techniques for handling exceptional agent behavior
may block the fulfillment of idealized goals and assumptions.
68

 A Formal Model for Agents

bjec-
f the
liz-

AOS
f the
ork.
goal

harac-

roc-
emati-
ching
ora-
re:

s and

ollow-

te-
also
lan-

e,

both

-
rt par-
ng to
Chapter 4
A Formal Model for Agents

This chapter defines a formal model of agents for goal-oriented engineering. The o
tive is to set the foundations over which the requirements elaboration techniques o
following chapters are grounded. In particular, we give a formal definition for the rea
ability meta-constraint between an agent’s responsibility for goals and its interface.

The formal model of agents is intended to be part of a complete semantics of the K
language. Section 1 proposes a general framework for defining the semantics o
KAOS language, and describes how the formal model of agents fits in that framew
Section 2 defines the formal model of agents. Section 3 defines what is meant for a
to be realizable by a single agent, and defines necessary and sufficient conditions c
terizing realizable goals.

4.1. Towards a Formal Semantics
for the KAOS Language

4.1.1. Motivation

In order to provide systematic formal support during the requirement elaboration p
ess, it is necessary to assign a mathematical meaning to KAOS models. Such math
cal semantics for the language is not an objective per se but only a means for rea
our primary objective of providing systematic guidance during the requirement elab
tion process. The two important objectives of a semantics of the KAOS language a

• to clarify the meaning of language constructs; and
• to provide a basis on which to define and integrate dedicated reasoning technique

tool support for the KAOS method.

In order to serve those objectives, the semantics of the language should meet the f
ing qualities.

Mathematically grounded -- A mathematical semantics is needed for defining and in
grating techniques and tool support for reasoning about KAOS specifications. It
helps in detecting and correcting ambiguities and other flaws in the definition of the
guage.

Simple and intuitive -- A formal semantics should clarify the meaning of a languag
not obscure it. We wish the semantics to give clear insights to theusersof the language.
It is not intended to be solely for use by tool developers. We wish the semantics to
follow and give intuition about the language.

Supporting partial specifications -- The KAOS method is intended to support incre
mental elaboration of requirements; the language must therefore be able to suppo
tial and incomplete specifications. It is thus fundamental to be able to give a meani
69

A Formal Model for Agents

y for-
odel

eman-

s
ish to
tegra-
is an
ice of
com-
s are
ays
f the
odel
ge.
pos-
ch as

the
uires
atter

n of

sed of
rigi-

odels

man-
as the
s.

ntics,
ility to

orld.
uni-
and

l may
ome

with a
spe-
has

nt of
partial specifications and to support reasoning about them. This contrasts with man
mal methods where formal verification is usually performed a posteriori, after the m
has been fully specified.

Such need for reasoning about partial specifications has a strong influence on the s
tics of the KAOS operation model defined in chapter 8.

Designed for ease of language extension and contraction-- Because the language i
expected to evolve, its formal semantics should be easy to maintain. One may w
add further models to the set of models already supported by the language. The in
tion in the KAOS language of the concept of obstacle (described in Chapter 8)
example of such an extension. Among other likely language changes are the cho
the particular formalisms used for the formal layer of the language. There are many
peting formalisms and progress towards more expressive and efficient formalism
likely to occur. On the other side, the full power of the KAOS language is not alw
needed. In many cases, people will only use the ‘semi-formal’ declaration layer o
language. It is fundamental for them to be able to understand the meaning of their m
without studying the particular formalism used at the formal layer of the langua
Sometimes, it might also be decided to perform only goal analysis. It should then be
sible to understand the semantics of the various constructs of the goal model - su
goal refinement, goal conflict, etc. - without referring to the other models.

Note that the objective of support for reasoning about partial specifications and
objective of a maintainable semantics of the language are different. The former req
modularity of the domain-level models expressed in the KAOS language. The l
requires modularity of the meta-level description of the KAOS language.

4.1.2. Choosing a Semantic Domain

Like for any language, the semantics of the KAOS language is given by a translatio
every KAOS model into some other target language, called thesemantic domainof the
language. For the semantics to be useful, the semantic domain should be compo
simpler, more primitive constructs than the original language. The purpose of the o
nal language is to provide syntactical constructs that facilitates the description of m
at the semantic level.

The choice of an appropriate semantic domain is a critical concern in defining a se
tics. The semantic domain may range from a very simple and general domain such
standard models of first-order logic (FOL) to more complex and specialized domain

This choice of semantic domain has an impact on the understandability of the sema
the definition of reasoning procedures associated with the language, and the capab
define multi-paradigm languages. These concerns are discussed in turn.

Each semantic domain reflects a particular ontology, i.e. a particular view of the w
For instance, the standard model of FOL views the world as being composed of a
verse of individuals and of relations between individuals. Such a model is simple
easy to understand. However, the mapping from the KAOS language to this mode
become fairly complex. The assertions in FOL resulting from such mapping may bec
large and incomprehensible. On the other hand, a specialized semantic domain
richer ontology is more complex, but the semantic function is simpler. The case for
cialized semantic models reflecting the ontology of the language in a closed way
been articulated in [Par95], which calls for semantic domains describing the conte
70

 A Formal Model for Agents

ibing
scrib-
n be

guage
in that

s. An
well-
sed to

ach is
too

s-
er
ures.
ce-
mod-
sible
amely,

man-
first
eman-
odel

ts of
ges in
t lan-

antics
les to
ining
ning
gonal
y rules

ased

age.
del,
gent

ibes

sist-
ta-
specification documents independently from the particular notations used for descr
such content. The 4-variable model is proposed there as the semantic domain for de
ing requirements. The SCR tabular notation [Hen80, Heit96] is one notation that ca
used to describe 4-variable models. We believe that the semantics of the KAOS lan
would be easier to understand if we can define it over a specialized semantic doma
reflects the underlying ontology of the KAOS language.

A semantic domain also provides a basis on which to define reasoning procedure
advantage of defining the semantics of a language in FOL is that the logic has
known reasoning procedures. In theory, such reasoning procedures could then be u
reason about a specification at the semantic level. In practice, however, this appro
intractable, as the formulas in FOL resulting from the translation function may be
complex to handle; andthe result of the analysis performed in FOL is difficult to tran
late back into the original language. More specialized semantic domains on the oth
hand make it possible to define more specialized and efficient reasoning proced
Model-checking for propositional temporal logic formula is an example of such a pro
dure. The completeness and consistency checking techniques for RSML and SCR
els [Heim96, Heit96] are other examples of powerful analysis techniques made pos
by defining the semantics of these languages over specialized semantic domains, n
state-machine models.

The choice of a semantic domain may also have an important impact on how the se
tics of different languages can be combined to form a multi-paradigm language. A
approach consists in defining the semantics of various languages over a common s
tic domain. Such a semantic domain must be very general in order to be able to m
constructs from a wide range of languages. [Zav93] shows the feasibility and limi
this approach by defining and relating the semantics of various specification langua
FOL. A second approach consists in defining separate semantics for the differen
guages over separate, specialized semantic domains; and combine these sem
through inter-model consistency rules. The latter approach requires consistency ru
be defined between each pair of languages. It may not be appropriate for comb
specifications written in many different languages. We are however interested in defi
the semantics of a language which combines a few paradigms addressing ortho
aspects of the system. The second approach is appealing as inter-model consistenc
correspond to the meta-constraints linking components of the KAOS meta-model.

4.1.3. Overview of a semantics for the KAOS language

To summarize, our approach for defining the semantics of the KAOS language is b
on the following decisions:

• The semantics is structured according to the multi-paradigm structure of the langu
A separate semantics is defined for each KAOS submodel, namely, the goal mo
the object model, the operation model, the agent responsibility model, and the a
interface model.

• Each KAOS submodel is defined over a specialized semantic domain that descr
the ontology of the model.

• The different models are combined through inter-model consistency rules at the
semantic level. These semantic-level consistency rules yield language-level con
ency rules which correspond to the meta-constraints over components of the me
model.
71

A Formal Model for Agents

more

antics
rules

inner
sser-

oni-
rmal
main

map-

set of

nd
f con-

ts of

Such

hrough
ns in

ach
n

To reflect the language structure, the semantics of the KAOS language will further
be composed of two parts.

A first part defines the outer layer of the language. It is composed of separate sem
for the goal model, the object model, the agent model, and includes consistency
between those models.

A second part defines the syntax and semantics of the logical formalism used at the
layer of the KAOS language; and includes consistency rules between the formal a
tion layer and the declaration layer of KAOS models.

In the thesis, we are mainly concerned with the semantics of agent responsibility, m
toring, and control, together with the semantics of the operation model. The fo
model of agents defined in the next section is intended to provide the semantic do
for these language constructs.

4.2. The Underlying Agent Model

This section defines the semantic domain for agents in the KAOS language. The
ping of constructs of the KAOS language to this semantic domain is also outlined.

Intuitively, an agent is characterized by the following items:

1) aninterfacewhich declares a set of state variables that the agent monitors, and a
state variables that the agent controls;

2) a transition systemwhich is composed of an initial condition on controlled states, a
a “next state” relation mapping each sequence of monitored states to a next state o
trolled variables; and

3) a set ofgoals the agent is responsible for.

The concepts of agent interface, transition system and responsibility assignmen
goals to agents are formally defined in the following sections.

As a specialization of object, an agent also has attributes and links to other objects.
features are part of the semantics of the object model.

Our model of agents is based on states, and interaction between agents are t
shared state variables. An alternative paradigm would be to specify agent interactio
terms of shared actions.

4.2.1. Preliminary Definitions: State Variables, States and Histories

We first recall the basic concepts of state variables, states, and histories [Man92].

State Variables

We assume a setVAR of all possible state variables symbols. We also assume that e
state variablev has a type which is notedTY(v). The vocabulary of an application domai
is given by a setV ⊆ VAR.
72

 A Formal Model for Agents

el. As

ples
con-

ys-
State variables correspond to attributes of object instances in the KAOS object mod
an example, consider the following partial object model for a library system.

The set of state variables corresponding to this object model is composed of:

u.name
with TY(u.name) = Name for every possible instanceu of theUser entity

bc.title
with TY(bc.title) = Title for every possible instancebc of theBookCopy entity

Borrowing(u,bc)
with TY(Borrowing(u,bc)) = Bool

for every possible instanceu of theUser entity,
and every possible instancebc of theBookCopy entity.

In the sequel, the concepts of the underlying agent model are illustrated with exam
from the mine pump control system (see Section 3.3.2 of Chapter 3) for which we
sider the following set of variables:

WaterLevel: Depth the actual water level in the sump of the mine

HighWaterSignal: {On, Off} the signal sent by the high water sensor

LowWaterSignal: {On, Off} the signal sent by the low water sensor

PumpSwitch: {On, Off} the position of the switch that commands the pump

PumpMotor: {On, Off} the status of the pump motor

State

Let V ⊆ VAR be a set of state variables symbols. Astates of V is an interpretation func-
tion for the variables inV, that is, it is a function

s: V → TY(V).

The set of all possible states ofV is notedState(V).

An example of states1 for the above set of state variables of the mine pump control s
tem is given by:

s1(WaterLevel) = 7.2

s1(HighWaterSignal) = On

s1(LowWaterSignal) = On

s1(PumpSwitch) = On

s1(PumpMotor) = On

User

name : Name

BookCopy

title : Title

Borrowing
73

A Formal Model for Agents

l-time

states.
Histories and Paths

A history over a set of variablesV is an infinite sequence of states ofV, modelled as a
function

h: Nat → State(V)

The set of all histories over a set of variablesV is notedHistory(V).

In order to model real-time properties, sequences of states are extended with rea
tags as defined in Section 3.2.3 of Chapter 3; there is a function

time: Nat → Time

which assigns a real-time value to each positioni ∈ Nat. The functiontime is defined as
follows:

time(0) is the time at the initial position of every history

time(i) = time(0) + δ i, whereδ is the time elapsed between successive states.

In the sequel, we are also interested by partial histories, i.e., by finite sequences of
A pathover a set of variablesV is a finite or infinite sequence of states ofV. The set of all
paths over a set of variablesV is notedPath(V).

The following notations for sequences are used. Letσ be a path, and leti be a natural
number such thati ≤ length(σ),

σ(i) denotes the state ofσ at positioni,

σ[i] denotes the prefix ofσ up to positioni,

σ+s denotes the concatenation of sequenceσ with states.

As mentioned in Chapter 3, a goal defines a set of histories. The fact that an historyh sat-
isfies a goalG is noted

h |= G.

We also use the notation

σ |= G

to denote that the pathσ satisfies the goalG. This satisfaction relation is formally defined
as follows:

σ |= G iff there exists an infinite suffixh of σ such thath |= G.

As an example, ifG is a state invariant❑ P whereP is a state-formula,σ |= ❑ P is true iff
σ(i) |= P for all i ∈[0 ... length(σ)].
74

 A Formal Model for Agents

inter-

y:

by a
OS

tate
ecial
there-
4.2.2. Agent Interface

Agent interfaces in the underlying agent model are formally defined as follows.

Definition (Agent Interface) -- An agent interface modelΓ over a setV of variables is a
tuple composed of the following items:

• a setAGENT of agentinstances;

and for eachag ∈ AGENT, a signatureSIGN(ag) composed of the following items

• a setMon(ag) ⊆ V of variables monitored by the agent;
• a setCtrl(ag) ⊆ V of variables controlled by the agent;

We use the notationVoc(ag) to denote the union ofMon(ag) andCtrl(ag).

An agent signature must furthermore satisfy the following constraints:

(1) for each agent, the sets of monitored and controlled variables are disjoint, i.e.

Mon(ag) ∩ Ctrl(ag) = φ.

(2) every variable is controlled by at most one agent, i.e.

if ag ≠ ag’ thenCtrl(ag) ∩ Ctrl(ag’) = φ.

The second constraint is used when defining transitions of agents in order to avoid
ference between concurrent executions of agents.

For example, an agent interface model for the mine pump control system is given b

Agent = {pump_ctrler, high_sensor, low_sensor}

Mon(pump_ctrler) = {HighWaterSignal, LowWaterSignal}
Ctrl(pump_ctrler) = {PumpSwitch}

Mon(high_sensor) = {WaterLevel}
Ctrl(high_sensor) = {HighWaterSignal}

Mon(low_sensor) = {WaterLevel}
Ctrl(low_sensor) = {LowWaterSignal}

Here, the agentspump_ctrler, high_sensor, low_sensor are agent instances.

The semantics of KAOS agent interface models is defined over agent signatures
function that maps instance declarations of monitoring and control links of the KA
model to agents signatures of the underlying agent model.

In the thesis, we make the simplifying assumption that agent interfaces are static.

Note that in our model, agent interfaces are composed ofmonitored and controlled state
variables. With an event-based formalism, agent interfaces would be composed ofmoni-
tored and controlled events. In our model, the occurrence of an event is viewed as a s
variable that holds at a single point in time. (Remember that a KAOS event is a sp
kind of object; see Section 3.2.5 in Chapter 3). Interaction through shared events is
fore also supported by our model.
75

A Formal Model for Agents

e

ts

states

tates
4.2.3. Agent Views and Indistinguishability

Agent interfaces define the views that agents have on the system. Ifs ∈ State(V) is a glo-
bal state of the system, theview of an agenton the global system state is given by th
projections|Voc(ag) of s onVoc(ag).

We use the notation

s ~Voc(ag) s’

to express that two states areindistinguishableby an agent; we have thus:

s ~Voc(ag) s’ iff s|Voc(ag) = s’|Voc(ag)

As an example, consider the agent interface model above and two statess1 ands2 such
that

s1(WaterLevel) = 7.2 s2(WaterLevel) = 8

s1(HighWaterSignal) = On s2(HighWaterSignal) = On

s1(LowWaterSignal) = On s2(LowWaterSignal) = On

s1(PumpSwitch) = On s2(PumpSwitch) = On

s1(PumpMotor) = On s2(PumpMotor) = Off

The two states are indistinguishable by thepump_ctrler agent, because the variables at i
interface all have the same values in the two states.

The notions of agent views and indistinguishability are extended to sequences of
as follows

σ|Voc(ag) = the projection of every state ofσ onVoc(ag),

σ ~Voc(ag) σ’ iff σ|Voc(ag) = σ’|Voc(ag).

Similarly, the set of variables controlled by an agent defines a projection on global s
of the system and an equivalence relation between global states of the system:

s|Ctrl(ag) = the projection ofs onCtrl(ag),

s ~Ctrl(ag) s’ iff s|Ctrl(ag) = s’|Ctrl(ag).

4.2.4. Agents Transition Systems

The transition system of agents is defined as follows.

Definition (Agent Transition System) -- A multi-agent transition systemΠ is a tuple
composed of the following items:

• an agent interface modelΓ = <AGENT, Sign >;
• for eachag ∈ AGENT, a transition system∆(ag) composed of the following items:

• a set
Init(ag) ⊆ State(Ctrl(ag))

of initial states for the variables controlled by the agent;
76

 A Formal Model for Agents

ext

ints:

or
the

4],
].

tion
these

agent.

tates,

nts is
• a “next state” relation
Next(ag) ⊆ Path(Voc(ag)) × State(Ctrl(ag))

that relates sequences of states of variables in the signature of the agent to a n
state of variables controlled by the agent.

The transition system of an agent is furthermore submitted to the following constra

(1) the set of initial states of an agent is not empty, i.e,

Init(ag) ≠ φ

(2) theNext relation is total, i.e.,

for all σm ∈ Path(Voc(ag)), there existssc ∈ State(Ctrl(ag))
such that <σm, sc > ∈ Next(ag)

Even for small systems, it would be too long to define theNext state relation in extension
by listing all the pairs<σm, sc> ∈ Next(ag). Specification languages are introduced f
defining this relation concisely. They can take different forms: tabular notations in
spirit of SCR [Hen80, Heit96], transition diagrams in the spirit of [Har87] and [Lev9
or state-based style specifications in the spirit of Z [Spi89], VDM [Jon90] or B [Abr96

We will use the KAOS operation model to define the underlying multi-agent transi
system. The semantics of KAOS operation models is defined by a relation between
models and the underlying transition systems defined here.

4.2.5. Agent Runs

An agent run is a sequence of states generated by the transition system of the
Agent runs are formally defined as follows.

Definition (Runs of an Agent Transition System) --Let Π = <Γ, ∆> be a multi-agent
transition system.

(a) The runs of an agentag ∈ AGENT is a set

Run(ag) ⊆ Path(V)

such thatσ ∈ Run(ag) iff it satisfies the following constraints:

• satisfaction of the initial condition:
σ(0)|Ctrl(ag) ∈ Init(ag)

• satisfaction of theNext relation:
< σ[i-1]|Voc(ag), σ(i)|Ctrl(ag) > ∈ Next(ag) for all i ∈[1.. length(σ)]

The set of infinite runs of the agent is notedBehaviour(ag).

(b) The runs of the multi-agent system is a set

Run(Π) ⊆ Path(V)

such thatσ ∈ Run(Π) iff σ ∈ Run(ag) for all ag ∈ AGENT.

Note that the runs of an agent in these definitions are histories on global system s
rather than histories on state of variables in the signature of the agents.

Also note that the transitions of agents occur concurrently. Interference between age
avoided because each variable is controlled by at most one agent.
77

A Formal Model for Agents

s

er to
e full

ent
is con-

ystem

ble in

efine a
gics
lude
In the previous section, we required theNext relation to be a total relation. This ensure
that every finite run can be extended into an infinite run.

4.2.6. Properties of Agent Runs

We now describe three important properties of agent runs. They will be used lat
define necessary and sufficient conditions for a goal to be realizable by an agent. Th
proofs of the properties are given in Appendix A.

(a) The domain of theNext state relation of an agent is restricted to the view the ag
has on the global system states. As a consequence, the set of runs of an agent
strained by the interface of the agent. Suppose that the system is at a pointσ1 and thatσ1

∼Voc(ag)σ2 (see Figure 4.1.a). If<σ1|Voc(ag), s|Ctrl(ag)> ∈ Next(ag), then sinceσ1 ∼Voc(ag)
σ2, we also have that<σ2|Voc(ag), s|Ctrl(ag)> ∈ Next(ag). Thus, if σ1+s ∈ Run(ag) then
σ2+s ∈ Run(ag). Therefore, the following property characterizes agent runs.

Property 1 (interface restriction) -- For allσ1, σ2 ∈ Run(ag), s ∈ State(V),
if σ1 ∼Voc(ag) σ2 thenσ1+s ∈ Run(ag) iff σ2+s ∈ Run(ag)

(b) The second property is related to the fact that the range of theNext state relation of an
agent is restricted to the set of variables controlled by the agent. Suppose that the s
is at a pointσ, and that there are two statess1 ands2 such thats1 ∼Ctrl(ag)s2 (see Figure
4.1.b). If <σ|Voc(ag), s1|Ctrl(ag)> ∈ Next(ag), then sinces1 ∼Ctrl(ag) s2, we also have that
<σ|Voc(ag), s2|Ctrl(ag)> ∈ Next(ag). Thus, ifs1 ∼Ctrl(ag) s2 thenσ +s1 ∈ Run(ag) iff σ +s2

∈ Run(ag). This is formally captured by the following property.

Property 2 (control restriction) -- For allσ ∈ Run(ag), s1, s2 ∈ State(V),
if s1 ∼Ctrl(ag)s2 thenσ +s1 ∈ Run(ag) iff σ +s2 ∈ Run(ag)

The third property states that the specification of an agent transition system is viola
a finite time. This is formally captured by the following property.

Property 3 (finitely violable) -- For allh ∈ History(V),
if h ∉ Behaviour(ag) then there exists a finite prefixσ of h such thatσ ∉ Run(ag)

The property asserts that the set of histories generated by a transition systems d
safety property according to the classical safety/liveness distinction of temporal lo
[Alp87]. It is a consequence of our definition of transition systems that does not inc
fairness conditions.

σ1 σ2

σ1+s σ2+s

σ

σ+s1 σ+s2

~Voc(ag)

~Ctrl(ag)

(a) interface restriction (b) control restriction

 FIGURE 4.1. Two properties of agent runs
78

 A Formal Model for Agents

nce

bil-
s and
n by a
spon-

must
by the
ility

n

f an
tisfy a
for-

t that
ow-

order
sign-
ments
4.2.7. Agent Responsibilities

The agent responsibility model is defined as follows.

Definition (Agent Responsibility Model) -- An agent responsibility model is given by
the following items:

• a setAGENT of agent instances
• a setGOAL of goals, where eachG ∈ GOAL defines a set of histories on global system

states;
• a relationResp ⊆ AGENT × GOAL.

As an example, consider the goal defined by

HighWaterSignal = ‘On’ ⇒ ❍ PumpSwitch = ‘On’.

The responsibility assignment of that goal to thepump_ctrler agent is declared by:

Resp(pump_ctrler, HighWaterSignal = ‘On’ ⇒ ❍ PumpSwitch = ‘On’).

The responsibility relation of the underlying agent model is derived from the insta
declarations of theResponsibility links in the KAOS model.

TheResp relation of the underlying agent model is a primitive relation. The responsi
ity assignments of goals to agents are purely syntactical relations between goal
agents. The semantics of responsibility assignments is captured in the next sectio
responsibility consistency rule between the transition system of agents and their re
sibility assignments.

4.2.8. Relating agent responsibilities and the agent’s transition system

The semantics of responsibility assignment of a goal to an agent is that the agent
restrict its behaviour so as to ensure the goal [Fea87]. The semantics is captured
following consistency rule relating the transition system of an agent to its responsib
assignments.

Definition (Responsibility consistency rule) --Given an agent transition system and a
agent responsibility model, the following constraint must be satisfied:

for all ag ∈ AGENT, G ∈ GOAL

if Resp(ag, G), then Behaviour(ag) ⊆ G.

Note that this formal notion of responsibility does not say that if the behaviours o
agent satisfy a goal then the agent is responsible for that goal (an agent could sa
property without being required to satisfy it). This consistency rule is therefore not a
mal definition (in the strict mathematical sense) of responsibility (that is, a statemen
defines responsibility assignments in terms of other more primitive concepts). It is h
ever a formal property that captures the meaning of responsibility assignments.

The responsibility consistency rule yields meta-constraints at the language level. In
to satisfy the responsibility consistency rule at the semantic level, a responsibility as
ment at the language level must be operationalized by a set of operational require
that satisfy the responsibility meta-constraint (see Section 3.2.7 in Chapter 3).
79

A Formal Model for Agents

ing
itoring

ven
ment
es the
.

ility
to be
tories

sibil-
abili-

ntrol
of the

es

tem
stab-
apa-
of

for
4.3. Defining Realizability

Therealizabilitymeta-constraint is intended to provide a precise criterion for identify
whether a goal can be assigned as the responsibility of an agent based on its mon
and control capabilities,before an operational model of the agent is available.

As mentioned in Chapter 3, realizability plays a significant role in the goal-dri
requirement elaboration process. It provides a criterion for stopping the goal refine
process (a goal realizable by an agent need not to be further refined), and it guid
refinement of goals into subgoals until the latter are realizable by individual agents

This section is structured as follows. Section 2.1. gives a formal definition of realizab
for a single goal. Section 2.2. gives necessary and sufficient conditions for a goal
realizable. These conditions are defined at the semantic level on the set of his
admitted by the goal. Section 2.3 defines realizability for multiple goals.

4.3.1. Defining Realizability of single responsibility assignments

The realizability meta-constraint is intended to capture what are admissible respon
ity assignments of goals to agents based on the agent’s monitoring and control cap
ties.

We say that a goal is realizable by an agent if, given the agent monitoring and co
capabilities, there exists a transition system for the agent such that the behaviour
agent isequal to the set of histories admitted by the goal.

Definition (Realizability) -- Let ag be an agent instance with interface variabl
Mon(ag), Ctrl(ag), and letG be a goal. The goalG is realizable by an agentag
iff there exists a transition system∆(ag) = <Init(ag), Next(ag)> with

• Init(ag) ⊆ State(Ctrl(ag)
• Next(ag) ⊆ Path(Voc(ag)) × State(Ctrl(ag))

such thatBehaviour(ag) = G.

This definition of realizability requires the existence of an appropriate transition sys
for the agent. In the following section and in Chapter 5, we will see how one can e
lish whether a goal is realizable or not by an agent from the monitoring and control c
bilities of the agent, without referring, implicitly or explicitly, to the transition system
the agent.

Note that the definition of realizability requires the existence of a transition system
the agent such thatBehaviour(ag) = G, instead of simply requiring thatBehaviour(ag) ⊆
G. Intuitively, this means that the agent should be able to satisfy the goalwithout being
more restrictive than required by the goal. This will be illustrated by the third example
below.

Let us first consider an example of a realizable goal. Consider the goalMaintain[PumpS-
witchOnWhenHighWaterDetected], defined by:

HighWaterSignal=’On’ ⇒ ❍ PumpSwitch = ‘On’.
80

 A Formal Model for Agents

m

sec-
d

oal

aliza-
ext

nt if
goal

s are
r than

f the
ists a
: (i)
by
The goal is realizable by thepump_ctrler agent that monitors theHighWaterSignal varia-
ble and controls thePumpSwitch variable. A transition system for thepump_ctrler whose
set of behaviours is equivalent to the goal is given by the pair<Init, Next> such that

(i) sc ∈ Init for all sc ∈ State(Ctrl(pump_ctrler))

(ii) <σm, sc> ∈ Next iff if σm (n)(HighWaterSignal) = On (wheren= length(σm))
thensc(PumpSwitch) = On

As a first example of an unrealizable goal, consider the goalMaintain[PumpOnWhen-
HighWater], defined by:

WaterLevel ≥ ‘High’ ⇒ ❍ PumpMotor = ‘On’.

Note that thepump_ctrler agent does not monitor theWaterLevel variable and does not
control thePumpMotor variable. As a result, it is impossible to find a transition syste
for the pump_ctrler such thatBehaviour(pump_ctrler) = PumpOnWhenHighWater. (A
formal proof that such a transition system does not exist is given in the following
tion.) The goal is not realizable by thepump_ctrler and should therefore not be assigne
to that agent.

To illustrate why we require equality in the definition of realizability, consider the g
Maintain[PumpSwitchOnWhenHighWater], defined by:

WaterLevel ≥ ‘High’ ⇒ ❍ PumpSwitch = ‘On’.

The pump_ctrler agent controls thePumpSwitch variable, but does not monitor the
WaterLevel variable. The agent can ensure the goal by always keeping thePumpSwitch
variable set to‘On’, regardless of the value of theWaterLevel variable. More explicitly,
one can show that the following transition for thepump_ctrler system satisfies the goal:

(i) sc ∈ Init for all sc ∈ State(Ctrl(pump_ctrler))

(ii) <σm, sc> ∈ Next iff sc(PumpSwitch) = On

The behaviours generated by this transition system are defined by:

❍ ❑ PumpSwitch = ‘On’

These behaviours are stronger than required by the goal. The goal is actually not re
ble by thepump_ctrler, and cannot be assigned to that agent. (We will show in the n
section that there is no transition system for thepump_ctrler such that Behav-
iour(pump_ctrler) = PumpSwitchOnWhenHighWater.)

Therefore, the definition of realizability prevents the assignment of a goal to an age
the agent does not have the monitorability and control capabilities to satisfy the
without being more restrictive than required by the goal.

Note that realizability requires that is must bepossiblefor an agent to satisfy a goal with-
out being more restrictive than required by the goal; but that when several goal
assigned to an agent, the actual transition system of the agent may be stronge
required by any single goal.

This definition of realizable goal can be viewed as the equivalent at the goal level o
concept of realizable specification: a specification is said to be realizable if there ex
program that implements it [Aba89]. There are however two important differences
our concept of realizability explicitly refers to the variables monitored and controlled
81

A Formal Model for Agents

rs are
d in

m
sist
them
ro-
for a
vel on
able
sed

ed to
nd suf-
tions.

nt by

e

the agent, and (ii) we require the existence of a transition system whose behaviou
equal to the set of histories admitted by the goal, whereas only inclusion is require
[Aba89].

4.3.2. Semantic Conditions for Realizability

To show that a goalG is realizable by an agentag, one can exhibit a transition system
∆(ag) such thatBehaviour(ag) = G. In this section, we are interested in the dual proble
of showing that a goal isnot realizable by an agent. A brute force approach would con
in generating every possible agent transition system and showing for every one of
that Behaviour(ag) ≠ G. This approach is clearly not feasible. This motivates the int
duction of the following theorem. It states three necessary and sufficient conditions
goal to be realizable by an agent. These conditions are defined at the semantic le
the set of paths admitted by the goal. (Syntactical conditions for identifying unrealiz
goals will be considered in Chapter 5.) The limitations of the theorem will be discus
next.

Theorem 1 (Semantic Conditions for Realizability) --For all G ⊆ Hist(V) such thatG
≠ φ, G is realizable by an agentag iff the following conditions hold:

(1) for all σ1, σ2 ∈ Path(V), s ∈ State(V),
if σ1 ∼Voc(ag) σ2 thenσ1+s |=G iff σ2+s |= G

(2) for all σ ∈ Path(V), s1, s2 ∈ State(V),
if s1 ∼Ctrl(ag)s2 thenσ +s1 |= G iff σ +s2|= G

(3) for all h ∈ History(V)
if h |≠G then there exists a finite prefixσ of h such thatσ |≠ G

The proof of the theorem is given in appendix A.

We illustrate the three conditions of the theorem by showing how they can be us
show that a goal is not realizable by an agent. Since the conditions are necessary a
ficient, every goal that is not realizable by an agent violates at least one of the condi

1. Goals violating the first condition

Consider the first condition. One can show that a goal is not realizable by an age
showing that the goal violates the first condition, i.e. by givingσ1, σ2 ∈ Path(V), ands
∈ State(V) such that

σ1 ∼Voc(ag) σ2 andσ1+s |= G andσ2+s |≠ G

Example 1. Consider the goal

WaterLevel ≥ ‘High’ ⇒ ❍ PumpSwitch = ‘On’

We show that the goal is not realizable by thepump_ctrler agent because it violates th
first condition of Theorem 1.
82

 A Formal Model for Agents

e

Each

e

nd

iable
Let us take two pathsσ1, σ2, such thatn = length(σ1) = length(σ2), and defined as fol-
lows:

σ1 (i) = σ2 (i) for i ∈[0 ... n - 1]

σ1 (n) (WaterLevel) < ‘High’

σ2 (n) (WaterLevel) ≥ ‘High’

σ1 (n) (v) = σ2 (n) (v) for all v ≠ s.WaterLevel

SinceWaterLevel ∉ Voc(pump_ctrler), we have thatσ1 ∼Voc(ag)σ2. If we now takes

such that

s(PumpSwitch) = ‘Off’,

we have thatσ1+s |= G andσ2+s |≠ G. The first condition of the theorem is therefor
violated, and we have shown that the goal is not realizable by the pump_ctrler.

This goal violates the first condition of Theorem 1 because it refers to the variableWater-
Level that is not at the interface of thepump_ctrler.

2. Goals violating the second condition

Consider the second condition. One can violate the second condition by givingσ ∈
Path(V), ands1, s2 ∈ State(V) such that

s1 ∼Ctrl(ag)s2 andσ +s1 |= G andσ +s2|≠ G.

We give three examples of goals that violates the second condition of Theorem 1.
of these examples shows a different cause of violation of this condition.

Example 2.Consider the goal

HighWaterSignal = ‘On’ ⇒ ❍ PumpMotor = ‘On’.

We show that the goal is not realizable by thepump_ctrler agent because it violates th
second condition of Theorem 1.

Let us take a pathσ of lengthn such thatσ has not violatedG, i.e.σ |= G, and

σ (n) (HighWaterSignal) = On.

We now takes1 ands2 such that

s1(PumpMotor) = ‘On’ , s2(PumpMotor) = ‘Off’

s1(v) = s2(v) for all v ≠ PumpMotor

SincePumpMotor ∉Ctrl(pump_ctrler), we have thats1 ∼Ctrl(ag)s2. We also have thatσ
+s1 |= G andσ +s2|≠ G. The second condition of the theorem is therefore violated, a
we have shown that the goal is not realizable by the pump_ctrler.

This goal violates the second condition of Theorem 1 because it refers to the var
PumpMotor that is not controlled by thepump_ctrler.
83

A Formal Model for Agents

on,

the

the

on-

n sets
Example 3.As an example of goal violating the second condition for a different reas
consider a goal defined by:

❑≤d HighWaterSignal = ‘On’ ⇒ ❍ PumpSwitch = ‘On’.

This goal is defined only in terms of variables monitored and controlled by
pump_ctrler agent. Intuitively, that goal is not realizable by thepump_ctrler agent
because itrefers to the futurevalues of the variableHighWaterSignal. One can show that
this goal also violates the second condition of Theorem 1 as follows.

Let us take a pathσ of lengthn, defined by:

σ (i) (HighWaterSignal) = Off for all i such that0 ≤ i ≤ n - d

σ (i) (HighWaterSignal) = On for all i such thatn -d < i ≤ n

σ (i) (PumpSwitch) = Off for all i such that0 ≤ i ≤ n

togethers1, s2 such that

s1(HighWaterSignal) = ‘Off’, s2(HighWaterSignal) = ‘On’

s1(v) = s2(v) for all v ≠ HighWaterSignal

SinceHighWaterSignal ∉Ctrl(pump_ctrler), we have thats1 ∼Ctrl(ag)s2.

Note that the assertion❑≤d HighWaterSignal = On never holds for the pathσ+s1.
Therefore, we have thatσ +s1 |= G. However, for the pathσ+s2, we have:

σ+s2 (n-d+1) |= ❑≤d HighWaterSignal = On

σ+s2 (n-d+1) |≠ PumpSwitch = On

Therefore,σ +s2|≠ G; and we have shown that the goal is not realizable by
pump_ctrler.

Example 4.As a last example of goal violating the second condition of Theorem 1, c
sider the meeting scheduling problem and the goal:

m.PlanningRequest
⇒ ❍ (∃ d: Date):
m.Date = d ∧ (∀ p: Prtcpt): ● Intended(p,m) → d ∉ ● Cstr[p,m].exclset

For the sake of the example, assume that aScheduler agent is capable of controlling the
date of the meeting, and is capable of monitoring the planing requests and exclusio
of participants. One can show that this goal is not realizable by theScheduler agent,
because it violates the second condition of Theorem 1.

Let us take a pathσ of lengthn defined as follows:

σ (i) (m.PlaningRequest) = false for all i such that. 0 ≤ i ≤ n

and chooses1, s2 such that

s1 |≠ m.PlaningRequest

s2 |= m.PlaningRequest
∧ ¬ (∃ d: Date): (∀ p: Prtcpt): ● Intended(p,m) → d ∉ ● Cstr[p,m].exclset
84

 A Formal Model for Agents

e
hown

lled
vely,
gent’s
alled
p-

ed

y

an-
that

nt can
lity.
.

single
can be

tisfy-
satis-
Since the state variablesm.PlaningRequest, Intended(p,m), andCstr[p,m].exclset are
not controlled by theScheduler agent, we have thats1 ∼Ctrl(ag)s2. We also have thatσ
+s1 |= G andσ +s2|≠ G, because fromσ +s2 there is no next state that satisfies th
goal. The second condition of the theorem is therefore violated, and we have s
that the goal is not realizable by the Scheduler agent.

In this example, the goal is defined only in terms of variables monitored and contro
by the agent, and does not refer to the future values of monitored variables. Intuiti
the goal is not realizable by the agent because there exists a behaviour of the a
environment that makes the goal impossible to satisfy. The specialized condition, c
unsatisfiability, characterizing this kind of realizability problem will be defined in cha
ter 5.

3. Goals violating the third condition

The third condition of Theorem 1 is violated by giving an infinite historyh such that

h |≠G

σ |= G for all finite prefixσ of h.

Example 5.As an example of goal violating the third condition, consider a goal defin
by:

Request ⇒ ◊ Service

We show that this goal violates the third condition as follows.

Consider an historyh such that

(h, i) |= Request for somei ≥ 0, and

(h, j) |≠ Service for all j ≥ i.

Clearly, h |≠ G. However, any finite prefixσ of h satisfies the goal because for an
finite prefixσ of h, there exists a suffixh’ of σ such thath’ |= G. That is, the goal can-
not be violated in a finite time.

According to the third condition, a “pure” liveness property (as classically defined) c
not be assigned as the responsibility of an agent. The intuition for such restriction is
a liveness property does not really constrain the behaviours of the agent: the age
indefinitely postpone the satisfaction of the goal without infringing on its responsibi
A violation of a liveness property can also never be observed in the running system

Even though a liveness property cannot be assigned as the responsibility of a
agent, a goal on the global system can be a liveness property whose satisfaction
achieved through the cooperation of several agents.

Also note that boundedAchieve goals of the form

R ⇒ ◊≤d S

are not liveliness properties in the classical sense. If the agent is responsible for sa
ing any request within 2 days, the goal is violated as soon as a request has not been
fied during two days.
85

A Formal Model for Agents

a goal
ance

e suf-
 3

(i)
of
abo-
m.

aliz-

-
er
both
4. Practical Limitations of Theorem 1

Theorem 1 defines necessary and sufficient conditions that allow one to prove that
is not realizable by an agent. However, the theorem does not provide efficient guid
for identifying realizability problems during the requirements elaboration process:

• proving a violation of one of the conditions of the theorem requirestedious reasoning
at the semantic levelon the set of paths admitted by the goal;

• the fact that a goal violates one of the conditions of the theorem does not provid
ficient explanation aboutwhy the goal is not realizable by the agent (see examples
and 4 above).

In Chapter 5, we will provide a complete taxonomy of realizability problems that
allows one to identify realizability problems syntactically form the formal definition
goals, and (ii) explain why a goal is not realizable, thereby providing guidance for el
rating the requirements model so as to resolve the cause of the realizability proble

4.3.3. Defining Realizability of multiple responsibility assignments

Up to now, we have considered the notion of realizability for asinglegoal. We extend the
concept of realizability to multiple goals as follows.

Definition (Realizability of multiple goals) -- A set of goals{G1,..., Gn} is realizableby
an agentag iff there exists a transition system∆(ag) = <Init(ag), Next(ag)> with

• Init(ag) ⊆ State(Ctrl(ag)
• Next(ag) ⊆ Path(Voc(ag)) × State(Ctrl(ag))

such that

Behaviour(ag) = ∩ Gi.

It is worth pointing out that if two goals are realizable separately, they may not be re
able together. As an example, consider again the goalMaintain[PumpSwitchOnWhen-
HighWaterDetected], defined by:

HighWaterSignal=’On’ ⇒ ❍ PumpSwitch = ‘On’

and the goalMaintain[PumpSwitchOffWhenCriticalMethanMeasure]:

MethaneMeasure ≥ ‘Critical’ ⇒ ❍ PumpSwitch = ‘Off’

whereMethaneMeasure is monitored by thepump_ctrler. Each of the two goals is sepa
rately realizable by thepump_ctrler. However, the two goals are not realizable togeth
by thepump_ctrler. Indeed, there is no transition system for the agent that satisfies
goals. Since the variablesHighWaterSignal andMethaneMeasure are not controlled by
thepump_ctrler, this agent cannot prevent the system from reaching a states for which

s(HighWaterSignal) = On

s(MethaneMeasure) ≥ ‘Critical’.
86

 A Formal Model for Agents

he

wing
rlying
t. We
ty of

suf-
ntic
ovide
ation
suffi-

r is to
ility
In such a state, there is no next states’ that satisfies both goals: the first goal requires t
next state to satisfy

s’(PumpSwitch) = ‘On’,

whereas the second goal requires the next state to satisfy

s’(PumpSwitch) = ‘Off’.

4.4. Summary

This chapter has defined a foundation on which the techniques presented in the follo
chapters are built. We have defined a formal model of agents that provides the unde
semantic domain for the KAOS language features related to the concept of agen
have formally defined the realizability meta-constraint that relates the responsibili
an agent to its monitoring and control capabilities. We also identified necessary and
ficient conditions allowing unrealizability to be identified by reasoning at the sema
level on the set of paths admitted by the goal. These conditions however do not pr
practical support for reasoning about realizability during the requirements elabor
process; they require tedious reasoning at the semantic level, and do not provide
cient explanation about the cause of unrealizability. The purpose of the next chapte
define checkable, syntactical conditions for identifying and classifying realizab
problems during the goal refinement process.
87

A Formal Model for Agents
88

 Identifying and Classifying Unrealizable Goals

iden-

l

s:

by

of

es

i.e.

also
agent

s of
tify

t

l

that
Chapter 5
Identifying and Classifying
Unrealizable Goals

The objective of this chapter is to propose systematic techniques for supporting the
tification of realizability problems during the goal refinement process.

For that purpose, we define a taxonomy of unrealizability conditions that

• providescheckable syntactical conditions for identifying unrealizable goals during
the goal refinement process;

• explainswhy the goal is not realizable, to provide guidance for elaborating the mode
so as to resolve the cause of unrealizability.

In brief, a goal is not realizable by an agent for at least one of the following reason

• lack of monitorability : the goal is defined in terms of variables that are not in the
interface of the agent;

• lack of control: the goal requires control of some variables that are not controlled
the agent;

• reference to future: the goal constrains the values of controlled variables in terms
future values of monitored variables;

• goal unsatisfiability: there exists a behaviour of the agent’s environment that mak
the goal impossible to satisfy;

• not finitely violable goal: the goal does not constrain the finite runs of the agent,
it defines a liveness property.

The conditions of unrealizability are precisely defined in the following sections. We
show that the taxonomy is complete, that is, every goal that is not realizable by an
satisfies at least one of the above conditions.

5.1. Viewing Goals as Relations

The taxonomy of realizability problems is intended to provide effective explanation
why a goal is not realizable. In order to provide such explanation, it is useful to iden
what are the variables that areintended to be constrained by the goal.

As an example, consider the goalMaintain[PumpOnWhenHighWater] defined by:

WaterLevel ≥ ‘High’ ⇒ ❍ PumpMotor = ‘On’.

Intuitively, that goal is not realizable by thePumpController agent because it canno
monitor theWaterLevel variable, and cannot control thePumpMotor variable. It would
not be meaningful to say that the goal is not realizable by thePumpController because
this agent cannotcontrol theWaterLevel, monitor thePumpMotor; and because the goa
constrains theWaterLevel based on the future value of thePumpMotor. The appropriate
realizability problems are identified only because we know from domain knowledge
this goal is intended to constrain thePumpMotor, and not theWaterLevel.
89

Identifying and Classifying Unrealizable Goals

w-

in
-

ndent
hat it

f the
iden-
nt
al is

ctual
ts are

ana-

w

ables
As another example, consider the ‘utility’ goalMaintain[GateOpenWhenNoTrainIn-
Crossing] of the railroad crossing problem [Heit96b], for which we consider the follo
ing simplified definition:

❑≤d ¬ TrainInCrossing ⇒ GateOpen

This goal is intended to constrain the variableGateOpen based on future values of the
variableTrainInCrossing. Therefore, the goal is not realizable by aGateController agent
because: (i) this agent cannot monitor the variableTrainInCrossing; (ii) it cannot control
the variableGateOpen; and (iii) the goal refers to future values of the variableTrainIn-
Crossing.

Note that the temporal logic definition of that goal is semantically equivalent to:

¬ GateOpen ⇒ ◊≤d TrainInCrossing.

Therefore, if that goal was intended to constrain the variableTrainInCrossing rather than
the variableGateOpen, it would have a completely different meaning: it would constra
the future values of the variableTrainInCrossing based on the current value of the varia
ble GateOpen; and the realizability problems would be quite different.

Note also that the concept of reference to the future is a goal property that is indepe
of the actual interface of the agent: for the above goal, we want to be able to say t
constrains the variableGateOpen based on future values of the variableTrainInCrossing
even though this variable is not monitored by theGateController.

As yet another example, consider the goalAchieve[ConvenientMeetingPlanned] in the
meeting scheduling problem:

m.Requested
⇒ ◊ (∃ d: Date):
m.Date = d ∧ (∀ p: Prtcpt): ● Intended(p,m) → d ∉ ● Cstr[p,m].exclset

From domain knowledge, we know that this goal is intended to constrain the date o
meeting based of the exclusion sets of all intended participants. Therefore, we will
tify that this goal is not realizable by aScheduler software agent because (i) this age
cannot monitor the actual exclusion sets of intended participants, and (ii) the go
unsatisfiable if the intersection of the exclusion sets of the participants is empty.

Note that goal unsatisfiability is another goal property that is independent of the a
interface of the agent. In the last example, the actual constraints of the participan
not monitored by theScheduler.

In order to define a taxonomy of realizability problems that provide appropriate expl
tion why a goal is not realizable, we associate to each goalG, a set

Ctrl(G) ⊆ Voc(G)

that denotes the set of variables that areintended to be constrained by the goal. We also
define the setMon(G) ⊆ Voc(G) such thatMon(G) = Voc(G) \ Ctrl(G).

We assume that the setsCtrl(G) are given by domain knowledge. For instance, we kno
from domain knowledge that the goalMaintain[GateOpenWhenNoTrain] is intended to
constrain the values of the variablesGateOpen. Default choices for the setsCtrl(G) could
also be given based on the syntactical pattern of the goal definition. Usually, the vari
intended to be constrained by the goal appear in the consequent of the goal.
90

 Identifying and Classifying Unrealizable Goals

for a

ref-
r-

s

i-
h

re
l con-

ela-
5.2. A Complete Taxonomy of Realizability Problems

We now give a fundamental theorem that gives necessary and sufficient conditions
goal relation to be realizable by an agent.

In this theorem, the following notations about goal relations are used to help defining
erence to the future: the setG(M, C) (hm) returns the set of all histories of constrained va
iables that satisfy the goal for the historyhm; and the setG(M, C) (hm) [i] returns all
prefixes up to timei of the histories of constrained variables inG(M, C) (hm). Formally,

G(M, C) (hm) = {hc ∈ Hist(C) | (hm, hc) ∈ G(M,C)}

G(M, C) (hm) [i] = {σc ∈ Path(C) | σc = hc[i] for some hc ∈ G(M, C) (hm)}.

Theorem 2 --Let G ⊆ Hist(V) andag an agent with monitoring and control capabilitie
given byMon(ag) andCtrl(ag), respectively.G is realizable byag if, and only if, there
existsC ⊆ Voc(G) andM = Voc(G)\Ctrl(ag) such that the following conditions hold:

(i) the agent has sufficient monitoring capabilities

M ⊆ Voc(ag)

(ii) the agent has sufficient control capabilities

 C ⊆ Ctrl(ag)

(iii) G(M,C) is a total relation, that is,

for all hm ∈ Hist(M) there existshc ∈ Hist(C) such that(hm, hc) ∈ G(M,C)

(iv) G(M,C) does not refer to future values ofM, that is, the values at timei of variables in
C only depend on the previous values of variables inM up to timei -1.

(v) G is finitely violable, i.e.

for all h ∈ History(V), if h |≠ G then there exists a finite prefixσ of h such thatσ |≠ G

Condition (iv) is formally captured by the following property requiring that if two arb
trary histories of variables inM are equal up to timei - 1, then they accept the same pat
of variables inC up to timei:

for all hm , hm’ ∈ dom G(M,C) andi ≥ 0
if hm’[i-1] = hm[i-1] or i =0 then G(M, C) (hm) [i] = G(M, C) (hm’) [i]

The proof of the theorem is given in Appendix B.

Note that conditions (i) and (ii) are syntactical conditions. Conditions (iii) to (v) a
semantic conditions defined on the set of histories admitted by the goal. Syntactica
ditions for verifying these conditions are proposed below.

The taxonomy of unrealizability conditions is defined with respect to a given goal r
tion G(M,C) by taking the negation of conditions (i) to (v) in the above theorem.
91

Identifying and Classifying Unrealizable Goals

y of

s can

e

itored
For a goalG, and a given pair(M, C) we will thus use the following criteria:

(i) Lack of monitorability : an agentag lacks monitorability forG(M,C) iff M Voc(ag)

(ii) Lack of control: an agentag lacks control forG(M,C) iff C Ctrl(ag)

(iii) Goal unsatisfiability: G(M,C) is unsatisfiable iffG(M,C) is not a total relation

(iv) Reference to future: G(M,C) refers to the future values ofM iff condition (iv) of the-
orem 2 is violated

(v) Not finitely violable goal: G is not finitely violable iff condition (v) of theorem 2 is
violated.

Since the conditions of Theorem 2 are sufficient, we have shown that the taxonom
unrealizability conditions is complete.

Each of these conditions is illustrated in turn. We also discuss how such condition
be checked syntactically from the formal definition of the goal.

5.3. Identifying Lack of Monitorability

As mentioned before, an agent lacks monitorability in order to realize a goalG(M, C) iff

M Voc(ag).

The lack of monitorability of an agent for a goalG(M, C) is thus defined by the set

M \ Voc(ag).

As a first example, consider the goalMaintain[PumpOnWhenHighWater] defined by

WaterLevel ≥ High ⇒ ❍ PumpMotor = ‘On’

The goal is intended to constrain the variablePumpMotor based on the variableWater-
Level. That is, we consider the goal relation

PumpOnWhenHighWater ({ WaterLevel}, {PumpMotor})

Since the variableWaterLevel is not among the vocabulary of thePumpController agent,
we have identified that thePumpController lacks monitorability for that variable.

As another example, consider a train control system (cfr. Chapter 9) and the goalMain-
tain[SafeAcceleration] formally defined by

Following(tr1, tr2) ⇒ tr1.Acc ≤ F(tr1.Loc, tr2.Loc, tr1.Speed).

That is, the acceleration of a traintr1 following a traintr2 should be less than some valu
which is a function of the positions of trainstr1 andtr2 and of the speed oftr1. The goal
is intended to constrain the variabletr1.Acc based on the values of the variablestr1.Loc,
tr2.Loc, tr1.Speed, and Following(tr1, tr2). The Loc and Speed attributes of theTrain
entity denote the physical location and speed of trains. These attributes are not mon
by theTrainController software agent. Therefore, theTrainController cannot realize the
goal because it lacks monitorability for the variablestr1.Loc, tr2.Loc, tr1.Speed andFol-
lowing(tr1, tr2).

⊆

⊆

⊆

92

 Identifying and Classifying Unrealizable Goals

to
solve

is

the
ter 6.

con-
fia-
Having identified the lack of monitorability of an agent provides guidance on how
elaborate the model so as to resolve the lack of monitorability. Possible ways to re
lack of monitorability are described in Section 6.5 of Chapter 6.

5.4. Identifying Lack of Control

As mentioned before, an agent lacks control in order to realize a goalG(M, C) iff

C Ctrl(ag).

The lack of control of an agent for a goalG(M, C) is thus defined by the setC \ Ctrl(ag).

As a first example, consider again the goalMaintain[PumpOnWhenHighWater]. The goal
constrains the value of the variablePumpMotor; the latter is not directly controllable by
the PumpController agent. Therefore, the goal is not realizable by thePumpController
because it lacks control of the variablePumpMotor.

As a second example, consider the goalMaintain[SafeAccelaration] defined above. The
Acc attribute of theTrain entity denotes the physical acceleration of the train. Th
attribute is constrained by the goal but is not directly controlled by theTrainController
agent. Therefore, the goal is not realizable by theTrainController because it lacks control
for the variabletr1.Acc.

Having identified the lack of control of an agent provides us guidance for elaborating
model. Possible ways to resolve lack of control are described in Section 6.6 of Chap

5.5. Identifying Unsatisfiable Goals

As mentioned before, a goal relationG(M, C) is unsatisfiable ifG(M, C) is not a total rela-
tion, i.e.

there existshm ∈ Hist(M) such that there is nohc ∈ Hist(C),
such that(hm, hc) ∈ G(M,C).

Note the similarity between the concept of unsatisfiability of a goal relation and the
cept of unsatisfiability of an operation in VDM [Jon90]: an operation there is unsatis
ble iff

there exists as satisfying the precondition such that there is no next states’
such that(s, s’) ∈ Post.

We define thedomain of unsatisfiabilityof a goal relationG(M, C) to be a set of histories
B ⊆ Hist(M) such that

B = Hist(M) \ dom G(M, C)

A goal is thus unsatisfiable iffB ≠ φ.

(Note also that when the goal is logically inconsistent, we haveB = Hist(M).)

The following proposition characterizes goal unsatisfiability at the language level.

⊆

93

Identifying and Classifying Unrealizable Goals

la

abil-

n

eeting
goal

the
e, we
e is no

er 6.
Proposition -- A goal relationG(M, C) is unsatisfiable iff there exists a temporal formu
B whose state variables are all inM, such that:

(i) B |= ¬ G

(ii) B |≠ false

The proposition suggests applying the following steps in order to identify unsatisfi
ity:

1. Negate the goal;

2. Strengthen the goal negation so as to remove predicates involving variables iC.

As an example, consider the meeting scheduling problem and the goal defined by

m.PlanningRequest
⇒ ❍ (∃ d: Date):
(m.Date = d

∧ ● (∀ p: Participant): Intended(p,m) → d ∉ Constaint[p,m].exclset)

The goal requires that when a planning request event occurs for a meeting, a m
date is defined so that it is outside the exclusion set of all intended participants. The
constrains the possible values of theDate attribute of the meeting.

The negation of the goal is given by the formula

◊ (∃ m: Meeting):
m.PlanningRequest
∧ ❍ ¬ (∃ d: Date):
(m.Date = d

∧ ● (∀ p: Participant): Intended(p,m) → d ∉ Constaint[p,m].exclset)

The goal negation can then be strengthened by removing the predicatem.Date = d, yield-
ing the formula:

◊ (∃ m: Meeting):
m.PlaningRequest
∧ ¬ (∃ d: Date): (∀ p: Participant): Intended(p,m) → d ∉ Constaint[p,m].exclset

By construction, this formula satisfies condition (i) in the above proposition. Since
formula is not inconsistent, we have shown that the goal is unsatisfiable. Therefor
have identified that the goal is unsatisfiable when a planing request occurs and ther
date that is outside the exclusion sets of all intended participants.

Techniques for resolving goal unsatisfiability are described in Section 6.7 of Chapt
94

 Identifying and Classifying Unrealizable Goals

s of

in

rob-

of

tem

f

e
ve to

g at
ntify
goal

that

l

5.6. Identifying References to the Future

As mentioned before, a goal relation does not refer to the future ofM iff the following
condition holds:

there existshm , hm’ ∈ dom G(M,C) and i≥ 0 such that
(hm’[i-1] = hm[i-1] or i =0) andG(M, C) (hm) [i] ≠ G(M, C) (hm’) [i]

Note that the condition of no reference to the future requires that when two historie
variables inM are equal up to timei-1, they must accept the same path of variables inC
up to time i. This means that a goal should not constrain the values of variablesC
based on the future orcurrent values of variables inM.

In the sequel, we say that a goalrefers to the strict futureof M iff the following condition
holds:

there existshm , hm’ ∈ dom G(M,C) and i≥ 0 such that
hm’[i] = hm[i] andG(M, C) (hm) [i] ≠ G(M, C) (hm’) [i]

We say that a goal formulation has asynchronization problemiff it refers to the future of
M and does not refer to the strict future ofM.

As an example of goal that refers to the strict future, consider the railroad crossing p
lem [Heit96b] and the ‘utility’ goalMaintain[GateOpenWhenNoTrain]:

❑≤d ¬ (∃ tr: Train): InCrossing(tr,cr) ⇒ cr.Gate = ‘opened’

One can show that the value of theGate attribute is constrained by the future values
the InCrossing relationship.

As an example of a goal with synchronization problem, consider a train control sys
and the goalMaintain[DoorsClosedWhileMoving]:

tr.Moving ⇒ tr.DoorsState = ‘Closed’

The goal constrains the value of the variabletr.DoorsState based on the current value o
the variabletr.Moving. Therefore, aDoorController agent monitoring the variabletr.Mov-
ing and controlling the variabletr.DoorsState cannot realize the goal. Indeed, if at som
time the doors are opened, and the train starts moving, the door controller would ha
close the doorssimultaneously with the departure of the train.

Identifying whether a goal refers to future values of monitored variables by reasonin
the semantic level is a tedious process. Therefore, we would like to be able to ide
that a goal refers to the future values of monitored variables from the syntax of the
definition. For instance, one can immediately see from the definition of the goalMain-
tain[GateOpenWhenNoTrain] that the value of the attributecr.Gate is constrained by the
future values of the relationshipInCrossing.

Unfortunately, it is not easy to give a general characterization of temporal formulas
constrain a set of variablesC based on the future values of variables inM. The fact that a
goal constrains variables inC based on future values of variables inM is not equivalent to
the fact that an occurrence of a variable inM appears in a “future” subformula of the goa
definition. Consider, for instance the following temporal formula:

● P ⇒ Q W (Q ∧ R).
95

Identifying and Classifying Unrealizable Goals

la
-

ry of
s are

strict

the
The occurrence of the variableR appears in a “future” subformula. However, the formu
does not constrainQ based on the future value ofR; one can show that the goal is realiz
able by monitoringP, R, and controllingQ.

In order to help in detecting references to the future, we have started to build a libra
recurrent patterns of goal definitions with references to the future. These pattern
listed in Figure 5.1.

As an example, one can identify that the goalMaintain[GateOpenWhenNoTrain] refers to
the strict future because its formal definition matches the pattern of reference to
future in Figure 5.1. Similarly, one identifies that the goalMaintain[DoorsClosedWhileM-
oving] suffers from synchronization problem because its formal definition matches
first pattern of synchronization problems forMaintain goals.

Pattern of reference to strict future

Future(M) ⇒ Past(C)

whereFuture(M) is a future temporal formula on variables inM, andPast(C) is a
past temporal formula on variables inC.

Patterns of synchronization problem

Maintain Goals

P(M) ⇒ Q(C)

P(M) ⇒ ❑ Q(C)

P(M) ⇒ Q(C) W S

● P(M) ⇒ Q(C) W R(M)

■≤d P(M) ⇒ Q(C)

where P(M), R(M) are state formulas on variables inM;
Q(C) is a state formula on variables inC;
S is any state formula.

Achieve Goals

P(M) ⇒ ❍ Q(C ∪ M)

P(M) ⇒ ◊ Q(C ∪ M)

P(M) ⇒ ◊≤d Q(C)
where d ∈ M.

where P(M) is a state formula on variables inM;
Q(C) is a state formula on variables inC;
Q(C ∪ M) is a state formula on variables inC andM.

 FIGURE 5.1. Patterns of references to the future
96

 Identifying and Classifying Unrealizable Goals

s are

of the

f the

s for-

eal-
the
ealiz-
each
As an example of a synchronization problem forAchieve goals, consider the goal

m.Requested
⇒ ◊ (∃ d: Date)
m.Date = d

∧ (∀ p: Participant): Intended(p,m) → d ∉ Constraint[p,m]. exclset

The goal is intended to constrain the variablem.Date based on the variables
m.Requested, Intended(p,m) andConstraint[p,m].exclset. The goal matches the follow-
ing pattern of synchronization problems:

P(M) ⇒ ◊ Q(C ∪ M)

The goal is not realizable because it constrains the value of the variablem.Date based on
thecurrent value of the variablesIntended(p,m) andConstraint[p,m].exclset.

Techniques for resolving references to the strict future and synchronization problem
described in Section 6.8 of Chapter 6.

5.7. Identifying Unbounded Achieve Goals

The last class of unrealizable goals are goals that do not constrain the finite runs
agent assigned to them.

One can identify that a temporal formula is a liveness property from the structure o
Buchi automaton equivalent to that formula [Alp87].

In practice, we consider that a goal does not constrain the finite runs of an agent if it
mal definition matches one of the following patterns:

R ⇒ ◊ S, R ⇒ P U S

5.8. Summary

We have defined a taxonomy of realizability problems that allows one to identify unr
izability from the formal definition of goals, and provide explanations about why
goal is unrealizable. We have also proved that this taxonomy is complete: every unr
able goal satisfies at least one of the realizability problem. Techniques for resolving
kind of realizability problem are described in the following chapter.
97

Identifying and Classifying Unrealizable Goals
98

 Agent-Driven Tactics for Elaborating Goal Models

abili-
nts.

ose
con-
ese
d for
ation
ovide

using
le of
cs for

built
ry of

ng
some

iven
ult in

l for
ation

rowse

hich

on
them

lica-
goal
Chapter 6
Agent-Driven Tactics
for Elaborating Goal Models

This chapter proposes a systematic technique for identifying agents and their cap
ties, and for refining goals into subgoals until the latter are realizable by single age

The general principle is to provide a library of specification elaboration tactics wh
applications are driven by the need to resolve violations of the realizability meta-
straint. Specific tactics are provided for each category of realizability problem. Th
tactics provide systematic guidance for recursively refining goals into subgoals, an
identifying new agents. Alternative goal refinements are explored through the applic
of alternative tactics. Formal goal refinement patterns associated with the tactics pr
guidance for elaborating goal refinements that are proved correct.

The chapter is structured as follows. Section 6.1 describes the general principle of
agent-driven tactics for elaborating goal models. Section 6.2 shows a first examp
tactics and its application. Section 6.3 discusses the benefits of agent-driven tacti
elaborating requirements. Section 6.4 describes how the library of tactics has been
and discusses the coverage of the library. Sections 6.5 to 6.11 describe the libra
agent-driven tactics in detail.

6.1. Basic Idea

Specification elaboration tacticsare heuristic rules that provide guidance for elaborati
requirements models. Applications of tactics transform the model so as to satisfy
process-level objectives [Dar95].

Agent-driven tacticsare specification elaboration tactics whose applications are dr
by the need to resolve unrealizable goals. Applications of agent-driven tactics res
transformed goal, object, and agent models.

The description of tactics used in the thesis is based on the ICARUS meta-mode
process description and its extension to process-level objectives [Dar95]. Specializ
links between tactics are furthermore introduced to help requirements engineers b
the library of tactics.

Each tactic is defined by the following items:

• amotivation that describes the process-level objective addressed by the tactics.
• aprecondition that characterizes the current state of the specification model to w

the tactic can be applied.
• an applicationheuristic that defines when the tactic should be applied. Applicati

heuristics are proposed to and evaluated by requirements engineers. They guide
in selecting which tactic to apply.

• a postcondition that characterizes the state of the specification model after app
tion of the tactic. Postconditions are defined by their effects on the object model,
99

Agent-Driven Tactics for Elaborating Goal Models

fine-

nherit
onger
refore

ry is
Spe-
ions

goal

r

model and agent models, respectively. A set offormal goal refinement patterns
[Dar95, Dar96] associated to the tactics is used to define formally the goal re
ments produced by the tactic.

The tactics are organized into aspecialization hierarchy. This hierarchy is used to
browse the library of tactics and select some appropriate one. Specialized tactics i
features from their parent tactics in the usual way: more specialized tactics have str
pre- and post-conditions as well as stronger heuristics. More specialized tactics the
provide more specific guidance.

Figure 6.1 shows the top structure of the library of agent-driven tactics. The libra
organized according to the taxonomy of realizability problems defined in Chapter 5.
cialized tactics for resolving each kind of realizability problem are defined in Sect
6.5 to 6.11.

6.2. A First Example

As a first example, Figure 6.2 shows the definition of the tacticintroduce accuracy goal
that is a specialization of the tacticresolve lack of monitorability.

As an example of application of the tactic, consider the mine pump problem and the
Maintain[PumpOnWhenHighWater]:

WaterLevel ≥ ‘High’ ⇒ PumpMotor = ‘On’

The goal is unrealizable by aPumpController agent because it lacks monitorability fo
the WaterLevel variable. An application of the tacticintroduce accuracy goal resolves
that lack of monitorability by elaborating the object and goal models as follows:

1. Object model elaboration: the object model is enriched with a new variable

HighWaterSignal.

2. Goal model elaboration: the goalMaintain[PumpOnWhenHighWater] is refined into
the subgoals:

Maintain[HighWaterDetected]

Maintain[PumpOnWhenHighWaterDetected].

Agent-Driven Tactics

Resolve
Lack of
Monitorability

Resolve
Lack of
Control

Resolve
Reference
To Future

Resolve
Goal
Unsatisfiability

Resolve
Unbounded
Achieve Goal

FIGURE 6.1. The library of agent-driven tactics
100

 Agent-Driven Tactics for Elaborating Goal Models

ia-
y

l
s

b-
These goals are formally defined by applying the patternintroduce accuracy goal on
predicate with the following instantiation:

P(m): WaterLevel ≥ ‘High’ Q(i): HighWaterSignal = ‘On’

The resulting goal definitions are thereby obtained:

HighWaterSignal = ‘On’ ⇔ WaterLevel ≥ ‘High’

HighWaterSignal = ‘On’ ⇒ PumpMotor = ‘On’.

Tactic introduce accuracy goal

Motivation : resolve lack of monitorability

Precondition: the agentag lacks monitorability ofm in order to realizeG(M, C)

Heuristics: the tactic should be applied when one can identify an intermediate var
ble i that can be related tom through some accuracy goal. (The accuracy propert
relatingi to m can also be a domain property.)

PostCondition: The tactic elaborates the object and goal models as follows:

1. Object model elaboration.The object model is enriched with a new variablei
denoting an image of the variablem.

2. Goal model elaboration.The unrealizable goal is refined into an accuracy goa
relating i to m, and a companion subgoal whose definition refers to the variablei
instead ofm. Two formal refinement patterns for the tactic are shown below.

The notationG{x/y} is used to denote the substitution of every occurrence ofx by y in
the definition ofG. The validity of these goal refinement patterns is based on the su
stitutivity property of temporal logic [Man92]. In the patternintroduce accuracy goal on
predicate, the symbolsP(m) andQ(i) are used to denote formulas involving the state
variablesm andi respectively.

The patternsintroduce accuracy goal on variable and introduce accuracy goal on predicate
correspond to alternative ways of applying the tactic.

Variants of these patterns dealing withnon-ideal accuracy goalsinvolving tolerances
and delays are discussed in Section 6.5.4.3.

Specialization: introduce tracking object, introduce sensor agent

G

❑ (i =m) G {m/i}

(a) introduce accuracy goal on variable

G

P(m) ⇔ Q(i) G{P(m)/Q(i)}

(b) introduce accuracy goal on predicate

FIGURE 6.2. The tacticintroduce accuracy goal
101

Agent-Driven Tactics for Elaborating Goal Models

oring

i-

hat
As another example of application of the same tactics, consider the patient monit
problem [Ste74] and the goalAchieve[AlarmRaisedForCriticalPulseRate]. Assume that
the goal is formally defined as follows:

p.PulseRate ∉ p.SafePulse ⇒ ◊≤d (∃ a: Alarm): a.Raised ∧ a.Loc = p.BedNbr

The goal is not realizable by thePatientMonitoring software agent because it lacks mon
torability of the variablesp.Pulserate, p.SafePulse, andp.BedNbr. The tacticsintroduce
accuracy goal can be used to resolve such lack of monitorability. An application of t
tactic yields the following elaboration of the object and goal models:

1. Object model elaboration-- The object model is enriched with a new objectPati-
entInfo denoting information known about patient status, and aTracking relationship
relatingPatientInfo to Patient (see Figure 6.3).

2. Goal Model Elaboration -- The goalAchieve[AlarmRaisedForCriticalPulseRate] is
refined into the following subgoals(Figure 6.3):

Goal Maintain[AccuratePatientInfo]
FormalDef ∀ p: Patient, pi: PatientInfo
Tracking(pi,p)
⇒
pi.PulseRate = p.PulseRate
∧ pi.SafePulse = p.SafePulse
∧ pi.BedNbr = p.BedNbr

Goal Achieve[AlarmRaisedForCriticalPulseRateInfo]
FormalDef ∀ pi: PatientInfo
pi.PulseRate ∉ pi.SafePulse ⇒ ◊≤d (∃ a: Alarm): a.Raised ∧ a.Loc = pi.BedNbr

Goal Maintain[PatientTracked]
FormalDef
(∀ p: Patient) ❑ (∃ ! pi: PatientInfo): Tracking(pi,p)
∧
∀ p: Patient, pi: PatientInfo
Tracking(pi,p) ⇒ ❑ Tracking(pi,p)

FIGURE 6.3. Goal model and object model for the patient monitoring system after
application of the tacticintroduce accuracy goal

Patient
PulseRate
SafePulse
BedNbr

PatientInfo
PulseRate
SafePulse

BedNbr

TrackingAccuratePatientInfo AlarmForCriticalPulseRateInfo

AlarmForCriticalPulseRate

AccuratePatientTracking
102

 Agent-Driven Tactics for Elaborating Goal Models

s to
ble by

ll be

;

ments

able
nts.

tient
ctics

e

t.
The process of identifying realizability problems and applying agent-driven tactic
resolve these problems is applied recursively until all subgoals can be made realiza
single agents. For instance, the goalMaintain[AccuratePatientInfo] is still not realizable
by a single agent in the domain considered. Further refinements of that goal wi
described below.

6.3. Benefits of Agent-Driven Tactics

Agent-driven tactics are useful for the following reasons:

• They providesystematic and recursive guidancefor elaborating requirements models
• They provide ways toexplore alternative goal refinements;
• Formal goal refinement patterns associated with the tactics generate goal refine

that areproved correctwhile hiding formal reasoningfrom the requirements engi-
neers [Dar95].

Each point is illustrated in turn.

6.3.1. Systematic elaboration of requirements

Agent-driven tactics provide systematic guidance for recursively refining unrealiz
goals into subgoals until the latter can be assigned as responsibilities of single age

For example, Figure 6.4 shows a portion of the goal refinement graph for the pa
monitoring problem; the graph is generated by recursively applying agent-driven ta
so as to resolve realizability problems.

At the top of Figure 6.4, the goalAchieve[NurseInterventionForCriticalPulseRate] is
defined by:

p.PulseRate ∉ p.SafePulse ⇒ ◊≤interevention_delay (∃ n: Nurse): Intervention(n,p)

That goal is unrealizable byNurse agents because they lack monitorability of th
patients’ pulse rates. A tactic calledsplit lack of monitorability with milestone is used to
resolve such lack of monitorability by generating the subgoals:

Achieve[AlarmForCriticalPulseRate]

Achieve[NurseInterventionForAlarm].

The application of this tactic also introduces the newAlarm entity together with the
PatientMonitoring software agent that controls this entity. TheAlarm entity is monitored
by Nurse agents, and the second subgoal is assigned as responsibility of that agen

As seen before, the generated subgoalAchieve[AlarmForCriticalPulseRate] is unrealiza-
ble by thePatientMonitoring software agent; and the tacticintroduce accuracy goal can
be used to resolve that lack of monitorability; it generates the subgoals:

Maintain[AccuratePatientInfo]

Achieve[AlarmForCriticalPulseRate]

Maintain[AccuratePatientTracking]
103

Agent-Driven Tactics for Elaborating Goal Models

ity

s

The entityPatientInfo is also identified through the application of this tactic. This ent
is declared as an internal variable of thePatientMonitoring agent, and the goal
Achieve[AlarmForCriticalPulseRate] is now realizable by that agent.

The tacticsplit lack of monitorability by cases is then used to refine the goalMain-
tain[AccuratePatientInfo] into cases. The generated formal definition for the goalMain-
tain[AccuratePulseRateInfo] is given by:

Tracking(pi,p) ⇒ pi.PulseRate = p.PulseRate

This subgoal is unrealizable by thePatientMonitoring software agent because it lack
monitorability of the patients’ pulse rates. The tacticintroduce sensor agent is then used
to refine that goal into the subgoals:

Maintain[AccuratePulseRateMeasure]

Maintain[PulseRateInfoBasedOnSensorMeasure]

introduce accuracy goal

split lack of monitorability with milestone

AlarmForCriticalPulseRate

AccuratePatientInfo AlarmForCriticalPulseRateInfo

Accurate
PulseRateInfo

Accurate
SafePulseRangeInfo

Accurate
BedNbrInfo

Accurate
PulseRateMeasure

PulseRateInfo
BasedOnSensorMeasure

PulseRateInfo
BasedOnMeaureOfMappedSensor

AccurateMapping
Patient/PulseRateSensor

NurseInterventionForCriticalPulseRate

NurseInterventionForAlarm

introduce accuracy goal

split lack of monitorability
by cases

introduce sensor agent

Nurse

Patient
Monitoring

Nurse Nurse

Nurse Patient
Monitoring

PulseRate
Sensor

FIGURE 6.4. Applying agent-driven tactics for the patient monitoring problem

AccuratePatientTracking
104

 Agent-Driven Tactics for Elaborating Goal Models

s
,
hich

tics is

s of
native
which
iffer-

goal
te
The application of this tactics also introduces thePulseRateSensor agent capable of
monitoring patients’ pulse rates, and assigns the goalMaintain[AccuratePulseRateMeas-
ure] to that agent. The generated formal definition for the companion subgoalMain-
tain[PulseRateInfoBasedOnSensorMeasure] is given by:

Tracking(pi,p) ∧ HasPulseRateSensor(p, s) ⇒ pi.PulseRate = s.PulseMeasure

This goal is still not realizable by thePatientMonitoring agent because the agent lack
monitorability of the relationshipHasPulseRateSensor. (In order the realize the goal
the PatientMonitoring agent has to know which pulse rate sensor is connected to w
patient.) Another application of the tacticintroduce accuracy goal resolves that lack of
monitorability by refining the goal into:

Maintain[AccurateMappingPatient/PulseRateSensor]

Maintain[PulseRateInfoBasedOnMeasureOfMappedSensor].

The first subgoal is an accuracy goal that could be assigned as responsibility of theNurse
agent; the second subgoal can be assigned as responsibility of thePatientMonitoring soft-
ware agent.

The agent interface model that has been gradually elaborated by the above tac
shown in Figure 6.5.

6.3.2. Exploration of alternatives

Agent-driven tactics allow for the exploration ofalternative goal refinements and
responsibility assignments. For every realizability problem, alternative application
agent-driven tactics can be considered. Such alternative applications produce alter
goal refinement and agent models, corresponding to alternative system designs in
the boundaries between the automated system and its environment may be fairly d
ent.

As a first example, consider the meeting scheduling problem and the
Achieve[PrtcptsCstrKnown]; this goal requires that information about participants’ da
constraints are eventually accurately known by the scheduler.

FIGURE 6.5. Partial agent interface model for the patient monitoring problem derived by
application of the tactics in Figure 6.4.

Patient
Monitoring

PulseRateMeasure

Alarm

Nurse
PulseRate

Sensor

Patient

PulseRate

Intervention

Patient.SafePulse
HasPulseRateSensor
105

Agent-Driven Tactics for Elaborating Goal Models

n-
itor-

bil-

by
e, they

water

efine-
s are
t once
eus-
the

ration
ecking
s that
This goal is not realizable by theMeetingScheduler agent because the latter cannot mo
itor the actual date constraints of participants. A first way to resolve this lack of mon
ability is to apply the tacticsplit lack of monitorability with milestone so as to produce the
first And-refinement in Figure 6.6. An alternative way to resolve this lack of monitora
ity is to apply the tacticintroduce accuracy goal so as to produce the secondAnd-refine-
ment in Figure 6.6. In the first alternative, participants’ constraints are obtained
sending constraint request messages to the participants; in the second alternativ
are obtained from electronic agendas of the participants.

As another example, consider again the mine pump control system and the goalMain-
tain[PumpOnWhenHighWater]. We previously applied the tacticintroduce accuracy goal
on predicate to produce the subgoalsMaintain[HighWaterDetected] and Main-
tain[PumpOnWhenHighWaterDetected]. The alternative tacticintroduce accuracy goal
on variable can be used to produce the alternative subgoalsMaintain[AccurateWater-
Measure] and Maintain[PumpOnWhenHighWaterMeasure]. This alternative refinement
results in alternative agent responsibilities and interfaces: a uniqueWaterSensor agent is
responsible for measuring the water level, and the task of comparing the measured
level against its high level is transferred to thePumpController agent.

6.3.3. Formally complete goal refinements

Formal goal refinement patterns associated with the tactics help produce goal r
ments that are proved complete [Dar95, Dar96]. Formal goal refinement pattern
abstract refinement links between abstract goal definitions. They are proved correc
and for all, and can be reused through instantiation in many application domains. R
ing a pattern entails reusing its proof. Formal reasoning is therefore hidden from
requirements engineer.

Our work focuses on the use of goal refinement patterns for the constructive elabo
of goal refinement graphs. Formal goal refinement patterns can also be used for ch
given goal refinements for completeness, and for identifying goals and assumption
were overlooked in the first place (see [Dar95, Dar96] for details).

Achieve
[PrctpsCstrKnown]

Achieve
[PrctptsCstr
Requested]

Achieve
[RequestedCstr

Provided]

AND

Maintain
[Accurate

PrtcpsAgenda]

Achieve
[PrtcpsCstrKnown

FormAgenda]

AND

split lack of monitorability with milestone introduce accuracy goal

OR

FIGURE 6.6. Alternative refinements of the goalAchieve[PrtcptsCstrKnown]
106

 Agent-Driven Tactics for Elaborating Goal Models

ing

re

sily

abil-

d
sys-
tems
used
96].
d by
dies
mbu-
n all
need
rre-

dapted
ns of
ility

-
tically
cally

to
iden-
t tac-
tric
k of

have
6.4. Building a Library of Agent-Driven Tactics

To be effective in practice, the library of agent-driven tactics should have the follow
qualities.

• Coverage: the library should provide effective guidance for situations that a
encountered by requirements engineers.

• Relevance:the library should not be polluted by irrelevant tactics.
• Retrievability : the library should be organized so that relevant tactics can be ea

retrieved.

We first describe how relevant tactics have been identified and classified for retriev
ity. The coverage of the library is addressed next.

6.4.1. Identifying tactics

Two complementary approaches were followed to identify tactics.

Inferring tactics from examples.We inferred tactics from examples of goal-oriente
specifications in the literature. These include a lift system [Dar91, Fea87], a library
tem [Dar91], the meeting scheduler problem [Lam95], resource allocation sys
[Dar95], the package router [Lon82], and a turnstile system [Jack95]. We also
examples of applications of formal goal refinement patterns given in [Dar95, Dar
Besides, we inferred tactics from our own cases studies; the latter were performe
systematically identifying and resolving realizability problems. These case-stu
include the mine pump problem [Jos96], a patient monitoring system [Ste74], an a
lance dispatching system [LAS93], and an automated train control system [Win99]. I
these examples, we tried to identify goal refinements that could be motivated by the
to resolve violations of the realizability meta-constraint; we generalized them into co
sponding agent-driven tactics. In some cases, the goal refinements had to be a
because they were incomplete or because they did not adequately resolve violatio
realizability. These tactics were then classified according to the kind of realizab
problem they resolve.

Systematic exploration of the space of tactics.To complement the identification of tac
tics from examples, we also used the specialization hierarchy as a map to systema
explore the space of tactics. For each realizability problem, we tried to systemati
identify from the definition of that problem what alternative tactics could be used
resolve it. In order to achieve complete coverage of the space of tactics, we tried to
tify tactics so that the specialized tactics offer a complete specialization of the paren
tics. We also noted that lack of monitorability and lack of control are symme
problems. We exploited that symmetry to identify symmetric tactics for resolving lac
monitorability and lack of control.

To give an idea of the space of tactics covered, Figure 6.7 shows the tactics that
been identified so far. These tactics are fully defined in Sections 6.5 to 6.11.
107

Agent-Driven Tactics for Elaborating Goal Models
split
lack of monitorability

split
lack of monitorability

with milestone

introduce
accuracy goal

replace
unmonitorable state

by monitorable events
split

lack of monitorability
by cases

split
lack of monitorability

by chaining

Resolve
lack of monitorability

add monitorability

split
lack of control

split
lack of control
with milestone

introduce
actuation goal

replace
uncontrollable state

by controllable events
split

lack of control
by cases

split
lack of control
by chaining

Resolve
lack of control

add control

Resolve
References to Future

Resolve
References to StrictFuture

Resolve
Synchronization Problem

temporally
weaken goal

apply
anticipation pattern

apply
mutual exclusion

pattern

replace current by
previous

Resolve
Unsatisfiability

weaken
unsatisfiability

prevent
unsatisfiability

(a) Tactics for resolving lack of monitorability

(b) Tactics for resolving lack of control

(c) Tactics for resolving references to the future

(d) Tactics for resolving
goal unsatisfiability

FIGURE 6.7. The library of agent-driven tactics

(e) Tactics for resolving
unbounded Achieve goals

Resolve
Unbounded Achieve Goals

add real-time
bound

replace eventually
by next
108

 Agent-Driven Tactics for Elaborating Goal Models

f
ent-
aliza-
ited
ed to
ecial-
f goal
lative

l sys-
for

matic
y99],
ossi-

oals,
could
pe-
lar to

of
gent

plied

oni-
nsider
6.4.2. Coverage of the library

The coverage of the library can be assessedtheoreticallyby determining the coverage o
the specialization links of the library. Note that the top structure of the library of ag
driven tactics is complete, because Theorem 2 defines a complete taxonomy of re
bility problems (see Section 5.2). However, these high-level tactics provide only lim
guidance for elaborating the model. Further specialized tactics are therefore defin
provide more specific guidance. Theoretically determining the coverage of these sp
ized tactics is more difficult. Specialized tactics are based on recurrent patterns o
definitions and goal refinements. The coverage of those specialized tactics is then re
to the coverage of the taxonomy of goal patterns.

The coverage of the library can also be assessedempirically by determining to what
extent these tactics can be used to effectively specify goal refinement graphs for rea
tems. In our experience, the current library of tactics provides effective guidance
elaborating goal refinement graphs for all case-studies we have considered. A syste
experiment based on further case studies, in the spirit of the one described in [Dw
should be carried out for validating the coverage of the library more precisely and p
bly for identifying further tactics.

The tactics identified so far make little use of goal categories (such as satisfaction g
information goals, accuracy goals, security goals, etc.). Further specialized tactics
be explored by identifying specialized ways of resolving realizability problems for s
cific categories of goals. The basic idea for such specialized tactics would be simi
the idea of using problem frames [Jac95b, Jac2K].

6.5. Resolving Lack Of Monitorability

We first detail tactics for resolving lack of monitorability. Two ways of resolving lack
monitorability of an agent consists in adding the necessary monitoring links to the a
or refining the goal further. The tacticsadd monitorability andsplit lack of monitorability
are described next. We then describe further specialization of the tacticsplit lack of mon-
itorability.

6.5.1. Add monitorability

The simplest way to resolve an agent’s lack of monitorability for a variablem is to add a
monitoring link between the agent and the variable. This tactic can however be ap
only if m can actually be monitored by the agent. Whenm cannot be monitored by the
agent, the goal has to be refined further.

Tactic add monitorability

Motivation : resolve lack of monitorability

Precondition: the agentag lacks monitorability of variablem in order to realize
G(M, C)

Heuristics: the tactic should be applied only if the variable can actually be made m
torable by the agent. When the variable cannot be made monitorable, one has to co
the alternative tacticsplit lack of monitorability described below.
109

Agent-Driven Tactics for Elaborating Goal Models

on:

le is

le by

te

e

PostCondition: a new monitorability link is created betweenag andm.

Example: Consider the meeting scheduling problem and the goalAchieve[ParticipantsC-
strRequested] defined by:

Intended(p,m) ∧ Scheduling(sch,m)
⇒ ◊ (∃ cstr_req: CstrRequest):
cstr_req.Sent
∧ cstr_req.MeetingName = ● m.Name
∧ cstr_req.delivery_address = ● p.address

Assume that given the current agent interface model, theScheduler agent lacks monitor-
ability of the predicateIntended(p,m). The tacticadd monitorability resolves that lack of
monitorability by declaring the following monitoring link and instance-level declarati

Monitoring [Scheduler, Intended]
InstDecl : Scheduling(sch,m) ⇒ Mon(sch, Intended(p,m))

Note that in order to realize the goal theScheduler also lacks monitorability of the varia-
ble p.Address that denotes the actual e-mail address of the participant. If that variab
not directly monitorable by theScheduler agent, the tacticadd monitorability cannot be
applied and the goal has to be further refined.

6.5.2. Split lack of monitorability

When an agent lacks of monitorability for a variable that cannot be made monitorab
that agent, the goal has to be refined by applying the tacticsplit lack of monitorability.

Tactic split lack of monitorability

Motivation: resolve lack of monitorability

Precondition: the agentag lacks monitorability ofm in order to realizeG(M, C).
(The symbolm denotes a set of variables, possibly a singleton, included inM).

Heuristics the tactic should be applied whenm cannot be monitored byag.

PostCondition

1. Object model elaboration.The object model is enriched with new intermedia
variablesi. (i also denotes a set of variables).

2. Goal model elaboration.The goalG is refined into the subgoals:G1(m, i), that
relatesi to m, andG2((M \ m) ∪ i, C). Note thatG2 does not refer to the unmonitorabl
variablesm.

G(M, C)

G1(m,i) G2((M \m)∪ i,C)

FIGURE 6.8.split lack of monitorability
110

 Agent-Driven Tactics for Elaborating Goal Models

the

for

a

ibed

pical

a-
goal
gent
ch a
faces
ussed

t.
Example.Consider again the mine pump control system and the refinement of
goalMaintain[PumpOnWhenHighWater] into the subgoals:

Maintain[HighWaterDetected]

Maintain[PumpOnWhenHighWaterDetected].

This refinement corresponds to an application of the tacticsplit lack of monitorability
instantiated as follows:

m: Waterlevel i: HighWaterSignal

G1(m,i) : Maintain[HighWaterDetected]

G2 : Maintain[PumpOnWhenHighWaterDetected].

The description of the tactic is slightly simplified. As will be seen below, tactics
resolving lack of monitorability may sometimes refineG into more than two sub-
goals. Also, the assertionG1 relating i to m can be a domain property instead of
goal.

Further guidance for refining goals so as to split lack of monitorability are descr
in specialized tactics.

3. Agent model elaboration.The new intermediate variablesi must be monitorable
by ag or must be internal variables ofag. This ensures that the subgoalG2 refers to
fewer unmonitorable variables than the parent goalG.

A first way to elaborate the agent model consists in identifying amonitoring agent
capable of monitoringm and controllingi, and in assigning the goalG1(m,i) to that
agent (Figure 6.9). In the context of control systems, external sensors are ty
examples of such monitoring agents.

Alternatively, the new intermediate variablei can also be declared as an internal vari
ble of some agent. This alternative elaboration of the agent model makes the
refinement graph more robust with respect to changes of monitoring agent or a
interfaces. A heuristics of the goal refinement process is therefore to favour su
device-independent goal refinement and to introduce monitoring agents and inter
as late as possible in the goal refinement process. This heuristics is further disc
below.

Example 1.In the above refinement of the goalMaintain[PumpOnWhenHighWater], the
agent model is also elaborated by introducing theHighWaterSensor agent, capable of (i)
monitoring whether the actual water level is above high and (ii) controlling theHighWa-
terSignal variable; The goalMaintain[HighWaterDetected] is then assigned to that agen

G(m,c)

G1(m,i)

im

Monitoring
agent

FIGURE 6.9.Introduce monitoring agent

Monitoring
agent

G2((M \m)∪ i,C)
111

Agent-Driven Tactics for Elaborating Goal Models

vari-
goal
n

ot

g the

end-
goal

f mon-
o goal

le

ulting
rfaces
ents of
d
ange
Example 2. To illustrate the case where the new intermediate variable is an internal
able, consider the patient monitoring system and the refinement of the
Achieve[AlarmForCriticalPulseRate] into the following subgoals described in Sectio
6.2:

Maintain[AccuratePatientInfo]

Achieve[AlarmForCriticalPulseRateInfo]

Maintain[PatientTracked]

This refinement corresponds to an application of the tacticsplit lack of monitorability
instantiated as follows:

m: {Patient.PulseRate, Patient.SafePulse, Patient.BedNbr}

i: {PatientInfo.PulseRate, PatientInfo.SafePulse, PatientInfo.BedNbr}

G1(m,i) : Maintain[AccuratePatientInfo]

G2 : Achieve[AlarmForCriticalPulseRateInfo]

(The goal refinement also uses a third subgoalMaintain[PatientTracked] that requires
every patient to be tracked by exactly one instance of thePatientInfo entity.)

Note that in this application of the tactic, the intermediate entityPatientInfo is declared
as an internal object of thePatientMonitoring software agent. This elaboration does n
yet commit to particular sensor agents and interfaces between sensors and thePatient-
Monitoring software. Such agents and interfaces are identified latter on when refinin
goalMaintain[AccuratePatientInfo].

Device-independent vs. device-dependent goal refinements

A good practice for elaborating goal refinement graphs is to start with device-indep
ent goal refinements and introduce monitoring agents as late as possible in the
refinement process. This makes goal graphs more robust with respect to changes o
itoring agents and interfaces between agents. The reader may compare the tw
refinement graphs shown in Figure 6.10.

In the device dependent goal refinement (Figure 6.10.a),G(m,c) is refined into subgoals
G1(m,i) and G2(i,c), and the intermediate variablei is declared as an interface variab
between theSensor agent and theSoftware agent.

In the device-independent goal refinement (Figure 6.10.b), an internal variablem* is first
introduced to denote an internal image of the environment variablem. The goalH(m,m*) is
then refined by introducing the sensor agent and the interface variablei. The two goal
graphs describe the same system; only the model structures differ.

The benefit of device-independent goal refinement is more robustness of the res
goal graph with respect to changes of agents and agent interfaces. Alternative inte
between the sensor and the software can be explored through alternative refinem
the goalH(m,m*) while keeping the goalSoft(m*,c) unchanged. (The same principle is use
in the SCR method to make the description of the software specification easier to ch
[Heit99].)
112

 Agent-Driven Tactics for Elaborating Goal Models

ns to
le is
lly not
re, the
than

ac83].
fined

ts to
goal

red as
n the
97].

ed
vary
-

One may argue that such practice violates the principle requiring agent specificatio
be stated in terms of interface variables only [Zav97]. Note however that this princip
applicable only when the interfaces between the agents are known. This is genera
the case during the early phase of the requirement elaboration process. Furthermo
internal model that a software agent maintains about its environment is more stable
the interfaces of the agents, and determines the possible evolutions of the system [J
Therefore, favouring device-independent goal refinements in which subgoals are de
in terms of internal variables allows goals to be refined without too early commitmen
specific interfaces, and alternative agent interfaces to be explored later on in the
refinement process.

Note that once the agent interfaces are known, the internal variables can be decla
derived variables defined in terms of interface variables so that the requirement o
software and other agents are then defined in terms of interface variables only [Zav

Specializations: Specialized tactics for splitting lack of monitorability define specializ
patterns for refining a goal so as to resolve lack of monitorability. These tactics
according to the pattern of the goalsG, G1, G2, and the nature of the intermediate varia
blesi. These specializations are shown in Figure 6.11.

FIGURE 6.10. Device-dependent vs. device-independent goal refinements

G(m,c)

In(m,i)

Soft(m*,c)

im c

Software

Sensor

(a) device-dependent goal refinement

SoftwareSensor

G(m,c)

In(m,i) Soft(i,c)

SoftwareSensor

In*(i,m*)

Software

H(m,m*)

im c
SoftwareSensor

(b) device-independent goal refinement
113

Agent-Driven Tactics for Elaborating Goal Models

of
vari-

e

rent
to

gent

the
latter
ating

g

e

ting

rust

redi-

(This
6.5.3. Introduce Accuracy Goals

We first discuss the basic tactic for splitting lack of monitorability by introduction
accuracy goals. (This tactic was already defined in Section 6.2.) Specialization and
ants of this tactic are described next.

6.5.3.1. The basic tactic

The basic tacticintroduce accuracy goal is defined in Section 6.2 (see in Figure 6.2). W
make some further comments here.

Remark 1. The elaboration of the agent model for this tactic is inherited from the pa
tacticsplit lack of monitorability. That is, a first way of elaborating the agent model is
identify a monitoring agent capable of monitoringm and controllingi, and assign the
accuracy goal as responsibility of that agent. An alternative way of elaborating the a
model is to declare the intermediate variable as an internal variable.

Remark 2. The critical step in applying the tacticintroduce accuracy goal is to identify
the intermediate variablei. The choice of such a variable is ultimately constrained by
capabilities of agents available in the domain. Backtracking may be necessary if it
turns out that available sensors are not sufficient for ensuring the accuracy goal reli
to m.

The tacticintroduce accuracy goal on variable andintroduce accuracy goal on predicate
correspond to two alternative choices the intermediate variables.

Example: Remember the alternative refinements of the goalMaintain[PumpOnWhen-
HighWater] described in Section 6.3.2. The tacticintroduce accuracy goal on variable
ultimately results in assigning to aWaterSensor agent the responsibility of measurin
the water level; the tacticintroduce accuracy goal on predicate ultimately results in
assigning to aHighWaterSensor agent the responsibility of detecting whether th
water level is above some high measure.

Remark 3. Instead of an accuracy goal, one can also identify a domain property rela
the unmonitorable quantitym to the intermediate variablei.

Example [Jac93]:A goal in certain avionic systems is to ensure that reverse th
can be engaged if, and only if, the plane is landing and already on the runway:

RunningOnGround ⇔ RevThrustEnabled

The goal is not realizable by the software agent because it cannot monitor the p
cateRunningOnGround. The tacticintroduce accuracy goal can then be applied by
observing that when the plane is running on the ground, its wheels are turning.

split
lack of monitorability

split
lack of monitorability

with milestone

introduce
accuracy goal

replace
unmonitorable state

by events
split

lack of monitorability
by cases

FIGURE 6.11. Specializations of the tacticsplit lack of monitorability

split
lack of monitorability

by chaining
114

 Agent-Driven Tactics for Elaborating Goal Models

o this

perty

oni-

the
the

ect

ct

-

property happens to be false when the plane is aquaplaning. We will come back t
problem in Chapter 8.) The refinement patternintroduce accuracy goal on predicate
is then instantiated as follows:

P(m) : RunningOnGround Q(i) : WheelsTurning

The following assertions are thereby derived:

DomProp: RunningOnGround ⇔ WheelsTurning

SubGoal: WheelsTurning ⇔ RevThrustEnabled

Note that the accuracy property is declared in this example as a domain pro
rather than as a goal.

The resulting subgoal is itself not realizable because the software agent lacks m
torability for the predicateWheelsTurning. The tactic introduce accuracy domain
property can again be used to resolve such lack of monitorability by introducing
variableWheelsPulse that is monitorable by the software agent, and using by
domain property

WheelsTurning ⇔ WheelsPulse = ‘On’

to generate the subgoal

WheelsPulse = ‘On ⇔ RevThrustEnabled

This subgoal is now realizable by the software agent.

6.5.3.2. Introduce tracking object

The tacticintroduce tracking object is defined as follows.

Tactic introduce tracking object

Specialization Ofintroduce accuracy goal

Heuristics. This tactic should be considered when lack of monitorability for an obj
Obj can be resolved by maintaining an internal image of the object.

PostCondition.

1. Object model elaboration.If the unmonitorable variablem is an attribute of some
object Obj, the intermediate variablei is modelled as an attribute of a new obje
ObjInfo denoting an internal image of the objectObj. A Tracking relationship is also
introduced to relate the objectsObj andObjInfo (see Figure 6.12).

(This Tracking relationship is based on the same idea as theMapping meta-relation-
ship discussed in [Dar93]. As opposed to the latter, aTracking relationship isdomain-
dependent. Such a domain-dependent relationship must be used in place of theMap-
ping meta-relationship. In this thesis, theMapping meta-relationship has been sup
pressed from the KAOS meta-model.)

Obj

m

ObjInfo

i

Tracking

FIGURE 6.12. Modeling an object and its image
115

Agent-Driven Tactics for Elaborating Goal Models

of

ck of

k of
n

t one

is
e

er.

. It is

ble
o

e.

ropri-

ived
lex
Examples.In the patient monitoring problem, lack of monitorability for attributes
the Patient entity is resolved by introducing the entityPatientInfo that denotes an
image of the actual state of the patient. In an ambulance despatching problem, la
monitorability for ambulance status and location is resolved by introducing anAmbu-
lanceInfo object with the corresponding attributes (see Chapter 9); similarly, lac
monitorability for attributes of theIncident object can be resolved by introducing a
IncidentInfo object.

The Tracking relationship is required to be aone-to-one static relationship, i.e. it is
constrained by the following requirements:

(i) Tracking(oi, ob) ⇒ ¬ (∃ oi’): oi’ ≠ ob ∧ Tracking(oi’, ob)

(ii) Tracking(oi, ob) ⇒ ¬ (∃ o’): ob’ ≠ ob ∧ Tracking(oi, ob’)

(iii) ∀ ob ❑ ∃ oi Tracking(oi, ob)

(iii) ∀ oi ❑ ∃ ob Tracking(oi, ob)

(v) Tracking(oi, ob) ⇒ ❑ Tracking(oi, ob)

The first four assertions constrain the cardinality of the relationship to be at mos
on both sides. The fifth assertion requiresTracking to be a static relationship.

Typically, these requirements on theTracking relationship are ensured by defining th
relationship in terms of some domain attributeAttr that can act as an identifier of th
object:

Tracking(oi, ob) ⇔ oi.Attr = ob.Attr

whereAttr is an injective and immutable attribute of the object.

Examples. In the patient monitoring problem, theTracking relationship between
Patient andPatientInfo may be defined in terms of the patient social security numb
For the ambulance despatching problem, theTracking relationship betweenAmbu-
lance andAmbulanceInfo may be defined in terms of the ambulance license plate.

Theses attributes must not be confused with the ‘internal’ identities of the objects
important that the attributes used to define theTracking relationship be observable by
some agent in the domain. For instance, in the LAS problem, aTracking relationship
relatingIncident andIncidentInfo must not be defined in terms of some unobserva
identifier for theIncident object. A possible solution here consists in defining that tw
incidents are considered to be the same if they occur at the same place and tim

The problem of ensuring the above properties for theTracking relationship may in
some cases be fairly complex. In the LAS system, duplicate calls have to be app
ately detected to ensure accurate correspondence betweenIncident and IncidentInfo
objects. For an air traffic control system, the problem of correlating data rece
from multiple noisy sensors in order to track airplanes is known to be comp
[Jon2K].

This problem is also related to the notion of ‘identities concern’ [Jac2K].

2. Goal model elaboration. The unrealizable goalG is refined into the subgoals

Maintain[ObjectTracked]

Maintain[AccurateObjectInfo]

G {Object/ObjectInfo}
116

 Agent-Driven Tactics for Elaborating Goal Models

-
an
to
uses

ce
.

-

ject
nd

re-
ed on

ect
The first subgoal constrains theTracking relationship to be a one-to-one static rela
tionship as defined above. Thesecondsubgoal is an accuracy goal that relates
object and its image. Thethird subgoal is obtained roughly by replacing references
the actual object by references to the image of the object. Formally, one needs to
variants of the basic formal goal refinement patterns for the tacticintroduce accuracy
goal in order to define that goal precisely.

Example 1.The refinement of the goalAchieve[AlarmForCriticalPulseRate] described in
Section 6.3.1 is a first example of application of the tacticintroduce tracking object.

Example 2.Consider an ambulance despatching system and the goalAchieve[Ambu-
lanceMobilization] requiring that for every reported incident, an available ambulan
whose location is close to the incident scene should be mobilized within 3 minutes

This goal is unrealizable by anAmbulanceAllocator agent because it lacks of monitora
bility for the actual availability and location of ambulances. The tacticintroduce tracking
object can be used to resolve this lack of monitorability by introducing the new ob
AmbulanceInfo whose attributes record information about ambulance availability a
location, and by refining the goalAchieve[AmbulanceMobilization] into:

Maintain[AmbulanceTracked]

Maintain[AccurateAmbulanceInfo]

Achieve[AmbulanceMobilizationBasedOnAmbulanceInfo]

The first subgoal requires every ambulance to have a correspondingAmbulanceInfo
object. The second subgoal relates the values of theAvailable andLocation attributes of
the AmbulanceInfo object instances to the actual availability and location of the cor
sponding ambulances. The third subgoal requires ambulances to be mobilized bas
information about availability and location held in theAmbulanceInfo objects.

6.5.3.3. Introduce sensor agent

The tacticintroduce sensor agent is another specialization of the tacticintroduce accu-
racy goal. It is defined as follows.

Tactic introduce sensor agent

Specialization Ofintroduce accuracy goal

Heuristics This tactic should be considered when lack of monitorability for an obj
Obj can be resolved by introducing a sensor agent capable of monitoringObj.

PostCondition

1. Object model elaboration.If the unmonitorable variablem is an attribute of some
objectObj, the intermediate variablei is modelled as an attribute of theSensor agent.
A relationshipHasSensor is also introduced to relate the objectObj to theSensor.

Obj

m

Sensor

i

HasSensor
117

Agent-Driven Tactics for Elaborating Goal Models

nt

ensor.

-

-
g
sensor.
f

the
tual
e

uire-
dels to

se (i)
, and
Example. Consider the patient monitoring problem, and the goalMaintain[Accu-
ratePulseRateInfo]. An application of this tactic would generate the new age
PulseRateSensor, and the relationshipHasPulseRateSensor linking Patient to
PulseRateSensor.

The cardinality requirements on the relationshipHasSensor will depend on the prob-
lem. However, one has to require that every object is measured by at least one s
The relationship can be static, but most often it is allowed to change over time.

Example.In the patient monitoring problem, theHasPulseRateSensor relationship is
obviously not static.

2. Goal model elaboration.The unrealizable goalG is refined into the following
three subgoals

Maintain[ObjectMeasuredBySensor]

Maintain[AccurateSensorMeasure]

G {m/ i}

Thefirst subgoal constrains theHasSensor relationship. As mentioned above, it usu
ally requires every objectObj to be connected to at least one sensor; theHasSensor
relationship can be static or dynamic. Thesecondsubgoal is an accuracy goal con
cerning the measures of the sensor. Thethird subgoal is obtained roughly by replacin
references to the unmonitorable variables by references to the measures of the
Difficulties may arise when theHasSensor relationship is dynamic. The definition o
formal refinement patterns to deal with such situations requires further work.

3. Agent model elaboration.The accuracy goalMaintain[AccurateSensorMeasure]
is assigned to theSensor agent. That agent is declared to monitor the variablesm and
to control the variablesi.

Example. Consider the patient monitoring problem and the goalMaintain[Accu-
ratePulseRateInfo]. As mentioned in Section 6.3.1, that goal is not realizable by
PatientMonitoring software agent because the latter lacks of monitorability for the ac
pulse rate of patients. The tacticintroduce sensor agent can then be used to generate th
subgoals:

Maintain[PatientConnectedToPulseRateSensor]

Maintain[AccurateSensorMeasure]

Maintain[PulseRateInfoBasedOnSensorMeasure].

The agentPulseRateSensor is identified and is assigned to the goalMaintain[Accurate-
SensorMeasure].

6.5.3.4. Deidealizing accuracy goals through tolerances and delays

We favour a requirement elaboration process in which one starts by building req
ments models based on ideal accuracy goals, and in a later step deidealize the mo
take into account realizable accuracy goals involving tolerances and delays.

This section describes preliminary work for deidealizing accuracy goals. We propo
goal definition patterns for specifying accuracy goals involving tolerance and delays
(ii) techniques for propagating such deidealization along goal refinement links.
118

 Agent-Driven Tactics for Elaborating Goal Models

and
deal-
d to
d.

s are
le.

n

ured

ri-

s the
Relevant techniques have been proposed in [Smi2K] for introducing tolerances
delays into an ideal requirements specification, and for deriving properties of the dei
ized specification from those of the idealized specification. Further work is require
extend and adapt such techniques in the context of the KAOS goal-oriented metho

1. Formal definition patterns

A few patterns of goal definitions for accuracy goals involving tolerances and delay
shown in Table 6.1. Each pattern is described in turn and illustrated with an examp

Consideraccuracy goals on variablefirst. An example of idealized accuracy goal o
state variables for the mine pump control system is the goal

❑ (WaterMeasure = WaterLevel)

The firsttolerance pattern for accuracy goal would state that the value of the variablei is
always betweenm - dev andm + dev, wheredev is the imprecision allowed betweenm
andi. For the accuracy goal on the water level, it yields:

❑ (WaterLevel - Dev ≤ WaterMeasure ≤ WaterLevel + Dev)

whereDev is the imprecision allowed between the actual water level and the meas
water level.

Thedelay pattern can be used to specify accuracy goals in which the variablei is updated
periodically at least everyd time units. For instance, if the water level is measured pe
odically at intervals of lengthDelay, the goal can be defined as follows:

❑ ◊ ≤Delay WaterMeasure = WaterLevel

We now consider formal definition patterns foraccuracy goals on predicates. An exam-
ple of an idealized accuracy goal on predicate for the mine pump control system i
goal

❑ (HighWaterSignal = ‘On’ ⇔ WaterLevel ≤ ‘High’)

Formal Definition Pattern
(accuracy goal onvariable)

Formal Definition Pattern
(accuracy goal onpredicate)

ideal ❑ (i = m) Q ⇔ P

tolerance
(deviation)

❑ (m - dev ≤ i ≤ m + dev) StongP ⇒ Q
∧ Q ⇒ WeakP
with StongP ⇒ P, and P ⇒WeakP

delay
(periodic)

❑ ◊ ≤d (i = m) ■≤d P ⇒ Q
∧ Q ⇒ ♦≤d P

Table 6.1. Patterns of idealized and deidealized accuracy goals
119

Agent-Driven Tactics for Elaborating Goal Models

s fol-

elays

links.
eide-

r-

ect to

ning
The tolerance pattern can be used when the predicateQ is not equivalent toP but is
bounded by predicatesStrongP and WeakP which are stronger and weaker thanP,
respectively. For the accuracy goal on water level, the pattern can be instantiated a
lows:

StrongP : WaterLevel ≤ ‘High’ + Dev

WeakP: WaterLevel ≥ ‘High’ - Dev

The following formal definition is thereby obtained:

WaterLevel ≥ ‘High’ + Dev ⇒ HighWaterSignal = ‘On’
∧ HighWaterSignal = ‘On’ ⇒ WaterLevel ≥ ‘High’ - Dev.

TheDelay pattern can be used when the value of the predicateQ is updated periodically
at least everyd time units. (Note that the formulae■≤d P and♦≤d P involved in the pat-
tern are stronger and weaker thanP, respectively.) Thedelay pattern yields the following
definition for the accuracy goal on water level:

■≤Delay WaterLevel ≥ ‘High’ ⇒ HighWaterSignal = ‘On’
∧ HighWaterSignal = ‘On’ ⇒ ♦≤DelayWaterLevel ≥ ‘High’

Further alternative patterns for non-ideal accuracy goals involving tolerances and d
can be identified. The description of such patterns is subject to further work.

Goal-refinement with deidealized accuracy goals

We now consider the impact of deidealized accuracy goals on goal refinement
There are three ways in which a goal refinement link can be modified to deal with d
alized accuracy goal:

(i) the parent goal can be weakened,

(ii) the companion subgoal can be strengthened, and

(iii) an assumption on the variablem can be added to the goal refinement link (gene
ally, this assumption is a bound on the rate of change ofm).

Examples. Consider the goalMaintain[PumpOnWhenHighWater]:

WaterLevel ≥ ‘High’ ⇒ PumpMotor = ‘On’

and its refinement generated by the tacticintroduce accuracy goal on variable:

❑ (WaterMeasure = WaterLevel) ,

WaterMeasure ≥ ‘High’ ⇒ PumpMotor = ‘On’.

Assume now that the accuracy goal is deidealized to allow some tolerance with resp
the actual value of the water level:

❑ (WaterLevel - Dev ≤ WaterMeasure ≤ WaterLevel + Dev).

A first way to propagate this deidealization in the goal refinement consists in weake
the parent goal into:

WaterLevel ≥ ‘High’ + Dev ⇒ PumpMotor = ‘On’,

Alternatively, one could also strengthen the companion subgoal into:

WaterMeasure ≥ ‘High’ - Dev ⇒ PumpMotor = ‘On’.
120

 Agent-Driven Tactics for Elaborating Goal Models

l
er lev-

e the

arent

ays in

f

.

s

e 6.2
e

To illustrate the adding of an assumption on variablem, assume now that the above idea
accuracy goal is deidealized to allow a delay between the measured and actual wat
els:

❑ ◊ ≤Delay WaterMeasure = WaterLevel.

One way to propagate this deidealization along the goal refinement link is to mak
following assumption on the rate of change of the water level:

WaterLevel =lev ⇒ ❑≤delay WaterLevel ≤ lev + Dev

(where ∆ denotes the maximum increase of water level indelay time units), and to
strengthen the companion subgoal into:

WaterMeasure ≥ ‘High’ - Dev ⇒ PumpMotor = ‘On’.

An alternative way to deidealize the same goal refinement link is to weaken the p
goal into:

■≤delay WaterLevel ≥ ‘High’ ⇒ PumpMotor = ‘On’.

Further work is needed to define and classify patterns for adding tolerances and del
accuracy goals.

6.5.4. Split Lack of Monitorability with Milestone

The tacticsplit lack of monitorability with milestone can be used to resolve the lack o
monitorability for a variable in theantecedentof anAchieve goal, by refining it accord-
ing to some intermediate milestone.

Tactic split lack of monitorability with milestone

Motivation: resolve lack of monitorability

Precondition: the unrealizable goal is anAchieve goal of the formC ⇒ ◊ T and the
agent lacks of monitorability for a variable appearing in the antecedent of that goal

Heuristics: the tactic is worth being considered when an intermediate milestoneM for
reachingT from C can be identified.

Postcondition:

1. Object model elaboration: the object model is enriched with the new variable
appearing in the definition of the milestoneM

2. Goal model elaboration: the Achieve goal is refined according to the following
milestone-driven goal refinement pattern [Dar95, Dar96]:

Variants of this basic milestone-driven goal refinement pattern are defined in Tabl
[Dar95]. (In this table, the symbolsx andy denote logical variables, and should not b
confused with state variables).

C ⇒ ◊ T

FIGURE 6.13.Split lack of monitorability with milestone

C ⇒ ◊ M M ⇒ ◊ T
121

Agent-Driven Tactics for Elaborating Goal Models

ed to
able

he
e

he

f

f

e

(Note that not all milestone-driven goal refinement patterns of [Dar95] can be us
resolve lack of monitorability because some of them still refer to the unmonitor
antecedent in both subgoals.)

3. Agent model elaboration: the elaboration of the agent model is inherited from t
parent tacticsplit lack of monitorability. That is, the intermediate milestone can b
defined in terms of interface variables of an agent monitoring variables inC, or it can
be defined in terms of internal variables of some agent.

Example 1.Consider the patient monitoring problem and the goalAchieve[NurseInter-
ventionForCriticalPulseRate]:

p.PulseRate ∉ p.SafePulse ⇒ (∃ n: Nurse): Intervention(n,p)

That goal is unrealizable by theNurse agent because the latter lacks of control for t
patients pulse rate and safe pulse. The tacticsplit lack of monitorability with milestone can
then be applied with the following milestone:

M: (∃ a: Alarm): a.Raised ∧ a.Loc = p.BedNbr

This yields the following two subgoals

Achieve[AlarmForCriticalPulseRate]

Achieve[NurseIntervetionForAlarm]

Example 2.Consider a resource allocation problem and the goal

Wishing(u,res) ⇒ ◊ Allocation(u, res).

The goal is not realizable by theResourceAllocator agent, because the latter lacks o
monitorability for the relationshipWishing(u,res).

The tacticsplit lack of monitorability with milestone can be used to resolve such lack o
monitorability by identifying the following milestone:

M : Requesting(u,res),

thereby generating the subgoals

Achieve[ResourceRequested]

Achieve[RequestedResourceAllocated]

The relationshipRequesting(u, res) is an interface variable controlled by theUser agent
and monitored by theResourceAllocator. The first subgoal is therefore realizable by th
User agent, and the second one by theResourceAlloctor agent.

Parent Goal Subgoal Subgoal

C ⇒ ◊ T C ⇒ ◊ M M ⇒ ◊ T

C(x) ⇒ ◊ ∃ y T(x,y) C(x) ⇒ ◊ M(x) M(x) ⇒ ◊ ∃ y T(x,y)

C(x) ⇒ ◊ ∃ y T(x,y) C(x) ⇒ ◊ ∃ y M(x,y) M(x, y) ⇒ ◊ T(x,y)

C(x) ⇒ ◊ ∃ y T(x,y) C(x) ⇒ ◊ ∃ z M(x,z) M(x, z) ⇒ ◊ ∃ y T(x,y)

Table 6.2. Goal-refinement patterns for
splitting lack of monitorability with milestone
122

 Agent-Driven Tactics for Elaborating Goal Models

ro-
pical

-

ct to

s

e

Specialisation: More specific guidance for identifying alternative milestones can be p
vided based on the category of the goal to be refined. The idea is be to identify ty
alternative choices of milestone for each category of goal. For instance,

• Satisfaction goals: the tacticintroduce request milestone is used to resolve lack of
monitorability foragent wishes;

• Safety goals: the tacticintroduce alarm milestone is used to resolve lack of monitora
bility for hazardous states.

The study of alternative goal refinement tactics for specific goal categories is subje
further work.

6.5.5. Split Lack of Monitorability by Chaining

The tacticsplit lack of monitorability by chaining is similar to the tacticsplit lack of moni-
torability with milestone, but is to be used withMaintain goals instead ofAchieve goals. It
is defined as follows.

Tactic split lack of monitorability by chaining

Motivation: resolve lack of monitorability

Precondition: the unrealizable goal is aMaintain goal of the formP ⇒ Q, P ⇒ ❑ Q,
or P ⇒ Q W R; and the agent lacks of monitorability for variables inP or R. (We assume
that constrained variables are inQ).

Heuristics: the tactic is worth being used in the following cases:

(i) to resolve lack of monitorability for a variable inP when an intermediate conditionM
can be identified such thatP ⇒ M;

(ii) to resolve lack of monitorability for a variable inR when an intermediate conditionM
can be identified such thatM ⇒ R;

Postcondition:

1. Object model elaboration: the object model is enriched with new variable
appearing in the definition of the new predicateM.

2. Goal model elaboration: the Maintain goal is refined according to one of th
chain-driven goal refinement patterns in Table 6.3 [Dar95, Dar96].

Parent Goal Subgoal Subgoal

P ⇒ Q P ⇒ M M ⇒ Q

P ⇒ ❑ Q P ⇒ M M ⇒ ❑ Q

P ⇒ Q W R P ⇒ M M ⇒ Q W R

P ⇒ Q W R M ⇒ R P ⇒ Q W M

Table 6.3. Split lack of monitorability by chaining
123

Agent-Driven Tactics for Elaborating Goal Models

icular

m

the

or

in
The specialized refinement patterns in Table 6.4 are frequently used in the part
case where theMaintain goal has the general form:

P(x) ⇒ ¬ (∃ x’): x’ ≠ x ∧ P(x’).

3. agent model elaboration: the elaboration of the agent model is inherited fro
from the parent tacticsplit lack of monitorability.

Example 1.Consider the mine pump problem and the goalMaintain[PumpOnWhenHigh-
Water]:

WaterLevel ≥ ‘High’ ⇒ PumpMotor = ‘On’

Lack of monitorability for the water level has been previously resolved by applying
tactic introduce accuracy goal to refine the goal into the subgoalsMaintain[HighWater-
Detected] andMaintain[PumpOnWhenHighWaterDetected].

A similar goal refinement can also be generated by applying the tacticsplit lack of moni-
torability by chaining with the following instantiation:

M: HighWaterSignal = ‘On’

thereby generating the subgoals:

WaterLevel ≥ ‘High’ ⇒ HighWaterSignal = ‘On’

HighWaterSignal = ‘On’ ⇒ PumpMotor = ‘On’.

Example 2.Consider the resource allocation problem and the goalAvoid[Simultaneou-
sUses]:

Using(u,res) ⇒ ¬ (∃ u’): u’≠u ∧ Using(u’, res)

This goal is not realizable byUser agents because the latter lacks of monitorability f
the relationshipUsing(u’, res) of other agents. The tacticsplit lack of monitorability by
chaining is used to resolve that lack of monitorability by applying the first pattern
Table 6.4 with the following instantiation:

M: Allocation(u,res),

thereby generating the following two goals:

Using(u,res) ⇒ Allocation(u,res)

Allocation(u,res) ⇒ ¬ (∃ u’): u’≠u ∧ Allocation(u’, res).

Parent Goal Subgoal Subgoal Subgoal

P(x) ⇒
¬ (∃ x’): x’ ≠ x ∧ P(x’)

P(x) ⇒ M(x) M(x) ⇒
¬ (∃ x’): x’ ≠ x ∧ M(x’)

--

P(x) ⇒
¬ (∃ x’): x’ ≠ x ∧ P(x’)

P(x) ⇒ ● M(x) M(x) ⇒
¬ (∃ x’): x’ ≠ x ∧ M(x’)

P(x) →
¬ (∃ x’): x’ ≠ x ∧ P(x’)

Table 6.4. Chain-driven goal refinement patterns forP(x) ⇒ ¬ (∃ x’): x’ ≠ x ∧ P(x’)
124

 Agent-Driven Tactics for Elaborating Goal Models

d in

s

f
re to
d for

tified
6.5.6. Split Lack of Monitorability By Cases

The tacticsplit lack of monitorability by cases is defined as follows:

Tactic split lack of monitorability by cases

Motivation: resolve lack of monitorability

Precondition: the agentag lacks monitorability form in order to realizeG(M, C)

Heuristics: the tactic is worth being applied when different cases can be identifie
which lack of monitorability form can be resolved in specific ways for each case.

PostCondition:

1. Object model elaboration: the object model is enriched with new variable
appearing in the definition of the different cases.

2. Goal model elaboration: different goal refinement patterns for splitting lack o
monitorability by cases are given in Table 6.5 and Table 6.6. Patterns in Table 2 a
be used for splitting the antecedent of the goal; patterns in Table 3 are to be use
splitting the consequent of the goal. Most of these patterns were previously iden
in [Dar95].

Parent Goal Subgoal Subgoal Subgoal

P1 ∨ P2 ⇒ Q P1 ⇒ Q P2 ⇒ Q --

P ⇒ Q P ∧ C ⇒ Q P ∧ ¬ C ⇒ Q --

P ⇒ Q P ∧ C1 ⇒ Q P ∧ C2 ⇒ Q ❑ (C1 ∨ C2)

P ⇒ Q P ∧ C1 ⇒ Q P ∧ C2 ⇒ Q P ⇒ C1 ∨ C2

P ⇒ Q C1 ⇒ Q C2 ⇒ Q P ⇒ C1 ∨ C2

(∀ x) P(x) ⇒ Q(x) C(x,y) ⇒ Q(x) -- P(x) ⇒ ∃ y : C(x,y)

(∀ x) P(x) ⇒ Q(x) P(x) ∧ C(x,y) ⇒ Q(x) -- P(x) ⇒ ∃ y : C(x,y)

(∀ x) P(x) ⇒ Q(x) P(x) ∧ C(x,y) ⇒ Q(x) -- ∀x ❑ ∃ y : C(x,y)

(∀ x) P(x) ⇒ Q(x) P(x) ∧ C(x,y) ⇒ Q(x) -- ∀x ∃ y : ❑ C(x,y)

Table 6.5. Case-driven goal refinement patterns: split antecedent

Parent Goal Subgoal Subgoal Subgoal

P ⇒ Q1 ∧ Q2 P ⇒ Q1 P ⇒ Q2 --

P ⇒ Q P ⇒ C1 P ⇒ C2 C1 ∧ C2 ⇒ Q

(∀ x) P(x) ⇒ Q(x) P(x) ⇒ (∃y): C(x,y) -- C(x,y) ⇒ Q(x)

Table 6.6. Case-driven goal refinement patterns: split consequent
125

Agent-Driven Tactics for Elaborating Goal Models

y
he
t-

sub-

il-
ently
tactic
ern

an
Example 1. Consider the following goal for the mine pump control system:

MethaneLevel ≥ ‘MethaneCritical’ ∨ COLevel ≥ ‘COCritical’ ⇒ Alarm

The goal is not realizable by thePumpController agent because it lacks of monitorabilit
for the variablesMethaneLevel andCOLevel appearing in the antecedent of the goal. T
tacticsplit lack of monitorability by cases can then be used by instantiating the first pa
tern in Table 6.5, thereby generating the two goals:

MethaneLevel ≥ ‘MethaneCritical’ ⇒ Alarm

COLevel ≥ ‘COCritical’ ⇒ Alarm

Lack of monitorability in each of these two goals can then handled separately.

Example 2. Consider the patient monitoring problem and the goal

Tracking(pi,p)
⇒
pi.Pulse = p.Pulse ∧ pi.SafePulse = p.SafePulse ∧ pi.BedNbr = p.BedNbr

The first refinement pattern in Table 6.6 refines that goal into the following three
goals:

Tracking(pi,p) ⇒ pi.Pulse = p.Pulse

Tracking(pi,p) ⇒ pi.SafePulse = p.SafePulse

Tracking(pi,p) ⇒ pi.BedNbr = p.BedNbr

Lack of monitorability in each of these three goals can then handled separately.

Example 3.Consider the meeting scheduling problem and the goalAchieve[PrtcptsC-
strKnown] defined by:

Intended(p,m) ⇒ ◊ CstrInfo[p,m].exclset = Cstr[p,m].exclset

The goal is not realizable by theScheduler agent because the latter lacks of monitorab
ity for the exclusion set of participants. Suppose that this set is to be obtained differ
according to whether the participant maintains an electronic agenda or not. The
split lack of monitorability by cases can then be used by instantiating the second patt
in Table 6.5 with:

C: (∃ ag): HasAgenda(p, ag)

The following subgoals are thereby generated:

Intended(p,m) ∧ (∃ ag): HasAgenda(p, ag)
⇒ ◊ CstrInfo[p,m].exclset = Cstr[p,m].excset

Intended(p,m)∧ ¬ (∃ ag): HasAgenda(p, ag)
⇒ ◊ CstrInfo[p,m].exclset = Cst[p,m].excset

Different resolutions for the lack of monitorability of the participants’ constraints c
then be applied in each case.

Example 4. Consider a flight guidance system [Joh91] and the goalAchieve[PlaneBack-
OnCourse]:

pl.Loc ∉ pl.FlightPlan ⇒ ◊ pl.Loc ∈ pl.FlightPlan
126

 Agent-Driven Tactics for Elaborating Goal Models

it
lack
e is

s-

ssary

in.
ents.
e fol-
The FGS (Flight Guidance System) software agent cannot realize the goal because
lacks monitorability for the location of planes. As a first step towards resolving such
of monitorability, the goal is split into cases according to the region in which the plan
currently located. The tacticsplit lack of monitorability by cases is therefore applied by
instantiating the eighth pattern of Table 6.5 with the following case:

C(x,y): InRegion(pl, fgs)

The following subgoals are thereby generated:

pl.Loc ∉ pl.FlightPlan ∧ InRegion(pl, fgs) ⇒ ◊ pl.Loc ∈ pl.FlightPlan

∀ pl ❑ ∃ fgs InRegion(pl, fgs)

6.5.7. Replace Unmonitorable States by Events

The tacticreplace unmonitorable state by events provides a standard technique for tran
forming goals based on states into goals based on events. It is defined as follows.

Tactic replace unmonitorable state by events

Motivation : resolve lack of monitorability

Precondition: the agent lacks of monitorability for a predicateP in the definition ofG.

Heuristics: the tactic can be used when one can identify two eventsstartP andstopP that
occur whenP becomes true and false, respectively.

PostCondition:

1. Object model elaboration: the object model is enriched with the two eventsstartP
and stopP that occur whenP becomes true and false, respectively:

startP ⇔ @ P
stopP ⇔ @ ¬ P

2. Goal model elaboration: Using the above domain properties, the goalG is refined
into the subgoal

G{P/ ¬ stopP SincestartP}

and the initial condition

initially → ¬ P.

(In practice, further simplification of the generated subgoals are sometimes nece
to make the formal definition more readable.)

Example 1. Consider the railroad crossing problem and the goal

(∃ tr: Train): ■≤d InRegion(tr,cr) ⇒ cr.Gate = Closed

The predicateInRegion(tr,cr) is not monitorable by any agent in the application doma
However, the entry and exit of trains from the region are monitorable by sensor ag
The goal can then be refined by applying the above goal refinement pattern with th
lowing instantiation:

P: InRegion(tr,cr)

startP: RegionEntry(tr,cr)

stopP: RegionExit(tr,cr)
127

Agent-Driven Tactics for Elaborating Goal Models

the
sary

by

-

Example 2.Consider the resource allocation problem and the goal:

Using(u, res) ⇒ Allocation(u, res)

The relationshipAllocation(u, res) is not directly monitorable by theUser agent, but is
defined by the occurrences ofAllocationEvent and ReleaseEvent at the interface
between theUser and theAllocator agents. One can then use the tacticreplace unmoni-
torable state by events to generate the subgoal:

Using(u, res) ⇒ ¬ release_event(u,res) S allocation_event(u,res).

6.6. Resolving Lack of Control

We now detail tactics for resolving lack of control. These tactics are symmetric to
tactics for resolving lack of monitorability. Two tactics consist in adding the neces
control links to the agent or refining the goal further. The tacticsadd control andsplit
lack of control are defined next. We then define further specializations of the tacticsplit
lack of control.

6.6.1. Add control

Tactic add control

Motivation : resolve lack of control

Precondition: the agentag lacks control of variablec in order to realizeG(M, C)

Heuristics: the tactic should be applied only if the variable can actually be controlled
the agent. Otherwise, one has to consider the alternative tacticsplit lack of control defined
below.

PostCondition: a new control link is created betweenag andc.

Example: Consider the meeting scheduling problem and the goalAchieve[ParticipantsC-
strRequested] defined by:

Intended(p,m) ∧ Scheduling(sch,m)
⇒ ◊ (∃ cstr_req: CstrRequest):
cstr_req.Sent
∧ cstr_req.MeetingName = ● m.Name
∧ cstr_req.delivery_address = ● p.address

Let us assume that in the current agent interface model theScheduler agent lacks of con-
trol for the objectCstrRequest. The tacticadd control resolves this by declaring the fol
lowing control link:

Control [Scheduler, CstrRequest]
InstDecl : Ctrl(sch, cstr_req.Sent)
128

 Agent-Driven Tactics for Elaborating Goal Models

te

y

e

ples

ri-
graph

Sec-
6.6.2. Split lack of control

The tacticsplit lack of control is symmetric to the tacticsplit lack of monitorability. It is
defined as follows.

Tactic split lack of control

Motivation: resolve lack of control

Precondition: the agentag lacks control ofc in order to realizeG(M, C)

Heuristics: the tactic should be applied whenm cannot be controlled byag.

PostCondition:

1. Object model elaboration:The object model is enriched with a new intermedia
variableo.

2. Goal model elaboration:The goalG is refined into the subgoalsG2(o, c), that con-
strain the values ofc based on the values ofo, andG1(M, (C\c)∪o) (see Figure 6.14).
Note thatG1 does not refer to the uncontrollable variablec.

(This description is slightly simplified. Tactics for resolving lack of control ma
sometimes refineG with more than two subgoals.)

3. Agent model elaboration:The new intermediate variablesi must be controllable
by ag. This ensures that the subgoalG2 refers to less uncontrollable variables than th
parent goalG.

A first way to elaborate the agent model consists in identifying acontrolling agent
capable of controllingc and monitoringo, and in assigning the goal G2(o,c) to that
agent (Figure 6.15). In the context of control systems, actuators are typical exam
of such controlling agents.

Alternatively, the new intermediate variableo can also be declared as an internal va
able. This alternative elaboration of the agent model makes the goal refinement
more robust with respect to changes of controlling agent or agent interfaces (see
tion 6.5.2).

G(m,c)

G1(M, (C\c)∪o) G2(o,c)

FIGURE 6.14.Split lack of control

G(m,c)

G2(o,c)

co

Controlling
agent

FIGURE 6.15.Split lack of control with controlling agent

Controlling
agent

G1(M, (C\c)∪o)
129

Agent-Driven Tactics for Elaborating Goal Models

bil-

he

l-

d

at-
vary
-
ese
Note that the tacticssplit lack of monitorability andsplit lack of control are symmetric.
Splitting lack of control for one agent often corresponds to splitting lack of monitora
ity for another agent.

Example. Consider the mine pump control system again and the goalMaintain[PumpOn-
WhenHighWater]:

HighWaterSignal = ‘On’ ⇒ PumpMotor = ‘On’

The variablePumpMotor is an environment quantity that is not directly controlled by t
PumpController software agent.

An application of the tacticsplit lack of control consists in elaborating the model as fo
lows:

1. Object model elaboration:a new variablePumpSwitch that denotes a switch to
command the pump is identified;

2. Goal model elaboration: the goal is refined into the subgoalsPumpSwitchOn-
WhenHighWater andPumpOnWhenPumpSwicthOn, defined as follows:

HighWaterSignal = ‘On’ ⇒ PumpSwitch = ‘On’

PumpSwitch = ‘On’ ⇒ PumpMotor = ‘On’

3. Agent model elaboration:a PumpActuator agent controlling the pump motor an
monitoring the pump switch is introduced; it is assigned to the goalPumpOnWhen-
PumpSwicthOn.

Specializations: Specialized tactics for splitting lack of control define specialized p
terns for refining a goal so as to resolve lack of control of agents. These tactics
according to the pattern of the goalsG, G1, G2, and the nature of the intermediate varia
ble o. Specialized tactics for resolving lack of control are shown in Figure 6.16. Th
tactics are symmetric to the tactics for resolving lack of monitorability.

6.6.3. Introduce Actuation Goals

The tacticintroduce actuation goal is symmetric to the tacticintroduce accuracy goal. It
is defined as follows.

Tactic introduce actuation goal

Motivation : resolve lack of control

Precondition: the agentag lacks of control forc in order to realizeG(M, C)

split
lack of control

split
lack of control
with milestone

introduce
actuation goal

replace
uncontrollable state

by controllable events

split
lack of control

by cases

FIGURE 6.16. Specializations of the tactic split lack of control

split
lack of control
by chaining
130

 Agent-Driven Tactics for Elaborating Goal Models

le

al
s
wn

nce

he

ction

or

goal

nd its
itions
Heuristics: the tactic should be applied when one can identify an intermediate variabo
that can be related toc through some actuation goal. (The property relatingo to c can
also be a domain property.)

PostCondition:

1. Object model elaboration: The object model is enriched with a new variableo
that denotes a quantity used to controlc.

2. Goal model elaboration:The unrealizable goal is refined into an actuation go
relatingo to c, and a companion subgoal whose definition refers to the variableo
instead ofc. Two alternative formal goal refinement patterns for the tactic are sho
in Figure 6.17.

The patternsintroduce actuation goal on variable andintroduce actuation goal on predicate
correspond to alternative ways to apply the tactic.

Variants of these patterns dealing with non-ideal actuation goals involving tolera
and delays are discussed in Section 6.6.3.1 below.

3. Agent model elaboration:The elaboration of the agent model is inherited from t
parent tacticsplit lack of control.

Example 1. The refinement of the goalMaintain[PumpOnWhenHighWater] in Section
6.6.2 corresponds to an application of the tacticintroduce actuation goal on predicate
with the following instantiation:

p: PumpMotor = ‘On’ q: PumpSwitch = ‘On’.

Example 2. Consider a train control system and the goalMaintain[SafeAcceleration]
requiring the acceleration of a train to be less than some value, the latter being a fun
of its speed and distance with the preceding train:

Following(tr1, tr2) ⇒ tr1.Acc ≤ F(tr1.Loc, tr2.Loc, tr1.Speed)

This goal is unrealizable by aTrainController agent, because the latter lacks of control f
the actual acceleration of the train. An application of the tacticintroduce actuation goal
can be used to resolve such lack of control by identifying the variableTrain.AccCmd
denoting the command used to control the acceleration of the train; and refining the
into:

Following(tr1, tr2) ⇒ tr1.AccCmd ≤ F(tr1.Loc, tr2.Loc, tr1.Speed)

❑ (tr.Acc = tr.AccCmd)

This refinement is of course too ideal. The relation between a train acceleration a
acceleration command is more complex than a simple equality. More precise defin
for these goals will be given for the BART case study in Chapter 9.

G

FIGURE 6.17.Introduce actuation goal

❑ (o =c) G {c/o}

(a) introduce actuation goal on variable

G

p ⇔ q G{ p / q }

(b) introduce actuation goal on predicate
131

Agent-Driven Tactics for Elaborating Goal Models

ifica-
able

e on
ows:

‘On’
otor

f con-
he

es
6.6.3.1. Deidealizing actuation goals through tolerances and delays

The specification of tolerance and delays for actuation goals is similar to the spec
tion of tolerances and delays for accuracy goals. The formal definition patterns in T
6.1 can be used to specify such goals (see Section 6.5.3.4).

Example 1. Consider the ideal actuation goal for the mine pump control system:

❑ (PumpMotor = ‘On’ ⇔ PumpSwitch = ‘On’)

Thedelay pattern can be used to specify the delay needed for the pump motor to b
once the pump switch is set to ‘On’. The deidealized goal can be formalized as foll

■≤pump_delay PumpSwitch = ‘On’ ⇒ PumpMotor = ‘On’

∧ PumpSwitch = ‘Off’ ⇒ PumpMotor = ‘Off’

The first assertion says that the pump motor is ‘On’ when the pump switch has been
during the lastpump_delay time units; the second assertion says that the pump m
goes immediately off when the pump switch is turned off.

Example 2.Consider the railroad crossing problem and the goalMaintain[GateClosed-
WhenTrainCrossing]:

InCrossing(tr, cr) ⇒ cr.Gate = ‘Closed’

The goal is not realizable by the GateController software agent because it lacks o
trol for the variablecr.Gate. Such lack of control, can be resolved by introducing t
variablecr.GateSignal and an actuation goal with delay:

■≤gate_delay cr.GateSignal = ‘down’ ⇒ cr.gate = ‘Closed’.

The companion subgoal refining the goal is then defined by:

InCrossing(tr, cr) ⇒ ■≤gate_delay cr.GateSignal = ‘down’

6.6.4. Split Lack of Control with Milestone

The tacticsplit lack of control with milestone can be used to refine anAchieve goal so as
to resolve the lack of control for a variable appearing in theconsequent of the goal.

Tactic split lack of control with milestone

Motivation: resolve lack of control

Precondition: the unrealizable goal is anAchieve goal of the formC ⇒ ◊ T and the
agent lacks of control for a variable appearing in the consequent of that goal.

Heuristics: the tactic is worth being considered when an intermediate milestoneM for
reachingT from C can be identified.

Postcondition:

1. Object model elaboration: the object model is enriched with the new variabl
appearing in the definition of the milestoneM

2. Goal model elaboration: the Achieve goal is refined according to the following
milestone-driven goal refinement pattern [Dar95, Dar96]:
132

 Agent-Driven Tactics for Elaborating Goal Models

iven
ing

m

r

tion of
k

n-

ty of
Variants of this basic milestone-driven goal refinement patterns in Table 6.3, g
there for splitting lack of monitorability with milestone, can also be used for splitt
lack of control with milestone.

3. Agent model elaboration: the elaboration of the agent model is inherited fro
from the parent tacticsplit lack of control.

Example 1.Consider the patient monitoring problem and the goalAchieve[NurseInter-
ventionForCriticalPulseRate]:

p.PulseRate ∉ p.SafePulse ⇒ (∃ n: Nurse): Intervention(n,p)

This goal is unrealizable by thePatientMonitoring software agent, because the latte
lacks of control for the nurse intervention. The tacticsplit lack of control with milestone
can be applied with the following milestone:

M: (∃ a: Alarm): a.Raised ∧ a.Loc = p.BedNbr

to generate the subgoals

Achieve[AlarmForCriticalPulseRate]

Achieve[NurseIntervetionForAlarm]

Note that the same goal refinement had been generated in Section 6.5.4 by applica
the tacticsplit lack of monitorability with milestone; the latter was used for resolving lac
of monitorability ofNurse agents on patients’ pulse rates.

Example 2.Consider the meeting scheduling problem and the goalAchieve[PrtctsPres-
enceAtConvenientMeeting]:

Intended(p.m) ∧ m.Planned ∧ Convenient(p,m) ⇒ ◊ Participates(p,m)

This goal is not realizable by theMeetingScheduler agent because the latter lacks of co
trol for the relationshipParticipates. The tacticsplit lack of control with milestone can be
used to resolve such lack of control with the intermediate milestone

M: Informed(p,m)

thereby generating the subgoals

Achieve[PrtcptsInformed]

Achieve[InformedPrctptsPresenceAtConvenientMeeting].

Again, the same goal refinement can be obtained by resolving lack of monitorabili
Participant agent on variables in the antecedent of the goal.

C ⇒ ◊ T

FIGURE 6.18.Split lack of control with milestone

C ⇒ ◊ M M ⇒ ◊ T
133

Agent-Driven Tactics for Elaborating Goal Models

ria-

es

e
hese
in-

he

ol
6.6.5. Split Lack of Control by Chaining

The tacticsplit lack of control by chaining is symmetric to the tacticsplit lack of monitor-
ability by chaining.

Tactic split lack of control by chaining

Motivation resolve lack of control

Precondition: the unrealizable goal is aMaintain goal of the formP ⇒ Q, P ⇒ ❑ Q,
or P ⇒ Q W R; and the agent lacks of control on variables referenced inQ. (We assume
that constrained variables are inQ).

Heuristics: the tactic is worth being considered for resolving lack of control on a va
ble inQ when an intermediate conditionM can be identified such thatM ⇒ Q.

Postcondition:

1. Object model elaboration: the object model is enriched with the new variabl
appearing in the definition of the new predicateM.

2. Goal model elaboration: the Maintain goal can be refined by using one of th
chain-driven goal refinement patterns in Table 6.7 [Dar95, Dar96]. (Note that t
patterns are slightly different from those used to split lack of monitorability by cha
ing.)

3. Agent model elaboration: the elaboration of the agent model is inherited from t
parent tacticsplit lack of control.

Example. Consider the railroad crossing problem and the high-level goalAvoid[Train/
CarCollisions]:

TrainInCrossing(tr, cr) ⇒ ¬ (∃ c: Car): CarInCrossing(tr, cr)

The goal is not realizable by theGateController agent, because the latter lacks of contr
on the relationshipCarInCrossing. The tacticsplit lack of control by chaining can applied
with the following instantiation:

M: cr.Closed

to generate the subgoals

Maintain[GateClosedWhenTrainInCrossing]

Maintain[NoCarInClosedCrossing].

Parent Goal Subgoal Subgoal

P ⇒ Q P ⇒ M M ⇒ Q

P ⇒ ❑ Q P ⇒ ❑ M M ⇒ Q

P ⇒ Q W R P ⇒ M W R M ⇒ Q

Table 6.7. Split lack of control by chaining
134

 Agent-Driven Tactics for Elaborating Goal Models

d in

s

nd
plit-

ation
nce is
6.6.6. Split Lack of Control By Cases

The tacticsplit lack of control by cases is symmetric to the tacticsplit lack of monitorabil-
ity by cases.

Tactic split lack of control by cases

Motivation: resolve lack of control

Precondition: the agentag lacks of control forc in order to realizeG(M, C)

Heuristics: the tactic is worth being applied when different cases can be identifie
which lack of control forc can be resolved in specific ways for each case.

PostCondition:

1. Object model elaboration: the object model is enriched with the new variable
appearing in the definition of the different cases.

2. Goal model elaboration: the case-driven goal refinement patterns of Table 6.5 a
6.6, given there for splitting lack of monitorability by cases, can also be used for s
ting lack of control by cases.

Example. Consider the ambulance dispatching system and the goalAchieve[Allo-
catedAmbulanceMobilized]:

Allocation(amb, inc) ⇒ ◊≤d Mobilization(amb, inc)

TheMobilization relationship is controlled byAmbulanceStaff agents and not directly by
anAmbulanceAllocator agent. The goal is therefore not realizable by theAmbulanceAllo-
cator agent because the latter lacks of control on that relationship. Since the mobiliz
of ambulances has to be handled differently dependent on whether the ambula
waiting at a station or somewhere on the road, the tacticsplit lack of control by cases is
applied by instantiating the second pattern in Table 6 as follows:

C1: amb.OnRoad C2: (∃ st: Station): AtStation(amb, st)

The following subgoals are thereby generated:

Allocation(amb, inc) ∧ AtStation(amb, st) ⇒ ◊≤d Mobilization(amb, inc) ,

Allocation(amb, inc) ∧ amb.OnRoad ⇒ ◊≤d Mobilization(amb, inc) ,

together with the domain property:

❑ (amb.OnRoad ∨ (∃ st: Station): AtStation(amb, st)).

6.6.7. Replace Uncontrollable State by Events

The tacticreplace uncontrollable state by events is symmetric the tacticreplace unmon-
itorable state by events. It is defined as follows.

Tactic replace uncontrollable state by events

Motivation : resolve lack of control

Precondition: the agent lacks of control on variables in a predicateP occurring in the
definition ofG.
135

Agent-Driven Tactics for Elaborating Goal Models

eces-

to
ring

-

l

Heuristics: the tactic can be used when two eventsstartP andstopP can be identified
which occur whenP becomes true and false, respectively.

PostCondition:

1. Object model elaboration: the object model is enriched with two eventsstartP
and stopP that occur whenP becomes true and false, respectively:

startP ⇔ @ P
stopP ⇔ @ ¬ P

2. Goal model elaboration: Using the above domain properties, the goalG is refined
into the subgoal

G{P/ ¬ stopP SincestartP}

and the initial condition

initially → ¬ P.

(In practice, further simplification of the generated subgoals may sometimes be n
sary to make the formal definition more readable.)

6.7. Resolve Goal Unsatisfiability

There are two tactics for resolving goal unsatisfiability:weaken goal with unsatisfiability
condition andprevent unsatisfiability. The former consists in weakening the goal so as
cover the unsatisfiability condition; the latter consists in refining the goal by requi
the unsatisfiability condition to be avoided.

6.7.1. Weaken goal with unsatisfiability condition

Tactic weaken goal with unsatisfiability condition

Motivation: resolve goal unsatisfiability

Precondition: G(M, C) is unsatisfiable when the unsatisfiability conditionB holds.

Heuristics: the tactic is worth being applied whenG is not safety-critical and the unsat
isfiability condition can be tolerated.

PostCondition: The goal definition is weakened intoG ∨ B. The weakening of the goa
has then to be propagated along the goal refinement links.

Example. Consider the meeting scheduling problem and the goalAchieve[Convenient-
MeetingPlanned] defined by:

m.Requested
⇒ ◊ (∃ d: Date):
(m.Date = d ∧ d ∈ m.DateRange
∧ ● (∀ p: Participant): Intended(p,m) → d ∉ Constaint[p,m].exclset)
136

 Agent-Driven Tactics for Elaborating Goal Models

artici-

al

-

n in

tions
This goal is unsatisfiable if there is no date inside the date range that satisfies all p
pants’ constraints. The unsatisfiability condition for this goal is thus;

◊ (∃ m: Meeting):
m.Requested
∧ ❑ ¬ (∃ d: Date): d ∈ m.DateRange

∧(∀ p: Participant): Intended(p,m) → d ∉ Constaint[p,m].exclset

The tacticweaken unsatisfiability allows the problem to be solved by weakening the go
definition into:

m.Requested ⇒
(◊ (∃ d: Date): m.Date = d ∧ d ∈ m.DateRange

∧ ● (∀ p: Participant): Intended(p,m) → d ∉ Constaint[p,m].exclset)
∨ ❑ ¬ m.Feasible

The predicatem.Feasible in this weakened formula is defined by:

m.Feasible ⇔
¬ (∃ d: Date): d ∈ m.DateRange

∧ (∀ p: Participant): Intended(p,m) → d ∉ Constaint[p,m].exclset

6.7.2. Prevent goal unsatisfiability

Tactic prevent goal unsatisfiability

Motivation: resolve goal unsatisfiability

Precondition: G(M, C) is unsatisfiable when the unsatisfiability conditionB holds.

Heuristics: the tactic is worth being applied whenG is safety-critical and the unsatisfia
bility condition cannot be tolerated.

PostCondition: The unsatisfiable goal is refined according to the refinement patter
Figure 6.19.

This pattern captures the general idea of the tactic. In practice, the formal defini
generated by the strict application of this pattern may have to be adapted.

Example. Consider an ambulance dispatching system and the goalAchieve[Ambulance-
MobilizedInSector] defined by:

inc.Reported ∧ InSector(inc, s)
⇒ ◊≤3m (∃ amb: Ambulance):
Mobilization(amb, inc) ∧ ● (amb.Available ∧ InSector(amb, s))

The domain of goal unsatisfiability of the goal is defined by:

◊ (∃ inc: Incident, s: Sector):
inc.Reported ∧ InSector(inc, s)
∧ ❑≤3m ¬ (∃ amb: Ambulance): amb.Available ∧ InSector(amb, s)

FIGURE 6.19. Prevent goal unsatisfiability

G

¬ B ¬ B → G
137

Agent-Driven Tactics for Elaborating Goal Models

h the

s for
rob-

s the

ria-

tion

es

p-
cipa-
on the
Since the goal is safety critical, the tacticprevent unsatisfiability is used to refine it. The
negation of the unsatisfiability condition is given by

inc.Reported ∧ InSector(inc, s)
⇒ ◊≤3m (∃ amb: Ambulance):
amb.Available ∧ InSector(amb, s))

This assertion is then strengthened into the goalMaintain[AvailableAmbulanceInSector],
requiring that in every sector there is always an ambulance available.

❑ (∃ amb: Ambulance): amb.Available ∧ InSector(amb, s)

The companion subgoal generated by the tactic is:

inc.Reported ∧ InSector(inc, s)
⇒ ◊≤3m
(∃ amb: Ambulance): Mobilization(amb, inc) ∧ ● (amb.Available ∧ InSector(amb, s))
∨
¬ (∃ amb: Ambulance): amb.Available ∧ InSector(amb, s)

This goal requires an available ambulance to be mobilized from the sector in whic
incident occurred, except if there is no ambulance available in that sector.

6.8. Resolve References to the Future

We now consider tactics for resolving references to the future. There are tactic
resolving references to the strict future and tactics for resolving synchronization p
lems.

6.8.1. Resolve References to Strict Future

6.8.1.1. Apply anticipation pattern

References to the future can be resolved by identifying a condition that anticipate
future values of monitored variables.

Tactic apply anticipation pattern

Motivation: resolve references to the future

Precondition: the goal constrains variables in terms of future values of monitored va
bles

Heuristics: the tactic should be considered when a conditionA can be identified that
anticipates future values of monitored variables (this condition will be called anticipa
condition).

Postcondition:

1. Object model elaboration: the object model is enriched with the new variabl
appearing in the definition of the anticipation conditionA.

2. Goal model elaboration: the goal is refined into a first subgoal (or domain pro
erty) that relates the condition on future states of monitored variables to the anti
tion condition, and a second subgoal that constrains controlled variables based
anticipation condition.
138

 Agent-Driven Tactics for Elaborating Goal Models

ine

en
n

ticipa-

-

the

con-
The following (semantically equivalent) ‘anticipation’ formulas can be used to ref
the goal by anticipating the conditionM on future states of monitored variables:

(i) M ⇒ ■≤d’ A (ii) ♦≤d’ ¬ A ⇒ ¬ M
(iii) ◊≤d’ M ⇒ A (iv) ¬ A ⇒ ❑≤d’ ¬ M

The first formula says that ifM holds then the anticipation condition must have be
true for a leastd’ time unit. The fourth formula says that if the anticipation conditio
does not hold currently, thenM will not hold during the nextd’ time units. These
assertions are all semantically equivalent; they define the same set of histories.

Table 6.8 shows some anticipation-driven refinement patterns that use these an
tion formulas.

Example. Consider the railroad crossing problem and the ‘utility’ goalMaintain[GateO-
penWhenNoTrain]:

❑≤d ¬ (∃ tr: Train): InCrossing(tr,cr) ⇒ cr.Gate = ‘opened’

This goal constrains the value of the variablecr.Gate based on future values of the varia
ble InCrossing(tr,cr).

Such a reference to the future is resolved by using the property that if a train is in
crossing, it must have been in the region of the crossing during some timed’ that depends
on the maximum speed of trains. One can apply the tacticapply anticipation pattern by
instantiating the first pattern in Table 6.8 as follows:

A: InRegion(tr,cr)

The two subgoals generated by the pattern are then:

InCrossing(tr,cr) ⇒ ■≤d’ InRegion(tr,cr)

■≤d’-d InRegion(tr,cr) ⇒ cr.Gate = ‘opened’

6.8.2. Resolve Synchronization problems

We now consider tactics for resolving synchronization problems (that is, a goal
strains the values of controlled variables based on thecurrentvalues of monitored varia-
bles). The alternative tactics are:

• replace current by previous;
• introduce reactiveness hypothesis;
• introduce mutual exclusion assumption;
• apply mutual exclusion refinement pattern;
• apply anticipation refinement pattern.

These tactics are described successively.

Parent Goal Subgoal Subgoal Subgoal

❑≤d M ⇒ C M ⇒ ■≤d’ A ■≤d’-d A ⇒ C ❑ (d’ ≥ d)

◊≤d M ⇒ C M ⇒ ■≤d’ A ■≤d’-d A ⇒ C ❑ (d’ ≥ d)

M ⇒ ■≤d C M ⇒ ■≤d’ A ■≤d’-d A ⇒ C ❑ (d’ ≥ d)

Table 6.8. Anticipation-driven refinement patterns
139

Agent-Driven Tactics for Elaborating Goal Models

rrent

ally

ery

goal

or
soft-

poth-
t96].

e not

t infi-
6.8.2.1. Replace current by previous

Tactic replace current by previous

Motivation: resolve synchronization problem

Precondition: the goal constrains the values of controlled variables based on the cu
values of monitored variablesm.

Heuristics: this tactic should be considered when the definition of the goal is tempor
too strong.

Postcondition: The tactic consists in weakening the goal definition by replacing ev
occurrence of the problematic monitored variablem by the value of this variable in the
previous state. The weakened goal definition is then given byG{m/ ● m}. This weaken-
ing of goal definition must then be propagated along the refinement links of the
graph.

Example 1. Consider the mine pump control system and the goalMaintain[PumpSwitch-
OnWhenHighWaterDetected]:

HighWaterSignal = ‘On’ ⇒ PumpSwitch = ‘On’

An application of the tacticreplace current by previous yields the following goal defini-
tion:

● HighWaterSignal = ‘On’ ⇒ PumpSwitch = ‘On’

Example 2. Consider the meeting scheduling problem and the goalAchieve[Convenient-
MeetingPlanned] whose definition is given by:

m.Requested
⇒ ◊ (∃ d: Date):
(m.Date = d ∧ (∀ p: Participant): Intended(p,m) → d ∉ Constaint[p,m].exclset)

An application of the tacticreplace current by previous yields the following goal defini-
tion:

m.Requested
⇒ ◊ (∃ d: Date):
(m.Date = d ∧ ● (∀ p: Participant): Intended(p,m) → d ∉ Constaint[p,m].exclset)

6.8.2.2. Introduce reactiveness hypothesis

The tacticintroduce reactiveness hypothesis corresponds to a standard technique f
resolving synchronization problems. It consists in assuming that an agent, usually a
ware one can react infinitely fast to changes of variables in its environment. Such hy
esis is a built-in one in the semantics of specification languages such as SCR [Hei

Such hypothesis is inconsistent with our formal model of agents, and can therefor
be modelled in our framework. Therefore, the tacticintroduce reactivity hypothesis con-
sists in ignoring the synchronization problem by assuming that the agent can reac
nitely fast to changes of monitored variables.

For example, consider again the goalMaintain[PumpSwitchOnWhenHighWater] defined
by

HighWaterSignal = ‘On’ ⇒ PumpSwitch = ‘On’.
140

 Agent-Driven Tactics for Elaborating Goal Models

t

-
y.

rrent

l

goal

vari-

t

y

finitely
The tacticintroduce reactiveness hypothesis consists here in assuming implicitly tha
thePumpController agent can react infinitely fast to changes of theHighWaterSignal var-
iable.

6.8.2.3. Introduce mutual exclusion hypothesis

The tacticintroduce mutual exclusion hypothesis consists in refining the goal by assum
ing that changes of monitored and controlled variables cannot occur simultaneousl

Tactic introduce mutual exclusion hypothesis

Motivation: resolve synchronization problem

Precondition: the goal constrains the values of controlled variables based on the cu
values of monitored variablesm.

Heuristics: this tactic should be considered when it can beassumedthat states transi-
tions for monitored and controlled variables never occur simultaneously.

Postcondition: For a goal of the formP ⇒ Q, this tactic consists in applying the forma
goal refinement pattern in Table 6.9.

Example. Consider a system to control the opening of train doors, and the safety
Maintain[DoorsClosedWhileMoving]:

tr.Moving ⇒ tr.DoorsState = ‘Closed’

Suppose the variabletr.Moving is controlled by some agent, say theTrainDriver agent,
whereas the variabletr.DoorsState is controlled by some other agent, say theDoorCtrler
agent. TheDoorCtrler agent cannot realize the goal because the latter constrains the
abletr.DoorState based on the current value of the variabletr.Moving.

The tacticintroduce mutual exclusion hypothesis consists in making the assumption tha
the opening of doors cannot occur simultaneously with the start of trains:

❑ ¬ (@ tr.Moving ∧ @ tr.DoorsState ≠ ‘Closed’)

thereby generating the two subgoals

@ tr.Moving ⇒ ● tr.DoorsState = ‘Closed’

@ tr.DoorsState ≠ ‘Closed’ ⇒ ● ¬ tr.Moving

together with an initial condition:

tr.Moving → tr.DoorsState = ‘Closed’

The first subgoal is then realizable by theTrainDriver agent, whereas the second one b
theDoorCtrler agent.

Note: If we apply the alternative tacticintroduce reactiveness hypotheses, the goal
Maintain[DoorsClosedWhileMoving] could be assigned as responsibility of theDoorC-
trler agent alone; one should then be assume that this agent can close the doors in

Parent Goal Subgoal Subgoal Subgoal DomProp/Ass

P ⇒ Q P → Q @P ⇒ ● Q @¬Q ⇒ ● ¬P ❑ ¬ (@P∧@¬Q)

Table 6.9. Introduce mutual exclusion hypothesis
141

Agent-Driven Tactics for Elaborating Goal Models

onsi-
the

ighly

b-
d and

ulta-

rrent

l
utual

sed

ain is
fast when the train starts moving. Alternatively, the goal could be assigned as resp
bility of the TrainDriver agent only; one should then assume that this agent can stop
train infinitely fast when the doors get open. In both cases, the assumptions are h
unrealistic.

6.8.2.4. Apply mutual exclusion refinement pattern

The tacticapply mutual exclusion pattern is to be used to resolve synchronization pro
lems by refining the goal so as to prevent simultaneous state transitions of monitore
controlled variables.

Tactic apply mutual exclusion pattern

Motivation: resolving synchronization problem

Heuristics: this tactic should be considered for refining the goal byrequiring (instead of
assuming) state transition of monitored and controlled variables to never occur sim
neously.

Precondition: the goal constrains the values of controlled variables based on the cu
values of monitored variablesm.

Postcondition: for a goal of the formP ⇒ Q, this tactic consists in applying the forma
goal refinement pattern in Table 6.10. This pattern is reminiscent of standard m
exclusion schemes, with the predicateT playing the role of the variable ‘turn’ indicating
which processor is allowed to enter its critical section.

Example.Consider again the goalMaintain[DoorsClosedWhileMoving]. The tacticapply
mutual exclusion pattern can be used to resolve the synchronization problem discus
before by introducing the following variable:

T: GoSignal

The variableGoSignal would correspond to a signal between theTrainDriver andDoorC-
trler agents or to a signal controlled by some other agent at the station where the tr
stopped. The following subgoals are thereby generated:

@ tr.Moving ⇒ ● (tr.DoorsState = ‘Closed’ ∧ GoSignal)

@ tr.DoorsState ≠ ‘Closed’ ⇒ ● (¬tr.Moving ∧ ¬ GoSignal)

together with the initial condition:

 tr.Moving → tr.DoorsState = ‘Closed’

If the new variableGoSignal is monitorable by theTrainDriver andDoorCtrler agents, the
first subgoal is realizable by theTrainDriver, and the second one by theDoorCtrler.

Parent Goal Subgoal Subgoal Subgoal

P ⇒ Q P → Q @P ⇒ ● (Q ∧ T) @¬Q ⇒ ● (¬ P ∧ ¬ T)

Table 6.10. Mutual-exclusion refinement pattern
142

 Agent-Driven Tactics for Elaborating Goal Models

so
ment

multa-

s:

gent

each
uid-

ingle
fine-

ed in
6.8.2.5. Apply anticipation pattern

The tacticapply anticipation pattern defined to resolve reference to strict future can al
be used to resolve synchronization problems. Two anticipation-driven goal refine
patterns for goals of the formP ⇒ Q are defined in Table 6.11.

Example. Consider the railroad crossing problem and the goalMaintain[GateClosed-
WhenTrainCrossing]:

Crossing(tr, cr) ⇒ cr.Gate = ‘closed’

The goal has a synchronization problem because it requires the gate to be closed si
neously with a train entering the crossing. The tacticapply anticipation pattern can be
used to resolve that problem by instantiating the first pattern in Table 6.11 as follow

A: InRegion(tr,cr)

The two subgoals generated by the pattern are then:

InCrossing(tr,cr) ⇒ ● ■≤d’ InRegion(tr,cr)

● ■≤d’ InRegion(tr,cr) ⇒ cr.Gate = ‘opened’

6.9. Resolve Unbounded Achieve Goal

Consider a goal taking the form

C ⇒ ◊ T

This goal is not realizable because it does not constrain the finite runs of an a
assigned to it. The tacticresolve unbounded achieve goal is to be applied to strengthen
the goal temporally into

C ⇒ ◊≤d T or C ⇒ ❍ T.

This tactic is generally applied at the last step of the goal-refinement process.

6.10. Summary

This chapter has proposed various specification elaboration tactics for resolving
kind of realizability problem studied in Chapter 5. These tactics provide systematic g
ance for recursively refining goals into subgoals until the latter are realizable by s
agents, the tactics drive the identification of agents and objects during the goal re
ment process.

The systematic application of these tactics on two real case studies will be describ
Chapter 9.

Parent
Goal

Subgoal Subgoal

P ⇒ Q P ⇒ ● M ● M ⇒ Q

P ⇒ Q P ⇒ ● ■≤dM ● ■≤d M ⇒ Q

Table 6.11. Anticipation-driven refinement pattern
143

Agent-Driven Tactics for Elaborating Goal Models
144

Formal Patterns for Goal Operationalization

e next
levant
tisfied.

rinci-
ied and
e the

tion-
ional-
iented
rgan-

have

ms of
trans-

ystem
antics
elate

- and
Chapter 7
Formal Patterns for Goal
Operationalization

Once goals have been refined into subgoals that are realizable by single agents, th
step of the goal-oriented process consists in deriving (a) the operations that are re
to the goals, and (b) the requirements on these operations so that the goals are sa

This chapter proposes a formal technique to support this derivation. The general p
ple is to reuse generic patterns. The use of generic patterns has already been stud
applied for the upstream step of goal refinement [Dar95, Dar96]. Here, we explor
use of specific patterns for the later operationalization step.

The definition of operationalization patterns is based on a formal semantics of opera
alization defined in Section 7.1. Section 7.2 describes the basic idea of using operat
ization patterns; Section 7.3 discusses the benefits of such patterns for goal-or
requirements engineering. Section 7.4 explains how patterns can be identified and o
ized for retrievability. Section 7.5 describes a few operationalization patterns that
been defined so far.

7.1. Semantics of the KAOS operation model

The KAOS operation model has two semantics. The first semantics is defined in ter
the transition systems introduced in Chapter 4. The second semantics is defined by
lating fragments of operation specifications into temporal logic.

The two semantics are equivalent: the set of histories generated by the transition s
is equal to the set of histories covered by the temporal formulae. The temporal sem
of operations is convenient for defining the semantics operationalization links that r
operations to goals.

7.1.1. Temporal semantics of operations

An operation defines a relation over states; this relation is defined by the domain pre
post conditions of the operation. Formally, we introduce for every operationop whose
arguments are variablesarg1, ...,argn and results are variablesres1, ...,resn, a predicate
[| op |] defined as follows:

[| op |](arg1, ...,argn, res1, ...,resn) =def ● DomPre(op) ∧ DomPost(op)

For example, consider the following operation:

Operation SwitchPumpOn
Input PumpController {arg c}/ HighWaterSignal
Output PumpController / PumpSwitch
DomPre c.PumpSwitch = ‘Off’
DomPost c.PumpSwitch = ‘On’
145

Formal Patterns for Goal Operationalization

lows.
s

d

tro-

oral

ments

ction
tion of

ondi-
the
ee the
The predicate associated with this operation is:

[| SwitchPumpOn |] (c) =def ● c.PumpSwitch = ‘Off’ ∧ c.PumpSwitch = ‘On’

In the sequel, we will drop the brackets around such predicates and writeSwitchPumpOn
(c) instead of[| SwitchPumpOn |] (c).

The semantics of required pre-, trigger- and post- conditions is then defined as fol
Let P be a requirement on an operationop; the temporal formula associated with it i
noted[|P|], and is defined as follows:

if P ∈ ReqPre(op), then[| P |] =def (∀*) [| op |] ⇒ ● P

if P ∈ ReqTrig(op), then[| P |] =def (∀*) ● P ∧ ● DomPre(op) ⇒ [| op |]

if P ∈ ReqPost(op), then[| P |] =def (∀*) [| op |] ⇒ P

By unfolding the definition of predicate[|op|], the semantics of required pre-, trigger- an
post- conditions can be rephrased as follows:

if P ∈ ReqPre(op), then[| P |] = (∀*) ● DomPre(op) ∧ DomPost(op) ⇒ ● P

if P ∈ ReqTrig(op), then[| P |] = (∀*) ● P ∧ ● DomPre(op) ⇒ DomPost(op)

if P ∈ ReqPost(op), then[| P |] = (∀*) ● DomPre(op) ∧ DomPost(op) ⇒ P

For example, consider the following required trigger condition on the operation in
duced above:

Operation SwitchPumpOn
....
ReqTrigFor Maintain[PumpSwitchOnWhenHighWaterDetected]

c.HighWaterSignal = ‘On’

The semantics of the required trigger condition is expressed by the following temp
assertion:

● c.HighWaterFlag = ‘On’ ∧ ● c.PumpSwitch = ‘Off’ ⇒ SwitchPumpOn(c)

7.1.2. Semantics of Operationalization

Operationalization links relate realizable goals assigned to some agent to require
on operations the agent has to perform (see Section 3.2.7.5).

A set of required pre, trigger, and post conditions operationalizes a goal if the satisfa
of the required conditions on the corresponding operations guarantees the satisfac
the goal.

Formally, a set{P1, ..., Pn} of requirements on operations operationalizes a goalG iff the
following conditions holds:

• [| P1 |], ..., [| Pn |] |= G (Completeness)
• [| P1 |], ..., [| Pn |] |≠ false (Consistency)
• G |= [| P1 |], ..., [| Pn |] (Minimality)

The completeness condition for operationalization is similar to the corresponding c
tion for goal refinement [Dar95, Dar96]. A first important difference however is that
semantics of goal operationalization does not rely on domain properties to guarant
146

Formal Patterns for Goal Operationalization

l may
the

n
red by

tency

fol-

ing

nt in
satisfaction of the goal. This is due to the fact that the agent responsible for the goa
not rely on domain properties to realize the goal. A second important difference is in
definition of the minimality condition. The minimality condition for operationalizatio
requires that the requirements operationalizing the goal are not stronger than requi
the goal.

The formal specification of goals and operations allows the completeness, consis
and minimality of operationalization to be formally verified.

For example, consider the goalMaintain[PumpSwitchOnWhenHighWaterDetected]
defined as follows:

∀ c: PumpController
c.HighWaterSignal = ‘On’ ⇒ ❍ c.PumpSwitch = ‘On’

A complete, minimal, and consistent operationalization of the goal is given by the
lowing requirements on the operationSwitchPumpOn andSwitchPumpOff:

Operation SwitchPumpOn
Input PumpController {arg c}/ HighWaterSignal
Output PumpController / PumpSwitch
DomPre c.PumpSwitch = ‘Off’
DomPost c.PumpSwitch = ‘On’
ReqTrigFor Maintain[PumpSwitchOnWhenHighWaterDetected]

c.HighWaterSignal = ‘On’

Operation SwitchPumpOff
Input PumpController {arg c}/ HighWaterSignal
Output PumpController / PumpSwitch
DomPre c.PumpSwitch = ‘On’
DomPost c.PumpSwitch = ‘Off’
ReqPreFor Maintain[PumpSwitchOnWhenHighWaterDetected]

¬ c.HighWaterSignal = ‘On’

The required trigger condition on the operationSwitchPumpOn requires that the pump
must beswitched on when theHighWaterSignal is On; the required precondition on the
operationSwitchPumpOff requires that the pumpmay beswitched off only if theHigh-
WaterSignal is notOn.

The completeness of this operationalization is established by proving the follow
assertion:

SwitchPumpOn(c) ⇔ ● c.PumpSwitch = ‘Off’ ∧ c.PumpSwitch = ‘On’ ,
SwitchPumpOff(c) ⇔ ● c.PumpSwitch = ‘On’ ∧ c.PumpSwitch = ‘Off’ ,
● c.HighWaterSignal = ‘On’ ∧ ● c.PumpSwitch = ‘Off’ ⇒ SwitchPumpOn(c) ,
SwitchPumpOff(c) ⇒ ● ¬ c.HighWaterSignal = ‘On’

|=
c.HighWaterSignal = ‘On’ ⇒ ❍ c.PumpSwitch = ‘On’

Note that the required precondition on theSwitchPumpOff operation is necessary for the
operationalization to be complete.

The minimality condition is obtained by inverting the antecedent and the conseque
the above formula, and can also be established formally.
147

Formal Patterns for Goal Operationalization

t goal
spect

igger-,

itored

pera-

-

tions

ons

For
7.2. Operationalization Patterns

Operationalization patterns capture operationalization links between an abstrac
specification and abstract operation specifications. They are proved correct with re
to the above semantics of operations. They can be used to derive required pre-, tr
and post-conditions on operations from the formal definition of a terminal goal.

For each operationalization pattern, we also give the variables that need to be mon
and controlled by an agent for the goal to be realizable by that agent.

As a first example, the operationalization pattern in Figure 7.1 provides a way to o
tionalizeAchieve goals of the formP ⇒ ❍ Q, whereQ is a state formula andP a past
formula.

In the agent interface model of that pattern,Voc(P) andVoc(Q) denote the set of state var
iables appearing in the assertionsP andQ, respectively.

The operation model in that pattern states that in order to operationalize a goalP ⇒ ❍
Q, one has to define two operations: a first operation with domain pre/post condi
given by the pair[¬ Q, Q] and arequired trigger conditionstating that the operation
mustbe applied whenP holds; and a second operation with domain pre/post conditi
given by the pair[Q, ¬ Q] and arequired preconditionstating that the operationmaybe
applied only whenP does not hold.

This pattern is generic. It can be instantiated to completely different situations.
example, the goalMaintain[PumpSwitchOnWhenHighWaterDetected] can be operation-
alized by instantiating the operationalization pattern in Figure 7.1 as follows:

P : c.HighWaterSignal Q : c.PumpSwitch = ‘On’

P ⇒ ❍ Q

Ag

Ag
Voc(P) Voc(Q) DomPre ¬ Q

DomPost Q
ReqTrig P
PerfBy Ag

DomPre Q
DomPost ¬ Q
ReqPre ¬P
PerfBy Ag

FIGURE 7.1. Operationalization pattern forP ⇒ ❍ Q

Agent Responsibility Model

Agent Interface Model Operation Model
148

Formal Patterns for Goal Operationalization

l:

s and
ove, if
el

ness,
Pat-
the

re are
s, con-

.
oals.
ance

o be

ence
tedi-
s are
nt to
sed

atic
ues,
i;
odel.
of the
The specifications for the operationsSwitchPumpOn andSwitchPumpOff in Section 7.1
are thereby automatically derived, together with the following agent interface mode

Our operationalization patterns generate a minimal and complete set of operation
requirements on these operations to ensure the goal considered. In the example ab
the operationSwitchPumpOff had been left out of the specification, the operation mod
would not have been complete with respect to the goal.

Use of operationalization patterns shortcuts tedious proofs of consistency, complete
and minimality. All patterns presented in this chapter were proved formally correct.
terns involving propositional qualitative temporal logic were proved correct using
SteP verification tool [Man96]; whereas the others were proved “by-hand”.

A few operationalization patterns are proposed in [Dar93]. The patterns defined the
not based on a formal semantics of operations, and do not ensure the completenes
sistency and minimality of the operationalization links as defined in this thesis.

7.3. Benefits of Operationalization Patterns

Operationalization patterns are useful for the following reasons.

• They allow low-level formal reasoning to be hidden from requirements engineers
• They provide constructive guidance for deriving operational requirements from g
• They enable one to detect incomplete operational requirements and provide guid

on how to make the specification complete with respect to stated goals [Yue87].
• Operationalization patterns applied backwards allow formal goal specifications t

inferred bottom-up from operational requirements.

Each point is discussed in turn.

7.3.1. Hiding low-level proofs

Formal languages allow properties of interest to be proved formally by use of infer
rules of the language. Proving properties using such inference rules is generally a
ous, complex and error-prone activity that requires high levels of expertise. Pattern
intended to relieve specifiers of such low-level formal reasoning. Patterns amou
high-level inference rulesthat are proved correct once and for all. They can be reu
many times in many different contexts to solve commonly occurring problems.

An alternative technique to formal operationalization patterns would be a fully autom
technique for deriving operational requirements from goals. Fully automatic techniq
such as model checking, can be used toverify formal requirements models a posterior
however they do not provide automatic guidance to constructively elaborate the m
Furthermore, such techniques generally require restricting the expressive power
language.

PumpCtrler
c.HighWaterSignal c.PumpSwitch
149

Formal Patterns for Goal Operationalization

iden-
tions

er the

i-

rn
tion
ttern
7.3.2. Deriving operational requirements from goals

As mentioned before, operationalization patterns can be used constructively to (i)
tify the operations relevant to the goals, and (ii) derive requirements on these opera
ensuring that the goals are satisfied.

A first example of this has been shown in Section 7.2. As another example, consid
patient monitoring problem and the goalAchieve[AlarmForCrticalPulseRateInfo]
assigned as the responsibility of thePatientMonitoring software agent. This goal is spec
fied as follows:

pi.PulseRate ∉ pi.SafePulse ⇒ ◊≤delay (∃ a: Alarm): a.Raised ∧ a.Loc = ● pi.BedNbr

This goal is anAchieve goal involving real-time delays. An operationalization patte
matching this goal definition is shown in Figure 7.2. (Note that this operationaliza
pattern is an example of a first-order pattern involving real-time delays). The pa
yields the following interface declaration for thePatientMonitoring agent.:

The operational requirement resulting from the application of this pattern is:

Operation RaiseAlarm
Input PatientInfo {arg pi}/ PulseRate, SafePulse, BedNbr
Output Alarm {res a}/ Raised, Loc
DomPre ¬ (∃ a: Alarm): a.Raised ∧ a.Loc = ● pi.BedNbr
DomPost a.Raised ∧ a.Loc = ● pi.BedNbr
ReqTrig For AlarmForCrticalPulseRateInfo
¬ (∃ a: Alarm): a.Raised ∧ a.Loc = ● pi.BedNbr

S delay -1 pi.PulseRate ∉ pi.SafePulse

PerfBy PatientMonitoring

R(x) ⇒ ◊≤d (∃y) S(y) ∧ H(y.G, ●x.F)

Ag

Ag
X.R, X.F Y.S, Y.G

Operation <operation-name>
Input X{arg x}/ R, F
Output Y{res y}/ S, G
DomPre ¬ (∃y) S(y) ∧ H(y.G, ●x.F)
DomPost S(y) ∧ H(y.G, ●x.F)
ReqTrig ¬ (∃y) S(y) ∧ H(y.G, ●x.F) S d-1 R(x)
PerfBy Ag

FIGURE 7.2. Operationalization pattern forR(x) ⇒ ◊≤d (∃y) S(y)∧ H(y.G,●x.F)

Agent Responsibility Model

Agent Interface Model Operation Model

PatientInfo.PulseRate
PatientInfo.SafePulse
PatientInfo.BedNbr

PatientMonitoring
Alarm.Raised
Alarm.Loc
150

Formal Patterns for Goal Operationalization

pecifi-
ation
rtant

tion

7.1.
also

some
s of
such
at the
con-
8a,

lem

de
age.
gle

or
7.3.3. Checking operational requirements for completeness

Operationalization patterns can be used to check whether some given operation s
cations are complete operationalizations of given goals. This use of operationaliz
patterns corresponds to the similar use of refinement patterns in [Dar96]; it is impo
as intuitive operationalizations of goals produced by hand tend to be incomplete.

For example, consider the goalMaintain[PumpSwitchOnWhenHighWaterDetected]
again. An intuitive operationalization of that goal might be given by the opera
SwitchPumpOn together with the required trigger condition:

ReqTrig For PumpSwitchOnWhenHighWaterDetected
c.HighWaterSignal

The goal definition and the operation match the operationalization pattern in Figure
One can therefore derive that, in order to be complete, the operationalization should
include the operationSwitchPumpOff with the following required precondition:

ReqPre For PumpSwitchOnWhenHighWaterDetected
¬ c.HighWater

7.3.4. Inferring goals from operations

Operationalization patterns can also be used backwards to elicit goals underlying
operation specifications. This use of patterns is important as initial description
requirements tend to be given in very operational terms. Eliciting goals underlying
operational specifications allows for various goal-level analysis such as checking th
operations are complete with respect to the goals [Yue87], identifying and resolving
flicts at the goal level [Lam98b], identifying and resolving obstacles to goals [Lam9
Lam2Ka], and exploring alternative system proposals.

Consider for instance the specification of a simple autopilot [But96]. The initial prob
statement defines the following informal requirements.

“If the pilot dials in an altitude that is more than 1,200 feet above the current altitu
and then presses the alt_eng button, the altitude mode will not directly eng
Instead, the altitude engage mode will change to “armed” and the flight-path an
select mode is engaged.”

The informal requirements refer to the operationsEngageALTmode, ArmALTmode,
and EngageFPAmode together with required conditions on their applications. F
instance, the operationEngageFPAmode can be specified as follows:

Operation EngageFPAmode
Input AutoPilot {arg a}

ALTengageEvent {arg alt_eng}
Output Autopilot / FPAmode
DomPre a.FPAmode = 'off'
DomPost a.FPAmode = ‘on’
ReqTrig For <unknown goal>

alt_eng. occurs ∧ ALTtarget - ALTactual > 1200
“if the pilot presses the alt_eng button when the target altitude is

more than 1,200 feet above the current altitude, the FPA mode is
engaged”
151

Formal Patterns for Goal Operationalization

main
tifies

goal
tate-

he
ns pre-
erac-
f goals

rgan-
ified.

xam-
tions
truc-
and

thout

oal to
nding
d and
s

is

. Each
a typ-
goal

ary.
One can then apply the operationalization pattern in Figure 7 below matching the do
pre- and post conditions and the required trigger condition to infer the goal that jus
this trigger condition:

Goal Achieve[FPAModeEngagedWhenHighTargetAltitutde]
FormalDef ∀ a: AutoPilot, alt_eng: ALTengageEvent
@ alt_eng. occurs ∧ ALTtarget - ALTactual > 1200 ∧ a.FPAMode = ‘off’
⇒ ❍ a.FPAmode = ‘on’

Higher-level goals can then be identified by asking WHY questions. The resulting
graph will provide the rationale for the operations described in the initial problem s
ment. Goal-level analysis can then be performed on the derived goal structure.

A formal technique for inferring goals from scenarios is described in [Lam98b]. T
starting point of the goal inference procedure discussed there and the use of patter
sented in this section are different. [Lam98b] starts from concrete scenarios of int
tion between agents, represented as instance-level trace diagrams. The inference o
with operationalization patterns starts from operational specifications.

7.4. Building a Library of Patterns

We now describe how relevant operationalization patterns can be identified and o
ized for retrievability. Currently, only a few representative patterns have been ident
Further extension of the library is subject to further work.

7.4.1. Identifying Patterns

One way to identify operationalization patterns is to abstract them from concrete e
ples of goal operationalizations. Unfortunately, there is no large set of specifica
available from which patterns could be inferred. This is due to the fact that the cons
tive elaboration of operational requirements from goals is not widely adopted yet;
previous derivations of operational requirements from goals were done by hand wi
a fully precise semantics for operationalization links.

We decided to explore the space of operationalizations based on the pattern of the g
be operationalized. For each pattern of goal specification, we derived the correspo
operationalization pattern. In order to get a rich set of goal patterns, we extende
specialized the high-levelAchieve/Maintain patterns of the KAOS language with pattern
adapted from [Dwy99].

Currently, our library is composed of propositional patterns only. Further work
required to extend it with first-order patterns.

Figure 7.3 shows the taxonomy of goal patterns that have been considered so far
name in the hierarchy may have several variants of goal patterns. The figure shows
ical propositional goal pattern for each node. Further extensions of this taxonomy of
patterns will trigger the identification of further operationalization patterns in our libr
152

Formal Patterns for Goal Operationalization

y of
most
. This

r

ern

k is
pat-
7.4.2. Coverage of the Library

Since operationalization patterns are identified from the pattern of the goal,the coverage
of the library of operationalization patterns is relative to the coverage of the taxonom
goal patterns. The effectiveness of our approach is based on the assumption that
properties that occur in practice can be specified using a small set of goal patterns
assumption is partly supported by an empirical study reported in [Dwy99].

7.5. A Library of Operationalization Patterns

7.5.1. Achieve Goals

We first describe operationalization patterns forAchieve goals. Propositional patterns fo
specifications of Achieve goals include:

Unbounded Achieve: C ⇒ ◊ T

Bounded Achieve: C ⇒ ◊≤d T

Immediate Achieve: C ⇒ ❍ T, ● C ⇒ T, C ∧ ¬ T ⇒ ❍ T

SinceUnbounded Achieve goals are not realizable, there is no operationalization patt
for such goals. Operationalization patterns forBounded Achieve goals andImmediate
Achieve goals are given in Figures 7.4 to 7.7. As mentioned before, further wor
required to define operationalization patterns for first-order variants of these goal
terns. (An example of a first-order pattern forBounded Achieve goals was given in Fig-
ure 7.2.)

Goal Patterns

Achieve Maintain/Avoid

Unbounded
Achieve

Bounded
Achieve

Immediate
Achieve

State
Invariant

Global
Invariant

‘After’
Invariant

‘Between’
Invariant

FIGURE 7.3. A taxonomy of goal patterns

Transition
Invariant

C ⇒ ◊ T C ⇒ ◊≤d T C ⇒ ❍ T

P ⇒ Q C ⇒ ❑ Q C ⇒ QW R

T ⇒ ● C
153

Formal Patterns for Goal Operationalization
C ⇒ ◊≤d T

Ag

Ag
Voc(C) Voc(T) DomPre ¬ T

DomPost T
ReqTrig ¬ T S≤d-1 C
PerfBy Ag

FIGURE 7.4. Operationalization pattern forC ⇒ ◊≤d T

Agent Responsibility Model

Agent Interface Model Operation Model
154

Formal Patterns for Goal Operationalization
C ⇒ ❍ T

Ag

DomPre ¬ T
DomPost T
ReqTrig C
PerfBy Ag

DomPre T
DomPost ¬ T
ReqPre ¬ C
PerfBy Ag

FIGURE 7.5. Operationalization pattern forP ⇒ ❍ Q

Agent Responsibility Model

Operation Model

Ag
Voc(C) Voc(T)

Agent Interface Model

● C ⇒ T

Ag

DomPre ¬ T
DomPost T
ReqTrig C
PerfBy Ag

DomPre T
DomPost ¬ T
ReqPre ¬ C
PerfBy Ag

FIGURE 7.6. Operationalization pattern for● C ⇒ T

Agent Responsibility Model

Operation Model

Ag
Voc(C) Voc(T)

Agent Interface Model

C ∧ ¬ T ⇒ ❍ T

Ag

DomPre ¬ T
DomPost T
ReqTrig @ C
PerfBy Ag

FIGURE 7.7. Operationalization pattern forC ∧ ¬ T ⇒ ❍ T

Agent Responsibility Model

Operation Model

Ag
Voc(C) Voc(T)

Agent Interface Model
155

Formal Patterns for Goal Operationalization

,
e

i-

to
in

alized

nt

-
re
ation

s

ts of
7.5.2. Maintain Goals

For Maintain goals, we distinguish betweenstate invariants that constrain system states
and transition invariants that constrain system transitions. In the spirit of [Dwy99], w
also consider different temporal scopes of the invariant: aglobal invariant is required to
hold over all system states, an ‘after’ invariant is required to hold only after some cond
tion C, and a ‘between’invariant is required to hold between states in whichC holds and
states in whichR holds.

Forstate invariants, we consider the following goal patterns:

Global Invariant: P ⇒ Q

After Invariant: C ⇒ ❑ Q, C ⇒ ❑≤d Q

Between Invariant: C ⇒ Q W R, ● C ⇒Q W(Q ∧R)

For aglobal invariantof the formP ⇒ Q to be realizable by an agent, the agent has
control all variables appearing inP andQ; the operationalization of such goal is shown
Figure 7.8. Note that state invariants are operationalized byrequired post-conditions.

Similarly, for an‘after’ invariant of the formC ⇒ ❑ Q or C ⇒ ❑≤d Q to be realizable by
an agent, the agent has to control all variables appearing inC andQ; operationalization
patterns for such goals are given in Figures 7.9 and 7.10. These goals are operation
by (i) a required post-condition on an operation that makesC true, and (ii) a required pre-
condition on the operation that makesQ false.

For a‘between’ invariantof the formC ⇒ Q W R to be realizable by an agent, that age
also has to control all variables appearing inP, Q andR; the operationalization of such a
goal is given in Figure 7.11.

A ‘between’ invariant of the form● C ⇒ Q W(Q ∧R) is realizable by an agent control
ling Q and monitoringC andR. The operationalization of such goal is given in Figu
7.12. The operationalization consists of (i) a required trigger condition on the oper
that makesQ true, and (ii) a required precondition on the operation that makesQ false.

For transition invariants, we consider the following patterns:

required transition: C ⇒ ❍ T, ● C ⇒ T, C ∧ ¬ T ⇒ ❍ T

allowed transition: @ T ⇒ ● C, T ⇒ ● C

These patterns are realizable by an agent that controls the variables appearing inT and
monitors the variables appearing inC. The required transition patterns are the same a
the immediate Achieve patterns. Operationalization patterns for theallowed transition
goal patterns are given in Figure 7.13 and 7.14. The definition of first-order varian
these patterns is subject to further work.
156

Formal Patterns for Goal Operationalization
P ⇒ Q

Ag

Ag
Voc(P)

Voc(Q) DomPre ¬ P
DomPost P
ReqPost Q
PerfBy Ag

DomPre Q
DomPost ¬ Q
ReqPost ¬P
PerfBy Ag

FIGURE 7.8. Operationalization pattern forP ⇒ Q

Agent Responsibility Model

Agent Interface Model Operation Model

Init→
(¬ P ∨ Q)
157

Formal Patterns for Goal Operationalization
C ⇒ ❑ Q

Ag

Ag
Voc(P)

Voc(Q) DomPre ¬ C
DomPost C
ReqPost Q
PerfBy Ag

DomPre Q
DomPost ¬ Q
ReqPre ■ ¬ C
PerfBy Ag

FIGURE 7.9. Operationalization pattern forC ⇒ ❑ Q

Agent Responsibility Model

Agent Interface Model Operation Model

Init→
(¬ P ∨ Q)

C ⇒ ❑≤d Q

Ag

Ag
Voc(C)

Voc(Q) DomPre ¬ C
DomPost C
ReqPost Q
PerfBy Ag

DomPre Q
DomPost ¬ Q
ReqPre ■≤d-1 ¬ C
PerfBy Ag

FIGURE 7.10. Operationalization pattern forC ⇒ ❑≤d Q

Agent Responsibility Model

Agent Interface Model Operation Model

Init→
(¬ P ∨ Q)
158

Formal Patterns for Goal Operationalization
C ⇒ Q W R

Ag

Ag
Voc(C, Q, R) DomPre ¬ C

DomPost C
ReqPost Q ∨ R
PerfBy Ag

DomPre Q
DomPost ¬ Q
ReqPost R ∨ (¬C B R)
PerfBy Ag

FIGURE 7.11. Operationalization pattern forC ⇒ Q W R

Agent Responsibility Model

Agent Interface Model Operation Model

Init→
(¬ C∨ Q ∨ R)

DomPre R
DomPost ¬ R
ReqPost ¬ C∨ Q
PerfBy Ag

●C ⇒ Q W (Q ∧ R)

Ag

DomPre ¬ Q
DomPost Q
ReqTrig C
PerfBy Ag

DomPre Q
DomPost ¬ Q
ReqPre ¬C B (¬C ∧ R)
PerfBy Ag

FIGURE 7.12. Operationalization pattern for● P ⇒ Q W (Q ∧ R)

Agent Responsibility Model

Operation Model

Ag
Voc(C, R) Voc(Q)

Agent Interface Model
159

Formal Patterns for Goal Operationalization
@ T⇒ ● C

Ag

DomPre ¬ T
DomPost T
ReqPre C
PerfBy Ag

FIGURE 7.13. Operationalization pattern for@ T⇒ ● C

Agent Responsibility Model

Operation Model

Ag
Voc(C) Voc(T)

Agent Interface Model

T⇒ ● C

Ag

DomPre ¬ T
DomPost T
ReqPre C
PerfBy Ag

DomPre T
DomPost ¬ T
ReqTrig ¬ C
PerfBy Ag

FIGURE 7.14. Operationalization pattern forT⇒ ● C

Agent Responsibility Model

Operation Model

Ag
Voc(C) Voc(T)

Agent Interface Model

Init→ ¬ T
160

 Obstacle Analysis

s dur-

ifica-
ns are
or of

gen-

-
pump
c. In

of
pre-
al, a

ely

as

to use
er sys-

sing
sys-

nts.

isten-
icipa-
nd/or
quire-
the

oals,
iented
uire-
Chapter 8
Obstacle Analysis

This chapter describes the anticipation and handling of exceptional agent behaviour
ing the requirements elaboration process. It is largely based on [Lam2Ka].

8. 1. Introduction

One major problem requirements engineers are faced with is that first-sketch spec
tions of goals, requirements and assumptions tend to be too ideal; such assertio
likely to be occasionally violated in the running system due to unexpected behavi
agents like humans, devices, or software components [Lam95, Pot95, Fea98]. This
eral problem is not really handled by current requirements elaboration methods.

Consider the mine pump system, for example; a first-sketch goal such asMain-
tain[PumpOnWhenHighWater] is overideal and likely to be violated from time to time -
because, e.g., the water sensor may fail to correctly detect a high water level; the
may refuse to start; the pump controller may fail to produce correct input in time; et
an ambulance dispatching system, a first-sketch goal such asAchieve[MobilizedAmbulan-
cePromptlyAtIncident] is overideal and likely to be violated because of, e.g., allocation
a vehicle not close enough to the incident location; or too long allocation time; or im
cise or confused location; etc. In an electronic reviewing system for a scientific journ
first-sketch goal such asAchieve[ReviewReturnedInFourWeeks] or an assumption such
asReviewerReliable are straightforward examples of overideal statements that are lik
to be violated on occasion; the same might be true for a security goal such asMain-
tain[ReviewerAnonymity]. In a resource management system, a goal such
Achieve[RequestedResourceUsed] or an assumption such asRequestPendingUntilUse
are also overideal as requesting agents may change their mind and no longer wish
the requested resource even if the latter becomes available. In a meeting schedul
tem, a goal such asAchieve[ParticipantsTimeConstraintsProvided] is likely to be vio-
lated, e.g., for participants that do not check their email regularly thereby mis
invitations to meetings and requests for providing their time constraints. In a control
tem, a goal such asMaintain[AlarmIssuedWhenAbnormalCondition] might be violated
sometimes due to unavailable data, device failure or deactivation by malicious age

Overidealization of goals, requirements and assumptions results in run-time incons
cies between the specification of the system and its actual behavior. The lack of ant
tion of exceptional circumstances may thus lead to unrealistic, unachievable a
incomplete requirements. As a consequence, the software developed from those re
ments will inevitably result in failures, sometimes with critical consequences for
environment.

The purpose of this chapter is to introduce systematic techniques for deidealizing g
assumptions and requirements, and to integrate such techniques in the goal-or
requirements elaboration method in order to derive more complete and realistic req
ments, from which more robust and flexible systems can be built.
161

Obstacle Analysis

pture
that is,
cle” is
r-
ch as

s for
and a
so as

l and
h as,

ng the
ment

the
and so

goals
lete-
ments
ues for
es for
s gen-

ment
y of
iffer-
or an

or is a
l to be

s suf-
eces-
Our approach is based on the concept ofobstaclefirst introduced in [Pot95]. Obstacles
are a dual notion to goals; while goals capture desired conditions, obstacles ca
undesirable (but nevertheless possible) ones. An obstacle obstructs some goal,
when the obstacle becomes true the goal may not be achieved. The term “obsta
thus introduced here to denote agoal-orientedabstraction, at the requirements enginee
ing level, of various notions that have been studied extensively in specific areas - su
hazardsthat may obstruct safety goals [Lev95] orthreats that may obstruct security
goals [Amo94] -, or in later phases of the software lifecycle - such asfaultsthat may pre-
vent a program from achieving its specification [Cri95, Gar99].

The chapter presents a formalization of this notion of obstacle; a set of technique
systematic generation of obstacles from goal specifications and domain properties;
set of alternative specification elaboration tactics that transform goal specifications
to resolve the obstacles generated.

Back to the example of the ideal goal namedAchieve[ReviewReturnedInFourWeeks],
our aim is to derive obstacle specifications from a precise specification of this goa
from properties of the domain; one would thereby expect to obtain obstacles suc
e.g., WrongBeliefAboutDeadline or ReviewRequestLost; UnprocessablePostscriptFile;
and so on. From there one would like to resolve those obstacles, e.g., by weakeni
original goal formulation and propagating the weakened version in the goal refine
graph; by introducing new goals and operationalizations to overcome or mitigate
obstacles; by changing agent assignments so that the obstacle is less likely occur;
on.

The rest of the chapter is organized as follows. Section 8.2 introduces obstacles to
and provides a formal characterization of this concept, including the notion of comp
ness of a set of obstacles. Section 8.3 discusses a modified goal-oriented require
elaboration process that integrates obstacle analysis. Section 8.4 presents techniq
generating obstacles from goal formulations. Section 8.5 then presents techniqu
transforming goals, requirements and/or assumptions so as to resolve the obstacle
erated.

8. 2. Goal Obstruction by Obstacles

This section formally defines obstacles, their relationship to goals, and their refine
links; a criterion is provided for a set of obstacles to be complete; a general taxonom
obstacles is then suggested. In the sequel, the general term “goal” will be used ind
ently for a high-level goal, a requirement assigned to an agent in the software-to-be,
assumption assigned to an agent in the environment.

8. 2. 1. Obstacles to goals

Semantically speaking, a goal defines a set of desired behaviors, where a behavi
temporal sequence of states.Goal refinement yields sufficient subgoals for the goa
achieved.

Likewise, an obstacle defines a set of undesirable behaviors. Goal obstruction yield
ficient obstacles for the goal to be violated; the negation of such obstacles yields n
sary preconditions for the goal to be achieved.
162

 Obstacle Analysis

eory
ondi-
eory.
th the

oal

em-

of a
a bor-

oal;
t the

cle to
Let G be a goal andDom a set of domain properties. An assertionO is said to be an
obstacle to G in Dom iff the following conditions hold:

1. {O, Dom} |= ¬ G (obstruction)

2. {O, Dom} |≠ false (domain-consistency)

Condition(1) states that the negation of the goal is a logical consequence of the th
comprising the obstacle specification and the set of domain properties available; c
tion (2) states that the obstacle may not be logically inconsistent with the domain th
Clearly, it makes no sense to reason about obstacles that are inconsistent wi
domain.

As a first simple example, consider a library system and the following high-level g
stating that every book request should eventually be satisfied:

Goal Achieve [BookRequestSatisfied]
FormalDef ∀ bor: Borrower, b: Book

Requesting (bor, b)
⇒ ◊ (∃ bc: BookCopy) [Copy (bc, b) ∧ Gets (bor, bc)]

An obstructing obstacle to that goal might be specified by the following assertion:

∃ bor: Borrower, b: Book
◊ { Requesting (bor, b)

 ∧ ❑ ¬ (∃ bc: BookCpy) [Copy (bc, b) ∧ Gets (bor, bc)] }

Condition(1) trivially holds as the assertion amounts to the negation of the goal (rem
ber thatP ⇒ Q iff ❑ (P → Q), and¬ ❑ (P → Q), iff ◊ (P ∧ ¬ Q),). This obstructing asser-
tion covers the classical starvation scenario [Dij71] in which, each time a copy
requested book becomes available, this copy gets borrowed in the next state by
rower different from the requesting agent.

To further illustrate the need for condition(2), consider the following goal for some
device control system (expressed in propositional terms for simplicity):

Running ∧ PressureTooLow ⇒ AlarmRaised

Considering the domain property:

PressureTooLow ∧ Startup ⇒ ¬ AlarmRaised,

it is easy to see that condition(1) would be satisfied by the candidate obstacle

∧ ◊ [Running ∧ PressureTooLow ∧ Startup]

which taken with the above domain property logically entails the negation of the g
however this candidate is inconsistent with another domain property stating tha
device cannot be both in startup and running modes:

Running ⇒ ¬ Startup

Note that the above definition of an obstructing obstacle allows for the same obsta
obstruct several different goals; examples of this will be seen later on.

It is also worth noticing that, sinceAchieve/Cease andMaintain/Avoid goals all have the
general form❑ GC, an obstacle to such goals will always have the general form◊ OC; in
the sequel,GC andOC will be called goal and obstacle condition, respectively.
163

Obstacle Analysis

e as
ss is

then

bout
d in

oals:

al is an

own

f

ion:

s {O1,
y is
8. 2. 2. Completeness of a set of obstacles

Given some goal formulation, defensive requirements specification would requir
many meaningful obstacles as possible to be identified for that goal; completene
desirable -at least for high-priority goals such as, e.g.,Safety goals.

A set of obstacles O1, ..., On to goal G in Dom isdomain-completewith respect to G iff
the following condition holds:

{¬ O1, ..., ¬ On, Dom} |= G (domain-completeness)

This condition intuitively means that if none of the obstacles in the set may occur
the goal is satisfied.

It is most important to note that completeness is a notion relative to what is known a
the domain. To make this clear, let us consider the following example introduce
[Jac95] after a real plane incident. The goal

MovingOnRunway ⇒ ReverseThrustEnabled

can be AND-refined, using the milestone refinement pattern [Dar96], into two subg

MovingOnRunway ⇒ WheelsTurning (Ass)

WheelsTurning ⇒ ReverseThrustEnabled (Rq)

The second subgoal is a requirement assigned to a software agent; the first subgo
assumption assigned to an environment agent. AssumptionAss will be violated iff

◊ (MovingOnRunway ∧ ¬ WheelsTurning) (N-Ass)

Assume now that the following necessary conditions for wheels to be turning are kn
in the domain:

WheelsTurning ⇒ WheelsOut (D1)
WheelsTurning ⇒ ¬ WheelsBlocked (D2)
WheelsTurning ⇒ ¬ Aquaplaning (D3)

The following obstacles can then be seen to obstructAssin that domain since each o
them then entailsN-Ass:

◊ (MovingOnRunway ∧ ¬ WheelsOut) (O1)
◊ (MovingOnRunway ∧ WheelsBlocked) (O2)
◊ (MovingOnRunway ∧ Aquaplaning) (O3)

In order to check the domain completeness of these obstacles we take their negat

MovingOnRunway ⇒ WheelsOut (N-O1)
MovingOnRunway ⇒ ¬ WheelsBlocked (N-O2)
MovingOnRunway ⇒¬ Aquaplaning (N-O3)

Back to the definition of domain-completeness, one can see that the set of obstacle
O2, O3} will be complete or not depending on whether or not the following propert
known in the domain:

MovingOnRunway
∧ WheelsOut ∧ ¬ WheelsBlocked ∧ ¬ Aquaplaning (D4)
⇒ WheelsTurning
164

 Obstacle Analysis

in the

e,

, O4}
lete-

t
ombi-

atisfy-
sta-
by an

ing

-com-

ment

tacle;

erns.
Obstacle completeness thus really depends on what valid properties are known
domain.

Note that if D4 is not a valid property in the domain, the negation of this property, i.

◊ (MovingOnRunway
∧ WheelsOut ∧ ¬ WheelsBlocked ∧ ¬ Aquaplaning (O4)
∧ ¬ WheelsTurning)

is a further obstacle to the above assumption Ass. Furthermore, the set {O1, O2, O3
is now complete wrt. Ass. In this case, no domain property is used to show the comp
ness of the obstacles.

8. 2. 3. Obstacle refinement

Like goals, obstacles may be refined.AND-refinement links may relate an obstacle to a se
of subobstacles (called refinement); this means that satisfying the subobstacles in c
nation is a sufficient condition in the domain for satisfying the obstacle.OR-refinement

links may relate an obstacle to an alternative set of refinements; this means that s
ing one of the refinements is a sufficient condition in the domain for satisfying the ob
cle. The obstacle refinement structure for a given goal may thus be represented
AND/OR directed acyclic graph.

A set of obstacles O1, ..., On is anAND-refinementof an obstacle O iff the following con-
ditions hold:

1. {O1 ∧ O2 ∧... ∧ On, Dom} |= O (entailment)
2. {O1 ∧ O2 ∧... ∧ On, Dom} |≠ false (consistency)

In general one is interested in minimal AND-refinements, in which case the follow
condition has to be added:

2. for all i: {∧j≠ iOj, Dom} |≠ O (minimality)

A set of obstacles O1, ..., On is anOR-refinementof an obstacle O iff the following condi-
tions hold:

1. for all i: {Oi , Dom} |= O (entailment)
2. for all i: {Oi , Dom} |≠ false (consistency)

In general one is interested in complete OR-refinements in which case the domain
pleteness condition has to be added:

3. {¬ O1 ∧ .. ∧ ¬ On, Dom} |= ¬ O (completeness)

In the plane landing example above, the set {O1, O2, O3} is a complete OR-refine
of the higher-level obstacleN-Ass in a domain comprising propertyD4.

One may sometimes wish to consider all disjoint alternative subobstacles of an obs
the following additional condition has to be added in such cases:

4. for all i ≠ j: { Oi, Oj, Dom} |= false (disjointness)

Section 8.4.3 will present a rich set of complete and disjoint obstacle refinement patt
165

Obstacle Analysis

tfor-

goal

y will
catego-

ishes

king

ate of
at is,

e

es in
ult in
uristic

the

main
for the
mon to
han-
mul-

r the
ement
d the

.4.4).
ield

goal
ure is
re dif-
Chaining the definitions in Sections 8.2.1 and 8.2.3 leads to the following straigh
ward proposition:

If O’ is a subobstacle within an OR-refinement of an obstacle O that obstructs some
G, then O’ obstructs G as well.

8. 2. 4. Classifying obstacles

As mentioned in Section 3.2.4, goals are classified by the type of requirements the
drive about the agents concerned. For each goal category, corresponding obstacle
ries may be defined. For example,

• Non-satisfaction obstacles are obstacles that obstruct the satisfaction of agent w
(that is,Satisfaction goals);

• Non-information obstacles are obstacles that obstruct the generic goal of ma
agents informed about object states (that is,Information goals);

• Inaccuracy obstacles are obstacles that obstruct the consistency between the st
objects in the environment and the state of their representation in the software (th
Accuracy goals);

• Hazard obstacles are obstacles that obstructSafety goals;
• Threat obstacles are obstacles that obstructSecurity goals.

Such obstacle categories may be further specialized into subcategories --e.g.,Indiscretion
andCorruption obstacles are subcategories ofThreat obstacles that obstruct goals in th
Confidentiality and Integrity subcategories ofSecurity goals, respectively [Amo94];
WrongBelief obstacles form a subcategory ofInaccuracy obstacles; and so on.

Knowing the (sub)category of a goal may prompt a search for obstructing obstacl
the corresponding category. More specific goal subcategories will of course res
more focussed search for corresponding obstacles. This provides the basis for he
identification of obstacles, as discussed in Section 8.4.4.

8. 2. 5. Goal obstruction vs. goals divergence

In the context of handling conflicts between multiple goals, [Lam98b] introduced
notion of divergent goals. Goals G1, G2, ..., Gn are said to bedivergentiff there exists a
boundary condition that makes them logically inconsistent with each other in the do
considered. We have shown that an obstacle corresponds to a boundary condition
degenerate case where n=1. As a consequence, there are generic principles com
obstacle identification/resolution and divergence identification/resolution. However,
dling exceptions to the achievement of a single goal and handling conflicts between
tiple stakeholders’ goals correspond to different problems and foci of concern fo
requirements engineer. For example, the above notions of completeness and refin
are specifically introduced for obstacle analysis. The classification of obstacles an
heuristic rules for their identification is specific to obstacle analysis (see Section 8
As will be seen below, the common generic principles for identification/resolution y
specific instantiations and specializations for obstacle analysis. For example, the
regression procedure can be simplified (see Section 8.4.1); the completion proced
specific to obstacle analysis (see Section 8.4.2); obstruction refinement patterns a
ferent from divergence patterns (see Section 8.4.3).
166

 Obstacle Analysis

ideal;
gent

ional
sump-

.3 is
nce is

gen-
n 8.4

s.)

h new
ay be

the
erent

n of
y also

en-

e. A
ifi-
vio-

than
8. 3. Integrating Obstacles in the RE Process

First-sketch specifications of goals, requirements and assumptions tend to be too
they are likely to be occasionally violated in the running system due to unexpected a
behavior [Lam95, Pot95]. The objective of obstacle analysis is to anticipate except
behaviors in order to derive more complete and realistic goals, requirements and as
tions.

A defensive extension of the goal-oriented process model described in Section 3
depicted in Figure 8.15. (the arrows indicate data dependencies.) The main differe
theobstacle analysis loop introduced in the upper right part.

During elaboration of the goal graph by elicitation and by refinement, obstacles are
erated from goal specifications. Such obstacles may be recursively refined. (Sectio
will discuss techniques for supporting the obstacle identification/refinement proces

The generated obstacles are resolved which results in a goal structure updated wit
goals and/or transformed versions of existing ones. The resolution of an obstacle m
subdivided into two steps [Eas94]: the generation of alternative resolutions, and
selection of one among the alternatives considered. (Section 8.5 will discuss diff
tactics for resolution generation.)

The new goal specifications obtained by resolution may in turn trigger a new iteratio
goal elaboration and obstacle analysis. Goals obtained from obstacle resolution ma
refer to new objects/operations and require specific operationalizations.

A number of questions arise from this process model.

• Obstacle identification:From which goals in the goal graph should obstacles be g
erated? For some given goal, how extensive should obstacle generation be?

– The more specific the goal is, the more specific its obstructing obstacles will b
high-level goal will produce high-level obstacles which will need to be refined sign
cantly into sub-obstacles in order to identify precise circumstances that lead to the
lation of the goal. It is much easier and preferable to elicit/refine what is wanted
what isnot wanted. We therefore recommend that obstacles be identified fromtermi-
nal goals assignable to individual agents.

Goal Model
Elaboration

Alternative
Agent Models
Elaboration

Object Model
Elaboration

Alternatives
Evaluation and

Selection

FIGURE 8.15. Obstacle analysis in goal-oriented requirements elaboration

data dependency

obstacle identification

obstacle resolution
167

Obstacle Analysis

iority
ustive
ion
d out

n of
when

nd to
tacle
t sub-
bsta-
me of
ons --
sys-

tems
een

will
h an
verity
eing

to be
pe of

tacle
evere
g elic-
ppear

b-

tacles
eeds

mine

ting

in the-
– The extensiveness of obstacle identification will depend on the category and pr
of the goal being obstructed. For example, obstacle identification should be exha
for Safety or Security goals; higher-priority goals deserve more extensive identificat
than lower-priority ones. Domain-specific cost-benefit analysis needs to be carrie
to decide when the obstacle identification process should terminate.

• Obstacle resolution:For some given obstacle, how extensive should the generatio
alternative resolutions be? For some set of alternative resolutions, how and
should a specific resolution be selected?

As will be seen in Section 8.5, the generation of alternative resolutions correspo
the application of different tactics for resolving obstacles. The tactics include obs
elimination, with subtactics such as obstacle prevention, goal substitution, agen
stitution, goal deidealization, or object transformation; obstacle reduction; and o
cle tolerance, with subtactics such as obstacle mitigation or goal restoration. (So
these tactics have been studied in other contexts of handling problematic situati
e.g., deadlocks in parallel systems [Cof71]; exceptions and faults in fault-tolerant
tems [And81, Cri91, Jal94, Gar99]; feature interaction in telecommunication sys
[Kec98]; inconsistencies in software development [Nus96]; or conflicts betw
requirements [Rob97, Lam98b]).

– The range of tactics to consider and the selection of a specific tactics to apply
depend on the likelihood of occurrence of the obstacle, on the impact of suc
occurrence (in number of goals being obstructed by the obstacle), and on the se
of the consequences of such an occurrence (in terms of priority of the goals b
obstructed). Risk analysis and domain-specific cost-benefit analysis need
deployed in order to provide a definite answer. Such analysis is outside the sco
this thesis.

– The selection of a specific resolution should not be done too early in the goal/obs
analysis process. An obstacle identified at some point may turn out to be more s
later on (e.g., because it then appears to also obstruct new important goals bein
ited). Premature decisions may stifle the consideration of alternatives that may a
to be more appropriate later on in the process [Eas94].

• Goal-obstacle analysis iteration:When should the intertwined processes of goal ela
oration and obstacle analysis stop?

The goal-obstacle analysis loop in Figure 8.15 may terminate as soon as the obs
that remain are considered acceptable without any resolution. Risk analysis n
again to be carried out together with cost-benefit analysis in order to deter
acceptability thresholds.

8. 4. Generating Obstacles

According to the definition in Section 8.2.1, the identification of obstacles obstruc
some given goal in the considered domain proceeds by iteration of two steps:

(1) Given the goal specification, find some assertion that may obstruct it;

(2) Check that the candidate obstacle thereby obtained is consistent with the doma
ory available.
168

 Obstacle Analysis

scard
one

obsta-
ssively

infor-

ction
g
di-
en as a

ons.
ased
8b].
sim-

should

f this

s; see

in a
log-
Note that checking that the obstacle is consistent with the domain allows one to di
obstacles that are known to be physically impossible in the domain. It does not allow
to identify further obstacles.

We therefore concentrate on step (1) and present techniques for deriving candidate
cles whose domain consistency/feasibility can be checked subsequently. We succe
discuss:

• a formal calculus of preconditions for obstruction,
• the use of formal obstruction patterns to shortcut formal derivations,
• the use of identification heuristics based on obstacle classifications as a cheap,

mal alternative to formal techniques.

8. 4. 1. Regressing goal negations

The first technique is based on the obstruction condition defining an obstacle in Se
8.2.1. Given the goal assertionG, it consists of calculating preconditions for obtainin
the negation¬ G from the domain theory. Every precondition obtained defines a can
date obstacle. This may be achieved using a regression procedure which can be se
counterpart of Dijkstra’s precondition calculus [Gri81] for declarative representati
Variants of this procedure have been used in AI planning [Wal77], in explanation-b
learning [Lam91], and in requirements engineering to identify divergent goals [Lam9
We first explain the general procedure before showing how it can be specialized and
plified for obstacle generation.

Consider a meeting scheduler system and the goal stating that intended people
participate in meetings they are aware of and which fit their constraints:

Goal Achieve [InformedParticipantsAttendance]
FormalDef ∀ m: Meeting, p: Participant

Intended (p, m) ∧ Informed (p, m) ∧ Convenient (p, m)
⇒ ◊ Participates(p, m)

The initialization step of the regression procedure consists of taking the negation o
goal, which yields

(NG) ◊ ∃ m: Meeting, p: Participant
Intended (p, m) ∧ Informed (p, m) ∧ Convenient (p, m)
∧ ❑ ¬ Participates(p, m)

(Such initialization may already produce precise, feasible obstacles in some case
other examples below.)

Suppose now that the domain theory contains the following property:

∀ m: Meeting, p: Participant
Participates(p, m) ⇒ Holds (m) ∧ Convenient (p, m)

This domain property states that a necessary condition for a person to participate
meeting is that the meeting is being held and its date/location is convenient to her. A
ically equivalent formulation is obtained by contraposition:

(D) ∀ m: Meeting, p: Participant
¬ [Holds (m) ∧ Convenient (p, m)] ⇒ ¬ Participates(p, m)
169

Obstacle Analysis

-

place
t con-

OR-
tacles

s;

tem-

o the
g on
asses
em
The consequent in(D) unifies with a litteral in(NG); regressing(NG) through(D) then
amounts to replacing in(NG) the matching consequent in(D) by the corresponding ante
cedent. We have thereby formally derived the following potential obstacle:

(O1) ◊ ∃m: Meeting, p: Participant
Intended (p, m) ∧ Informed (p, m) ∧ Convenient (p, m)
∧ ❑ [¬ Holds (m) ∨ ¬ Convenient (p, m)]

This obstacle covers two situations, namely, one where some meeting never takes
and the other where a participant invited to a meeting whose date/location was firs
venient to her is no longer convenient when the meeting takes place. Using the
refinement techniques described in Section 8.4.3 we will thereby obtain two subobs
that could be namedMeetingPostponedIndefinitely andLastMinuteImpediment, respec-
tively.

Assuming the domain theory takes the form of a set of rulesA ⇒ C, a temporal logic var-
iant of the regression procedure found in [Lam91] can be described as follows.

Initial step:
take O := ¬ G
Inductive step:
let A ⇒ C be the domain rule selected,

with C matching some subformula L in O whose
 occurrences in O are all positive;

then µ := mgu (L, C);
O := O [L / A.µ]

This procedure relies on the following definitions and notations:

– for a formula schemeϕ(u) with one or more occurrences of the sentence symbolu, an
occurrence ofu is said to be positive inϕ if it does not occur in a subformula of the
form p ↔ q and it is embedded in an even (explicit or implicit) number of negation

– mgu (F1, F2) denotes the most general unifier ofF1 andF2;
– F.µ denotes the result of applying the substitutions from unifierµ toF;
– F [F1 / F2] denotes the result of replacing every occurrence ofF1 in formulaF byF2.

The soundness of the regression procedure follows from a monotonicity property of
poral logic [Man92, p.203]:

If all occurrences ofu in ϕ(u) are positive, then
(p ⇒ q) → (ϕ(p) ⇒ ϕ(q))

is valid.

Every iteration in the regression procedure produces potentially finer obstacles t
goal under consideration; it is up to the specifier to decide when to stop, dependin
whether the obstacles obtained are meaningful and precise enough (i) to be able to
their probability of occurrence, and (ii) to see appropriate ways of resolving th
through tactics discussed in Section 8.5.
170

 Obstacle Analysis

nient

ieved
hav-
ain
te the

truct-

it
In the example above only one iteration was performed. Regressing obstacle(O1) above
further through a domain property like

Convenient (p, m) ⇒ m.Date in p.Constraints
∧ m.Location in p.Constraints

would have produced finer sub-obstacles to the goal

Achieve [InformedParticipantsAttendance],

namely, the date being no longer convenient or the location being no longer conve
when the meeting takes place.

Exploring the space of potential obstacles derivable from the domain theory is ach
by backtrackingon each domain rule applied to select another applicable one. After
ing selected rule(D) in the example above, one could select the following other dom
rule stating that another necessary condition for participation is that the meeting da
participant has in mind corresponds to the actual date of the meeting:

(D’) ∀ m: Meeting, p: Participant
Participates(p, m) ⇒ ∃ M: Beliefp(m.Date = M) ∧ m.Date = M

TheBeliefag construct in this formalization is sometimes used to captureAccuracy goals
andInaccuracy obstacles; it is linked to theKnowsag construct by the following property:

Knowsag(P) ≡ Beliefag(P) ∧ P

where ag denotes an agent instance,P a fact, and the KAOS built-in predicate
Knowsag(P) means that the truth value ofP in ag’s local memory coincides with the
actual truth value ofP.

Regressing the goal negation(NG) above through property(D’) now yields the following
new obstacle:

(O2) ◊ ∃m: Meeting, p: Participant
Intended (p, m) ∧ Informed (p, m) ∧ Convenient (p, m)
∧ ❑ ∀M: ¬ [Beliefp(m.Date = M) ∧ m.Date = M]

This obstacle, in theInaccuracy category, could be named

ParticipantBelievesWrongDate.

Further backtracking on other applicable rules would generate other obstacles obs
ing the goalAchieve[InformedParticipantsAttendance] such as, e.g.,ParticipantNotInfor-
medInTime, InvitationNotKnown, etc.

The examples above exhibit asimplified procedure for generating obstacles toAchieve
goals of the formC ⇒ ◊ T:

1. Negate the goal, which yields a pattern ◊ (C ∧ ❑ ¬ T);
2. Find necessary conditions for the target condition T in the domain theory;
3. Replace the negated target condition in the pattern resulting from step 1 by the
negated necessary conditions found; each such replacement yields a potential
obstacle. If needed, apply steps 2, 3 recursively.

A dual version of this simplified procedure can be used for goals having theMaintain pat-
ternsC ⇒ T, C ⇒ ❑ T, or C ⇒ T W N. For the plane landing example in Section 8.2.2,
generates the obstacles O1, O2, and O3 to the assumptionAss in a straightforward way.
171

Obstacle Analysis

ning.
y
d

temati-

ding
n left

mplet-

-
sid-

tency
s the
In practice, the domain theory does not necessarily need to be very rich at the begin
Given a target conditionT in a goal such asC ⇒ ◊ T, the requirements engineer ma
incrementally elicit necessary conditionsfor T by interaction with domain experts an
clients.

To give a more extensive idea of the space of obstacles that can be generated sys
cally using this technique, Figure 8.16 shows a goalAND-refinement tree, derived by
instantiation of a frequent refinement pattern from [Dar96], together with correspon
obstacles that were generated by regression (universal quantifiers have bee
implicit).

8. 4. 2. Completing a set of obstacles

The domain-completeness condition in Section 8.2.2 suggests a procedure for co
ing a set of obstacles O1, ..., Ok already identified for some goal G.

As noted in Section 8.2.1, G has the general form❑ GC whereas Oi has the general form
◊ OCi. The completion procedure can be described as follows.

1. Form the complementary assertion
O* = ◊ (¬ GC ∧ ¬ OC1 ∧ ... ∧ ¬ OCk);

2. Check the consistency of O* with Dom;
3. If O* is domain-consistent and too unspecific, regress it through Dom or generate
subobstacles using refinement patterns, to yield finer obstacles SO* ;
4. If needed, apply steps 1-3 recursively to the SO*’s.

It is easy to check that the set {O*, O1, ..., Ok} obtained by Step 1 satisfies the domain
completeness condition in Section 8.2.2 in which the domain is temporarily not con
ered. Considering the domain in the next steps allows O* to be checked for consis
and refined if necessary. A frequent simplification arises from Step 3 when O* ha
form P ∧ P1 and a domain property is found having the formP ⇒ P1. A one-step regres-
sion then yieldsO = P.

Intended (p, m) ⇒ ◊ Participates(p, m)

Intended(p,m)

⇒ ◊ Participates(p,m)

∧ Informed(p,m)
∧ Convenient(p,m)

Intended(p,m)
⇒ ◊ [Informed(p,m)

∧ Convenient(p,m)]

Intended(p,m)
⇒ ❑ Intended(p,m)

LastMinuteImpediment
ParticipantBelievesWrongDate
ParticipantNotInformedInTime
InvitationNotKnown

◊ ∃m, p:
Intended(p,m)

∧ ❑ ¬ Informed(p,m)

◊ ∃m, p:
Intended(p,m)

∧ ❑ ¬ Convenient(p,m)

◊ ∃m, p:
Intended(p,m)

∧ ◊ ¬ Intended(p,m)

MeetingPostponedIndefinitely

FIGURE 8.16. Goal refinement and obstacles derived by regression
172

 Obstacle Analysis

dure

e set

.
the
them

tive

he

pre-
le

one
re is

erna-
tions

nce
pat-
leaves
Back to the plane landing example in Section 8.2.2, Step 1 of the completion proce
applied to the assumption

MovingOnRunway ⇒ WheelsTurning (Ass)

and the obstructing obstacles

◊ (MovingOnRunway ∧ ¬ WheelsOut)(O1)
◊ (MovingOnRunway ∧ ∧ WheelsBlocked)(O2)
◊ (MovingOnRunway ∧ ∧ Aquaplaning)(O3)

yields

O∗ = ◊ (MovingOnRunway ∧ ¬ WheelsTurning
∧ WheelsOut ∧ ¬ WheelsBlocked ∧ ¬ Aquaplaning)

This candidate obstacle is inconsistent with the domain if property(D4) is found inDom
(see Section 8.2.2). If not, further regression/refinement throughDom should be under-
taken to find out more specific causes/subobstacles of O* in order to complete th
(O1)-(O3). Such refinement may be driven by patterns as we discuss now.

8. 4. 3. Using obstruction refinement patterns

As introduced in Section 8.2.3, obstacles may beAND/OR-refined into subobstacles
AND-refinements yield more “primitive” obstacles, that is, obstacles for which (i)
probability of their occurrences can be assessed, and (ii) effective ways of resolving
can be envisioned more easily. On the other hand, domain-completeOR-refinements are
in general desirable for critical goals; they yield a domain-complete set of alterna
subobstacles that can be made disjoint if necessary.

Section 8.4.1 already contained examples of obstacle refinements. The obstacleLast-
MinuteImpediment was in factOR-refined into two alternative subobstacles using t
domain theory, namely, the date being no longer convenientor the location being no
longer convenient. Figure 8.16 also shows an example ofOR-refinement of the obstacle
obstructing the goal in the middle of the goal tree; this obstacle, not explicitly re
sented there, has been formallyOR-refined into the two subobstacles in the midd
(which could be namedMeetingNeverNotified and MeetingNeverConvenient, respec-
tively). The latter subobstacles may be refined in turn. Similarly, the obstacleParticipant-
BelievesWrongDate that was derived in Section 8.4.1 could beOR-refined into
alternative subobstacles likeWrongDateCommunicated, ParticipantConfusesDates, etc.

The AND/OR refinement of obstacles may be seen as a formal,goal-orientedform of
fault-tree analysis [Lev95] or threat-tree analysis [Amo94]. Such analysis is usually d
in an informal way through interaction with domain experts and clients; our aim he
to derive complete fault/threat-trees formally.

The regression procedure in Section 8.4.1 is a first technique to achieve this; alt
tively, one may use obstacle refinement patterns to shortcut the formal deriva
involved in the regression procedure.

The general principle is similar to goal refinement patterns [Dar96] and diverge
detection patterns [Lam98b]. A library of generic refinement patterns is built; each
tern is a refinement tree where the root is a generic assertion to be refined and the
are generic refining assertions. The correctness of each pattern is proved formallyonce
and for all.
173

Obstacle Analysis

s are
lecting
eaves
g the
infer-

erifi-

s

ing

anion
The patterns for goal obstruction are specific in that the roots of refinement tree
negated goals. The generation of (sub)obstacles to some goal then proceeds by se
patterns whose root matches the negation of that goal, and by instantiating the l
accordingly. The requirements engineer is thus relieved of the technical task of doin
formal derivations required in Section 8.4.1. The patterns can be seen as high-level
ence rules for deriving finer obstacles.

All obstruction patterns in this paper were proved formally correct using the STeP v
cation tool [Man96]. As we will see, the notion of correctness is different forAND- and
OR-refinement patterns. We discuss them successively.

8. 4. 3. 1.AND-refinement patterns

Figures 8.17 to 8.19 show a sample of frequentAND-refinement patterns for obstacle
that obstructAchieve andMaintain goals, respectively.

The root assertion in eachAND-tree corresponds to the negation of the goal be
obstructed. (Remember that there is an implicit outer❑-operator in every strong implica-
tion; this causes the outer◊-operator to appear there.) Theleft child assertion may corre-
spond to a domain property, to another requirement/assumption, or to a comp
subobstacle. In the1-step regression andstarvation patterns, it will typically correspond

◊ (C ∧ ❑ ¬ T)

T ⇒ P ◊ (C ∧ ❑ ¬ P)

(1-step regression)

◊ (C ∧ ❑ [¬ T U ¬ P])

◊ (C ∧ ❑ ¬ T)

◊ (C ∧ ❑ ¬ M)

(milestone)

C ∧ ◊ T ⇒ (¬ T W M)

◊ (C ∧ ❑ ¬ T)

T ⇒ P

(starvation)

FIGURE 8.17.AND-refinement patterns for obstacles to the goal C⇒ ◊

◊ (C ∧ ◊ ¬ T)

B ⇒ ◊ ¬ T ◊ (C ∧ ◊ B)

(backward chain)

B ⇒ ❍ ¬ T

(1-state back)

◊ (C ∧ ◊ ¬ T)

◊ (C ∧ ◊ B)

FIGURE 8.18.AND-refinement patterns for obstacles to the goal C⇒ ❑

(1-step regression)

◊ (C ∧ (¬ N U (¬ N ∧ ¬ T)))

B ⇒ ¬ T ◊ (C ∧ (¬ N U (¬ N ∧ B)))

FIGURE 8.19.AND-refinement patterns for obstacles to the goal
C ⇒ T W N
174

 Obstacle Analysis

of

-
rmed.

rce

cated
dent

ent at

ident

4.

in a
to a domain rule T⇒ P. In themilestone pattern, it defines a necessary milestoneM for
reaching the target predicateT. The left child assertion often guides the identification
the subobstacle captured by theright child assertion.

Obstacle refinement patterns may thus help identifying bothsubobstaclesand domain
properties. Also note that the1-step regression pattern in Figures 8.17 and 8.19 corre
spond to the regression procedure in Section 8.4.1 where only one iteration is perfo

As an example of using thestarvation pattern in Figure 8.17, consider a general resou
management system and the goal

∀ u: User, r: Resource
Requesting (u, r) ⇒ ◊ Allocated (r, u)

The domain property

Allocated (r, u) ⇒ ¬ ∃ u’ ≠ u: Allocated (r, u’)

suggests reusing thestarvation pattern with instantiations

C: Requesting (u, r)

T: Allocated (r, u) , P: ¬ ∃ u’≠ u: Allocated (r, u’)

The following starvation obstacle has been thereby derived:

◊ ∃ u: User, r: Resource
Requesting (u, r) ∧ ❑ [¬ Allocated (r, u) U ¬ ∃ u’≠ u: Allocated (r, u’)]

As an example of using the1-step regression pattern in Figure 8.19, consider the LAS
ambulance dispatching system [LAS93] and the goal stating that an ambulance allo
to an incident should remain allocated to that incident until it has arrived at the inci
scene. This goal may be formalized by

∀ a: Ambulance, inc: Incident
Allocation (a, inc) ⇒ Allocation (a, inc) W Intervention (a, inc)

We know from the domain that an ambulance can be allocated to at most one incid
a time:

Allocation (a, inc) ⇒ ¬ ∃ inc’ ≠ inc: Allocation (a, inc’)

This property suggests using the1-step regression pattern with the following instantia-
tions

C: Allocation (a, inc) , T: Allocation (a, inc)
N: Intervention (a, inc) , B: ∃ inc’ ≠ inc: Allocation (a, inc’)

The following subobstacle is thereby derived:

◊ ∃ a: Ambulance, inc: Incident
Allocation (a, inc)
∧ ¬ Intervention (a, inc) U

¬ Intervention (a, inc) ∧ ∃ inc’ ≠ inc: Allocation (a, inc’)

This obstacle captures a situation in which an ambulance allocated to an inc
becomes allocated to another incident before its intervention at the first one.

A more extensive set of obstacleAND-refinement patterns is given in Tables 8.1-8.
Each table corresponds to a specific kind of goal. Each row in a table represents anAND-

refinement of the negation of the goal associated with the table. The lower a row is
175

Obstacle Analysis

ertions
sub-
fault-
table, the more specific the corresponding assertion and subobstacle are. The ass
in the first column may represent a domain property, a requirement or a companion
obstacle. Table 8.4 may be seen to correspond to the backward construction of a
tree from a state machine [Rat96];p andq are intended to be state predicates there.

assertion subobstacle
1-step regress S ⇒ P ◊ [R ∧ ❑ ¬ P]

S ⇒ P ◊ [R ∧ (¬ SU ❑ ¬ P)]

starvation S ⇒ P ◊ [R ∧ ❑ (¬ SU ¬ P)]

missing source R ∧ ◊ S ⇒ P ◊ [R ∧ ¬ P]

non-

persistence

R ∧ ◊ S ⇒ PW S ◊ [R ∧
¬ S U (¬ P∧ ¬ S)]

non-

persistence

R ∧ ◊ S ⇒
PW (P ∧ S)

◊ [R ∧ (¬ SU ¬ P)]

milestone R ∧ ◊ S ⇒ ¬ SW M ◊ [R ∧ ❑ ¬ M]

blocking B ⇒ ❑ ¬S ◊ [R ∧ (¬ SUl B)]

substitution S’ ⇒ ❑ ¬ S ∧ ■ ¬ S ◊ [R ∧ ◊ S’]

strengthening R ∧ ◊ S ⇒
◊ [P ∧ (PW S)]

◊ [R ∧ ❑ ¬ P]

starvation R ∧ ◊ S ⇒
◊ [P ∧ (PW S)]

◊ [R ∧ (¬ SU ❑ ¬ P])]

R ∧ ◊ S ⇒
◊ [P ∧ (PW S)]

◊ [R ∧
(¬ SU (¬ S ∧ ❑ ¬ P))]

TABLE 8.1. Patterns of obstacles to the goalR ⇒ ◊ S

assertion subobstacle
1-step regress Q ⇒ C ◊ [P ∧ ◊ ¬ C]

backward C ⇒ ◊ ¬ Q ◊ [P ∧ ◊ C]

1-state back C ⇒ o ¬ Q ◊ [P ∧ ◊ C]

TABLE 8.2. Patterns of obstacles to the goalP ⇒ ❑ Q

assertions subobstacle

Q ∧ C ⇒ o ¬ Q ,

P ∧ C ⇒ o P

◊ [P ∧ Q ∧ C]

Q ∧ C ⇒ o ¬ Q ,

¬ P ∧ C ⇒ o P

◊ [¬ P ∧ Q ∧ C]

¬ P ∧ C ⇒ o P ,

¬ Q ∧ C ⇒ o ¬ Q

◊ [¬ P ∧ ¬ Q ∧ C]

TABLE 8.3. Patterns of obstacles to the goal❑ (P → Q)

assertion subobstacle

back state p ⇒ o ¬ q ◊ p

TABLE 8.4. Patterns of obstacles to the goal❑ q
176

 Obstacle Analysis

96] -
were

on of

or a

nd the
sted

at a
All AND-refinement patterns in Tables 8.1-8.4 were proved correct using STeP [Man
-by this we mean that the entailment and consistency conditions in Section 8.2.3
formally verified.

8. 4. 3. 2. CompleteOR-refinement patterns

Figures 8.20 shows a pattern for refining the obstruction of anAchieve goalC ⇒◊ T into a
complete set of disjoint alternative subobstacles (see Section 8.2.3 for the definiti
completeness and disjointness). The goal negation◊ (R ∧ ❑ ¬ S) is AND-refined into
two child nodes; the left child assertion may be a domain property, an assumption
requirement (in this case it defines what a milestone is); the right child node is anOR-

node refined into two alternative subobstacles.

As an example of using this pattern, consider the meeting scheduler system again a
goal stating that participants’ time/location constraints should be provided if reque
[Lam95]:

∀ m: Meeting, p: Participant
ConstraintsRequested (p, m) ⇒ ◊ ConstraintsProvided (p, m)

An obvious milestone condition for a participant to provide her constraints is th
request for constraints is reaching her. This suggests using themilestone pattern in Figure
8.20 with the following instantiations:

C: ConstraintsRequested (p, m) T: ConstraintsProvided (p, m)
M: RequestReached (p, m)

The milestone pattern then generates the formalized domain property

∀ m: Meeting, p: Participant
ConstraintsRequested (p, m) ∧ ◊ ConstraintsProvided (p, m)
⇒ [¬ ConstraintsProvided (p, m) W RequestReached (p, m)]

together with a complete set of alternative subobstacles to the goal above:

◊ ∃ m: Meeting, p: Participant
ConstraintsRequested (p, m) ∧ ❑ ¬ RequestReached (p, m)

or

◊ ∃ m: Meeting, p: Participant
ConstraintsRequested (p, m) ∧
¬ RequestReached (p, m) U

 (RequestReached (p, m) ∧ ❑ ¬ ConstraintsProvided (p, m)

◊ (C ∧ ❑ ¬ T)

◊ (C ∧ ❑ ¬ M)

(milestone)

C ∧ ◊ T ⇒ (¬ T W M)

◊ [C ∧ (¬ MUl(M ∧ ❑ ¬ T))]

FIGURE 8.20. OR-refinement pattern for obstacles to the goal C⇒ ◊ T
177

Obstacle Analysis

terna-
s for
her,

s
sents
l line

mbu-

6] --
teness
the
The refinement may then proceed further to find out finer subobstacles in each al
tive; this will yield causes for a request not reaching an invited participant and cause
a participant not providing her constraints in spite of the request having reached
respectively.

A more extensive set of complete and disjointOR-refinement patterns is given in Table
8.5-8.6. Each table corresponds to a specific kind of goal. Each row in a table repre
a refinement of the negation of the goal associated with the table; the thick vertica
separator represents anAND whereas the double line separators represent anOR. Some
of the patterns in these tables will be used in the obstacle analysis for the London A
lance System in Chapter 9.

All OR-refinement patterns in Tables 8.5-8.6 were proved correct using STeP [Man9
by this we mean that the entailment, consistency, disjointness, and domain-comple
conditions in Section 8.2.3 were formally verified. In the latter case, the formulas in
assertion column were taken as the generic domain property formingDom.

assertion obstacle obstacle obstacle
S ⇔ P ∧ Q ◊ [R ∧ ❑ ¬ P] ◊ [R ∧ ❑ ¬ Q] ◊ [R

∧ ◊ P ∧ ◊ Q

∧ ❑ ¬ (P ∧ Q)]

S ⇒ P ◊ [R ∧ ❑ ¬ P] ◊ [R ∧ ◊ P

∧ ❑ ¬ S]

S ⇒ P ◊ [R ∧
¬ SU ❑ ¬ P]

◊ [R ∧ ◊ P

∧ ❑ ¬ S]

S ⇒ P ◊ [R ∧
❑ (¬ SU ¬ P)]

◊ [R ∧
◊ (PW(P ∧ S))

∧ ❑ ¬ S]

R ∧ ◊ S

⇒ P

◊ [R ∧ ¬ P] ◊ [R ∧ P

∧ ❑ ¬ S]

R ∧ ◊ S

⇒ PW S

◊ [R ∧ ¬ SU

(¬ P ∧ ¬ S)]

◊ [R ∧ PW S

∧ ❑ ¬ S]

R ∧ ◊ S ⇒
PW (P∧S)

◊ [R ∧ ¬ SU

¬ P]

◊ [R ∧ ❑ ¬ S

∧ PW (P∧S)]

R ∧ ◊ S

⇒ ¬ SWM

◊ [R ∧ ❑ ¬ M] ◊ [R ∧ ¬ MU
(M ∧ ❑ ¬ S)]

B ⇒ ❑ ¬ S ◊ [R ∧ ¬ SUB] ◊ [R ∧ ❑ ¬ S

∧ ¬ BW S]

P ⇒ ❑ ¬ S

∧ ■ ¬ S

◊ [R ∧ ◊ P] ◊ [R ∧ ❑ ¬ S

∧ ❑ ¬ P]

TABLE 8.5. Obstacle OR-refinement for the goalR ⇒ ◊ S

assertion obstacle obstacle

Q ⇔ Q1 ∧ Q2 ◊ [R ∧ ¬ Q1] ◊ [R ∧ ¬ Q2]

TABLE 8.6. Obstacle OR-refinement for the goal❑ (P → Q)
178

 Obstacle Analysis

g to
esult
e.

h
e is
rds

ormal
cles.

euris-

ec-

uler

acle

f

il-

5]

e

8. 4. 4. Informal obstacle identification

Informal heuristics may be used to help identify obstacles without necessarily havin
go through formal techniques every time. Although they are easier to deploy, the r
will be much less accurate, and not guaranteed to be formally correct and complet

Such heuristics are rules of thumb taking the form: “if the specification has such or suc
characteristicsthen consider such or such type of obstacle to it”. The general principl
somewhat similar in spirit to the use of HAZOP-like guidewords for eliciting haza
[Lev95] or, more generally, to the use of safety checklists [Jaf91, Som97].

Our heuristics are based on goal/obstacle classifications (see Section 3.4), on f
obstruction patterns we have identified, and on past experience in identifying obsta
General heuristics are independent of any particular class of goals; more specific h
tics are associated with some specific class.

General heuristicsrefer to the KAOS meta-model only (see the concepts defined in S
tion 3.2). Here are a few examples to illustrate the approach.

• If anagent has tomonitor someobject in order to guarantee thegoal it is assigned to
then consider the following types of obstacles:

– InfoUnavailable: the necessary information about theobject state is not available to the
agent;

– InfoNotInTime: the necessary information about theobject state is available too late;
– WrongBelief: the necessary information about theobject state as recorded in theagent’s

memory is different from the actual state of this object. (In the meeting sched
example, this heuristic might have helped identifying obstacles likeParticipantBe-
lievesWrongDate --see Section 8.4.1; for an electronic reviewing process an obst
like ReviewerBelievesWrongDeadline could be identified in a similar way.)

TheWrongBelief obstacle class can be further refined into subclasses such as:

– InfoOutDated: the information provided to theagent is no longer correct at the time o
use;

– InfoForgotten: the information provided to theagent is no longer available at the time
of use;

– WrongInference: the agent has made a wrong inference from the information ava
able;

– InfoConfusion: the agent confuses the necessary information about theobject state
with some other information.

InfoConfusion obstacles can be refined in turn, e.g.,

– InstanceConfusion: the agent confuses the necessary information about theobject
state with information aboutanotherinstance of object within the same class [Pot9
(instance confusion is also related to the notion of ‘identity’ concern in [Jac2K]);

– ValueConfusion: the agent confuses different values for an attribute of the sam
object;

– UnitConfusion: theagent confuses different units in terms of which values of anobject
attribute are expressed.
179

Obstacle Analysis

veral
dates,
ted,
ke an

s
are
been

di-

rom

ana-

sed in

to
keli-
ill not
utions.

obsta-
.5.3).
situa-
rant
tems
In the meeting scheduler example, these heuristics might have helped identify se
obstacles among those derived formally, e.g., participants confusing meetings or
meeting initiators confusing participants which results in wrong people being invi
confusion in constraints, etc. In an ambulance dispatching system, an obstacle li
ambulance going to a wrong place could be identified thereby.

An important specialization ofInfoConfusion obstacles in the aviation domain i
ModeConfusion where pilot agents become confused about what the cockpit softw
agent is doing; obstacles in this category receive increasing attention as they have
recognized to be responsible for a significant number of critical incidents [But98].

• If an agent requires someresource in order to guarantee thegoal it is assigned to
then consider obstacles in the following categories:ResourceUnavailable, Resource-
TooLate, ResourceOutOfOrder, WrongResource, ResourceConfusion, and so on.

• If a persistent condition is necessary to reach thetarget condition from thesource
condition in anAchieve goal, then consider an obstacle in which the persistent con
tion becomes false before reaching the target condition.

The latter heuristic rule corresponds to a natural language rephrasing of themissing per-
sistence pattern in Table 8.1; it suggests how similar heuristics can be formulated f
the other patterns.

Morespecific heuristics refer to goal classifications. Here are a few examples.

• If a MessageDelivered goal in the Information goal category is considered,then con-
sider obstacles likeMessageUndelivered, MessageDeliveredAtWrongPlace, Mes-
sageDeliveredAtWrongTime, MessageCorrupted.

• If agoal being considered is in theStimulusResponse category,then consider the fol-
lowing types of obstacles:

– StimulusIgnored, TooLatePickUp, IncorrectValue, or StimuliConfused obstacles to the
abstract goalStimulusPickedUp;

– NoResponse, ResponseTooLate, ResponseIgnored, or WrongResponse obstacles to
the abstract companion goalResponseProvided.

Obstacles can also be identified by analogy with obstacles in similar systems, using
logical reuse techniques [Mas97].

8. 5. Resolving Obstacles

The generated obstacles need to be resolved in some way or another. As discus
Section 8.3, the resolution process covers two aspects: thegenerationof alternative reso-
lutions and theselectionof one resolution among those identified. Which resolution
apply and when to apply it will depend on risk/cost-benefit analysis based on the li
hood of occurrence of the obstacle and on the severity of its consequences. We w
discuss selection tactics here; we concentrate on the generation of alternative resol

Such resolutions correspond to differentspecification elaboration tacticsthat may be
applied. They can be classified into three broad classes depending on whether the
cle is eliminated (Section 8.5.1), reduced (Section 8.5.2), or tolerated (Section 8
Some of these tactics have been studied in other contexts of handling problematic
tions --e.g., deadlocks in parallel systems [Cof71]; exceptions and faults in fault-tole
systems [And81, Cri91, Jal94, Gar99]; feature interaction in telecommunication sys
180

 Obstacle Analysis

uire-
lution
cit in
c.

rmed

bsta-
tacle
dress

acle
stacle

nion
e)
il

r the
[Kec98]; inconsistencies in software development [Nus96]; or conflicts between req
ments [Rob97, Lam98b]. The objective here is to specialize such tactics to the reso
of obstacles to goals during requirements engineering, and to make them expli
terms of specification transformation rules in the formal framework of temporal logi

The obstacle resolution process will result in a transformed goal structure, transfo
requirements specifications, and transformed domain properties in some cases.

The library of obstacle resolution tactics is shown in Figure 8.21.

8. 5. 1. Obstacle Elimination

Eliminating an obstacle requires one among the conditions defining an obstructing o
cle in Section 8.2.1 to be inhibited; the obstruction should be avoided or the obs
should be made inconsistent/infeasible within the domain. The strategies below ad
one of the conditions or the other.

8. 5. 1. 1. Goal substitution

A most effective way of resolving an obstacle is to identify analternative goal refine-
mentfor some higher-level goal, in which the obstructed goal and obstructing obst
are no longer present. In the meeting scheduler example, one may eliminate the ob
ElectronicAgendaNotMaintained that obstructs the goalElectronicAgendaUpToDate by
choosing an alternative refinement for the father goalParticipantsConstraintsKnown (see
Figure 8.22); the alternative goal refinement consists in introducing the two compa
goalsConstraintsRequested (under responsibility of the meeting scheduling softwar
and ConstraintsProvided (still under joint responsibility of participants and the ema
system).

Choosing an alternative goal refinement will in general result in a different design fo
composite system.

Obstacle Resolution Tactics

Eliminate Obstacle Reduce Obstacle Tolerate Obstacle

chose
alternative goal

chose
alternative agent

prevent
obstacle

anticipate
obstacle

transform
domain

make
obstacle

unfeasible

remove
obstruction

support

mitigate Obstacle restore goal

weakly mitigate
Obstacle

strongly mitigate
Obstacle

FIGURE 8.21. The library of obstacle resolution tactics

deidealize
goal
181

Obstacle Analysis

rent
the

t

l
g

king
e the
(to

e

urn.

-

8. 5. 1. 2. Agent substitution

Another way of overcoming the obstacle is to consideralternative agent assignmentsso
that the obstacle scenario may no longer occur. This will in general result in diffe
system proposals, in which more or less functionality is automated and in which
interaction between the software and its environment may be quite different.

Back to our meeting scheduler example, one might overcome the obstacleParticipant-
NotResponsive to the goalConstraintsProvided by assigning the responsibility for tha
goal to the participant’sSecretary instead (to overcome subobstacles such asEmailNot-
CheckedRegularly or ParticipantTooBusy), or by assigning the responsibility for the goa
ParticipantsConstraintsRequested to the meeting initiator (rather than the meetin
scheduling software) --through email, phone calls, etc.

In the electronic reviewing example, one could introduce a software agent for chec
that no occurrences of the reviewer’s name are found in the review (to overcom
obstacleNonAnonymousReview); a software agent for checking destination tables
overcome the obstacleMessageSentToWrongPerson); and so on.

Agent substitution may entail goal substitution and vice-versa.

8. 5. 1. 3. Obstacle prevention

The tacticprevent obstacle resolves the obstruction byadding a new goalrequiring that
the obstacle be avoided.

Remember that a goal G has the general form❑ GC whereas an obstacle O to G has th
general form◊ OC. To prevent O from being ever satisfied, the followingAvoid goal is
thus introduced:

G*: ❑ ¬ OC

AND/OR refinement and obstacle analysis may then be applied to the new goal in t

Back to our meeting scheduler example, consider the obstacleMeetingForgotten that
obstructs the goalAchieve [InformedParticipantsAttendance] in Figure 8.16. The tactics
prevent obstacle yields the new goalAvoid [MeetingForgotten]. The latter may then be
refined into a requirementAchieve [MeetingReminded] under responsibility of the meet

ParticipantsConstraintsKnown

ConstraintsKnownElectronicAgenda Constraints Constraints

ElectronicAgenda
NotMaintained

obstructs

Requested ProvidedUpToDate FromAgenda

FIGURE 8.22. choose alternative goal
182

 Obstacle Analysis

sys-
and

ssing
the
ill be

is

goal

s:

essar-

tions
so that

overs
cedent:

it
ing scheduling software. Another example of obstacle prevention in a train control
tem is the introduction of an automatic brake facility (with corresponding goals
agents) to prevent trains from exceeding their speed limit.

It may turn out, after checking with domain experts, that the assertion❑ ¬ OC introduced
for obstacle prevention is not a goal/requirement but a domain property that was mi
from the domain theoryDom, making the obstacle unfeasible in the domain (see
domain consistency condition in Section 8.2.1). In such cases the domain theory w
updated instead of the goal structure, and the obstacle will be discarded.

The tacticanticipate obstacle is a subtactic for refining obstacle prevention goals. It
applicable when some persistent conditionP can be found such thatP must persist dur-
ing some time interval for the obstacle condition OC to become true:

OC ⇒ ■≤d P

In such a case, the obstacle prevention goal may be refined by introducing the sub

G* : P ⇒ ◊≤d ¬ P

For obstacles toSecurity goals, for example, one might have the following instantiation

OC: InformationCorruptedByAgent
P: IntrusionUndetected

Obstacle anticipation patterns may be used when an event can be identified that nec
ily precedes the truth of the obstacle condition.

8. 5. 1. 4. Goal Deidealization

It is often the case that obstacles are found to obstruct first-sketch goal formula
because the latter are too ideal. Such goal formulations should then be deidealized
they cover the behaviors captured by the obstacle. The principle is totransform the goal
being obstructed in order to make the obstruction disappear.

Let us suggest the technique via an example first.

Consider the obstacleParticipantNotInformedInTime in Figure 8.16 which obstructs the
goal

Intended (p, m) ∧ Informed (p, m) ∧ Convenient (p, m)
⇒ ◊ Participates(p, m)

The idea is to make the obstructed goal more liberal, that is, to weaken it so that it c
the obstacle. In this case the goal weakening is achieved by strengthening its ante

Intended (p, m) ∧ InformedInTime (p, m) ∧ Convenient (p, m)
⇒ ◊ Participates(p, m)

The predicateInformedInTime (p, m) is derived from the corresponding obstacle;
requires participants to be kept informed during a time period starting at leastN days
before the meeting date:

InformedInTime (p, m) ≡ ■≤ (m.Date - Nd) Informed (p, m)
183

Obstacle Analysis

eaken
here;
s. The
ngth-

goals
aken-

the
a dis-

ion.

goal
.

ctics
pdat-
when

ion
alized
me of

te the
Once this more liberal goal is obtained, the predicates that were transformed to w
the goal are to be propagated in the goal tree to replace their older version everyw
this generally results in strengthened brother goals and weakened higher-level goal
result of the change propagation in the tree shown in Figure 8.16 will produce a stre
ened goal in the middle of the tree, namely,

Intended(p, m) ⇒ ◊ [InformedInTime (p, m) ∧ Convenient(p, m)]

The deidealization procedure is similar to the one used for weakening divergent
[Lam98b]. It is simpler here as only one goal assertion has to be considered for we
ing. The procedure has two steps:

(1) Weakenthe goal specification to obtain a more liberal version that covers
obstacle. Syntactics generalization operators can be used here such as adding
junct, removing a conjunct, or adding a conjunct in the antecedent of an implicat

(2) Propagate the predicate changes in the goal AND-tree in which the weakened
is involved, by replacing every occurrence of the old predicates by the new ones

The cardinality transformations in [Fea93] may be seen as a particular form of synta
generalization in step 1 of this simplified procedure. Step 2 can be done simply by u
ing the instantiations of the goal refinement patterns used to build the goal graph,
such patterns have been used [Dar96].

Goal deidealization patternsmay also be used as formal support for the deidealizat
process. Given the obstructed goal and the obstructing obstacle, they yield deide
versions of the goal. To illustrate the approach, Table 8.7 gives some patterns for so
the obstacles from Table 8.1.

At the end of Section 8.4.3.1 we considered the resource managementAchieve goal

∀ u: User, r: Resource
Requesting (u, r) ⇒ ◊ Allocated (r, u),

and generated the starvation obstacle

◊ ∃ u: User, r: Resource
Requesting (u, r) ∧ ❑ [¬ Allocated (r, u) U ∃u’ ≠ u: Allocated (r, u’)]

The goal and starvation obstacle match the last row of Table 8.7; we thereby genera
deidealized goal specification

∀ u: User, r: Resource
Requesting (u, r) ∧ (¬ ∃u ≠ u: Allocated(r,u’)) W Allocated(r,u)
⇒ ◊ Allocated (r, u)

goal obstacle deidealized goal

R ⇒ ◊ S ◊ [R ∧ ¬ P] R ∧ P ⇒ ◊ S

R ⇒ ◊ S ◊ [R ∧ ❑ ¬ P] R ∧ (PW S) ⇒ ◊ S

R ⇒ ◊ S ◊ [R ∧ (¬ SU ¬ P)] R ∧ (PW S) ⇒ ◊ S

R ⇒ ◊ S ◊ [R ∧ (¬ SU ❑ ¬ P)] R ∧ ❑ ◊ P ⇒ ◊ S

R ⇒ ◊ S ◊ [R ∧ ❑ (¬ SU ¬ P)] R ∧ ◊ (P W (P∧S))

⇒ ◊ S

TABLE 8.7. Deidealization patterns forAchieve goals
184

 Obstacle Analysis

sub-
-
be
get

per-
fied so
stency
ndi-

to the
e one
tion

obsta-
s no
y a

-
con-

ty

t here

rinci-
ither
es to

on for
ng on

imply
tol-
The new goal version states thatif the user requests the resource and the resource is
sequently kept unallocated unless allocated to her/it,then the resource is eventually allo
cated to her/it. The new conditionP W S that strengthens the antecedent has to
propagated into the goalAND-tree. The goals that refer to this new predicate as tar
condition might be operationalized through a reservation procedure.

8. 5. 1. 5. Domain transformation

This strategy consists in transforming the domain within which the software-to-be o
ates so as to make the obstruction disappear. The set of domain properties is modi
as to make the obstacle either inconsistent with the domain (see the domain-consi
condition in Section 8.2.1) or no longer obstructing the goal (see the obstruction co
tion in Section 8.2.1).

As an illustration of the first case, consider the goalAchieve[AllocatedAmbulanceMobi-
lized] in an ambulance dispatching system. One obstacle to this goal corresponds
situation where an ambulance crew decides to mobilize another ambulance than th
allocated by the system. The domain property making this possible is that mobiliza
orders received by crews at ambulance stations mention the incident location. The
cle can then be eliminated by transforming the mobilization order so that it doe
longer mention the incident location; the latter information would then be provided b
mobile data terminal inside the ambulance.

As an illustration of the second case, we can prevent the obstacleInconvenientLocation
from obstructing the goalInformedParticipantsAttendance in the meeting scheduler sys
tem by transforming the domain so that video conferencing is made possible; the
junct m.Location in p.Constraints would then be dropped from the domain proper
stating necessary conditions for meetings to be convenient (see Section 8.4.1).

8. 5. 2. Obstacle Reduction

The difference between tactics for reducing obstacles and the previous one is tha
one tries toreduce the occurrences of the obstacleinstead of eliminating them com-
pletely.

Tactics that act on the motivation of human agents are instances of this class. The p
ple is to reduce the situations in which an agent acts abnormally or irresponsibly e
by dissuasion or by providing rewards. For instance, many library systems issue fin
dissuade borrowers from late returns; insurance systems provide premium reducti
good customers; some transportation companies issue rewards for crews arrivi
time; and so on.

8. 5. 3. Obstacle Tolerance

In cases where the obstacle cannot be thoroughly avoided, or where avoiding it is s
too costly or not worthwhile, one may specify which behaviors will be admissible or
erated in the presence of the obstacle.
185

Obstacle Analysis

e

l

ting

of
itiga-

tions

ould

G
d. A
8. 5. 3. 1. Goal restoration

The tacticrestore goal consists ofadding a new goalstating that if the obstacle condition
OC becomes true then the obstructed goal assertionG should be satisfied again in som
reasonably near future. This new goal thus takes theAchieve form

G*: OC ⇒ ◊ G

This strategy could be followed for the obstaclePaperLost that obstructs the goa
Achieve[ReviewReturned]. A subgoal refining the restoration goal will beAchieve[Lost-
PaperResent].

8. 5. 3. 2. Obstacle mitigation

Another alternative tactic to obstacle elimination is to seek effective ways of mitiga
the consequences of the obstacle. The principle is toadd a new goalto attenuate the
effects of obstacle occurrences. Two forms of mitigation can be distinguished.

The tacticmitigate obstacle weakly consists in ensuring some weakened version G’
the obstructed goal G whenever the obstacle condition OC becomes true. A weak m
tion goal thus has the form

G*: OC ⇒ G’

where G’ is a deidealized version of G obtained using the specification transforma
described in Section 8.5.1.4.

To illustrate this, consider the obstacleLastMinuteImpediment generated in Section
8.4.1. The introduction of the weak mitigation goal

Achieve [ImpedimentNotified]

will ensure a weaker version of the goalInformedParticipantsAttendance in Section
8.4.1, namely,

Intended (p, m) ∧ Informed (p, m) ∧ Convenient (p, m)
⇒ ◊ [Participates(p, m) ∨ Excused (p, m)]

(Note that in this case an obstacle prevention alternative to such weak mitigation w
yield a goal likeAchieve [MeetingReplanned].)

The tacticmitigate obstacle strongly consists in ensuring some parent goal G’ of
whenever the obstacle condition OC becomes true, in spite of G being obstructe
strong mitigation goal thus has the form

G*: OC ⇒ G’

where the obstructed goal G is a subgoal of G’.

Figure 8.23 illustrates this on a mine pump system example [Jos95]. The goal

Avoid[MinerInOverfloodedMine]

strongly mitigates the obstacleExcessiveWaterFlow that obstructs the goalWaterFlow-
Limited by guaranteeing that the parent goalAvoid[MinerDrowning] will be satisfied.
186

 Obstacle Analysis

t the
lt tol-
d the

e per-
ut any

cep-
, but

ne as

cles.
ssed

and
tacle
bsta-

the
f its

Much
The distinction between strong and weak mitigation somewhat corresponds, a
requirements engineering level, to two different, sometimes confused notions of fau
erance [Cri91]: one where the program meets its specification in spite of faults, an
other where the program meets a weaker version of the specification.

8. 5. 3. 3. Do-nothing

For non-critical obstacles whose consequences have no significant impact on th
formance of the system a last strategy is of course to tolerate its occurrences witho
resolution action.

8. 6. Summary

In order to get high-quality software, it is of upmost importance to reason about ex
tional agent behavior during requirements elaboration --not only software agents
also the agents in the environment like devices, operators, users, etc.

The key principle underlying this chapter is that obstacle analysis needs to be do
early as possible in the requirements engineering process, that is, at thegoal level. The
earlier such analysis is started, the more freedom is left for resolving the obsta
Moreover, goals provide a precise entry point for starting analysis in a more focu
way like, e.g., the construction of fault-trees or threat-trees from negated goals.

Various formal and heuristic techniques were presented for obstacle generation
refinement from goal specifications and domain properties; the generation of obs
resolutions is achieved through various tactics to eliminate, reduce, or tolerate the o
cle.

When to apply such or such identification/resolution technique may depend on
domain, on the application in this domain, on the kind of obstacle, on the severity o
consequences, on the likelihood of its occurrence, and on the cost of its resolution.
exciting work remains to be done with those respects.

Avoid[MinerDrowning]

Avoid[MineOverflooded]

Avoid[MinerInOverfloodedMine]
WaterExtracted WaterFlowLimited

ExcessiveWaterFlow
AlarmIssued MinerOutAfterAlarmobstructs

mitigates

FIGURE 8.23. Obstacle mitigation
187

Obstacle Analysis
188

Case Studies

ceding
formed.

lance
AS
op on
tudy

o Bay
osed
de-

ritical,
ents.

lterna-
oals.
iden-
terna-
n of
s that
he two

er-
non-
rgent

t and
em for

em.
Chapter 9
Case Studies

This chapter illustrates and assesses the various techniques described in the pre
chapters on real case studies of significant sizes. Two case studies have been per

The first one concerns the ambulance despatching system of the London Ambu
Service (LAS) for which failure stories have been published [LAS93, Fin96]. The L
system was proposed as a common case-study for the 8th International Worksh
Software Specification and Design (IWSSD-8). The initial document for this case s
is the “Report on the Inquiry into the London Ambulance Service” [LAS93].

The second one concerns an automated train control system for the San Francisc
Area Rapid Transit (BART) system. The BART system is a recent benchmark prop
to the formal specification community. The initial document was provided by an in
pendent source involved in the development [Win99].

These case studies are appealing for a number of reasons; they are real, safety-c
and distributed systems involving real-time, accuracy, and fault tolerance requirem

For both case studies, the agent-driven tactics of Chapter 6 are used to generate a
tive goal refinements, agent responsibilities and agent interfaces from high-level g
Obstacle Analysis is then performed on the resulting goal models. Various obstacle
tification techniques are used to systematically generate obstacles from goals. Al
tive obstacle resolutions are then explored through the systematic applicatio
obstacles resolution tactics. For the LAS case study, the list of potential obstacle
have been generated are compared to the scenarios that actually occurred during t
system failures in October-November 1992.

9. 1. The London Ambulance Service System

9. 1. 1. Introduction

The London Ambulance Service (LAS) has two main functions: responding to em
gency calls requiring the rapid intervention of an ambulance, and dealing with
urgent patient journeys. The case study is only concerned with the handling of u
calls.

The UK Government imposes performance standards (called ORCON) for acciden
emergency calls upon ambulance services. In 1992, when the first automated syst
LAS was put into use, the performance standard for the LAS was:

An ambulance must arrive at the scene within 14 minutes for 95% of the calls.

It was the difficulty of meeting that standard that motivated the need for a new syst
189

Case Studies

uiry
tem.
Our elaboration of the goal model for the LAS is mostly based on a section of the Inq
Report that describes the rationale for a Computer Aided Despatch (CAD) sys
Excerpts from that section are reproduced below:

In order to understand the rationale behind the development of the CAD sys-
tem it is essential to understand the manual system that it would replace and its
shortcomings.

The Manual system operates as follows:

Call Taking

When a 999 or urgent call is received in the Central Ambulance Control (CAC)
room, the Control Assistant (CA) writes down the call details on a pre-printed
form. The incident location is identified from a map book, together with the
map reference co-ordinates. On completion of the call the incident form is
placed into a conveyor belt system with other forms from fellow CA’s. The
conveyor belt then transports the forms to a central collection point within
CAC.

Resource Identification

Another CAC staff member collects the form from the central collection point
and, through reviewing the details on the form, decides which resource alloca-
tor should deal with it (based on the three London Division - North East, North
West, and South). At this point, potential duplicate calls are also identified.
The resource allocator then examines the form for his/her sector and, using sta-
tus and location information provided through the radio operator and noted on
forms maintained in the “activation box” for each vehicle, decides which
resource should be mobilized. This resource is then also recorded on the form
which is passed to a despatcher.

Resource Mobilisation

The despatcher will telephone the relevant ambulance station (if that is where
the resource is) or will pass mobilisation instructions to the radio operator if
the ambulance is already away from the station.

According to the ORCON standards this whole process should take no more
than 3 minutes.

There are some clear deficiencies with a totally automated manual system
including:

a) identification of the precise location can be time consuming due to often
incomplete or inaccurate details from the caller and the consequent need to
explore a number of alternatives through the map books;

b) the physical movement of paper forms around the Control Room is ineffi-
cient;

c) maintaining up to date vehicle status and location from allocators’ intuition
and reports from ambulances as relayed to and through the radio operators is a
slow and laborious process;
190

Case Studies

ident

tacle
tive

les.

egree
aluate
uation
d) communicating with ambulances via voice is time consuming and, at peak
times, can lead to mobilization queues;

e) identifying duplicate calls relies on human judgement and memory. This is
error prone;

f) dealing with call backs is a labour intensive process as it often involves CA’s
leaving their posts to talk to the allocators;

g) identification of special incidents needing a Rapid Response Unit or the hel-
icopter (or a major incident team) relies totally on human judgement.

A computer aided despatch system is intended to overcome most of these defi-
ciencies through such features as:

a) a computer based gazetteer with public telephone box identification;

b) elimination of the need to move paper around the control room;

c) timely and (in the case of location information) automated update of
resource availability information;

d) computer based intelligence to help identify duplicates and major incidents;

e) direct mobilization to the ambulance on the completion of the call thus
potentially, in simple cases, achieving mobilization inside one minute.

9. 1. 2. Elaborating the Goal Model

9. 1. 2. 1. Identifying preliminary goals

1. Identifying high-level performance goal

Form the ORCON standards, we extract the first-sketch idealized goalAchieve[Ambulan-
ceIntervention] that requires that an ambulance must arrive at the scene of an inc
within 14 minutesfor every call.

Goal Achieve[AmbulanceIntervention]
InformalDef For every urgent call reporting an incident, there should be an ambu-
lance at the scene of the incident within 14 minutes.
FormalDef ∀ c: UrgentCall, inc: Incident
@ Reporting(c, inc) ⇒ ◊≤14’ (∃ amb: Ambulance) Intervention(amb, inc)

This goal is idealized. Sometimes, an ambulance will not arrive on time. During obs
analysis, we will identify various obstacles to the satisfaction of this goal; and alterna
strategies for preventing, reducing or mitigating the consequences of these obstac

The fact that 95% of the calls must be responded to within 14 minutes defines the d
to which this goal has to be satisfied. This degree of satisfaction is to be used to ev
alternative responsibility assignments and obstacle resolution strategies. This eval
step is currently not supported by the KAOS method.
191

Case Studies

o be
uman
fining

own

-

ighly
This
edical
t hos-
sys-

alized
ingle
ambu-
2. Asking WHY questions and uncovering assumptions

Asking a WHY question about the goalAchieve[AmbulanceIntervention] drives the iden-
tification of the higher-level goalAchieve[IncidentResolved]:

Goal Achieve[IncidentResolved]
InformalDef Every incident requiring emergency service is eventually resolved.
FormalDef ∀ inc: Incident
inc.Happened ⇒ ◊ inc.Resolved

At this point, we remain voluntarily ambiguous about what is meant for an incident t
resolved. We should however point out that ‘resolved’ here does not mean that no h
life is lost. It is a predicate that we assume to be given by government standards de
the required services to be provided by emergency services such as the LAS.

The identification of this higher-level goal drives the identification of assumptions sh
in Figure 9.24. In this goal-graph, the assumptionsAchieve[IncidentReported] and
Achieve[IncidentResolvedByIntervention] are elicited formally by matching a milestone
driven refinement pattern to the formalization of the parent goalAchieve[IncidentRe-
solved], and to the formalization of the initial goalAchieve[AmbulanceIntervention].
These new goals are defined as follows:

Assumption Achieve[IncidentReported]
InformalDef Every incident requiring emergency service is eventually reported to the
LAS.
FormalDef ∀ inc: Incident
inc.Happened ⇒ ◊ (∃ c: UrgentCall) Reporting(c, inc)

Assumption Achieve[IncidentResolvedByIntervention]
InformalDef An incident is resolved by the intervention of a single ambulance.
FormalDef ∀ amb: Ambulance, inc: Incident
Intervention(amb, inc) ⇒ ◊ inc.Resolved

The assumption that an incident is resolved by a single ambulance is of course h
idealized; some incidents may require the intervention of several ambulances.
assumption is idealized also because the resolution of incidents depends on the m
resources carried in the ambulances, and on the availability of medical resources a
pitals where patients are transported. Possible violations of this assumption will be
tematically identified during obstacle analysis.

In the sequel, we begin by developing a requirement model that is based on this ide
assumption, i.e. we assume that an incident is resolved by the intervention of a s
ambulance, and we are not concerned by the materials that need to be carried in

IncidentResolved

IncidentReported IncidentResolvedByIntervetion

Ambulance
Staff

Public

AmbulanceIntervention

FIGURE 9.24. Asking WHYAmbulanceIntervention and uncovering assumptions
192

Case Studies

n of
ening
.

o be
the

every
tes.

rn
fini-

t
nt
lances. During obstacle analysis, we will identify different obstacles to the satisfactio
that assumption, and show how the idealized model can be transformed by weak
that assumption, modifying previously identified goals, and identifying further goals

Note that with a goal-oriented approach, such simplifying assumptions have t
described explicitly in the model, and can be systematically identified by checking
completeness of goal refinements.

3. Refining the goal Achieve[AmbulanceIntervention]

The Inquiry Report describes a further performance standard that requires that for
reported incident an ambulance must be mobilized for that incident within 3 minu
The following first-sketch goal definition is thereby identified:

Goal Achieve[AmbulanceMobilization]
InformalDef For every reported incident, there should eventually be an ambulance
mobilized for that incident; the mobilization delay should be less than 3 minutes.
FormalDef ∀ c: UrgentCall, inc: Incident
@ Reporting(c, inc) ⇒ ◊≤3’ (∃ amb: Ambulance) Mobilization(amb, inc)

In Figure 9.25, this goal is declared as a subgoal of the above goalAchieve[Ambulan-
ceIntervention]. In this goal refinement, the companion subgoalAchieve[MobilizedAmbu-
lanceIntervention] is elicited formally by matching a milestone-driven refinement patte
to the formal definitions of the previously identified goals. The generated formal de
tion for the goalAchieve[MobilizedAmbulanceIntervention] is given by:

Mobilization(amb, inc) ⇒ ◊≤11’ Intervention(amb, inc).

Note that this goal refinement corresponds to an application of the tacticsplit lack of
monitorability with milestone that resolves lack of monitorability ofAmbulanceStaff
agents for urgent calls.

Figure 9.25 also shows that the goalAchieve[MobilizedAmbulanceIntervention] is
assigned as the responsibility of theAmbulanceStaff agents. However, this goal is no
realizable byAmbulanceStaff agents, because they cannot monitor for which incide
they are mobilized, they can only know for whichlocation they are mobilized. As a first
step to solving this problem, we declare the relationshipsMobilization andIntervention as
derived relationships that are defined as follows:

Mobilization(amb, inc) ⇔ amb.Mobilized ∧ amb.Destination = inc.Location

Intervention(amb, inc) ⇔ amb.Intervention ∧ amb.Location = inc.Location

IncidentResolved

IncidentReported IncidentResolvedByIntervetion

Ambulance
Staff

Public

AmbulanceIntervention

FIGURE 9.25. Refining the goalAchieve[AmbulanceIntervention]

AmbulanceMobilization MobilizedAmbulanceIntervetion

Ambulance
Staff
193

Case Studies

n is
t iff it
tes

es

bu-
si-

if the
bu-

avail-
f the
an 11

ssume
been

here
will
day.

-
al
That is, an ambulance is mobilized for an incident iff it is mobilized and its destinatio
the location of the incident; and an ambulance makes an intervention for an inciden
is in intervention mode and its location is the location of the incident. The attribu
Mobilized, Destination, and Intervention of the Ambulance entity are controlled by
AmbulanceStaff agents. Using these definitions, the goal

Achieve[MobilizedAmbulanceIntervention]

can now be rewritten into:

∀ amb: Ambulance, loc: Location
amb.Mobilized ∧ amb.Destination = loc
⇒ ◊≤11’ amb.Intervention ∧ amb.Location = loc

Note that this goal definition does not refer to theIncident entity any more. This goal def-
inition is now realizable byAmbulanceStaff agents, because they monitor the attribut
Mobilized and Destination of ambulances, and control the attributesIntervention and
Location of ambulances.

However, the goal definition is too strong to be satisfiable in the domain. If the am
lance is too far from the incident for which it is allocated, it may be physically impos
ble for ambulance crews to achieve the goal in time. Also, the goal is not satisfiable
ambulance is not available at the time it becomes mobilized. The availability of an am
lance is defined as follows:

amb.Available ⇔ amb.InService ∧ ¬ amb.Mobilized

Therefore, the goal is weakened so that it must be satisfied only if the ambulance is
able at the time of mobilization, and if the distance between the current location o
ambulance and its destination is small enough so that it can be covered in less th
minutes. By applying the tacticweaken goal with unsatisfiability condition, we obtain the
following goal definition:

Goal Achieve[MobilizedAmbulanceIntervention]
InformalDef An ambulance mobilized for an incident location, and able to arrive at
the incident scene within 11 minutes, should be at the location of the incident within
11 minutes.
FormalDef ∀ amb: Ambulance, loc: Location
amb.Mobilized ∧ amb.Destination = loc
∧ ● amb.Available
∧ ● TimeDist(amb.Location, amb.Destination) ≤ 11’
⇒ ◊≤11’ amb.Intervention ∧ amb.Location = loc

In that formula, the function

TimeDist: Location × Location → TimeUnit

denotes an estimation of the time needed to go from one location to another. We a
this function to be given as part of the domain knowledge. (Maybe that function has
negotiated by representatives of the LAS and the ambulance crews.) This function is
assumed to be time-independent. In the actual system, it is likely that this function
be time-dependent to take into account traffic conditions at different moments of the

As a result of weakening the goalAchieve[MobilizedAmbulanceIntervention], one must
now strengthen the goalAchieve[AmbulanceMobilization] so that the parent goal in Fig
ure 9.25,Achieve[AmbulanceIntervention], is still satisfied. The strengthening of the go
194

Case Studies

anti-

w-

f this
valid

n for

n of
enti-
goal
is formally derived by applying the same milestone-driven refinement pattern inst
ated with a different milestone obtained from the antecedent of the goalAchieve[Mobi-
lizedAmbulanceIntervention].

After further minor simplification of the generated goal definition, we obtain the follo
ing definition:

Goal Achieve[AmbulanceMobilization]
InformalDef For every urgent call reporting an incident, an available ambulance able
to arrive at the incident scene within 11 minutes should be mobilized. The ambulance
mobilization time should be less that 3 minutes.
FormalDef ∀ c: UrgentCall, inc: Incident
@ Reporting(c, inc)
⇒ ◊≤3’ (∃ amb: Ambulance)
amb.Mobilized ∧ amb.Destination = inc.Location
∧ ● amb.Available
∧ ●TimeDist(amb.Location, inc.Location) ≤ 11’

It is this goal that will be further refined in the following sections.

In order to have a complete refinement of the goalAchieve[AmbulanceIntervention], the
following assumption was also identified:

inc.Reported ∧ inc.Location = loc ⇒ ❑ inc.Location = loc

That is, it is assumed that the location of an incident does not change. The validity o
assumption needs to be checked with domain experts. (This assumption may not be
if someone uses a mobile phone to report an incident that happened in a trai
instance.)

4. Deriving the object model

As described in Chapter 3, objects are gradually derived from the formal definitio
goals. Figure 9.26 shows the object model derived from the definition of the goals id
fied so far. This model will be enriched with further objects and attributes during the
refinement process.

Incident
Location
Happened
Resolved

Ambulance
Location
Destination

Available
Intervention
Mobilized

Intervetion

Reporting

Incident
Location
Happened
Resolved

UrgentCall

Mobilization

FIGURE 9.26. Partialobject model derived from the goals in Figure9.25
195

Case Studies

om.

a-

able
ility
9. 1. 2. 2. Refining the goal Achieve[AmbulanceMobilization]

We now consider the refinement of the goalAchieve[AmbulanceMobilization]. This goal
is unrealizable by LAS agents operating in the Central Ambulance Control (CAC) ro
In the sequel, we call such agentsCACAgent. Specializations ofCACAgent are, among
others, theControlAssistant, theResourceAllocator, and theComputer Aided Despatch
software. Ambulance staff are not CAC agents.

The goalAchieve[AmbulanceMobilization] is unrealizable by CAC agents for several re
sons:

• lack of monitorability: CAC agents lack of monitorability for the attributesInci-
dent.Location andAmbulance.Location;

• lack of control: CAC agents lack of control for the attributesAmbulance.Mobilzed
and Ambulance.Destination (these attributes are controlled byAmbulanceStaff
agents);

• unsatisfiability: the goal is unsatisfiable if there is no available ambulance that is
to reach the incident location within 11 minutes. That is, the domain of unsatisfiab
for the goal is given by:
◊ (∃ inc: Incident, c: UrgentCall):
(@Reporting(c, inc) ∧ ❑≤3’ ¬ (∃ amb: Ambulance): (amb.Available

∧ TimeDist(amb.Location, inc.Location) ≤ 11’))

AccurateIncidentForm

FIGURE 9.27.Applying agent-driven tactics to recursively refine the goal
Achieve[AmbulanceMobilization]

AmbulanceMobilization
introduce accuracy goal
to resolve lack of mon
for Incident location

split lack of control with milestone
to resolve lack of ctrl
for amb. mobilization

prevent unstasfiability

introduce tracking object
to resolve lack of mon for ambulances

AmbulanceMobilization
BasedOnIncidentForm

AmbulanceAllocation
BasedOnIncidentForm

AllocatedAmbulanceMobilized

AmbulanceAllocation
BasedOnIncidentForm

WhenNearAmbAvailable

AmbulanceAvailablility

AmbulanceAllocation
BasedOnIncidentForm

and AmbulanceInfo
WhenNearAmbAvailable

Accurate Ambulance
Availability and Location Info
196

Case Studies

ively
9.28
7.

r form
-
ion of

-
ls

e
that
inter-
Figure 9.27 shows a portion of the refinement graph that is obtained by recurs
applying agent-driven tactics so as to resolve these realizability problems. Figure
shows the portion of the object model derived from the goals in Figure 9.25 and 9.2

Each goal refinement step is now described in turn.

1. Resolve lack of monitorability for incident location

We first resolve lack of monitorability for incident location. The tacticintroduce tracking
object is used to generate the subgoals:

Achieve[AccurateIncidentForm]

Achieve[AmbulanceMobilizationBasedOnIncidentForm].

(These goals are formally defined below.)

The object model is enriched with the new objectIncidentForm that is used to record
details about incidents. In the manual system, such an object corresponds to a pape
recording incident details noted by theControl Assistant (CA) agents who handle emer
gency calls. In an automated system, this object corresponds to an electronic vers
the paper form.

The agent model is elaborated by declaring theControl Assistant (CA) agent, and assign-
ing the goalAchieve[AccurateIncidentForm] to that agent. This is a simplification. Actu
ally, the goalAchieve[AccurateIncidentForm] needs to be further refined into subgoa
whose responsibilities will be assigned to thePublic agent, theCA agents, and possibly
software agents such as aMap Gazetteer used to help in locating incidents. In this cas
study, we will not be concerned with further refinement of this goal. Note however
failures to meet this goal - among others, due to the slow performance of the user
face - contributed to the disaster at the LAS.

Incident Ambulance
Intervetion

Reporting

UrgentCall

Mobilization

FIGURE 9.28. Partial object model derived from the goals in Figures 9.25 and 9.27
(attributes of objects are not shown)

IncidentForm AmbulanceInfo
Allocation

Tracking

Encoding
197

Case Studies

iliza-
.)

d

lance
can
their
The two goals generated by the tactic are formally defined as follows:

Goal Achieve[AccurateIncidentForm]
InformalDef For every urgent call reporting an incident, there is an incident form
recording details about the incident. The incident form should record the accurate
location of the incident and the time at which the call was taken. (Further details
about the incident such as the number of injured persons and the kind of emergency
services needed are ignored for the moment. We will need to include them later
when the model will be deidealized.)
The time needed to handle the call and fill the incident form should take no more than
“call_taking_delay” time units.
FormalDef ∀ c: UrgentCall, inc: Incident
Reporting(c, inc) ⇒ ◊≤call_taking_delay (∃ if: IncidentForm): if.Encoded ∧ Encoding(if, c)
∧
∀ inc: Incident, c: UrgentCall, if: IncidentForm
Reporting(c, inc) ∧ Encoding(if, c) ⇒ if.Location = inc.Location ∧ if.CallTime = c.Time

Goal Achieve[AmbulanceMobilizationBasedOnIncidentForm]
InformalDef For every incident form, an ambulance able to arrive at the incident
scene within 11 minutes should be mobilized to the corresponding location. An
ambulance should be mobilized less that 3 minutes after the reception of the call.
(Note that if, due to duplicate calls, different incident forms refer to the same location,
a single ambulance can be mobilized in response to these different incident forms.)
FormalDef ∀ c: UrgentCall, if: IncidentForm
@ if.Encoded
⇒ ◊≤ if.CallTime+3’ (∃ amb: Ambulance)
amb.Mobilized ∧ amb.Destination = if.Location
∧ ● amb.Available ∧ ●TimeDist(amb.Location, if.Location) ≤ 11’

2. Resolve lack of control for ambulance mobilization

The goal Achieve[AmbulanceMobilizationBasedOnIncidentForm] is not realizable by
CAC agents because they lack control of the mobilization of ambulances. (The mob
tion of ambulances is controlled by ambulance staff and not directly by CAC agents

The tacticsplit lack of control with milestone is then used to generate the subgoals:

Achieve[AmbulanceAllocationBasedOnIncidentForm]

Achieve[AllocatedAmbulanceMobilized].

(The formal definitions of these goals are shown below.)

The first goal requires an ambulance to beallocatedto the incident location; the secon
goal requires the allocated ambulance to eventually be effectively mobilized.

Note that CAC agents cannot allocate ambulances by referring directly to the ambu
instances (this is what Michael Jackson calls an ‘identity concern’ [Jac2k]); they
only allocate ambulances by referring to some domain-level identifier such as
license plate number, or some other identifier.
198

Case Studies

intro-

mile-
e are

d. By
efine-

ubgoal
one

at the
e was
en an

lowed
ated

ignifi-
obey
naly-
We therefore introduce for theAmbulance entity, an attribute,AmbID, that is used by
agents in the domain to uniquely refer to a particular ambulance instance. We also
duce the new entityAmbulanceInfo with an attributeAmbId, and aTracking relationship
relatingAmbulance andAmbulanceInfo. This relationship is defined as follows:

Tracking(ai, amb) ⇔ ai.AmbId = amb.AmbID

The Allocation relationship is then defined as a relationship betweenIncidentForm and
AmbulanceInfo (as opposed to the relationshipMobilization and Intervention that link
Incident andAmbulance). This relationship is defined in terms of the new attributesAllo-
cated andAll_Dest of theAmbulanceInfo entity:

Allocation(ai, if) ⇔ ai.Allocated ∧ ai.All_Dest = if.Location

At this point, alternative refinement of the goal

Achieve[AmbulanceMobilizationBasedOnIncidentForm]

can be envisaged. These alternatives are generated by the application of alternative
stone-driven refinement patterns in Table 6.2. The two subgoals mentioned abov
generated by applying the third pattern in that table. The subgoal

Achieve[AllocatedAmbulanceMobilized]

requires the mobilized ambulance to be exactly the one that has been allocate
applying the alternative fourth pattern in that table, one generates the alternative r
ment:

Achieve[AmbulanceAllocationBasedOnIncidentForm]

Achieve[AmbulanceMobilizedForAllocation]

The first subgoal is the same as the one generated by the first pattern. The second s
in this refinement allows ambulance staff to mobilize another ambulance than the
allocated by the system provided that the mobilized and allocated ambulances are
same location -for instance, at the same ambulance station. This second alternativ
actually the one that was in use before the automated system was introduced. Wh
ambulance waiting in an ambulance station was allocated, ambulance staff were al
to take some other ambulance from that station. With the introduction of the autom
system, ambulance staff were required to abandon this practice. This contributed s
cantly to the disaster at the LAS since ambulance staff would not or even could not
this stronger requirement. This problem will be further discussed during obstacle a
sis.
199

Case Studies

ment

ing
In the first alternative, the goals generated by the application of the formal refine
pattern are after some further simplification defined as follows:

Goal Achieve[AmbulanceAllocationBasedOnIncidentForm]
InformalDef For every incident form, an available ambulance able to arrive at the
incident scene within 11 minutes should be allocated to the corresponding location.
The ambulance allocation time should take no more than “allocation_delay” time
units.
FormalDef ∀ c: UrgentCall, if: IncidentForm
@ if.Encoded
⇒ ◊≤allocation_delay (∃ ai: AmbulanceInfo, amb: Ambulance):
ai.Allocated ∧ ai.AllocationDest = if.Location
∧ ai.AmbID = amb.AmbID
∧ ● amb.Available ∧ ● ¬ ai.Allocated
∧ ●TimeDist(amb.Location, if.Location) ≤ 11’

Goal Achieve[AllocatedAmbulanceMobilized]
InformalDef When an ambulance is allocated to an incident location, it should even-
tually be mobilized to that location. This should take no more than
“mob_communication_delay” time units.
FormalDef ∀ ai: AmbulanceInfo, amb: Ambulance, loc: Location
@ ai.Allocated ∧ ai.AllocationDest = loc
∧ ai.AmbID = amb.AmbID ∧ ● amb.Available
⇒ ◊≤mob_communication_delay
amb.Mobilized ∧ amb.Destination = loc

The real-time delays in the above definitions must be defined such that:

allocation_delay + mob_communication_delay ≤ 3’

The validity of the goal refinement is also dependent on the satisfaction of the follow
goals that were formally identified when refining the goal:

Goal Avoid[LocationChangeOnIncidentForm]
Definition The location on an incident form should not change.
FormalDef ∀ if: IncidentForm, loc: Location
if.Encoded ∧ if.Location = loc ⇒ ❑ if.Location = loc

Goal Maintain[AllocatedAmbulanceInServiceUntilMobilized]
Definition An allocated ambulance should remain in service until it is effectively
mobilized. (This goal could be violated if an allocated ambulance stops its shift before
it receives the mobilization order.)
FormalDef ∀ ai: AmbulanceInfo, amb: Ambulance, loc: Location
ai.Allocated ∧ amb.InService ∧ Tracking(ai, amb)
⇒ amb.InService W amb.Mobilized

Goal Maintain[AllocatedAmbulanceNearToIncident]
Definition An allocated ambulance should remain close to the incident until it is
effectively mobilized. (This goal could be violated if an allocated ambulance gets
away from the incident location before it receives the mobilization order.)
FormalDef ∀ ai: AmbulanceInfo, amb: Ambulance
ai.Allocated ∧ Tracking(ai, amb) ∧ TimeDist(amb.Location, loc) ≤ 11’
⇒ TimeDist(amb.Location, loc) ≤ 11’ W amb.Mobilized
200

Case Studies

rmed
rocess

ent
y

tual
These last two goals are quite idealized. The model will therefore need to be transfo
so as to weaken these goals. In order to keep our description of the elaboration p
within bounds, we will not describe such transformations.

3. Resolve unsatisfiability

The goal Achieve[AmbulanceAllocationBasedOnIncidentForm] still suffers from the
unsatisfiability problem inherited from his parent goals. Since the resolution of incid
is safety-critical, the tacticprevent unsatisfiability is used to resolve that unsatisfiabilit
problem, thereby generating the two subgoals:

Maintain[AmbulanceAvailability]

Achieve[AmbulanceAllocationBasedOnIncidentForm WhenNearAmbAvailable]

These goals are defined as follows.

Goal Maintain[AmbulanceAvailability]
InformalDef For every location, there should always be an available ambulance able
to arrive at that location within 11 minutes.
FormalDef (∀ loc: Location): ❑ (∃ amb: Ambulance, ai: AmbulanceInfo):
amb.Available ∧ ¬ ai.Allocated ∧ Tracking(ai, amb) ∧ TimeDist(amb.Location, loc) ≤
11’

Goal Achieve[AmbulanceAllocationBasedOnIncidentForm WhenNearAmbAvailable]
InformalDef For every incident form, an available ambulance able to arrive at the
incident scene within 11 minutes should be allocated to the corresponding location
except if there is no such ambulance available. The ambulance allocation time should
take no more than “allocation_delay” time units.
FormalDef ∀ c: UrgentCall, if: IncidentForm
@ if.Encoded
⇒ ◊≤allocation_delay (∃ ai: AmbulanceInfo, amb: Ambulance):
(ai.Allocated ∧ ai.AllocationDest = if.Location ∧ ai.AmbID = amb.AmbID

∧ ● amb.Available ∧ ● ¬ ai.Allocated
∧ ●TimeDist(amb.Location, if.Location) ≤ 11’)

∨ ¬ (∃ amb: Ambulance, ai: AmbulanceInfo):
(amb.Available ∧ ● ¬ ai.Allocated ∧ Tracking(ai, amb)
∧ TimeDist(amb.Location, if.Location) ≤ 11’)

4. resolve lack of monitorability for ambulance availability and location

The goal

Achieve[AmbulanceAllocationBasedOnIncidentForm WhenNearAmbAvailable]

is still unsatisfiable by CAC agents, because they lack of monitorability for the ac
locations and availability of ambulances. The tacticintroduce tracking object is then used
to generate the subgoals:

Maintain[AmbulanceTracked]

Maintain[AccurateAmbulanceAvailabilityandLocationInfo],

Achieve[AmbulanceAllocatationBasedOnIncidentFormandAmbulanceInfo
WhenNearAmbAvailable].
201

Case Studies

and
lity of
suf-
. We

uch
e to
These goals are defined as follows:

Goal Maintain[AmbulanceTracked]
InformalDef Every ambulance is tracked by exactly one AmbulanceInfo object.
FormalDef (∀ amb: Ambulance, ∃! ai: AmbulanceInfo): Tracking(ai, amb)
∧ ∀ amb: Ambulance, ∀! ai: AmbulanceInfo
Tracking(ai, amb) ⇒ ❑ Tracking(ai, amb)

Goal Maintain[AccurateAmbulanceAvailabilityandLocationInfo]
InformalDef Informations about ambulances’ availability and location should be
accurate
FormalDef ∀ amb: Ambulance, ai: AmbulanceInfo
Tracking(ai, amb)
⇒
ai.Available ↔ amb.Available
∧ ai.Location = amb.Location

Goal Achieve[AmbulanceAllocatationBasedOnIncidentFormandAmbulanceInfo
WhenNearAmbAvailable]

InformalDef For every incident forms, and based on ambulance information (status
and location), an available ambulance able to arrive at the incident scene within 11
minutes should be allocated to the corresponding location except if there is no such
ambulance available. The ambulance allocation time should take no more than
“allocation_delay” time units.
FormalDef ∀ c: UrgentCall, if: IncidentForm
@ if.Encoded
⇒ ◊≤allocation_delay (∃ ai: AmbulanceInfo):
(ai.Allocated ∧ ai.AllocationDest = if.Location

∧ ● ai.Available ∧ ● ¬ ai.Allocated
∧ ●TimeDist(ai.Location, if.Location) ≤ 11’)

∨ ¬ (∃ ai: Ambulance): (ai.Available ∧ ● ¬ ai.Allocated
∧ TimeDist(ai.Location, if.Location) ≤ 11’)

5. Handling ambulance mobilization when no near ambulances are available

The above refinement graph relies on the goalMaintain[AmbulanceAvailability] that was
introduces to resolve the unsatisfiability problem. This goal can be further refined
operationalized by moving ambulances appropriately so as to ensure the availabi
near ambulances for every location. It may for instances involve the positioning of a
ficient number of ambulances nearby locations where incidents are likely to happen
will not be concerned here with the refinement of this goal.

Nevertheless, this goal could still be violated from time to time. The handling of s
violations is part of the obstacle analysis loop. We feel however it is the right tim
describe how such violation is tolerated. The goalMaintain[AmbulanceAvailability] is
obstructed by the obstacleNoNearAmbulanceAvailble. This obstacle is resolved by
applying the tacticmitigate obstacle, thereby generating the new goal

Achieve[AmbulanceMobilizationBasedOnIncidentForm WhenNoNearAmbAvailable].
202

Case Studies

l can

lance

the
ls:

f the
of a

ding
; a
ci-

e
s the
r the
plex

d the
r

. As
nd

-com-
-ori-
is level
oal-

r HCI
er.
The precise definition of this goal has to be elicited from domain experts. This goa
the be further refined by applying the same tactics as those used to refine the goal

Achieve[AmbulanceMobilizationBasedOnIncidentForm WhenNearAmbAvailable]

in Figure 9.27, yielding a similar goal refinement graph.

6. Alternative Responsibility Assignments for ambulance allocation

At this stage, we identify alternative responsibility assignment for the goal

Achieve[AmbulanceAllocatationBasedOnIncidentFormandAmbulanceInfo
WhenNearAmbAvailable].

concerned with the allocation of ambulances based on incident forms and ambu
informations.

In the manual system, responsibility for this goal is split among severalResourceAlloca-
tor agent based on the division of London (North East, North West or South) in which
incident is reported to have occurred. The goal is therefore refined into the subgoa

Achieve[IncidentFormAssignedToRA]

Achieve[AllocationForAssignedIncidentFormBasedOnAmbulanceInfo]

The first goal requires the incident form to be handed to the resource allocator o
division in which the incident occurred. This goal is assigned as the responsibility
human agent collecting incident forms fromControlAssistant’s at a central collection
point. The second goal is assigned as the responsibility of theResourceAllocator to
which the incident form is assigned. Note that there is an obvious reason for divi
responsibility for incident forms based on the division of london in which it occurred
humanResourceAllocator agent would not be capable of managing alone all the in
dents and ambulances of London.

Such restriction does not apply to aCAD software agent. In a fully automated system, th
leaf goal concerned with the allocation of ambulances would be directly assigned a
responsibility of theCAD agent. This seems to be more or less the design chosen fo
1992 automated system. (The Inquiry Report mentions that only in the most com
cases would a human allocator need to identify and allocate the best resource.)

Of course, many other alternatives, involving the cooperation of human agents an
CAD software can be envisaged. For instances, theCAD agent could be responsible fo
proposing the more appropriate ambulance to theResource Allocator (or to theControl
Assistant) who would then accept the proposition or select another ambulance
another alternative, theCAD software could be responsible for displaying incidents a
ambulances on a map on the screen of theResource Allocator, who would use that infor-
mation to allocate the most appropriate ambulance.

We are here crossing the boundary between requirements engineering and human
puter interaction (HCI). Although in principle the concepts and techniques of goal
ented requirements engineering could be used to generate alternative designs at th
of details, it is certainly not the most appropriate method to do so. The result of our g
oriented requirement elaboration process could be used as the starting point fo
design. The links between goal-oriented RE and HCI would be worth studying furth
203

Case Studies

d

obi-
goal

bu-
9. 1. 2. 3. Refining the goal Achieve[AllocatedAmbulanceMobilized]

We now come back in Figure 9.27 to the previously identified goal

Achieve[AllocatedAmbulanceMobilized]

In the definition of this goal, the attributesAmbulance.Mobilized andAmbulance.Desti-
nation are controlled byAmbulanceStaff agents; and the attributesAmulanceInfo.Allo-
cated andAmulanceInfo.All_Dest controlled by CAC agents are not directly monitore
by AmbulanceStaff agents.

The goal is not realizable by CAC agent because they lack of control for the actual m
lization of ambulances. Figure 9.29 shows a portion of the refinement graph for this
that is obtained by recursively applying agent-driven tactics.

1. Split lack of control by cases

Allocated ambulances have to be mobilized differently according to whether the am
lance is waiting at a station or is somewhere on the roads. The tacticsplit lack of control
by cases is therefore used to generate the two goals:

Achieve[AllocatedAmbulanceMobilizedAtStation]

Achieve[AllocatedAmmbulanceMobilizedOnRoad]

These goals are formally defined as follows:

Goal Achieve[AllocatedAmbulanceMobilizedAtStation]
InformalDef When an ambulance waiting at an ambulance station is allocated to an
incident location, it should eventually be mobilized to that location. This should take
no more than “mob_communication_delay” time units
FormalDef ∀ ai: AmbulanceInfo, amb: Ambulance, loc: Location
ai.Allocated ∧ ai.AllocationDest = loc
∧ ai.AmbID = amb.AmbID ∧ ● amb.Available
∧ (∃ st: AmbulanceStation): AtStation(amb, st)
⇒ ◊≤mob_communication_delay
amb.Mobilized ∧ amb.Destination = loc

FIGURE 9.29.Refining the goalAchieve[AllocatedAmbulanceMobilized]

introduce accuracy goal
to resolve lack of mon

for AtStation

split lack of control by cases
to resolve lack of ctrl
for amb. mobilization

AllocatedAmbulanceMobilized

Accurate AtStaion Info

introduce accuracy goal
to resolve lack of mon

for AtStation

AllocatedAmbulance
MobilizedAtStation

AllocatedAmbulance
MobilizedOnRoad

AllocatedAmbulance
MobilizedOnRoad

BasedOnAtStationInfo

AllocatedAmbulance
MobilizedAtStation

BasedOnAtStationInfo
204

Case Studies

bility

iliza-
ing the

uate
Goal Achieve[AllocatedAmmbulanceMobilizedOnRoad]
InformalDef When an ambulance already in the road is allocated to an incident loca-
tion, it should eventually be mobilized to that location. This should take no more than
“mob_communication_delay” time units
FormalDef ∀ ai: AmbulanceInfo, amb: Ambulance, loc: Location
ai.Allocated ∧ ai.AllocationDest = loc
∧ ai.AmbID = amb.AmbID ∧ ● amb.Available
∧ ¬ (∃ st: AmbulanceStation): AtStation(amb, st)
⇒ ◊≤mob_communication_delay
amb.Mobilized ∧ amb.Destination = loc

2. Resolve lack of monitorability for the relationship AtStation

The two goals above are unrealizable by CAC agents because they lack of monitora
for the relationshipAtStation. In both cases, the tacticintroduce accuracy goal is used to
resolve this lack of monitorability.

The goalAchieve[AllocatedAmbulanceMobilizedAtStation] is therefore refined into:

Maintain[AccurateAtStationInfo]

Achieve[AllocatedAmbulanceMobilizedAtStationBasedOnAtStationInfo]

Similarly, the goalAchieve[AllocatedAmmbulanceMobilizedOnRoad] is refined into:

Maintain[AccurateAtStationInfo]

Achieve[AllocatedAmbulanceMobilizedOnRaodBasedOnAtStationInfo]

3. Resolve lack of control for ambulance mobilization at station

Different alternatives can be generated to resolve lack of control for ambulance mob
tion when the ambulance is at a station. Theses alternatives are generated by apply
tacticsplit lack of control with milestone with alternative milestones.

A first alternative consists in transmitting mobilization orders by phone to the adeq
station. The tacticsplit lack of control with milestone is therefore applied with the follow-
ing milestone:

M: (∃ mc: MobilizationCall): ReceivedAtStation(mc, st)
∧ mc.AmbMob = ai.AmbId ∧ mc.MobDest = ai.AllDest

thereby generating the two goals

Achieve[MobilizationCallIssuedAtStation]

Achieve[AmbulanceAtStationMobilizedFromMobilizationCall]

The second subgoal is assigned as the responsibility of theAmbulanceStaff agent The
first subgoal is further refined into:

Achieve[MobilizationCallRequestedToDespatcher]

Achieve[RequestedMobilizationCallIssuedAtStation]

that are respectively assigned to theResourceAllocator agent and the aDespatcher
agent.
205

Case Studies

igure
e tac-

, two
:

Another alternative, the one chosen for the automated system of 1992, is shown in F
9.30. It consists in issuing mobilization order to a printer at the adequate station. Th
tic split lack of control with milestone is therefore applied with the milestone:

M: (∃ mob_order: PrintedMobilizationOrder): PrintedAtStation(mob_order, st)
∧ mob_order.AmbMob = ai.AmbId
∧ mob_order.MobDest = ai.AllDest,

thereby generating the two goals

Achieve[MobilizationOrderPrintedAtStation]

Achieve[AmbulanceMobilizedFromPrintedMobilizationOrder]

The second goal is assigned as the responsibility ofAmbulanceStaff agents.

For the first subgoal, since LAS agents cannot directly control the printers at station
further application of the tacticsplit lack of control with milestone generate the subgoals

Achieve[MobilizationOrderSentToStationPrinter]

Achieve[SentMobilizationOrderTransmittedToStation]

Achieve[TransmittedMobilizationOrderPrintedAtStation]

In the 1992 automated system, these goals are respectively assigned to theCAD software
agent, to theCommunication Infrastructure agent, and to thePrinter agent.

FIGURE 9.30. Refinement and responsibility assignments for the goal
Achieve[AllocatedAmbulanceMobilizedAtStationBasedOnAtStationInfo]

split lack of control with milestone
to resolve lack of ctrl
for amb. mobilization

MobilizationOrder
PrintedAtStation

AmbulanceMobilized
FromPrinted

MobilizationOrder

MobOrderSent
ToStationPrinter

MobOrderTransmitted
ToStationPrinter

ReceivedMobOrder
Printed

split lack of control with milestone

Ambulance
Staff

Communication
Infrastructure

CAD Printer

AllocatedAmbulance
MobilizedAtStation

BasedOnAtStationInfo
206

Case Studies

ctic
ive
s on
n the
mes-
and

.

the
4. Resolve lack of control for ambulance mobilization on roads

The refinement of the goal

AchieveAchieve[AllocatedAmbulanceMobilizedOnRaodBasedOnAtStationInfo]

is similar. Lack of control for ambulance mobilization is resolved by applying the ta
split lack of control with milestone. Alternative milestone are used to generate alternat
designs. A first alternative consists in transmitting mobilization orders to ambulance
the road through radio communications. Another alternative, the one implemented i
1992 automated system, consists in mobilizing ambulances on the roads through
sages displayed on their Mobile Data Terminals (MDT’s). The goal refinement graph
responsibility assignments for the 1992 automated system is shown in Figure 9.31

9. 1. 2. 4. Refining the goal Maintain[AccurateAmbulanceAvailabilityandLocation-
Info]

We now come back in Figure 9.27 to the accuracy goal

Maintain[AccurateAmbulanceAvailabilityAndLocationInfo].

This goal is not realizable by CAC agents because they lack of monitorability for
actual availability and locations of ambulances.

FIGURE 9.31. Goal Refinement and responsibility assignments for the goal
Achieve[AllocatedAmbulanceMobilizedAtStationBasedOnAtStationInfo]

split lack of control with milestone
to resolve lack of ctrl
for amb. mobilization

MobilizationOrder
DisplayedOnMDT

AmbulanceMobilized
FromMobOrderOnMDT

MobOrderSent
ToMappedMDT

MobOrderTransmitted
ToMDT

ReceivedMobOrder
DisplayedOnMDT

split lack of control with milestone

Ambulance
Staff

Communication
InfrastructureCAD

MDT

MobilizationOrder
DisplayedOnMappedMDT

Accurate
Ambulance/MDT

Mapping

introduce accuracy goal

AllocatedAmbulance
MobilizedOnRoad

BasedOnAtStationInfo
207

Case Studies

1992
ematic

y of

labil-
l sys-
We begin to split this goal by cases into the following subgoals:

Maintain[AccurateAmbulanceAvailabilityInfo]

Maintain[AccurateAmbulanceLocationInfo].

Each goal is then treated in turn.

1. Maintaining Accurate Ambulance Availability Information

Consider the above goalMaintain[AccurateAmbulanceAvailabilityInfo]. Figure 9.32
shows the goal refinement graph and responsibility assignments corresponding to
the automated system. This refinement graph was again produced through the syst
application of agent-driven tactics. This system relies on the use ofMobile Data Termi-
nals that act as intermediate agents betweenAmbulance Staff agents and theCAD soft-
ware.

Further work is required to model formally the delays between the actual availabilit
ambulances and information about this availability.

As an alternative to this fully automated system, information about ambulances avai
ity could be maintained through radio communications as it was done it the manua
tem.

FIGURE 9.32. Goal Refinement and responsibility assignments for the goal
Maintain[AccurateAmbulanceAvailabilityInfo]

introduce tracking object

AccurateAmbulanceAvailiabilityInfo

AvailabilityInfo
BasedOnMDT

MDTInfoSent MDTInfo
Transmitted

ReceivedMDTInfo
Recorded

split lack of control with milestone

Ambulance
Staff

Communication
Infrastructure

CADMDT

Accurate
Ambulance/MDT

Mapping

introduce accuracy goal

AccurateAvailabilityInfoOnMDT

MDTInAmbulance

AvailabilityInfo
BasedOnMappedMDT
208

Case Studies

the
alized

f
on is

n the
ent
uracy
bout

ld be
thout
pon-
com-
their

tion
of the
2. Responsibility assignments for the goal Maintain[AccurateAmbulanceLocation-
Info]

In the fully automated system of 1992, the accuracy

Maintain[AccurateAmbulanceLocationInfo]

is assigned as the responsibility of anAutomatic Vehicle Location System (AVLS) agent.
Actually, theAVLS is not required to maintain such idealized relationship between
actual locations of ambulances and the information about theses locations. The ide
definition of the accuracy goal is therefore weakened into:

Tracking(ai, amb) ⇒ a.Location ∈ ai.Location

In this definition, the attributeAmbulanceInfo.Location is now declared to be a set o
locations that must include the actual location of the ambulance. This deidealizati
then propagated in Figure 9.27 to the goal

Achieve[AmbulanceAllocatationBasedOnIncidentFormandAmbulanceInfo
WhenNearAm-

bAvailable]

that is now defined as follows:

@ if.Encoded
⇒ ◊≤3’ (∃ ai: AmbulanceInfo):
(ai.Allocated ∧ ai.AllocationDest = if.Location

∧ ● ai.Available ∧ ● ¬ ai.Allocated
∧ ● (ai.Location ⊆ {l: Location | TimeDist(l, if.Location) ≤ 11’ })

∨ ¬ (∃ ai: Ambulance): (ai.Available ∧ ● ¬ ai.Allocated
∧ ai.Location ⊆ {l: Location | TimeDist(l, if.Location)

≤ 11’ })

This deidealized definition requires that every possible locations (i.e. the locations i
setai.Location) of the allocated ambulance is at less than 11 minutes from the incid
location. The parent goal of these two goals remains unchanged. (Note that the acc
goal could be further deidealized because one only needs location information a
available ambulances.)

As an alternative to the AVLS system, information about ambulances’ locations cou
maintained through radio communications as it was done in the manual system. Wi
going into the details, the refinement graph for this goal together with alternative res
sibility assignments are shown in Figure 9.33. In this alternative, ambulances staffs
municate their new location when they stop at a new location; and communicate
depart and destination locations when they leave a location. The requirementAmbulan-
ceOnNormalRoute assigned to ambulance staff is used to infer a set of possible loca
for the ambulance based on the communicated depart and destination locations
ambulance.
209

Case Studies

goals
ermi-

e

9. 1. 3. Goal Operationalization

Agents interfaces and operational requirements are now derived from the terminal
generated during the goal refinement process. Consider for instance the following t
nal goal appearing in Figure 9.27:

Goal Achieve[Amb.AllocatationBasedOnIncidentFormandAmbulanceInfo
WhenNearAmbAvailable]

FormalDef ∀ c: UrgentCall, if: IncidentForm
@ if.Encoded
⇒ ◊≤allocation_delay (∃ ai: AmbulanceInfo):
(ai.Allocated ∧ ai.AllocationDest = if.Location

∧ ● ai.Available ∧ ● ¬ ai.Allocated
∧ ●TimeDist(ai.Location, if.Location) ≤ 11’)

∨ ¬ (∃ ai: Ambulance): (ai.Available ∧ ● ¬ ai.Allocated
∧ TimeDist(ai.Location, if.Location) ≤ 11’)

FIGURE 9.33. Goal Refinement and alternative responsibility assignments for th
goalMaintain[AccurateAmbulanceLocationInfo]

AccurateAmbulanceLocationInfo

Ambulance
Staff

CAD

AccurateLocationInfo
OfStationaryAmbulance

AccurateLocationInfo
OfNonStationaryAmbulance

AccurateStationaryInfo

AccurateLocInfo
AtNewLocation

Maintain
[PreviousLocInfo
WhenStationary]

AccurateDepart/DestInfo
AtDeparture

LocationInfo
BasedOn

Depart/DestinationInfo

Ambulance
OnNormalRouteNoLocChange

WhenStationary

Ambulance
StaffAmbulance

Staff

RA
OR

CAD RA
OR

NewLocation
Communicated

NewLocation
Encoded

EncodedNewLoc
Recorded

Depart/Dest
Communicated

AtDeparture

Depart/Dest
Encoded

Radio
Operator

CAD RA
OR

Encoded
Depart/Dest
Recorded

CAD RA
OR

Radio
Operator

Ambulance
Staff

AVLS
OR
210

Case Studies

bility

er-
an-

erived
s the
o the
se to
which
er by
rfaces

ng the
ction
ist of
g the

rious

ables
ould

would
In the 1992 automated system, this goal is assigned as the responsibility of theCAD soft-
ware agent. The portion of the agent interface model derived from that responsi
assignment is given by:

From the formal definition of this goal, we also derive the following operation to be p
formed by theCAD agent, together with required pre- and trigger conditions that guar
tees the satisfaction of the goal:

Operation AllocateAmbulance
PerfBy CAD
Input IncidentForm {arg if}

AmbulanceInfo/Location, Available
Output AmbulanceInfo {res ai}/Allocated, AllocationDest
Dompre ¬ (ai: AmbulanceInfo): ai.Allocated ∧ ai.Destination = if.Location
DomPost ai.Allocated ∧ ai.AllocationDest = if.Location
ReqTrigFor AllocatationBasedOnIncidentFormandAmbulanceInfoWhenNearAm-

bAvailable
■≤allocation_delay if.Encoded

ReqPreFor AllocatationBasedOnIncidentFormandAmbulanceInfo WhenNearAm-
bAvailable

ai.Available ∧ ¬ ai.Allocated ∧ TimeDist(ai.Location, if.Location) ≤ 11’)
∨ ¬ (∃ ai: Ambulance): (ai.Available ∧ ¬ ai.Allocated

∧ TimeDist(ai.Location, if.Location)
≤ 11’)

Further agent interface, operations, and requirements on operations are similarly d
from other goals assigned as the responsibility of single agents. Figure 9.34 show
agent interface model derived from the responsibility assignments corresponding t
fully automated system of 1992. Alternative responsibility assignments lead of cour
alternative agent interface. These alternative models correspond to systems in
more or less functions are automated. Note that switching from one model to anoth
selecting alternative goal refinements, responsibility assignments and agent inte
corresponds to a staged introduction of automated capabilities.

9. 1. 4. Obstacle Analysis

We now derive obstacles for each terminal goals and assumptions generated duri
goal refinement process. Many of them are formalized; a mix of regression, obstru
patterns and informal heuristics from Chapter 8 is used. We then compare the l
potential obstacles thereby obtained with the scenarios that actually occurred durin
two system failures in October-November 1992. While our obstacles cover the va
problems that occurred during those failures (notably,Inaccuracy problems), they also
cover many other problems that could (but did not) occur --see the comparison t
below. Handling those obstacles during goal-oriented requirements elaboration w
have forced requirements engineers to raise issues whose resolution hopefully
have resulted in making such scenarios (and others) infeasible. Finally we explore the
space of possible resolutions by application of the tactics discussed in Chapter 8.

CAD
IncidentForm

AmbulanceInfo.Location
AmbulanceInfo.Available

AmbulanceInfo.Allocated
AmbulanceInfo.AllocationDest
211

Case Studies

es
CADIncidentForm

AmbulanceInfo.Location

Public

CA

AVLS
MDT Station

Printer

Ambulance
Staff

PrintedMobOrder

MDTMobOrder

UrgentCall

PrintedMobOrder

MDTMobOrderAmb.InService
Amb.Mobilized

Ambulance.Location

MDT.InServiceInfo
MDT.MobInfo

Ambulance

FIGURE 9.34. Partial Agent Interface Model Derived from Responsibility assingments in Figur
9.24 to 9.33 corresponding to the 1992 fully automated system

(the communication infrasturcture agent is omitted from the diagram)
212

Case Studies

n]

tion

bsta-

ides
s are

fied
t the

ds the
9. 1. 4. 1. Obstacles generation

1. Generating obstacles to the assumption Achieve[IncidentResolvedByInterventio

Let us illustrate some of the formal derivations first. Consider the following assump
appearing in Figure 9.24:

Goal Achieve[IncidentResolvedByIntervention]
FormalDef ∀ a: Ambulance, inc: Incident
Intervention (a, inc) ⇒ ◊ inc.Resolved

Applying the regression procedure, we negate this goal to produce the high-level o
cle

Obstacle IncidentNotResolvedByIntervention:
FormalDef ◊ ∃ a: Ambulance, inc: Incident
Intervention (a, inc) ∧ ❑ ¬ Resolved (inc)

In order to identify further subobstacles, we look for domain properties that prov
necessary conditions for incident resolution. Suppose that the following propertie
identified:

For an incident to be considered resolved, the following conditions must be satis
(i) every patient injured in the incident receives the necessary urgent care a
incident scene;
(ii) every patient injured in the incident is admitted at an hospital

These two properties may be formalized as follows:

Resolved (inc) ⇒
(∀ p: Patient) Injured (p, inc) → TreatedAtLocation(p,inc)

Resolved (inc) ⇒
(∀ p: Patient) Injured (p, inc) →

(∃ h: Hospital) AdmittedAt (p, h)

Regressing the high-level obstacle above through these two domain properties yiel
following two subobstacles:

Obstacle PatientNotTreatedAtLocation
InformalDef an ambulance makes an intervention at an incident, and some patient
does not receives the necessary urgent care at the incident scene.
FormalDef ◊ ∃ a: Ambulance, inc: Incident

Intervention (a, inc)
∧ ❑ (∃ p: Patient, r: Resource)

Injured (p, inc) ∧ ¬ TreatedAtLocation(p,inc)

Obstacle PatientNotAdmittedToHospital
InformaDef A patient injured in the incident is not admitted at an hospital
FormalDef ◊ ∃ a: Ambulance, inc: Incident

Intervention (a, inc)
∧ ❑ ∃ p: Patient

Injured (p, inc) ∧ (¬ ∃ h: Hospital) AdmittedAt (p, h)
213

Case Studies

eives
eeded

er to
that is

com-
Considering the first subobstacle, we identify the domain property that a patient rec
the necessary urgent care at the location scene if the medical resources critically n
by patients injured in the incident are effectively used on the patients:

TreatedAtLocation(p,inc) ⇔
(∀ r: Resource) CriticallyNeeds (p, r) →

(∃ ru: ResourceUnit) Unit (ru, r) ∧ UsedOn (ru, p)

Regressing the obstaclePatientNotTreatedAtLocation through the domain property
yields the new subobstacle:

Obstacle CriticalCareNotGivenToPatient
InformalDef an ambulance makes an intervention at an incident, and medical
resources are not used on a patient that critically needs it.
FormalDef ◊ ∃ a: Ambulance, inc: Incident

Intervention (a, inc)
∧ ❑ (∃ p: Patient, r: Resource)

Injured (p, inc) ∧ CriticallyNeeds (p, r)
∧ ¬ (∃ ru: ResourceUnit) Unit (ru, r) ∧ UsedOn (ru, p)

In order to regress this obstacle further, we identify the domain property that in ord
use a medical resource on a patient, there must be a resource unit in the ambulance
not already used for another patient:

Intervention (a, inc)
∧ Injured (p, inc) ∧ UsedOn (ru, p)

⇒ InAmbulance (ru, a)
∧ ¬ (∃ p’: Patient) p’ p∧ UsedOn (ru, p’)

Regressing the obstacleCriticalCareNotGivenToPatient through the domain property
yields the new subobstacle:

Obstacle InsufficientResourceInAmbulance
FormalDef ◊ ∃ a: Ambulance, inc: Incident

Intervention (a, inc)
∧ ❑ ∃ p: Patient, r: Resource

Injured (p, inc) ∧ CriticallyNeeds (p, r)
∧ Intervention (a, inc)
∧ (∀ ru: ResourceUnit) Unit (ru, r) →

InAmbulance (ru, a) →
(∃ p’: Patient) p’ p∧ UsedOn (ru, p’)

By completing this refinement we obtain a new subobstacle to produce a domain-
plete set of subobstacles toCriticalCareNotGivenToPatient:

Obstacle AvailableResourceNotUsedOnPatient
FormalDef ◊ ∃ a: Ambulance, inc: Incident

Intervention (a, inc)
∧ ❑ ∃ p: Patient, r: Resource

Injured (p, inc) ∧ CriticallyNeeds (p, r)
∧ Intervention (a, inc)
∧ (∃ ru: ResourceUnit) Unit (ru, r) ∧ InAmbulance (ru, a)
 ∧ ¬ (∃ p’: Patient) p’ p∧ UsedOn (ru, p’)
214

Case Studies

ter 8,

on]

.25:

for
Further refinement of the latter subobstacle by, e.g., use of the heuristics in Chap
yields new subobstacles such asWrongInfoAboutPatient and ResourceOutOfOrder. In
the former case, one might find out that the incident form produced by theCAD has inac-
curate or missing information.

The complete obstacle refinement tree derived is as follows:

IncidentNotResolvedByIntervention
← CriticalCareNotGivenToPatient

← InsufficientResourceInAmbulance
← WrongInfoAboutIncident
← ResourceUnavailable
← ResourceConfusion

← AvailableResourceNotUsedOnPatient
← WrongInfoAboutPatient
← ResourceOutOfOrder

← PatientNotAdmittedToHospital
← PatientNotTransportedToHospital

← PatientNotPutInAmbulance
← InsufficientAmbulanceCapacity
← PatientNotInAvailableAmbulance

← ...
← PatientInAmbulanceNotPortedToHospital

← PatientAtHospitalNotAdmitted
← NoBedAvailableAtHospital
← AvailableBedNotAssigned

This tree amounts to agoal-based fault tree.

2. Generating obstacles to the assumption Achieve[MobilizedAmbulanceInterventi

Consider now the following other assumption appearing in the goal graph in Figure 9

Goal Achieve[MobilizedAmbulanceIntervention]
Responsibility AmbulanceStaff
FormalDef ∀ a: Ambulance, loc: Location
a.Mobilized ∧ a.Destination = loc
∧ ● a.Available ∧ TimeDist (a.Location, loc) ≤ 11
⇒ ◊≤11’ a.Intervention ∧ a.Location = loc

Negating the goal yields a high-level obstacle:

Obstacle MobilizedAmbulanceNotInTimeAtDestination
FormalDef ◊ ∃ a: Ambulance, inc: Incident
a.Mobilized ∧ a.Destination = loc
∧ ● a.Available ∧ TimeDist (a.Location, loc) ≤ 11
∧ ❑≤11m ¬ a.Intervention ∧ a.Location = loc

The non-persistence obstruction patterns of Table 8.3 in Chapter 8 suggest looking
domain properties involving persistent conditionsP that must continuously hold, from
the time of allocation to the time of intervention:

a.Mobilized ∧ a.Destination = loc
∧ ● a.Available ∧ TimeDist (a.Location, loc) ≤ 11
∧ ◊ a.Intervention ∧ a.Location = loc
⇒ P W (P ∧ a.Intervention ∧ a.Location = loc)
215

Case Studies

indeed:
es at
loca-
ess it
ilized
s at the

uristics
Three candidatesP are suggested from the antecedent of the goal:

P1: a.InService
P2: a.Mobilized ∧ a.Destination = loc
P3: TimeDist (a.Loc, inc.Loc) < TimeDist (● a.Loc, inc.Loc)

These candidates produce three persistence conditions that are domain properties
the first property says that if a sufficiently close ambulance is mobilized and interven
the location within 11 minutes, then it remains in service unless it intervenes at that
tion; the second says that the ambulance remains mobilized for that location unl
intervenes at the location; the latter says that the time distance between the mob
ambulance and the destination keeps decreasing unless the ambulance intervene
location. We may therefore apply the secondnon-persistence pattern in Table 8.3 to gen-
erate the three following obstacles (one for each persistent condition):

Obstacle MobilizedAmbulanceStopsServiceBeforeIntervention
FormalDef ◊ ∃ a: Ambulance, loc: Location
a.Mobilized ∧ a.Destination = loc
∧ ● a.Available ∧ TimeDist (a.Location, loc) ≤ 11
∧ (¬ (a.Intervention ∧ a.Location = loc) U≤11’ ¬ a.InService)

Obstacle AmbulanceMobilizationRetracted
FormalDef ◊ ∃ a: Ambulance, loc: Location
a.Mobilized ∧ a.Destination = loc
∧ ● a.Available ∧ TimeDist (a.Location, loc) ≤ 11
∧ (¬ (a.Intervention ∧ a.Location = loc) U≤11’ ¬ (a.Mobilized ∧ a.Destination = loc))

Obstacle MobilizedAmbulanceStoppedOrInWrongDirection
FormalDef ◊ ∃ a: Ambulance, loc: Location
a.Mobilized ∧ a.Destination = loc
∧ ● a.Available ∧ TimeDist (a.Location, loc) ≤ 11
∧ (¬ (a.Intervention ∧ a.Location = loc) U≤11’ TimeDist (a.Loc, loc) ≥ TimeDist (●

a.Loc, loc))

(In the above assertions,PU≤dQ stands forPU Q ∧ ◊≤dP.)

Further refinement of these formal obstacles based on regression, patterns, and he
from Chapter 8 yield the following obstacleOR-refinement tree:

MobilizedAmbulanceNotInTimeAtDestination
← MobilizedAmbulanceStopsServiceBeforeIntervention
← AmbulanceMobilizationRetracted

← MobilizedAmbulanceDestinationChanged
← LocationConfusedByCrew

← MobilizedAmbulanceDestinationForgotten
← AmbulanceMobilizationCancelled

← MobilizedAmbulanceStoppedOrInWrongDirection
← AmbulanceStopped

← AmbulanceBreakdownOrAccident
← AmbulanceStoppedInTraffic

← AmbulanceInWrongDirection
← AmbulanceLost

← CrewInUnfamiliarTerritorry
← TrafficDeviation
216

Case Studies

]

refine-

sub-

in the
r for

ware

bsta-
3. Generating Obstacles to the subgoals of Achieve[AllocatedAmbulanceMobilized

We now consider obstacles to the requirements and assumptions generated by the
ments of the goalAchieve[AllocatedAmbulanceMobilized] in Figures 9.29 to 9.31.

For the terminal goalAmbulanceMobilizedFromPrintedMobilizationOrder appearing in
Figure 9.30, the obstacleOR-refinement tree generated using our techniques is:

MobOrderNotTakenByAmbulance
← MobOrderIntendedForUnavailableAmbulance
← MobOrderIgnored
← MobOrderTakenByOtherAmbulance

Many reported failures were in fact caused by inappropriate resolution of the latter
obstacle [LAS93].

Obstacles should be identified not only from assumptions about human agents
environments, but also for requirements assigned to software agents. Conside
instance the following goal appearing in Figure 9.31 and assigned to the CAD soft
agent:

Goal Achieve[MobilizationOrderSentToMappedMDT]
FormalDef ∀ ai: AmbulanceInfo, loc: Location, mdt_id: MDT_ID
@ ai.Allocated ∧ ai.AllocationDest = loc ∧ ai.MDTID = mdt_id
⇒ ❍(∃ mob_order: MDT_MobilizationOrder):
mob_order.Sent ∧ mob_order.DestMDT = mdt_id ∧ mob_order.AllocationDest = loc

Negating this goal yield the following obstacle:

Obstacle MobOrderNotSentToMappedMDT
FormalDef ◊ ∃ ai: AmbulanceInfo, loc: Location, mdt_id: MDT_ID
@ ai.Allocated ∧ ai.AllocationDest = loc ∧ ai.MDTID = mdt_id
∧ ❍ ¬ (∃ mob_order: MDT_MobilizationOrder):
mob_order.Sent ∧ mob_order.DestMDT = mdt_id ∧ mob_order.AllocationDest = loc

That obstacle is then split into cases to generate the following complete set of subo
cles:

Obstacle MobOrderNotSent
FormalDef ◊ ∃ ai: AmbulanceInfo, loc: Location, mdt_id: MDT_ID
@ ai.Allocated
∧ ❍ ¬ (∃ mob_order: MDT_MobilizationOrder):
mob_order.Sent

Obstacle MobOrderSentWithWrongMDTID
FormalDef ◊ ∃ ai: AmbulanceInfo, loc: Location, mdt_id: MDT_ID
@ ai.Allocated ∧ ai.MDTID = mdt_id
∧ ❍ (∃ mob_order: MDT_MobilizationOrder):
mob_order.Sent ∧ mob_order.DestMDT ≠ mdt_id

Obstacle MobOrderNotSentWithWrongAllocationDest
FormalDef ◊ ∃ ai: AmbulanceInfo, loc: Location, mdt_id: MDT_ID
@ ai.Allocated ∧ ai.AllocationDest = loc ∧ ai.MDTID = mdt_id
∧ ❍ (∃ mob_order: MDT_MobilizationOrder):
mob_order.Sent ∧ mob_order.AllocationDest ≠ loc
217

Case Studies

sly is

 tree:

Figure
ing our
ilures
rious
prob-
ption,
e sce-

.

(A domain property saying that at most one MDT message can be sent simultaneou
used to refine the parent obstacle.)

Further refinement of the last two obstacles yield the following obstacle refinement

MobOrderNotSentToMappedMDT
← MobOrderNotSent
← MobOrderSentWithWrongMDTID

← MobOrderSentToOtherMDT
← MobOrderWithInvalidMDTID

← MobOrderNotSentWithWrongAllocationDest
← MobOrderNotSentWithOtherValidAllocationDest
← MobOrderNotSentWithInvalidAllocationDest

Tables 9.1 summarizes the obstacles generated for the various terminal goals in
9.30 and 9.31. The table compares the set of obstacles generated systematically us
techniques with the scenarios that actually occurred during the two major system fa
in October-November 1992 as reported in [Las93]. While our obstacles cover the va
problems that occurred during those failures, they also cover many other potential
lems that could (but did not) occur. The table provides, for each requirement/assum
the responsible agent assigned to it, the (sub)obstacles derived, and features of th
narios -covered by the obstacle - that occurred during the reported system failures

Table 9.1: Obstacles to subgoals of the goalAchieve[AllocatedAmbulanceMobilized] (Fig. 9.30 - 9.31)

agent goal obstacle Oct/Nov’92 scenario

CAD MobOrderSent
ToStationPrinter

MobOrderNotSent no PSTN line free

MobOrderSentToWrongStation

MobOrderSentToWrongAmbulance

MobOrderSentWith
WrongDestination

InvalidMobOrderSent

MobOrderSent
To MappedMDT

MobOrderNotSent

MobOrderSentToOtherMDT

MobOrderNotSent
WithOtherValidAllocationDest

InvalidMobOrderSentToMDT

Communic.
Infrastructure

MobOrderTransmitted
ToStationPrinter

MobOrderNotTransmitted radio congestion,
radio blackspot

MobOrderDeliveredAtWrongStation

MobOrderCorruptedDuring
Transmission
← WrongDestination
← WrongAmbulance
← InvalidMobOrder

MobOrderTransmitted
ToMDT

MobOrderNotTransitted

MobOrderTransmittedAt
WrongMDT

MobOrderCorruptedDuring
Transmission
← WrongDestination
← OtherValidMsgDelivered
← InvalidMsgDelivered
218

Case Studies

riate
s and
solu-

f the
nec-
t fail
al fail-
4. Generating obstacles to the accuracy goals

The accuracy goals play a critical role in the LAS system. In order to allocate approp
ambulances, the CAD software needs accurate informations about the location
availability of ambulances. Many reported failures were caused by inappropriate re
tions of obstacles to these accuracy goals [Las93].

In the fully automated system, the goalMaintain[AccurateAmbulanceLocationInfo] was
assigned as the responsibility of anAutomated Vehicle Location System (AVLS) agent.
From this goal, we generate the obstacleInaccurateAmbulanceLocationInfo. Further
refinement of that obstacle would require further knowledge about properties o
AVLS which were unavailable to us. Further refinement of that obstacle is also not
essary for obstacle resolution since it is not necessary to know why the AVLS migh
to locate ambulances accurately. Table 9.2 shows the obstacle to this goal, and actu
ures scenarios covered by the obstacle.

Table 9.2: Obstacles to the goal Maintaim[AccurateAmbulanceLocationInfo]

Station
Printer

ReceivedMobOrder
Printed

ReceivedMobOrderNotPrinted
← Paper Jammed
←Out of Paper
←Data Lost
←...

PrintedMobOrderUnreadable

MDT ReceivedMobOrder
DisplayedOnMDT

ReceivedMobOrderNotDisplayed
OnMDT

IncorrectDestinationDisplayed

Ambulance
Staff

AmbulaceMobilized
FromPrinted
MobilizationOrder

AmbNotMobilized
FromPrintedMobOrder
← MobOrderIgnored
← AmbNotAt Station
← AmbNotAvailable

MobOrderTakenByOtherAmbulance
← MobOrderConfuision
← AllocatedAmbNotAvailable
← AllocatedAmbNotAtStation
← established work practice

crews take different
vehicle from those
allocated by CAD

LocationConfusedByCrew

AmbulanceMobilized
FromMobOrderOnMDT

AmbulanceNotMobilizedFrom
MobOrderonMDT
← MDTMobOrderIgnored
← CrewNotInAmbulance
← AmbulanceNotAvailable

AmbulanceMobilizedWithDifferent
DestinationThanMDTDestination
← LocationConfusedByCrew
← OtherMobilizationDestination

Pending

agent goal obstacle Oct/Nov’92 scenario

AVLS AccurateAmbulance
LocationInfo

InAccurateAmbulance
LocationInfo

AVLS equipment not working
Interference from vehicle equipment
Swapped callsigns
No AVLS exception reporting

agent goal obstacle Oct/Nov’92 scenario
219

Case Studies

rminal
hose
1992

.

8 for

n
ed to

et-
Consider now the goalMaintain[AccurateAmbulanceAvailabilityInfo] whose refinement is
shown in Figure 9.32. Table 9.3 summarizes the obstacles generated from each te
goals/assumption together with failures scenarios reported in [LAS93] satisfying t
obstacles. Again, our obstacles cover the various problem that occurred during the
failures, and identify various other potential problems that could (but did not) occur

Table 9.3: Obstacles to subgoals of the goal Achieve [AmbulanceMobilizationKnown]

9. 1. 4. 2. Obstacles resolution

We now discuss the application of various obstacle resolution tactics from Chapter
some of the obstacles generated.

1. Alternative resolutions for the obstacle MobOrderTakenByOtherAmbulance

Let us first consider the obstacleMobOrderTakenByOtherAmbulance seen in the previ-
ous section to obstruct the goalAmbulanceMobilizedFromPrintedMobilizationOrder.

The tacticmitigate obstacle would result in letting the system know that the mobilizatio
order has been taken by the other ambulance. A mitigation goal is thus introduc
resolve this obstacle, say,

MobilizationByOtherAmbulanceKnown.

This new goal may be refined into two subgoals, namely,

MobilizationByOtherAmbulanceSignalledToRadioOperator,

assigned toAmbulanceStaff, and

MobilizationStatusUpdated,

assigned toRadioOperator. (An alternative refinement/assignment would consist in l
ting the change be signalled to theMDT instead).

The tacticprevent obstacle would result here in the introduction of the new goal

Avoid [AmbulanceMobilizedWithoutOrder].

agent goal obstacle Oct/Nov’92 scenario

Ambulance
Staff

AccurateAvailibilityInfo
OnMDT

AmbulanceStaffForgetTo
EncodeAvailibilityOnMDT

crews don’t press
status buttons

AmbStaffPushWrongButton
ToEncodeAvailability

crews press buttons
in wrong order

MDT MDTInfoSent MDTInfoNotSent

MDTSendsOtherMsg

InvalidMDTInfoSent

Communic.
Infrastructure

MDTInfoTransmitted MDTInfoNotDelivered radio channel congestion
(particulalry bad at crew
log on/off),
radio blackspot

MDTInfoCorrupted

CAD ReceivedMDTInfoRecorded ReceivedMDTInfoIgnored failure of system to catch
all data

ReceivedMDTInfoConfusedWith
OtherMsg

ReceivedMDTInfoRecordedFor
WrongAmbulance
220

Case Studies

te to

on or
arture
ky

of the

tter
o

n
ance
goes

ly by
volve

cting
bout
lance
tion.

ilabil-

erate
A benefit of applying this strategy here is that the latter subgoal would also contribu
the other goal

Avoid [DuplicateAmbulanceMobilization]

The new prevention goal might be under responsibility of a human agent at the stati
might be operationalized through an automatic system preventing ambulance dep
from station if the MDT is not mobilized. (Such resolution would however be quite ris
if MDT‘s or ambulances are likely to break down.)

As suggested in Section 8. 5. 1 of Chapter 8, the tacticmake obstacle infeasible in the
domain can be used resolve the same obstacle by changing domain properties
application domain. In this case, it would consists in transforming thePrintedMobiliza-
tionOrder object so that it does not mention the incident location any more; the la
information would only be given by theMDT inside the ambulance. (Such resolution als
seems quite risky ifMDT‘s or ambulances are likely to break down.)

The tacticchoose alternative goal would result in an alternative operationalization i
which mobilization orders sent to stations do not prescribe which particular ambul
to mobilize but instead leave that decision to ambulance crews. In this case, this
together with an agent substitution and a domain transformation (asPrintedMobiliza-
tionOrder objects no longer have an attribute indicating the target ambulance).

Finally, an application of the tacticreduce obstacle might consist here in trying to
change ambulance crew practice by a reward/dissuasion system.

2. Examples of goal/agent substitutions

The more efficient way to resolve an obstacle is to eliminate the problem complete
choosing alternative goal refinement and responsibility assignments that do not in
the obstructed goal any more.

A first example of goal substitution was given above to resolve the obstacleMobOrder-
TakenByOtherAmbulance.

As another example of goal substitution, the obstacleInaccurateAmbulanceLocationInfo
obstructing the gaolAccurateAmbulanceLocationInfo assigned to theAVLS system to
maintain accurate information about ambulances location can be resolved by sele
another goal refinement and responsibility assignments in which informations a
ambulances locations are maintained through radio communications with ambu
staffs (Figure 9.31). This is an example of both agent substitution and goal substitu

Similarly, the obstaclesAmbStaffPressWrongButton or AmbStaffPressButtonIn-
WrongOrder obstructing the goalAccurateAvailibilityInfoOnMDT can be resolved by
choosing alternative goals and responsibility assignments in which ambulances ava
ity is maintained through radio communcations.

3. Examples of Obstacles Tolerance

We now illustrate the tacticrestore goal. Consider the obstacle

MDTMobOrderIgnored

that appears at the bottom of Table 9.1. A low-level restoration goal would be to gen
an audible signal to make crews aware of the mobilization order.
221

Case Studies

g a

here
able

ruct
.

eak-
An alternative, complementary, higher-level resolution would consist in introducin
higher-level restoration goal

FailedMobilizationRecovered

to resolve the higher-level obstacle

AllocatedAmbulanceNotMobilized

This goal would restore the higher-level goalAllocatedAmbulanceMobilized through the
following goal refinement tree:

FailedMobilizationRecovered
← AmbulanceMobilizationKnown

← ...
← UnrespondedAllocationRestored

← UnrespondedAllocationSignalled
← SignalledUnrespondedAllocReallocated

This is the tactic that seems to have been followed for the 1992 system. A problem
is that the operationalization of the restoration goal contributes to the obstacle in T
9.1 MobOrderNotTransmitted (because of radio congestion). Since that obstacle obst
a subgoal ofAchieve[AllocatedAmbulanceMobilized], it may create a snowball effect
This is exactly what happened in November 1992.

4. Deidealizing Goals/Assumptions Definitions

Finally, we illustrate the goal deidealization strategy on the overideal goal

∀ a: Ambulance, inc: Incident
Mobilized (a, inc) ⇒ ◊ Intervention (a, inc)

The following obstacle was generated by a non-persistence pattern from Table 1:

◊ ∃ a: Ambulance, inc: Incident
Mobilized (a, inc)
∧ (¬ Intervention (a, inc) U Breakdown (a))

Using the third deidealization pattern of Table 7 in Section 8.5.1, we obtain the w
ened version for that goal:

∀ a: Ambulance, inc: Incident
Mobilized (a, inc) ⇒ ◊ Intervention (a, inc) ∨ Breakdown(a)

The propagation will result in strengthened companion goals like

∀ inc: Incident, p: Person
Reported (inc, p) ⇒
◊ ∃ a: Ambulance, inc: Incident
Mobilized (a, inc)
∧ (¬ Breakdown(a) W Intervention (a, inc))

to be refined and deidealized in turn.
222

Case Studies

iden-

nd

t
w sub-
g the

by
ned
As another example, consider the idealized assumptionIncidentResolvedByIntervention
assuming that an incident is resolved by the intervention of a single ambulance. We
tified that this assumption is obstructed by the obstaclesPatientNotTreatedAtLocation
andPatientNotAdmittedAtHospital. In this case, the idealized assumption is removed a
replaced by the goal:

Achieve[EveryPatientTreatedAtLocationAndAdmittedToHospital].

The goal refinement tree for the high-level goalIncidentResolved is now given by:

IncidentResolved
← IncidentReported
← FastAmbulanceIntervention
← EveryPatientTreatedAtLocationAndAdmittedToHospital

In this goal refinement, the goalFastAmbulanceIntervention, a simple renaming of our
initial goal AmbulanceIntervention, is concerned with the rapid intervention of a firs
ambulance at the incident scene as required by the Government standard. The ne
goal address separately the problem of mobilizing sufficient ambulances carryin
appropriate medical resources. Note that the goalFastAmbulanceIntervention is con-
cerned with the intervention of an ambulancefor an incident, whereas the goal
EveryPatientTreatedAtLocationAndAdmittedToHospital is concerned with the interven-
tion of an ambulancefor a patient (this refinement can be seen as decomposition
views [Jac96]: the incident view and the patient view). This new goal will then be refi
in a way that is much similar to the refinement of the goalFastAmbulanceIntervention.
223

Case Studies

new
Bay

ngers

essary
is to
from
con-

te is
stem,

ped

the
fter a
ords
al
select

hows
n-

oals
t

9. 2. The BART Train Control Case Study

9. 2. 1. Introduction

The second case study is concerned with the development of a portion of the
Advanced Automatic Train Control system being developed for the San Francisco
Area Rapid Transit (BART). The purpose of the new system is to serve more passe
by running trains more closely spaced.

The case study description [Win99] focuses on those aspects of BART that are nec
to control the speed and acceleration for the trains in the system. The problem
develop the speed/acceleration control system whose responsibility is to get trains
one point to another as fast and smoothly as possible, subject to the following safety
straints:

• A train should not enter a closed gate. (In the context of the BART system, a ga
not a physical gate, but a signal, received by the speed/acceleration control sy
that establish when a train has the right to enter a track segment.)

• A train should never get so close to a train in front so that if the train in front stop
suddenly (e.g., derailed) the following train would hit it.

• A train should stay below the maximum speed that track segment can handle.

9. 2. 2. Identifying and Formalizing Preliminary Goals

1. Identifying goals from the initial document

The first step of the elaboration method consists in identifying high-level goals from
initial problem statement. Figure 9.35 shows a portion of the goal graph identified a
first reading of the initial document. The goals were obtained by searching for keyw
such as “purpose”, “objective”, “intent”, “in order to”, and so forth. In this graphic
specification, clouds denote softgoals and optimization goals (used in general to
among alternatives - see Section 3.2.4.6), parallelograms denoteAchieve/Maintain/Avoid
goals that constrain the behaviours of the system.

The objective of the new BART system is to serve more passengers. Figure 9.35 s
this high-level goal (ServeMorePassenger) together with alternative subgoals that co
tribute to its satisfaction. Two alternative subgoals contributing to the goalServeMore-
Passenger are to run trains more closely spaced (TrainsMoreCloselySpaced) and to add
more tracks (NewTracksAdded).

Another goal of the system is to minimize costs, which is refined into the two subg
Minimize[DvlptCosts] andMinimize[OperationalCosts]. The figure also records a conflic
between the goalNewTracksAdded and the goalMinimize[DvlptCosts].
224

Case Studies

itial

gure
se

mfort,
ls con-
Another import aspects of the BART system concern the safety of transport. The in
problem statement defines three safety goals that the system must satisfy:

Goal Maintain[WCSDistBetweenTrains]
Definition A train should never get so close to a train in front so that if the train in
front stopped suddenly (e.g., derailed) the (following) train would hit it.

Goal Avoid[TrainEnteringClosedGate]
Definition A train should not enter a closed gate.

Goal Maintain[TrackSegmentSpeedLimit]
Definition A train should stay below the maximum speed the track segment can han-
dle.

Finally, not only should trains run fast and safely, they should also run smoothly. Fi
9.35 shows the goalSmoothMovement and its goal dependencies mentioned in the ca
study description: the smooth movement of trains contributes to the passengers’ co
but also minimize wear stress on equipment and power usage. These last two goa
tributes to the satisfaction of the goalMinimize[OperationalCosts].

ServeMorePassenger

TrainsMoreClosely
Spaced

NewTracksAdded

Minimize[Costs]

FIGURE 9.35. Preliminary goal graph for the BART system

Minimize[DvlptCosts] Minimize
[OperationalCosts]

SafeTransport

Maintain
[WCSDistBetweenTrains]

Maintain
[TrackSegmentSpeedLimit]

Avoid
[TrainEnteringClosedGate]

...

PassengerComfort

Minimize
[StressOnEquipment]

Minimize
[PowerUsage]

SmoothMovement
225

Case Studies

isely.

to the

ce
-
itial

sim-
2. Formalizing Goals and Identifying Objects

The three safety goal identified in the previous section may be defined more prec
The goalMaintain[TrackSegmentSpeedLimit] is formally defined as follows:

Goal Maintain[TrackSegmentSpeedLimit]
Definition A train should stay below the maximum speed the track segment can han-
dle.
FormalDef ∀ tr: Train, s: TrackSegment
On(tr, s) ⇒ tr.Speed ≤ s.SpeedLimit

The predicates, objects, and attributes appearing in this goal formalization give rise
following portion of the object model:

The goalMaintain[WCSDistBetweenTrains] is also defined formally:

Goal Maintain[WCSDistBetweenTrains]
Definition A train should never get so close to a train in front so that if the train in
front stopped suddenly (e.g., derailed) the following train would hit it.
FormalDef ∀ tr1, tr2: Train
Following(tr1, tr2) ⇒ tr2.Loc - tr1.Loc ≥ tr1.WCSDist

In this definition, the attributeWCSDist denotes the actual worst case stopping distan
of a train based on thephysical speedof the train. The definition of the worst case stop
ping distance of a train is given as part of the domain knowledge. (Note that the in
document defines a worst case stopping distance based on thecommanded speedof the
train rather then on the physical speed.)

We assume that the location of a train is given by its position on a given track. (For
plicity, we also assume that trains have no length.) The predicateFollowing(tr1, tr2)
appearing in this definition is then formally defined by:

Following(tr1, tr2) ⇔
(∃ track: Track): OnTrack(tr1, track) ∧ OnTrack(tr2, track) ∧ tr1.Loc ≤ tr2.Loc
∧ ¬ (∃ tr3: Train): OnTrack(tr3, track) ∧ tr1.Loc ≤ tr3.Loc ∧ tr3.Loc ≤ tr2.Loc

Note that according to this definition, two trains linked by theFollowing relationship are
necessarily on the same track.

TrackSegment
SpeedLimit

On
Train
Speed
226

Case Studies

n says
losed.

 by:

omes
p in
in is
tween
The initial portion of the object model is now enriched from these definitions:

Finally, the goalAvoid[TrainEnteringClosedGate] can be given the following first-sketch
definition:

Goal Avoid[TrainEnteringClosedGate]
Definition A train should not enter a closed gate.
FormalDef ∀ g: Gate, s: TrackSegment, tr: Train
g.Status = ‘Closed’ ∧ HasGate(s, g) ⇒ ¬ @ ¬ On(tr, s)

Note that gates are placed at the end of some track segments. The formal definitio
that a train should not leave a track segment if the gate ending that segment is c
(Remember that gates are not physical gates.)

The portion of the object model derived from the formalization of the goals is given

The above definition of the goalAvoid[TrainEnteringClosedGate] is too strong to be sat-
isfiable in the domain. A train cannot stop instantaneously, therefore if a gate bec
closed when the train is too close to the gate, it will be impossible for the train to sto
time. In the actual BART system, the definition of that goal is weakened so that a tra
allowed to enter a closed gate if the gate has become closed when the distance be

TrackSegment
SpeedLimit

On
Train
Speed
Loc
WCSDist

Track

OnTrack
Following ComposedOf

TrackSegment
SpeedLimit

On
Train
Speed
Loc
WCSDist

Track

OnTrackFollowing
ComposedOf

HasGate Gate
Loc
Status

Switch
position

ISA
227

Case Studies

pond

sible
ng of
nes.

pass-
the train and the gate was too short for the train to stop in time. (Note that this corres
to an application of the tacticweaken goal with unsatisfiability condition). The actual def-
inition of the goalAvoid[TrainEnteringClosedGate] is therefore given by:

Goal Avoid[TrainEnteringClosedGate]
Definition A train should not enter a closed gate provided that the gate has been
closed when the distance between the train and the gate was more than the worst
case stopping distance of the train.
If the gate is open when the distance between the train and the gate is less than the
worst case stopping distance of the train, the train may ignore the gate, even if it
becomes closed later.
FormalDef ∀ g: Gate, s: TrackSegment, tr: Train
(g.Status = ‘Closed’ B (g.Loc - tr.Loc) ≥ tr.WCSDist)
∧ HasGate(s, g)
⇒ ¬ @ ¬ On(tr, s)

Allowing trains to enter a closed gate if the gate becomes closed when it is impos
for the train to stop in time is not necessarily unsafe. The rationale for such weakeni
the goal can only be understood by identifying the higher level goal that this goal refi
This is done in the next section.

3. Identifying new goals trough WHY questions

Asking WHY question about the goalAvoid[TrainEnteringClosedGate] yields a new por-
tion of the goal graph, shown in Figure 9.36.

The graph shows that the purpose of not entering closed gates is to keep trains from
ing through switches that are not appropriately positioned:

Goal Avoid[TrainOnSwitchInWrongPosition]
InformalDef A train should not enter a switch if it is not appropriately positioned.
FormalDef ∀ tr: Train, sw: Switch, track: Track
ApproachingSwitchOnTrack(tr, sw, track) ∧ sw.Position ≠ tr.Direction ⇒ ¬ @ On(tr,
sw)

In this goal graph, the definition of the goal

Maintain[GateClosedInTimeWhenSwitchInWrongPosition]

FIGURE 9.36. Asking WHY questions for the goalAvoid[TrainEnteringClosedGate]

Maintain
[GateClosedInTime

WhenSwitchInWrongPosition]

Avoid
[TrainOnSwitchInWrongPosition]

Avoid
[TrainEnteringClosedGate]

Maintain
[TrainOnCorrectLine] Avoid

[TrainDerailment]

...

WHY
228

Case Studies

n of

l

defi-
is elicited formally by matching a chain-driven refinement pattern to the formalizatio
the parent goal Avoid[TrainOnSwitchInWrongPosition] and of the initial goal
Avoid[TrainEnteringClosed Gate]. After further simplification of the generated forma
assertion, the goal is defined as follows:

Goal Maintain[GateClosedInTimeWhenSwitchInWrongPosition]
InformalDef When a switch is not appropriately positioned for a train approaching
the switch on a given track, the gate guarding the switch on that track must be closed
in time so that it is still possible for the train to stop before the switch.
FormalDef ∀ tr: Train, sw: Switch, s: TrackSegment, g: Gate, track: Track
ApproachingSwitchOnTrack(tr, sw, track) ∧ sw.Position ≠ tr.Direction
∧ NextSegmentOnTrack(track, s, sw)
∧ HasGate(s, g)
⇒
g.Status = ‘Closed’ B (g.Loc - tr.Loc) ≥ tr.WCSDist

The following domain properties were also identified and used to produce this goal
nition:

every track segment leading to a switch is ended with a gate
NextSegmentOnTrack(track, s, sw) ⇒ (∃ g: Gate): HasGate(s, g)

a train enters a switch iff it leaves a track segment preceding the switch
@ On(tr, sw)
⇔ (∃ track: Track, s: TrackSegment): NextSegmentOnTrack(track, s, sw) ∧ @ ¬ On(tr,
s)

The object model derived from these definitions is given by:

Similarly, asking WHY questions about the goalsMaintain[TrackSegmentSpeedLimit]
and Maintain[WCSDistBetweenTrains] yield respectively the goalsAvoid[TrainDerail-
ment] andAvoid[TrainsCollisions] (Figure 9.37).

TrackSegment
SpeedLimit

On
Train
Speed
Loc
WCSDist

Track

OnTrack
Following ComposedOf NextSegmentOnTrack

Gate
Loc
Status

Switch
position

ISA

ApproachingSwitch
OnTrack

HasGate
229

Case Studies

an
ener-

l-
le by
he

g to
e tac-

train

goals

t-
that
s clear
 goal.
9. 2. 3. Refining goals and identifying alternative responsibility assignments

We now illustrate the use of agent-driven tactics for refining the goalMaintain[WCSDist-
BetweenTrains] until all leaf goals are realizable by single agents. Figure 9.38 gives
overview of the goal refinement graph and responsibility assignments that will be g
ated.

The refinement graphs for the other safety goals,Avoid[TrainEnteringClosedGate] and
Maintain[TrackSegmentSpeedLimit], can be generated in a similar way.

1. Split lack of control by cases

The goalMaintain[WCSDistBetweenTrains] constrains the speed and location of the fo
lowing train based on the location of the preceding train. It is therefore not realizab
the TrainControlSystem agent, because it lacks of monitorability and control for t
actual speed and location of trains.

In order to resolve such realizability problem, the goal is first split by cases accordin
whether in the previous state the two trains are already on the same track or not. Th
tic split lack of control by cases is therefore used to generate the subgoals:

Maintain[WCSDistBetweenTrainsOnSameTrack]

Avoid[ViolationOfWCSDistWhenTrainEnteringTrack]

The second subgoal is further split by cases according to whether it is the preceding
or the following train that enters the common track, yielding the two goals:

Avoid[TrainEnteringTrackInFrontOfCloseTrain]

Avoid[TrainEnteringTrackBehingCloseTrain]

The figures below show two states of the system from which each of these two
could be violated. In stateA, the train tr2 is about the enter the track in front oftr1,
thereby violating the goalAvoid[TrainEnteringTrackInFrontOfCloseTrain]; in stateB, the
train tr1 is about the enter the track behindtr2, thereby violating the goalAvoid[TrainEn-
teringTrackBehingCloseTrain]. Although the initial document is silent about this, the sa
isfaction of the first subgoal is probably taken care of by the interlocking system
manages track switches and associated signals. For the second subgoal, it is les
whether the train control system may rely on the interlocking system to satisfy that

FIGURE 9.37. Asking WHY questions for the goals
Maintain[TrackSegmentSpeedLimit] andMaintain[WCSDistBetweenTrains]

Maintain
[TrackSegmentSpeedLimit]

Avoid
[TrainDerailment]

WHY

Maintain
[WCSDistBetweenTrains]

Avoid
[TrainsCollisions]
230

Case Studies
FIGURE 9.38. Goal refinement graph and responsibility assignments for the goal
Maintain[WCSDistBetweenTrains]

Maintain
[WCSDistBetweenTrains]

Avoid
[BackwardTrain]

Maintain
[WCSDistBetweenTrains

OnSameTrack]

Maintain
[SafeAccCmd

OfFollowingTrain]
introduce accuracy goal
to resolve lack of mon
for train speed/location

split lack of control by cases

Avoid
[TrainEnteringTrack

InFrontOfCloseTrain]

Avoid
[TrainEnteringTrack
BehindCloseTrain]

...

split lack of control
for train speed/location

Maintain
[WCRespOfFollowingTrain

ToAccCmd

Maintain
[SafeAccCmdOfFollowingTrain

BasedOnSpeed/LocationEstimates]

Maintain
[AccurateSpeed/Location

Estimates]

Maintain
[CmdMsgTransmittedInTime]

Maintain
[ReceivedCmdMsgExercised]

Achieve
[CmdMsgSentInTime]

Achieve
[SentCmdMsgDeliveredInTime]

introduce actuation goal
to resolve lack of ctrl

for acceleration command

split lack of control
with milestone

OnBoard
TrainController

TrainControl
System

Maintain
[SafeAcc/SpeedCmd

InCmdMsg]

Communication
Infrastructure

TrainTracking
System
231

Case Studies

pre-

bil-
These two goals may be formally defined as follows:

Goal Avoid[TrainEnteringTrackInFrontOfCloseTrain]
Definition A train should not enter a track in front of another train if it violates the
worst case stopping distance between the two trains.
FormalDef ∀ tr2: Train, track: Track
@ OnTrack(tr2, track)
⇒ ¬ (∃ tr1: Train):
tr1≠tr2 ∧ OnTrack(tr1, track) ∧ tr2.Loc ≥ tr1.Loc ∧ tr2.Loc - tr1.Loc ≥ tr1.WCSDist

Goal Avoid[TrainEnteringTrackBehingCloseTrain]
Definition A train should not enter a track behind another train if it violates the worst
case stopping distance between the two trains.
FormalDef ∀ tr1: Train, track: Track
@ OnTrack(tr1, track)
⇒ ¬ (∃ tr2: Train):
tr1≠tr2 ∧ OnTrack(tr2, track) ∧ tr2.Loc ≥ tr1.Loc ∧ tr2.Loc - tr1.Loc ≥ tr1.WCSDist

The goal Maintain[WCSDistBetweenTrainsOnSameTrack] is defined formally as fol-
lows:

Goal Maintain[WCSDistBetweenTrainsOnSameTrack]
Definition If a train is following another so that the distance between the two trains is
safe, then the distance between the two trains must remain safe in the next state.
FormalDef ∀ tr1, tr2: Train, track: Track
● (Following(tr1,tr2) ∧ tr2.Loc - tr1.Loc ≥ tr1.WCSDist)
∧ Following(tr1, tr2)
⇒
tr2.Loc - tr1.Loc ≥ tr1.WCSDist

This goal is further refined in the following sections.

2. split lack of control for train location

The above goal

Maintain[WCSDistBetweenTrainsOnSameTrack]

constrain the speed and location of the following train based on the location of the
ceding train. It is unrealizable by the centralizedTrainControlSystem agent because it
lacks of control for the speed and location of the following train, and lack of monitora
ity for the location of both trains.

tr1

tr2

tr2

tr1

A. train entering track in front of close train B. train entering track behind close train

track1 track1

track2track2
232

Case Studies

he

wing
ptions
l is a
to its
iour of

ike

the
ccel-

ler-
r the
ing.
by

ant to
ation
in, but

ocu-
train

ion for

e

The tacticsplit lack of control is used to resolve lack of control for the acceleration of t
following train, by identifying the new intermediate attributeTrain.AccCmd that denotes

the acceleration command controlled by theOnBoardTrainController1, and generating
the following subgoals:

Maintain[SafeAccCmdOfFollowingTrain]

Maintain[WCRespOfFollowingTrainToAccCmd]

Avoid[BackwardTrain]

The first subgoal defines an upper bound on the acceleration command of the follo
train. In order to define such upper bound, it is necessary to make some assum
about the behaviours of the preceding and following trains. The second subgoa
worst case assumption that relates the physical acceleration of the following train
acceleration command. The third subgoal is a worst case assumption on the behav
the preceding train, i.e. it may not go backward (but could suddenly stop).

A definition of the worst case assumption on the following train will look something l
this:

tr.AccCmd ≥ 0 ⇒ tr.Acc ≤ tr.AccCmd
∧ ■≤MCDelay tr.AccCmd < 0 ⇒ tr.Acc < 0
∧ tr.AccCmd < 0 ∧ ¬ ■≤MCDelay tr.AccCmd < 0 ⇒ tr.Acc ≤ ● tr.Acc

This definition says that: (i) if the acceleration command of the train is positive,
actual acceleration of the train is less than the commanded acceleration, (ii) if the a
eration command of the train has been negative during the lastMCDelay time units,
whereMCDelay is the delay needed to go into braking mode, the train is actually dece
ating, and (iii) if the acceleration command is negative but has not been negative fo
lessMCDelay time units, we assume that the acceleration of the train is not increas
This definition is given here as an example. Further elicitation from and validation
domain experts are required to define that assumption more accurately. It is import
note that the definition of that assumption is not intended to capture the exact rel
between the actual acceleration of a train and the acceleration command of the tra
only some worst case assumption on those quantities.

The third goal defines a worst case assumption on the preceding train. The initial d
ment says that collisions between trains has to be avoided even if the preceding
stopped suddenly (e.g. because of derailment). Therefore, the worst case assumpt
the preceding train is that it does not go backward:

❑ (tr2.Loc ≥ ● tr2.Loc)

1. Note that the acceleration command denotes here a quantity controlled by th
OnBoardTrainController. It correspond to the state of the acceleration and brak-
ing commands of the train. It should not be confused with the acceleration
command in a command message sent by theTrainControlSystem to the
OnBoardTrainController.
233

Case Studies

e

r
iffer-

of that

y

ions of
espon-
nd
n the
of the
Finally, the formal definition of the goalMaintain[SafeAccCmdOfFollowingTrain] looks
like this:

Goal Maintain[SafeAccCmdOfFollowingTrain]
Definition The acceleration command of a train tr1 should be less than

F(tr1.Loc, tr2.Loc, tr1.Speed),
where tr2 is the train preceding tr1. The value of that function is calculated so that it
ensures a worst case distance is maintained between the two trains.
FormalDef ∀ tr1, tr2: Train
● Following(tr1,tr2)
⇒
tr.AccCmd ≤ F(tr1.Loc, tr2.Loc, tr1.Speed)

In this goal, the functionF(tr1.Loc, tr2.Loc, tr1.Speed) defines an upper bound for th
acceleration command of the train. It must be calculated so that the parent goal,Main-
tain[WCSDistBetweenTrainsOnSameTrack], is satisfied provided that the two othe
assumptions in the goal refinement are satisfied. This function is the solution of a d
ential equation. We assume that such solution can be given by domain experts.

This goal is further refined in the next section.

3. Resolve lack of monitorability for trains’ speed and location

The goal

Maintain[SafeAccCmdOfFollowingTrain]

constrains the commanded acceleration of a train based on the speed and position
train and on the position of the preceding train. This goal is unrealizable by theTrainCon-
trolSystem, because it lacks monitorability for the trains’ speed and locations.

The tacticintroduce tracking object is applied to resolve such lack of monitorability b
generating the subgoals:

Maintain[AccurateSpeed/LocationEstimates]

Maintain[SafeAccCmdBasedOnSpeed/LocationEstimates]

The second subgoal is an accuracy goal that relates the actual speed and locat
trains to the estimated speed and locations of trains. That goal is assigned as the r
sibility of a TrainTrackingSystem agent mentioned in the initial document. The seco
goal constrain the value of the acceleration command of the following train based o
position estimates of the following and preceding train, and on the speed estimate
following train.
234

Case Studies

sition
tively
-

ART
i-
more

train
These goals refer to the new intermediate objectTrainInfo that denotes informations
about trains speed and location. At this stage, such object is defined as follows:

Entity TrainInfo
Has
TrainID: TrainID_Domain
TrackId: TrackID_Domain

the track on which the position of the train is given
Loc: LocationUnit

the mean location estimate of the train
LocDev: LocationUnit

the standard deviation from the mean location
Speed: SpeedUnit

the mean speed estimate of the train
SpeedDev: SpeedUnit

the standard deviation from the mean speed

The formal definition of the subgoals generated by the tactic are given by:

Goal Maintain[AccurateSpeed/LocationEstimates]
Definition The actual speed and location of a train should be within the mean and
standard deviation of the speed and position estimates of that train.
FormalDef ∀ tr: Train, ti TrainInfo
Tracking(ti, tr)
⇒
(∀ track: Track, track_id: TrackID_Domain):

(ti.TrackId = track_id ↔ OnTrack(tr, track) ∧ track.TrackID = track_id)
∧ ti.Loc - ti.LocDev ≤ tr.Loc ≤ ti.Loc + ti.LocDev
∧ ti.Speed - ti.SpeedDev ≤ tr.Speed ≤ ti.Speed + ti.SpeedDev

Goal Maintain[SafeAccCmdBasedOnTrainSpeed/PositionEstimates]
Definition The acceleration command of a train tr1 should be less than

F(ti1.Loc + ti1.LocDev, ti2.Loc - ti2.LocDev, ti1.Speed + ti2.SpeedDev)
where ti1 denotes the object tracking tr1 and ti2 denotes the object tracking the pre-
ceding train.
FormalDef ∀ tr1, tr2: Train, ti1, ti2: TrainInfo
Tracking(ti1, tr1) ∧ Tracking(ti2, tr2)
∧ ● FollowingInfo(ti1,ti2)
⇒
tr1.AccCmd ≤ F(ti1.Loc + ti1.LocDev, ti2.Loc - ti2.LocDev, ti1.Speed + ti2.SpeedDev)

Note that the definition of the last subgoal assumes the worst-case for the speed/po
estimates. For the following train, the worst-case speed and position are respec
ti1.Speed + ti1.SpeedDev and ti1.Loc + ti1.LocDev. For the preceding train, the worst
case position isti2.Loc - ti2.LocDev.

These goal definitions are first-sketch approximations of the actual goals of the B
system. In the actual system, theTrainTrackingSystem issues speed and location est
mates every 1/2 seconds. Further work is therefore required to define those goals
precisely.

The above goal refinement is also based on the following goal requiring that every
is tracked by exactly oneTrainInfo instance, and that theTracking relationship is static:

∀ tr: Train ❑ ∃! ti: Tracking(ti, tr)
(∀ tr: Train, ti: TrainInfo): Tracking(ti, tr) ⇒ ❑ Tracking(ti, tr)
235

Case Studies

r-
y the
lera-

ns of

l
ting

n
eed/

d to be
ed

be
mand

d by
he

he
the
4. Resolve lack of control for the acceleration command of trains

The goal

Maintain[SafeAccCmdBasedOnSpeed/LocationEstimates]

is still unrealizable by theTrainControlSystem because it lacks of control for the accele
ation command of the train. (the acceleration command is a quantity controlled b
OnBoardTrainController, and that is used by that agent to command the actual acce
tion of the train.) This goal is also unrealizable by theOnBoardTrainController because it
lacks of monitorability for theTrainInfo entities.

At this point, alternative system design are generated through alternative applicatio
agent-driven tactics.

A First Centralized Design

In a first alternative, the tacticintroduce actuation goal is used to resolve lack of contro
of theTrainControlSystem agent for the acceleration command of the train, by genera
the subgoals:

Maintain[SafeCmdMsgReceivedInTime]

Maintain[ReceivedCmdMsgExercised]

The first goal requires that every 1/2 second, theOnBoardTrainController receives a com-
mand message from theTrainControlSystem. (The 1/2 second delay requirement is take
from the initial case study description. It corresponds to the frequency at which sp
location estimates of trains are received by theTrainControlSystem.) The command mes-
sage has an acceleration command attribute that defines the acceleration comman
applied by theOnBoardTrainController. The second subgoal is an actuation goal assign
to theOnBoardTrainController. It requires the acceleration command of the train to
equal to the value of the acceleration command contained in the last received com
message.

Note that in this alternative, the acceleration command of the train is fully calculate
the centralizedTrainControlSystem. This alternative is not exactly the one chosen for t
BART system. The actual design for the BART system will be discussed later.

The first subgoal is given the following first-sketch definition:

Goal Maintain[SafeCmdMsgReceivedInTime]
Definition TheOnBoardTrainController should receive a command message from t
TrainControlSystem every 1/2 second. The value of the acceleration command in
command message must be safe, i.e. it should be less than

G(ti1.Loc + ti1.LocDev, ti2.Loc - ti2.LocDev, ti1.Speed + ti2.SpeedDev)
where attributes of ti1 denote speed/position estimates about the following train and
attributes about ti2 denote speed/position estimates about the preceding train.
FormalDef ∀ tr1, tr2: Train, ti1:TrainInfo
Tracking(ti1, tr1)
● FollowingInfo(ti1,ti2)
⇒ ◊≤1/2sec (∃ cmd_msg: CommandMessage):
Received(cmd_msg, tr)
∧ cmd_msg.AccCmd ≤ G(ti1.Loc + ti1.LocDev, ti2.Loc - ti2.LocDev, ti1.Speed +
ti2.SpeedDev)
236

Case Studies

p-
e
ond

ation

tive is

the
eed

con-

om-
Note that the upper bound on the acceleration command has been strenghtened toG(ti1,
ti2) (whereG(ti1, ti2) ≤ F(ti1, ti2)) to take into account the 1/2 second delay in the rece
tion of the command message. The functionG has to be calculated by making som
worst case assumption on the behaviour of the following train during this 1/2 sec
delay.

The second subgoal is defined as follows:

Goal Maintain[ReceivedCmdMsgExercised]
Definition The acceleration command of the train should be equal to the acceler
command of the last received command message.
FormalDef ∀ tr: Train, cmd_msg: CommandMessage
Received(cmd_msg, tr)
∧ ¬ (∃ cmd_msg’: CommandMessage): cmd_msg’ ≠ cmd_msg

∧(Received(cmd_msg’, tr) S Received(cmd_msg, tr))
⇒
tr.AccCmd = cmd_msg.AccCmd

In order to reach subgoals assignable to single agents, the first goal in this alterna
further refined as follows:

Maintain[SafeCmdMsgReceivedInTime]

← Achieve[CmdMsgSentInTime]

← Maintain[SafeAccCmdInCmdMsg]

← Maintain[SentCmdMsgDeliveredInTime]

The first and second subgoals are assigned as the responsibility of theTrainControlSys-
tem agent; the third is assigned as the responsibility of aCommuncationInfrastructure
agent.

A Fully Distributed Design

An alternative design can be generated by applying the tacticintroduce accuracy goal to
resolve lack of monitorability of theOnBoardTrainController for theTrainInfo objects. An
application of this tactic refines the goalMaintain[SafeAccCmdBasedOnSpeed/Loca-
tionEstimates] into the subgoals:

Maintain[TrainInfoMsgDeliveredInTime]

Maintain[SafeAccCmdBasedOnTrainInfoMsg]

The first subgoal requires that theOnBoardTrainController of a given train receives peri-
odically information messages from theTrainControlSystem (or directly from theTrain-
TrackingSystem agent). These information messages contain informations about
position of the train and the position of its preceding train. (Information about the sp
of the train is not necessary as it can be obtained by theOnBoardTrainController.) The
second subgoal is assigned as the responsibility of theOnBoardTrainController. It con-
strain the value of the acceleration command of the train based on the informations
tained in the last received train information message.

This alternative correspond to a fully distributed system in which the acceleration c
mand of trains are calculated by theOnBoardTrainController’s rather than by the central-
izedTrainControlSystem.
237

Case Studies

yet
n the

d by the
ed,

safety
d when

etween
igger

anded
ot used

s in

.

The BART Design

The design for the BART system described in the initial document is based on
another alternative. That design shows an interesting split of responsibilities betwee
centralizedTrainControlSystem and theOnBoardTrainController: the acceleration com-
mand of a train is partly calculated by the centralizedTrainControlSystem and partly by
theOnBoardTrainController’s.

In this design, the command messages sent toOnBoardTrainController’s contains both a
commanded acceleration and a commanded speed. The commanded speed is use
OnBoardTrainController to ensure a smooth acceleration of the train toward that spe

and to minimize mode changes when the train seeks to maintain that speed1. A motiva-
tion for this design is therefore that it contributes to the goalSmoothMovement in Figure
9.35.

The commanded speed is also used in the BART system as a way to strengthen the
of the system. The commanded speed is used as an upper bound of the actual spee
calculating an acceleration command that ensure a worst case stopping distance b
the trains. In order for this to be safe, the commanded speed should always be b
than the actual speed of the train. (When deceleration is commanded, the comm
speed should still be bigger than the actual speed, and the commanded speed is n
by theOnBoardTrainController.)

The goal

Maintain[SafeAccCmdBasedOnSpeed/LocationEstimates]

is therefore refined as follows:

← Maintain[SafeCmdMsgReceivedInTime]
← Achieve[CmdMsgSentInTime]
← Maintain[SafeAcc/SpeedCmdInCmdMsg]
← Maintain[SentCmdMsgDeliveredInTime]

← Maintain[ReceivedCmdMsgExercised]

In this alternative, the goalMaintain[ReceivedCmdMsgExercised] defines the behaviour
of the OnBoardTrainController in response to the speed and acceleration command
the received command messages; the general form for the goalMaintain[SafeAcc/Speed-
CmdInCmdMsg] will look something like this:

Goal Maintain[SafeAcc/SpeedCmdInCmdMsg]
FormalDef ∀ cmd_msg: CommandMessage, ti1, ti2: TrainInfo
cmd_msg,.Sent ∧ cmd_msg.TrainId = ti1.TrainId
∧ ● FollowingInfo(ti1, ti2)
⇒
cmd_msg.AccCmd ≤ F(ti1, ti2)
∧ cmd_msg.SpeedCmd ≤ G(ti1, ti2)
∧ cmd_msg.SpeedCmd > ti1.Speed + ti1.SpeedDev

1. When given a positive acceleration command, theOnBoardTrainController will accelerate
the train at the given rate until the actual speed is within 7 mph of the commanded speed
When the actual speed is within 7 mph of the commanded speed, theOnBoardTrainCon-
troller will limit its acceleration to smoothly reach a speed at 2 mph below the commanded
speed. Once a speed at 2 mph below the commanded speed is reached, theOnBoardTrain-
Controller will try to maintain that speed, although there may be some small fluctuations.
238

Case Studies

trains

d mes-
ance,

equire-
chitec-
cord

goals
rminal

t

er-
at
In our model, a single instance of theTrainControlSystem agent is responsible for issuing
safe command messages for all trains. In the actual BART design, the handling of
is split among multiple instances of theTrainControlSystem agent. (This design can be
generated by splitting the goalMaintain[SafeCmdMsgReceivedInTime] into cases).
Decisions about the number of instances ofTrainControlSystem agent, the number of
trains to be handled by each instance, and the required delays for sending comman
sages are fundamental design decisions that have critical impacts on the perform
safety and costs of the system. These decisions are at the boundary between r
ments engineering and architectural designs. Techniques such as those of the Ar
ture TradeOffs Analysis Method [Kaz99] are relevant to make such decisions and re
their rationale.

9. 2. 4. Goal Operationalization

Agents interfaces and operational requirements are now derived from the terminal
generated during the goal refinement process. Consider for instance the above te
goal

Maintain[SafeAcc/SpeedCmdInCmdMsg]

assigned as the responsibility of theTrainControlSystem agent. The portion of the agen
interface model derived from that responsibility assignment is given by:

From the formal definition of that goal, we also derive the following operation to be p
formed by theTrainControlSystem agent, together with the required post conditions th
guarantees the satisfaction of the goal:

Operation SendCommandMessage
PerfBy TrainControlSystem
Input TrainInfo {arg ti1, ti2}
Output CommandMessage {res cmd_message}
Dompre ¬ cmd_msg.Sent
DomPost cmd_msg.Sent ∧ cmd_msg.TrainId = ti1.TrainId
ReqPostFor Maintain[SafeAcc/SpeedCmdInCmdMsg]
● FollowingInfo(ti1, ti2)
→
cmd_msg.AccCmd ≤ F(ti1, ti2)
∧ cmd_msg.SpeedCmd ≤ G(ti1, ti2)
∧ cmd_msg.SpeedCmd > ti1.Speed + ti1.SpeedDev

From the formal definition of the goalAchieve[CmdMsgSentInTime], we derive a further
required trigger condition on that operation:

ReqTrigFor Achieve[CmdMsgSentInTime]
■≤1/2 sec ¬ (∃ cm2: CommandMessage): cm2.Sent ∧ cm2.TrainID = ti1.TrainId

TrainControl
System

TrainInfo CommandMessage
239

Case Studies

sign-
ibility

minal
e gen-
study
ment.

gen-
espond
rate
ntici-

at are

from

in
Further operations and agent interfaces are derived from other responsibility as
ments. Figure 9.39 shows the agent interface model derived from the respons
assignments in Figure 9.38.

9. 2. 5. Obstacle Analysis

We now apply obstacle identification techniques to generate obstacles for the ter
goals and assumptions generated during the goal refinement process. Several of th
erated obstacles correspond to problems that are anticipated in the initial case
description; other obstacles correspond to problems that are not raised in this docu

Next, we apply obstacle resolution tactics to generate alternative resolutions for the
erated obstacles. Several of the new requirements generated by these tactics corr
to features of the BART system mentioned in the initial document. We also gene
alternative requirements corresponding to alternative ways to resolve obstacles a
pated in the initial document; and further new requirements to tolerate obstacles th
not mentioned in this document.

9. 2. 5. 1. Generating Obstacles

Obstacles were identified by applying a mix of formal techniques and heuristics
Chapter 8. For example, consider the assumptionMaintain[WCRespOfFollowingTrain-
ToAccCmd] appearing in Figure 9.38:

Assumption Maintain[WCRespOfFollowingTrainToAccCmd]
FormalDef ∀ tr: Train
tr.AccCmd ≥ 0 ⇒ tr.Acc ≤ tr.AccCmd
∧ ■≤MCDelay tr.AccCmd < 0 ⇒ tr.Acc < 0
∧ tr.AccCmd < 0 ∧ ¬ ■≤MCDelay tr.AccCmd < 0 ⇒ tr.Acc ≤ ● tr.Acc

FIGURE 9.39. Portion of the agent interface model derived from the responsibility assignments
Figure 9.38

TrainControl
System

TrainInfo
CommandMessage

OnBoard
TrainController

TrainTracking
System

Train
Train.Speed

Train.Speed
Train.Loc

Train.AccCmd
240

Case Studies

sense
big-

is

efine-
The negation of this assumption yield the obstacleBadRespOfTrainToAccCmd, which is
then OR- refined into the subobstacles:

Obstacle ExcessiveAccelerationInRespToAccCmd
FormalDef ◊ ∃ tr: Train
(tr.AccCmd ∧ tr.Acc > tr.AccCmd)
∨
tr.AccCmd < 0 ∧ ¬ ■≤MCDelay tr.AccCmd < 0 ∧ tr.Acc > ● tr.Acc

Obstacle BadBraking
FormalDef ◊ ∃ tr: Train
■≤MCDelay tr.AccCmd < 0 ∧ tr.Acc ≥ 0

A further subobstacle of the obstacleExcessiveAccelerationInRespToAccCmd is men-
tioned in the initial case study description: since trains accelerometers cannot
acceleration due to gravity, the actual acceleration of a train on a downgrade will be
ger than commanded. Therefore the conditionAcceleratingTrainOnDownGrade is a sub-
obstacle of ExcessiveAccelerationInRespToAccCmd. Another subobstacle of
ExcessiveAccelerationInRespToAccCmd is that the acceleration command of the train
malfunctioning. The following obstacle refinement is thereby obtained:

ExcessiveAccelerationInRespToAccCmd
← AcceleratingTrainOnDownGrade
← AccelerationCommanddMalfunction

From the formal definition of the obstacleBadBraking, we also generate the following
obstacle refinement graph:

← BadBraking
← TrainDoesNotReconfigureForBraking
← ExcessiveModeChangeDelay
← NoBrakingInBrakingMode

Other obstacles generated from the terminal goals and assumptions of the goal r
ment graphs in Figure 9.38 are summarized in Table 9.4.

Table 9.4: Obstacles to subgoals of the goal Maintain [WCSDistBetweenTrainsOnSameTrack]

agent goal/assumption obstacles

-- Avoid [BackwardTrain] BackwardTrain

-- WCRespOfFollowingTrain
ToAccCmd

BadRespOfTrainToAccCmd
← ExcessiveAccelerationInRespToAccCmd

← AcceleratingTrainOnDownGrade
← AccelerationCommanddMalfunction

← BadBraking
← TrainDoesNotReconfigureForBraking
← ExcessiveModeChangeDelay
← NoBrakingInBrakingMode

TrainTracking
System

AccurateSpeed/Location
Estimates

InaccurateSpeed/LocationEstimates
← NoSpeed/PositionEstimates
← OutOfDateSpeed/LocationEstimates
← InaccurateRecentSpeed/LocationEstimates

← ImpossibleChangeInSpeed/LocationEstimates
← PlausibleInaccurateSpeed/PositionEstimates

OnBoard
TrainController

ReceivedCmdMsgExer-
cised

BadRespToCmdMsg
← CmdMsgIgnored
← ExcessiveAccelerationCommanded

ByOnBoradtrainController
241

Case Studies

ropos-
rious
urther

ents
nd to
or to

com-

tive
the

e
l
the
f
e

fe

elated
et
9. 2. 5. 2. Resolving Obstacles

For each generated obstacles, one should identify alternative obstacle resolutions p
als for preventing, reducing or tolerating the obstacle. In the sequel, we illustrate va
obstacle resolution tactics applied to the BART system. These tactics generate f
goals and requirements, some of which correspond to fault tolerance requirem
described in the initial document. Other goals generated by our tactics correspo
alternative resolutions for the obstacles that are anticipated in the initial document,
resolutions of obstacles not covered in that document.

1. Goal Substitution

As an example of goal substitution, consider the obstacleCmdMsgSentLate that
obstructs the goalCmdMsgSentInTime under the responsibility of theTrainControlSys-
tem agent. This obstacle occurs when the centralized system is not able to send
mand messages in time for every trains.

One possible resolution for this obstacle is generated by applying the tacticchoose alter-
native goal. It consists in eliminating the problem thoroughly by choosing the alterna
fully distributed design in which command acceleration are computed by
OnBoardTrainController’s instead of the centralizedTrainControlSystem.

2. Obstacle Prevention

As an example of obstacle prevention, consider the obstacleUnsafeCmdMsg obstructing
the goalMaintain[SafeAcc/SpeedCmdInCmdMsg] assigned as the responsibility of th
TrainControlSystem. An application of the tacticprevent obstacle generate the new goa
Avoid[UnsafeCmdMsgSent]. In the actual BART system, this new goal is assigned as
responsibility of aVital Station Computer agent. This new goal introduces a form o
redundancy: the (non-vital)TrainControlSystem agent is responsible for issuing saf
command messages in time, theVital Station Computer agent is responsible for blocking
command messages issued by theTrainControlSystem if these messages contain unsa
speed/acceleration commands. Note that theTrainControlSystem is to be operated on
hardware that is reliable enough to meet performance related goals, but not safety-r
goals; whereas theVital Station Computer agent is slower but reliable enough to me
safety-related goals.

TrainControl
System

CmdMsgSentInTime CmdMsgNotSentInTime
← CmdMsgNotSent
← CmdMsgSentLate
← CmdMsgSentToWrongTrain

SafeAcc/SpeedCmd
InCmdMsg

UnsafeCmdMsg
← UnsafeAccInCmdMsg
← CmdSpeedInCmdMsgExceedsSpeedEstimate

Communic.
Infrastructure

SentCmdMsg
DeliveredInTime

SentCmdMsgNotDeliveredInTime
← SentCmdMsgNotDelivered
← SentCmdMsgDeliveredLate
← SentCmdMsgDeliveredToWrongTrain
← DeliveredCmdMsgCorrupted

← DeliveredCmdMsgWithInvalidSpeed/AccCmd
← DeliveredCmdMsgWithCorruptedValidSpeed/

AccCmd

agent goal/assumption obstacles
242

Case Studies

ates
train
tant.)

ty of
ively,

e if

count
ropa-
the

wing

single
As another example of obstacle prevention, consider the obstacleImpossibleChangeIn-
Speed/LocationEstimates that obstructs the goalMaintain[AccurateSpeed/PositionEsti-
mates]. That obstacle covers situations in which changes in speed position estim
correspond to movement that are known to be physically impossible (for instance, a
is on a given track at one instant, and on a different unrelated track at the next ins
Such obstacle can be resolved by applying the tacticprevent obstacle which generate the
new goal

Avoid[ImpossibleChangeInSpeed/LocationEstimates]

which could be assigned as the responsibility of theTrainTrackingSystem. This new goal
corresponds to a standard technique in safety critical system for verifying that validi
the inputs of the system with respect to possible values in the environment. Alternat
the same obstacle could be resolved by applying the tacticmitigate obstacle and generat-
ing the new goal

Avoid[CmdMsgBasedOnImpossibleChangeInSpeed/LocationEstimates]

which could be assigned as the responsibility of theTrainControlSystem agent. In this
alternative, theTrainControlSystem is responsible for not issuing a command messag
the train speed position estimates are impossible in the domain.

3. Goal Deidealization

As an example of deidealization, consider the obstacleAcceleratingTrainOnDownGrade
obstructing the assumptionMaintain[WCRespOfFollowingTrainToAccCmd]. In this case,
the obstacle may be resolved by deidealizing the assumption so that it takes into ac
the acceleration due to the grade of the track. Such deidealization will then be p
gated to the other goals in Figure 9.38. It will ultimately result in a modification of
goal Maintain[SafeAcc/SpeedCmdInCmdMsg]], in which the acceleration in command
messages will have to take into account the grade of the track segment of the follo
train.

4. Obstacle Mitigation

As an example of obstacle mitigation, consider the obstaclesSentCmdMsgNotDelivered
andSentCmdMsgDelivedLate that obstructs the goalMaintain[SentCmdMsgDeliveredIn-
Time]. The tacticmitigate obstacle can here be used to generate the new goal

Avoid[TrainsCollisionsWhenCmdMsgNotTransmittedInTime].

This new goal ensures the higher level safety goalAvoid[TrainsCollisions]. This new goal
is also used to mitigate the other obstacleCmdMsgNotSent andCmdMsgSentLate that
obstructs the goalAchieve[CmdMsgSentInTime] assigned to theTrainControlSystem
agent.

The newly generated goal can then be refined into subgoals that are realizable by
agents:

Avoid[TrainsCollisionsWhenCmdMsgNotTransmittedInTime]
← FullBrakingWhenNoCmdMsgReceivedDuring2Seconds
← FullBrakingTrainStoppedWithinWCSDist
243

Case Studies

orst-
pping
ring

ented
w for
raking
ill not
appro-

d to

and
ealed
hese

sily

rom
ction
ump-
and
asier
nts
-level
f the
The second assertion in this refinement is a domain property characterizing the w
case stopping distance of a train. To satisfy that domain property, the worst case sto
distance is calculated by taking into account the distance that the train will travel du
the 2 second delay before applying the emergency brake.

Note that this delay of 2 seconds is an important design decision that is not docum
in the initial case study description. Choosing a shorter delay (e.g. 1 sec) would allo
a shorter distance between trains, but may result in more frequent emergency b
when command messages are not transmitted in time. The probability that a train w
receive a command message in time should therefore be used to choose the most
priate trade-off for this delay.

The other obstacleOutOfDateSpeed/LocationEstimates, obstructing the goalAccu-
rateSpeed/LocationEstimates assigned to theTrainTrackingSystem agent, is resolved
similarly by applying the tacticmitigate obstacle to generate the new goal

Avoid[TrainsCollisionsWhenOutOfDateSpeed/LocationEstimates].

This goal is refined in turns:

Avoid[TrainsCollisionsWhenOutOfDateSpeed/LocationEstimates].
← FullBrakingWhenOutOfDateTrainInfo

← FullBrakingWhenMOTTinCmdMsgExpired
← AccurateMOTTinCmdMsg

← FullBrakingTrainStoppedWithinWCSDist

This strategy allows one to derive new requirements and theMessage Origination Time
Tag (MOTT) attribute mentioned in the initial case study description and attache
TrainInfo andCommandMessage entities.

9. 3. Discussion

Our experience in using the KAOS goal-oriented requirement elaboration method
the techniques presented in the thesis for the LAS, the BART and other systems rev
a number of issues that are worth pointing out. Future work required by some t
issues is discussed in the concluding chapter.

Eliciting and formalizing high-level goals

• The goal-oriented requirements elaboration method relies on theidentification of
high-level goals. For the LAS and the BART case studies, such goals were ea
identified as they were explicitly defined in the initial documents.

• The method also relies on theearly formalization of goals and assumptionsin the
environment. Such formalization allows for the systematic derivation of objects f
goal definitions, the verification of the correctness of goal refinements, the dete
of conflicts between goals and the generation of obstacles from goals and ass
tions. Such early formalization of high-level goals and assumptions is desirable
feasible. High-level goals and assumptions about the environment are actually e
to define (both formally and informally) than lower-level goals and requireme
expressed at the interface of the software. The reason for this is obvious; higher
goals are more abstract properties that are not concerned with the details o
244

Case Studies

, the

the
cify

racti-

lysis,
eal-
licit,
stem

ta-
fine-
hed,
sup-
hese
aphs

the
on
ent

oal,
tion

ain
ibility
crea-
s by

r
-
ich

t the
inter-
on of
e of
nd as
ntly
requirements at the interface of the software. In the LAS case study, for example
definition of a high-level goal such asAchieve[AmbulanceIntervetion] is simple and
given in the initial problem statement. The definition of requirements assigned to
CAD software agent involves many more details, and would be quite hard to spe
formally without constructive guidance.

• The availability of obstacle analysis techniques was felt to be essential to the p
cality of the goal-oriented requirements elaboration method. It allows one tostart
from idealized definitions of goals and assumptions, and to consider more realistic
definitions later in the requirements elaboration process. Without obstacle ana
writing realistic goal definitions seems very hard, if at all possible. Considering id
ized goal definitions first is also essential as it allows one to avoid premature, imp
and possibly not optimal compromises about the required behaviour of the sy
(see Section 3.3.3.2 of Chapter 3).

Agent-Driven Tactics: Benefits and Issues

• The systematic identification and resolution of violations of the realizability me
constraint was felt to provide useful, practical guidance for elaborating goal re
ments graphs and responsibility assignments. Although it should be further enric
the library of agent-driven tactics of Chapter 6 already provides rich and detailed
port for refining goals and identifying agents. We also observed that by applying t
tactics systematically, we have been able to build fairly large goal refinement gr
significantly faster than before.

• Labelling the goal refinements with the tactics applied to produce them makes
goal grapheasier to understand; each refinement step is motivated by the resoluti
of a realizability problem, and the tactic applied to produce this goal refinem
describes how the problem is solved. Knowing the definition of a high-level g
someone familiar with the library of agent-driven tactics can easily infer the defini
of all its subgoal from the tactics used to produce them.

• Agent-driven tactics are no “silver bullets”. Much creative thinking and dom
knowledge is required to generate alternative goal refinements and respons
assignments from high-level goals. The tactics provide a way to organize such
tive thinking; they do not generate automatically all possible alternative design
themselves.

• For a goal raising several realizability problems, it is not a priori clear in what orde
each of these problems should be solved. During the actual elaboration of the require
ments for the LAS and the BART system, we frequently switched the order in wh
agent-driven tactics were applied. This did not result in different requirements a
end the requirements elaboration process, but had an impact on the definition of
mediate goals and on the presentation of the goal graph. The order of applicati
agent-driven tactics that was finally chosen was mostly driven by the objectiv
making the goal graph and the formal definitions of goals as easy to understa
possible. The effort of producing a well-structured goal graph could be significa
reduced by a tool supporting such transformations.
245

Case Studies

nd
ols to

st-
lar
lica-

dies
ifica-
nal-
goals
e

g a
bo-
veral
fully

lized
cel-
rther
hitec-
tech-
et of

ction
mbu-
goal

mbu-
to (i)
were

e for
uto-
d rea-
d be
ues
ridge

ss and
• The number of alternativesthat can be generated during the goal refinement a
responsibility assignment process may become quite large. Techniques and to
manage large numbers of alternatives are definitely required.

• Frequently, thestrict application of formal goal refinement patterns produces fir
sketch formal definitionsthat need to be adapted to fit the details of the particu
application domain. This may limit the amount of support for the automated app
tion of tactics.

• Accuracy goalswere seen to play an important role in the two significant case stu
we have worked on. The role of accuracy goals is often neglected in formal spec
tions. Further work is required to identify specific tactics for refining and operatio
izing accuracy goals. The formal specification of and reasoning about accuracy
involving tolerances and delaysis also a difficult issue that requires further work. Th
work reported in [Smi2K] is an interesting first step in that direction.

• The boundary between the activities of elaborating requirements and designin
software architectureis known to be blurred. This was clearly seen during the ela
ration of the requirements for the BART train control system; we generated se
alternative responsibility assignments and agent interfaces that ranged from a
distributed system in which the trains’ accelerations are computed by a centra
train controller software agent, to a fully distributed system in which the trains’ ac
earations are computed by on-board train controllers. We need to investigate fu
how the techniques developed for requirements engineering and for software arc
tures can be integrated. In particular we should investigate how goal-oriented
niques can be used to systematically derive a software architecture from a s
functional and non functional requirements.

• The boundary between requirements engineering and human-computer intera
was also seen to be an issue. When elaborating requirements for the London A
lance Service system, we identified alternative responsibility assignments for a
such as

Achieve[AmbulanceAllocationBasedOnIncidentFormAndAmbulanceInfo].

The later is concerned with the allocation of ambulances based on incident and a
lance informations. These alternative responsibility assignments corresponded
the previous paper-based system in which decisions about ambulance allocation
made by human resource allocators, (ii) a fully automated decision procedur
ambulance allocation, or (iii) to many various forms of cooperation between the a
mated system and the human resource allocator. The detailed specification of an
soning about such alternatives was felt to fall outside the scope of what coul
practically handled by the KAOS method; it was left to more specialized techniq
of Human Computer Interaction design. Techniques are needed to integrate or b
the gap between the results of a goal-oriented requirements elaboration proce
the techniques developed in the area of Human Computer Interaction.
246

Case Studies

apter

ist-
this
ere

, but
osi-

the
evis-
ph
sed
this
ularly

uto-

ol
left

itch

lete-
encies
es or
the

fine-

con-
s and
erns
iven

the
ary
ool
y have
tacti-

r dis-
The real elaboration process and implications for tool support

• The elaboration process for the LAS and BART case studies described in this ch
is idealized. The actual elaboration process went as follows.

- We started by quickly elaborating preliminary, incomplete and possibly incons
ent models through the rough application of the agent-driven tactics. During
phase, many details were left unspecified; preliminary formal definitions w
written (they helped in deriving the object and guided the refinement of goals)
no attempt was made to have fully accurate definitions (sometimes, only prop
tional logic was used).

- In a second phase, much effort was spent on filling in the details and polishing
models. This included finding better names for goals, objects and attributes; r
ing our preliminary definitions (formal and informal); restructuring the goal gra
(for instance by applying agent-driven tactics in a different order as discus
above); identifying and correcting incomplete goal refinements; etc. During
phase, the manual propagation of changes throughout the model was a partic
tedious task.

The way we actually build requirements models has implications on the kind of a
mated support a requirements elaboration tool should offer.

- The usability of the editing facilities of the tool is a critical requirement. The to
should allow users to quickly elaborate requirements models that may be
incomplete and inconsistent; it should allow users to freely and easily sw
between different activities of the method.

- The tool should help users in detecting and keeping track of various incomp
ness and inconsistencies of the models. Such incompleteness and inconsist
range from simple syntactical problems (such as inconsistent use of goal nam
object names; vocabulary used in the definition of goals but not declared in
object model; etc.) to formal semantic problems (such as incomplete goal re
ments, divergences between goals, etc.).

- The tool should guide the user in resolving the various incompleteness and in
sistency problems. For instance, it could help in propagating changes of goal
object names throughout the models; in applying formal goal refinement patt
to complete incomplete goal refinements [Dar95, Dar96]; in applying agent-dr
tactics to generate goal refinements, etc.

In brief, we favor a tool based on the “inconsistency implies action” paradigm of
viewpoint-oriented software development framework [Fin94, Hun98]. A prelimin
prototype tool, called GRAIL/KAOS, has been developed at CEDITI [Dar98]. This t
was not used for the case studies described in this chapter. Using such a tool ma
helped in editing the requirements models and keeping track of various simple syn
cal inconsistencies, such as inconsistent use of goal names, object names, etc.

The possibilities of automating the techniques described in the thesis are furthe
cussed in the concluding chapter.
247

Case Studies

res-
ple,

have
le to
lution
-

ore
strac-
ined
alysis

ocess
erated;

e cost
bsta-

one

hich
goal

ing the
sup-

dual
one

goal
also
92,
Obstacles analysis

• For a number of goals, obstacle identification only involved a small number of reg
sion steps --sometimes it did not go further than just negating the goal. For exam
the obstacle to the goalAccurateAmbulanceLocationInfo under responsibility of the
AVLS agent was obtained just by negation; regressing this negation further would
required detailed knowledge about properties of this agent which were unavailab
us. In this case, further regression was anyway not necessary for obstacle reso
since it is not necessary to know why theAVLS might fail to locate ambulances accu
rately.

• Finer agent granularity requires goals to be refined further and thus allows m
detailed obstacles to be derived. There is a trade-off here between the level of ab
tion of the specification and the level of detail of obstacle analysis; the finer-gra
the agents are, the more RE work is required, but the more detailed obstacle an
will be.

• Deciding when to stop obstacle refinement is not always easy. The refinement pr
may be stopped when an adequate resolution can be selected among those gen
the risk and impact of the obstacle should become acceptable with respect to th
for resolving it. More knowledge about the causes of the obstacle, that is, its subo
cles, may result in the generation of better resolutions.

• Domain-completeOR-refinement of obstacles as discussed in this chapter allows
to stop looking for alternative obstacles.

• It is often the case that a new goal is introduced to resolveseveralobstacles simulta-
neously; the new goal actually resolves an obstacle to some higher-level goal w
might be obstructed by the many obstacles to its subgoals. For example, the new
Avoid[InaccurateAmbAvailabilityInfo] may resolve both obstaclesInaccurateAmbAvail-
abilityOnMDT andEncodedMDTAvailabilityNotTransmitted.
This suggests an heuristics for resolution selection: favor resolutionR1overR2 if at
similar costR1 resolves more obstacles thanR2.

• It is often the case that an obstacle is resolved by the introduction ofseveralnew goals
--e.g., a combination of reduction, mitigation, and restoration goals.

• Identifying all the goals obstructed by the same obstacle is necessary for assess
impact of this obstacle and thereby for deciding on an appropriate resolution. To
port this, a cause-effect graph could be built from the goalrefinement graph, the
obstaclerefinement graph, and theobstruction relation.

• A specific combination of multiple obstacles may sometimes increase their indivi
effects. This was clearly the case during the two LAS failures. In such cases
should clearly favor resolutions that address such combinations.

• Identifying the implications of an obstacle resolution is a serious issue. A new
introduced for resolution may resolve critical obstacle combinations; but it may
interfere with other goals in the goal graph. A new cycle of conflict analysis [Myl
Lam98b] may therefore be required.
248

Related Work

m of
f mul-
aper
ur of

lobal
agent
r 4 is
dif-

e-and-
n of
pt of
ts are
on of
ter-

n pro-
een

lobal
era-
ation
signs.
sys-

thod
ility
s over
n be
nt-

d of

ntifi-

sely
hich
hine,
milar
l is
tead of
roper-
Chapter 10
Related Work

10.1. Agent Responsibility, Monitoring and Control

As mentioned in Chapter 2, our work has been significantly influence by the paradig
Composite System Design described in [Fea87]. A composite system is a system o
tiple interacting agents that collaborate to achieve some global behavior. The p
describes a requirement elaboration method in which requirements on the behavio
individual agents are gradually derived from constraints on the behaviours of the g
system. The method is based on a simple formal framework for modeling agents,
interface and agent responsibilities. The formal model of agents described in Chapte
similar to the framework of [Fea87]. The presentations of the two models are slightly
ferent; [Fea87] describes the semantics of agent behaviours in terms of a generat
prune paradigm, while our model is described in terms of a more traditional notio
transition systems. Besides this difference of presentation, the important conce
agent responsibility for goals and its relationship to the operational model the agen
taken from [Fea87]. We have then added to the model of [Fea87] a precise definiti
the realizability meta-constraint relating agent responsibility for goals to agent in
faces.

Formal techniques supporting the Composite System Design approach have bee
posed in [Fic92]. These techniques consist in (i) identifying inconsistencies betw
operational specifications of individual agents and declarative specifications of g
goals; and (ii) resolving the identified inconsistencies by transformation of the op
tional and declarative specifications. That paper describes a small core of specific
elaboration operators capable of generating a whole range of composite system de
These operators were discovered empirically by studying various existing composite
tems and trying to rationally rederive their features. In contrast to that work, the me
described in the thesis consists in identifying and resolving violations of the realizab
consistency rule between goals and agent interfaces. This yields three advantage
the more operational approach of [Fic92]: (i) the elaboration of the goal model ca
performed without dealing with the intricacies of operational models; (ii) the age
driven tactics for resolving realizability problems are structured according to the kin
realizability problems to be solved, providing betterretrievability of tactics; (iii) the
complete taxonomy of realizability problems provides a map for the systematic ide
cation of specification elaboration tactics, providing bettercoverageof the space of tac-
tics than with an empirical identification of tactics only.

The work of Zave and Jackson on the foundation of RE [Jack95, Zav97] is also clo
related to ours. In particular, their work discusses the importance of identifying w
actions are controlled by the environment, which actions are controlled by the mac
and which actions of the environment are shared with the machine. This is clearly si
to our model of agent monitorability and control, with the difference that our mode
based on states rather than actions and that we consider multi-agent systems ins
only two agents: the machine and the environment. [Zav97] also describes three p
249

Related Work

) the
chine,
ent,
ition
on is
tion.
n of
lear
hich a
ters 4
condi-
or this
g in
o be
s for

aliz-
ilar
ted

n the
is not
con-
cial-

more
goal.

en to
erties
er-
ork

equire-
ed with
gent-
n the

ore

uire-
ntities
not

ted in
r the
nly
They

ntities
ents,

ctua-
to the
n the
ties that must be satisfied for a requirement to be implementable (realizable): (i
requirement must not be stated in terms of actions that are not shared with the ma
(ii) the requirement must not constrain an action that is controlled by the environm
and (iii) the requirements must not be stated in terms of the future. The first cond
can be checked directly from the syntax of the requirement. The second conditi
defined in the context of Buchi automata. The third condition lacks a precise defini
However, these conditions are given as primitives, without an underlying definitio
what is meant for a requirement to be “implementable”. As a result, it is not c
whether the three stated properties are complete. (Can there be other reasons for w
requirement cannot be realized by the machine alone?) The work reported in Chap
and 5 has the same objective as the work of Zave and Jackson. We aim at defining
tions that have to be met by a goal for the goal to be assignable to a single agent. F
purpose, we have first proposed a formal definition of realizability that was lackin
[Zav97]. Next, we have defined formal conditions that a goal must satisfy in order t
realizable, and we have shown that these conditions are complete. Our condition
unrealizability are similar to the one presented in [Zav97]. For our first theorem of re
ability (see Section 4.2.2), conditions (i) and (ii) are semantic conditions that are sim
to conditions (i) and (ii) of [Zav97]. Note that reference to the future, which is presen
as a separate condition in [Zav97], is in our view a special case of a constraint o
environment. For our second theorem (see Section 5.2), note that unsatisfiability
identified in [Zav97]. Actually, unsatisfiability could also be seen a special case of
strain on the environment. Our conditions of unrealizability are therefore more spe
ized than those of [Zav97]. This is a key advantage, as it allows one to define
specialized requirements elaboration techniques for each category of unrealizable
Other important points are that all our conditions are defined formally, and are prov
be complete. A requirements elaboration process that consists in using domain prop
to gradually refine goals by resolving lack of monitorability, lack of control, and ref
ence to future is also outlined in [Jac95, Zav97]. A fundamental difference with our w
is that this process assumes that agent interfaces are given at the beginning of the r
ments elaboration process, whereas the method described in the thesis is concern
the exploration of alternative agent responsibility and interfaces. Furthermore, the a
driven tactics described in Chapter 6 provide much richer elaboration tactics tha
high-level principles outlined in [Jac95, Zav97]. Our tactics are also described in a m
formal framework.

The Four-Variable Model underlying the SCR method also emphasizes that the req
ments must be described as a relation between monitored and controlled qua
[Par95]. However, the description of this relation is not sufficiently precise: it does
explicitly require that the controlled variables do not depend on thefuturevalues of mon-
itored quantities. The more detailed semantic domain for the SCR notation presen
[Heit96] solves this problem. A similar semantic domain has also been defined fo
RSML notation [Heim96]. Unlike our goal-oriented method, all these models are o
concerned with operational specification at the interface of the automated system.
are not concerned with the specification of goals that describe properties on qua
that are not at this interface, the refinement of such goals into realizable requirem
and the derivation of alternative agent responsibilities and interfaces.

Some of the tactics described in Chapter 6 drives the identification of sensor and a
tion devices. The resulting requirements model has a structure that corresponds
standard structure of control system, such as in the Four-Variable Model [Par95] or i
requirements state machine model for process-control system [Jaf91].
250

Related Work

rams.
dis-
ional
pera-
ased
ed on
and
ur-
con-

first
lt by
terns
hips
priate
tone-
s pro-
real-

vid-
ctics
erns
d of

ry of
ropri-

tterns
tactic

at-
ents

cep-
ineer-
ation.

d in
, fail-
pro-
ri95],
overy,
sys-
tem
Related ground work has also been carried out in the context of concurrent prog
The concept of realizability defined in [Aba89] is similar to the one presented in this
sertation. A temporal specification is said to be realizable if there exists an operat
specification that satisfies the temporal specification. However, the concept of o
tional specification used in [Aba89] differs from ours in several aspects. First, it is b
on an interleaving semantics with fairness conditions, whereas our semantics is bas
true concurrency. More importantly, [Aba89] does not consider agent monitorability
control. This line of work is concerned with the specification and derivation of conc
rent programs rather than with requirements engineering. Agent monitorability and
trol are important concepts of RE that are missing from that framework.

In the KAOS framework, the use of formal goal refinement patterns and tactics has
been proposed in [Dar95, Dar96]. A library of refinement patterns has been bui
extracting patterns from a wide variety of case studies, and by deriving further pat
top-down from basic patterns according to weakening/strengthening relations
between patterns. Goal Refinement tactics are also proposed for selecting appro
patterns based on semantic criteria. The tactics identified are classified into miles
driven tactics, case-driven tactics, and agent-driven tactics. The agent-driven tactic
posed there are only defined in a sketchy way and are not related to violations of the
izability meta-constraint.

The library of agent-driven tactics proposed in the thesis builds on that work by pro
ing further guidance for selecting appropriate patterns. Specification elaboration ta
are considered for each kind of realizability problem. Appropriate refinement patt
are then retrieved by browsing the library of agent-driven tactics based on the kin
realizability problem to be solved.

Our library of agent-driven tactics also provides a systematic way to enrich the libra
goal refinement patterns. For each agent-driven tactic, we considered whether app
ate goal refinement patterns already existed in the library. New goal refinement pa
have been identified when no appropriate patterns could be found. For instance, the
introduce_accuracy_goal (Section 6.5.1) led to the identification of new refinement p
terns based on the substitutivity property of temporal logic. Other formal refinem
patterns identified are the patterns associated with the tacticsresolve reference to strict
future, and resolve synchronization problems (Section 6.8);resolve unsatisfiable goal
(Section 6.7); andreplace unmonitorable/uncontrollable states by events (Sections 6.5.5
and 6.6.5).

10.2. Exception Handling and Fault-Tolerance

In order to get high-quality software, it is of utmost importance to reason about ex
tions and faults during software development. There has been a lot of software eng
ing research to address this for the later stages of architectural design or implement

Rigorous definitions of various concepts underlying exception handling can be foun
[Cri95, Gar99] --such as specification, program correctness, exception, robustness
ure, error, fault, fault tolerance, and redundancy. Exception handling for modular
grams structured as hierarchies of data abstractions is also discussed in [C
including the issues of exception detection and propagation, consistent state rec
and masking. A failure is defined as a deviation between the actual behavior of the
tem and that required by its specification [And81, Gar99]. An error is a part of the sys
251

Related Work

oler-
isely

if the

are
that

ompo-
ses of
ilure
xcep-

93,
ally
sys-
that

rinci-
e and
they
ies, or
chiev-

ons of
o detect
he vio-

r pro-
nt has
tulated
dies
cycle
ling
goal-

ormal
nd/or
ve the

l and
y the
stacle
strate-
arlier
orm of
. The
ution
entifi-
sys-
the
state which leads to failure. The cause of an error is a fault. The objective of fault-t
ance is to avoid system failures, even in the presence of faults [Jal94], or to prec
define the acceptable level of system behavior degradation when faults occur,
former objective is not realizable [Cri91].

The notion of ideal fault-tolerant component provides a basis for structuring softw
systems [And81, Ran95]. A system is viewed as a set of interacting components
receive requests for services and produce responses. An idealized fault-tolerant c
nent should in general provide both normal and exceptional responses. Three clas
exceptional situations are identified: interface exception, local exception and fa
exception. Different parts of the system are responsible for handling each class of e
tion.

The concepts involved in fault tolerance are put on more formal grounds in [Aro
Gar99]. What is meant for a program to tolerate a certain class of fault is form
defined in [Aro93]. This paper also illustrates how fault-tolerant programs can be
tematically verified and designed. A compositional method for designing programs
tolerate multiple fault classes is described in [Aro98]. The method is based on the p
ple of adding detector and corrector components to intolerant programs in a stepwis
non-interfering manner. Various forms of fault-tolerance are discussed in [Gar99];
are based on whether a program still satisfies its safety properties, liveness propert
both. Detection and correction are also discussed there as the two main phases in a
ing fault-tolerance.

In the database area, [Bor85] describes language mechanisms for handling violati
assumptions in a database. Using such mechanisms, programs can be designed t
and handle exceptional facts, or the database can adjust its constraints to tolerate t
lation.

All the work reviewed above addresses the later phases of architectural design o
gramming. At those stages, the boundary between the software and its environme
been decided and cannot be reconsidered; the requirements specifications are pos
realistic, correct and complete --which is rarely the case in practice. Empirical stu
have suggested that the problem should be tackled much earlier in the software life
[Lut93]. Our work follows that recommendation by addressing the problem of hand
abnormal behaviors at requirements engineering time. Reasoning at this stage, in a
oriented way, provides much more freedom on adequate ways of handling abn
behaviors --like, e.g., producing more realistic and more complete requirements, a
considering alternative requirements or alternative agent assignments that achie
same goals but result in different system proposals.

There are however clear analogies between exception handling at program leve
obstacle analysis at requirements level. The objective of fault-tolerance is to satisf
program specification despite the presence of faults whereas the objective of ob
analysis is to satisfy goals despite agent failures. Some of the obstacle resolution
gies are conceptually close to fault-tolerant techniques lifted and adapted to the e
phase of requirements engineering. The obstacle prevention strategy introduces a f
redundancy where a new goal is introduced to prevent an obstacle from occurring
obstacle anticipation substrategy is reminiscent of the fault detection and resol
phases for fault-tolerance. (Note, however, that one should not confuse obstacle id
cation, which is performed at specification time and takes an “external” view on the
tem, with obstacle detection which is performed at run-time by agents “inside”
252

Related Work

duce
acles.
substi-
of the

the
ses of
rrors
naly-
man

vely
iden-
ech-
rated
as to

pro-
also

lities
gical

at the
there
n a lot
soft-

cking
sible

logic
the
nsist-

. One
stacles
e cur-
. On
ained
crip-
her-
and,
tacle
stract
gener-
ta-

gen-
ue in
system [Fea98].) The goal restoration and obstacle mitigation strategies also intro
new redundant goals to ensure higher-level goals in spite of the occurrence of obst
On the other hand, there are important obstacle resolution strategies, such as goal
tution and agent substitution, that are specific to requirements engineering because
freedom still left.

In their work, de Lemos et al have also recognized the need for moving towards
requirement analysis phase many of the concerns that may arise during later pha
software development --particularly, the possibility of system faults and human e
[Lem95, And95]. They propose an approach based on an incremental and iterative a
sis of requirements for safety-critical systems in the context of system faults and hu
errors. Their scheme is similar to ours in that it consists of incrementally and iterati
identifying the defects of a requirement specification being elaborated; they use the
tified defects to guide the modification of the specification. However, no systematic t
niques are provided there for generating the possible faults from the elabo
requirement specification, and for transforming the requirement specification so
resolve the identified faults. Another difference is that their scheme is based on the
gressive decomposition of system entities while we favor goal refinement. (See
[Ber98] for a comparison of this work with ours.)

Many specification languages provide constructs for specifying software functiona
separately for normal and abnormal cases, and then in combination. The Z lo
schema combination constructs are typical examples of this [Pot91].

We have tried to convince the reader about the importance of exception handling
requirements engineering level and, more specifically, at the goal level. Although
are no other formal techniques at the goal level that we are aware of, there has bee
of work addressing the later stages of RE where a detailed operational model of the
ware is already available (typically under the form of state machine specifications).

For example, the completeness techniques in [Heim96, Heit96] are aimed at che
whether the set of conditions guarding transitions in a state machine cover all pos
cases.

Model checking techniques generate counter examples showing that a temporal
specification is violated by a finite state machine specification [Hol97, McM93]. In
same vein, planning techniques can be used to exhibit scenarios showing the inco
ency between an abstract property and an operational model [And89, Fic92, Hal97]
might expect such techniques to be able to generate the scenarios satisfying our ob
as traces that refute a goal assertion conjoined with the domain theory. However, w
rently envision two problems in applying these techniques directly for our purpose
one hand, we want to conduct the analysis at the goal level for reasons expl
throughout the thesis; model checking requires the availability of an operational des
tion of the target system, or of relational specifications [Jac96] that do not fit our hig
level formulation of goals in terms of temporal patterns of behaviour. On the other h
for the purpose of resolution we need to obtain a formal specification of the obs
rather than an instance-level scenario satisfying it. A derivation calculus on more ab
specifications seems therefore more appropriate, even though instance scenarios
ated by a tool like Nitpick [Jac96] could provide concrete insights for identifying obs
cles to relational specifications.

Another important stream of work at the operational specification level concerns the
eration of fault trees from a detailed operational model of the system. The techniq
253

Related Work

ted to
d97].
rd anal-
ever
been
nt of
tailed
to be
of the
ed. It
grad-
fault

arting

ted in
bout
been
ected
nsider
tional
that
here
rmal

ations

le as
arios
and

n 8.4.4).

os-
events
cing
when
ments
coun-
cep-

olution
ario.
ation/
eclar-
[Lev87] generates fault trees from a Petri-net model. This technique has been adap
generate fault trees from a state machine model expressed in RSML [Rat96, Mo
Several other techniques have also been proposed to generate other standard haza
ysis models from RSML specifications [Rat96, Mod98]. Those techniques can how
be applied only once a complete operational specification of the system has
obtained. Furthermore, a very detailed operational specification of the environme
the system would be needed to identify faults caused in the environment (e.g., a de
model of the behavior of human operators). In contrast, our techniques are intended
used earlier in the requirements engineering process when a complete specification
system is not yet available and alternative system boundaries are still being explor
allows obstacles to be generated from partial declarative specifications that may be
ually elicited during the obstacle identification process. (Note that the generation of
trees from a state machine model is similar to a recursive application of our1-state-back
obstacle refinement pattern.) Furthermore, goals provide a precise entry point for st
hazard analysis.

The heuristics proposed in this paper for identifying obstacles are somewhat rela
spirit to safety requirements checklists [Lev95], in that they embed experience a
known forms of obstruction. General criteria corresponding to such checklists have
identified in [Jaf91]. These criteria cover exceptional circumstances such as unexp
inputs, computer error, environmental disturbances, etc. Good RE practices also co
checklists that cover unexpected inputs, operator errors, and other faults or excep
circumstances [Som97]. Our heuristics are in fact closer to HAZOP-like guidewords
can be used to elicit hazards [Lev95]; such guidewords are made more specific
thanks to our requirements meta-model and specific goal classifications. More fo
HAZOP-based techniques have been proposed for forward propagation of perturb
from input variables to output variables in operational specifications [Ree97].

Our work builds on Potts’ paper which was the first to introduce the notion of obstac
a dual notion to goals [Pot95]. Obstacles are identified there by exploration of scen
of interaction between software and human agents. This exploration is informal
based on heuristics (some of these have been transposed to this thesis, see Sectio
Obstacle resolution is not studied there.

[Sut98] also builds on Potts’ work by proposing additional heuristics for identifying p
sible exceptions and errors in such interaction scenarios --e.g., scenarios in which
happens in the wrong order, or in which incorrect information is transmitted. Influen
factors such as agent motivation and workload are also used to help anticipate
exceptions may occur and assign probabilities to abnormal events. Generic require
are attached to exceptions to suggest possible ways of dealing with the problem en
tered. The heuristics proposed in [Sut98] are close in spirit to ours; their generic ex
tion handling requirements share the same general objective as our obstacle res
strategies. Their work is largely informal and centred around the concept of scen
This provides little systematic guidance compared with the range of obstacle gener
resolution techniques that can be precisely defined through rigorous reasoning on d
ative specifications of goals.
254

Conclusion

At the
ritical
, the
eting

nd can-

agent

may be
risks
cation
tically

ion.

s

agent

lter-
tions
tified

labo-
hree

plore
Chapter 11
Conclusion

Reasoning about alternatives is at the heart of the software development process.
implementation stage, the choice of algorithms and data structures may have a c
impact on the performance of the software. During the architectural design stage
choice of one architecture among several alternatives has a critical impact on comp
quality attributes (such as performance, availability, maintainability, security, etc.).

At those stages, the boundary between the automated system has been decided a
not be reconsidered.

At the requirements engineering stage, alternative decisions consist in:

• alternative refinements of goals into subgoals;
• alternative responsibility assignments of goals to agents, leading to alternative

interfaces;
• alternative resolutions of conflicts between goals; and
• alternative resolutions of obstacles to the satisfaction of goals.

Choosing among those alternatives generates alternative systems proposals that
quite different. Choices may have a critical impact on the performance, cost and
associated with the system. This step, however, is taken for granted by most specifi
techniques. As a result, alternative, perhaps superior, decisions are not systema
explored; and the rationale for such decisions is not made explicit for easier evolut

The thesis has described systematic support forgeneratingalternative system proposal
at the RE level. More specifically, it describes systematic techniques supporting

(i) the generation of alternative goal refinements, responsibility assignments and
interfaces;

(ii) the derivation of operational requirements from goal formulations;

(iii) the identification of obstacles to the satisfaction of goals and the generation of a
native obstacle resolutions through the deidealization of initial goals and assump
and through the generation of new goals to prevent, reduce or tolerate the iden
obstacles.

11.1. Contributions

The work reported in the thesis is based on an existing goal-oriented requirements e
ration method, called KAOS. The thesis enriches the KAOS framework through t
sets of techniques:

1. The first set of techniques provides systematic guidance to constructively ex
alternative agent responsibilities and interfaces from high-level goals.
255

Conclusion

itora-

eta-
ponsi-

goal-
s the
atter

s-
o be
the
l defi-

ce
s of
plica-
fine-
agent

vant
satis-

f ide-

als so

is, to
ions

tching
These techniques are grounded on a formal model of agent responsibility, mon
bility and controllability. In particular, our model defines arealizability meta-con-
straint between an agent responsibility for a goal and its interfaces. The m
constraint formally captures what is meant for a goal to be assignable as the res
bility of a single agent.

The realizability meta-constraint has been seen to play a central role in the
driven requirements elaboration process. Violations of that meta-constraint drive
identification of new agents and the refinement of goals into subgoals until the l
are realizable by single agents.

A taxonomy of realizability problemswas defined to guide the identification and cla
sification of realizability problems. The realizability problems were thereby seen t
related to lack of monitorability, lack of control, goal unsatisfiability, references to
future, and unbounded achievement goals. This taxonomy is based on the forma
nition of realizability, and was proved to be complete.

A library of agent-driven tacticswas then proposed to provide systematic guidan
for identifying agents and recursively refining goals into subgoals. Application
these tactics are prompted by the need to resolve realizability problems. The ap
tion of alternative agent-driven tactics allows one to explore alternative goal re
ments, alternative responsibility assignments of goals to agents, and alternative
interfaces.

2. When a goal is realizable by a single agent,formal operationalization patternscan be
used to derive, from the formal definition of the goal, the operations that are rele
to the goal, and the requirements on those operations that ensure that the goal is
fied.

3. A third set of techniques was described to identify obstacles to the satisfaction o
alized goals and assumptions, and to generate alternative obstacle resolutions.

We have defined a library ofobstacle identification patterns and heuristicsfor identi-
fying obstacles from goals; and a library ofobstacle resolution tacticsthat transform
the goal model by deidealizing goals and assumptions or by generating new go
as to avoid, reduce or tolerate the identified obstacles.

We have also contributed to a fourth set of techniques, not presented in the thes
identify conflicts between goals, and to generate alternative conflict resolut
[Lam98b].

The techniques were applied to two real case studies: the LAS ambulance despa
system, and the BART automated train control system.
256

Conclusion

ns in

cing
which
, secu-
s for
ctics

on its

alter-
tion of
that

sign

ns is
nce,

tional
his

r-

tive
nts for

rna-
pre-

. On
p the

even
to the
refore
11.2. Limitations and Future Directions

The KAOS framework and the techniques described in the thesis require extensio
several directions.

11. 2. 1. Evaluating and Selecting Alternative Designs

The techniques presented in the thesis can be used togeneratea set of alternative deci-
sions. For goal refinement, we have defined different elaboration tactics for introdu
alternative agents and for generating alternative goal refinements. The selection of
tactics to apply may depend on numerous criteria such as performance, cost, safety
rity, and so on. For obstacle analysis, we have defined different elaboration tactic
avoiding, reducing or tolerating obstacles. In this case also, the selection of which ta
to apply will depend on the kind of obstacles, on the severity of its consequences,
probability of occurrence, and on the cost of its resolution.

Alternative responsibility assignments and alternative obstacle resolutions result in
native system designs. The evaluation of the generated alternatives and the selec
an “optimal” design is a critical step for which much further work is required. Issues
need to be addressed include the following:

• What are the criteria to be used for evaluating and selecting among alternative de
decisions?

As mentioned before, the evaluation and selection of alternative design decisio
based on multiple competing ‘non-functional’ requirements such as performa
cost, risk, usability, maintainability, etc. The NFR framework providesqualitative
reasoning schemes for evaluating alternative system designs against non-func
requirements described at a very high-level of abstraction [Myl92, Chu2K]. T
framework could be extended withquantitativetechniques that would evaluate alte
native design decisions with respect to optimization goals defined in terms ofmea-
surableproperties of the system. For instance, in the LAS case study, alterna
design decisions would be evaluated against the expected percentage of incide
which an ambulance will arrive at the incident scene within 14 minutes.

• When and how should such evaluation of alternatives be carried out?

The activities of generating alternative design decisions and deciding which alte
tives will actually be selected should be clearly distinguished and separated to
vent premature evaluation from stifling generation of new suggestions [Eas94]
the other hand, it is necessary to discard some alternatives early in order to kee
generation of alternative designs within reasonable bounds. It is also likely -and
desirable- that non-functional requirements used to evaluate alternatives lead
generation of further alternatives. The generation and evaluation phases are the
clearly intertwined, and proceed iteratively.
257

Conclusion

be in

this
en the
nd the
ative
ns can
ifying
iled

ow to
e con-

ur-

nerat-
n still
more

as sat-
lized
tacle

n of
n goal

ement,
e

e can
by an

omy
use

jec-
rs of
• How detailed and formal does the specification of generated alternatives need to
order to evaluate them accurately?

Specifying every possible alternative design in detail is clearly not justified at
early stage of the development process. One needs to make trade-offs betwe
effort spent in generating and evaluating alternative designs, on the one hand, a
confidence in the design decisions being made, on the other. Again, an iter
model seems to be the most sensible approach. Some high-level design decisio
be made early based on high-level non-functional requirements, before spec
the alternatives in full detail; other design decisions may require more deta
knowledge about the domain and the proposed system.

Some issues are also specific to the selection of obstacle resolution tactics; e.g. h
determine the severity of the consequences of an obstacle, and how to determine th
sequence of thecombinationof obstacles? How to determine the probabilities of occ
rences of obstacles?

11. 2. 2. Specialized Elaboration Tactics based on Goal Categories

The various techniques described in the thesis providegeneralstrategies for generating
alternative goal refinements and alternative responsibility assignments, and for ge
ing and resolving obstacles to goals and assumptions. As a result, their applicatio
requires much work from the user, whereas more specialized tactics would provide
specific guidance.

The adaptation and extension of these techniques to specific goal categories, such
isfaction, information, accuracy, safety, or security would provide such a specia
guidance in elaborating requirements models. In particular, the specialization of obs
analysis techniques to security goals would allow for the systematic identificatio
potential threats to the system. The basic idea for such specialized tactics based o
categories would be similar to the idea of using problem frames [Jac95b, Jac2K].

11. 2. 3. A Rich Taxonomy of Formal Patterns for Requirements Elaboration

The techniques presented in the thesis are based on formal patterns for goal refin
goal operationalization, and goal obstruction.The coverage of these patterns is relativ
to the coverage of a taxonomy of goal definition patterns. The efficiency of our tech-
niques in practice rely on the assumption that most properties occurring in practic
be specified using a small set of goal patterns. This assumption is partly supported
empirical study reported in [Dwy99].

Further work is required to validate that assumption, to identify an appropriate taxon
of relevant formal goal patterns, and to define a language that would allow one to
such patterns without writing formal assertions in temporal logic. The long-term ob
tive is to be able to completely hide (or disguise) the formal assertion layer from use
the method while keeping its mathematical rigour.
258

Conclusion

ess is
as

sis in
iques

b-
ed as
s to
rob-
ctical
ther

es to

al is
could

d in
uld

nite

tics
ics.

llow-
pply

o be

may

which
on of

pat-
tions
11. 2. 4. Tool Support

The construction of adequate tool support for the goal-oriented requirements proc
an ongoing research project. A preliminary prototype tool called KAOS/GRAIL h
been developed at CEDITI [Dar98].

Further work is required to integrate the various techniques presented in the the
such a tool. We discuss the possibilities of automated support for the various techn
presented in the thesis.

1. Identifying realizability problems

Identifying lack of monitorability and lack of control is straightforward as these pro
lems are purely syntactical. References to the future and unsatisfiability are defin
semantic conditions and are more difficult to identify automatically. For reference
future, we have identified a set of recurrent patterns of goal definitions with such a p
lem. These patterns can be used to identify references to the future from the synta
definition of the goal; however, this set of patterns is probably not complete. Fur
work could investigate the definition of general techniques for computing referenc
future and for determining unsatisfiability.

Theorem 1 could also provide the basis for automatically checking whether a go
realizable by an agent on some restricted subset of the language. For instance, one
try to define syntactical conditions on Buchi automata (similar to those presente
[Zav9]) that are equivalent to the conditions of Theorem 1 in Chapter 4. This wo
allow one to automatically check the realizability of a goal defined over a limited, fi
state space.

2. Selecting applicable agent-driven elaboration tactics

Once realizability problems are identified, a tool could automatically identify the tac
whose preconditions holds, and allow users to browse the library of applicable tact

3. Applying agent-driven elaboration tactics

Tool support could be investigated to help users in applying a selected tactic. The fo
ing problems will limit the amount of automated support that can be provided to a
the tactics:

• the strict application of tactics produces first-sketch goal definitions that need t
adapted manually;

• the number of variants of formal goal refinement patterns associated to a tactic
make the automatic application of tactics impractical.

One approach toward reducing these problems would be to restrict the language in
goals are defined to a small set of goal patterns. This require the preliminary definiti
an adequate taxonomy of goal patterns as discussed above.

4. Applying operationalization patterns

Applying operationalization patterns is not different from applying goal refinement
terns; applicable patterns can be retrieved automatically by matching goal formula
to patterns in the library [Dar96].
259

Conclusion

l for-
ain

d be
cs. The
fini-

sis for
k the
SCR

non-
tten-
for the

tech-
f alter-
ware
ed on
.

f fixed
le, and
need
sys-

llers
. This
. One
agents

from
els of
soft-

ld be
ure
bora-
5. Generating obstacles from goals

Relevant obstruction patterns can also be automatically retrieved by matching goa
mulations to patterns in the library. This will prompt users to identify appropriate dom
properties needed to derive the obstacles.

6. Selecting and applying obstacle resolution tactics

Tool support for the selection and application of obstacle resolution tactics woul
based on the same principles as those used to select and apply agent-driven tacti
same limitation apply; the strict application of tactics produces first-sketch goal de
tions that need to be adapted manually.

7. Using the semantics proposal as a basis for animation and dedicated checks

The formal model of agents and the formal semantics of operations provides the ba
the construction of further tool support such as an animation tool and a tool to chec
completeness and consistency of operational models of agents in the spirit of
[Heit96] and RSML [Heim96].

11. 2. 5. Goal-Oriented Elaboration of Software Architecture

The systematic derivation of a software architecture from a set of functional and
functional requirements is an important research issue that has received fairly little a
tion so far. Recently, goal-based and agent-based approaches have been proposed
constructive elaboration of software architectures [Lam2Kc, Myl2K].

By viewing components of a software architecture as agents of finer granularity, the
niques described in the thesis could be specialized and adapted to the generation o
native software architectures from goals assigned as responsibilities of soft
components. The evaluation of alternative software architectures would also be bas
non-functional requirements identified during the requirements elaboration process

11. 2. 6. Agent Refinement

The KAOS method and the techniques described in the thesis assume agents o
granularity. Such agents correspond to concrete agents (such as software, peop
hardware devices) that can be found in the application domain. Sometimes one may
to reason about agents at different levels of abstraction. For example, in the BART
tem, one might view the system formed of the train tracking system, the train contro
at the stations, and the on-board train controllers as a single (composite) agent
would allow responsibility assignments to be made earlier on more abstract goals
could then refine such goals assigned to abstract agents into subgoals assigned to
of finer granularity. As another example, the derivation of a software architecture
requirements will also require to represent and reason about agents at different lev
granularity; a software agent would be refined into several agents corresponding to
ware components of finer granularity. This sort of agent refinement process wou
similar in spirit to the refinement of Abstract Machines in the B method [Abr96]. Fut
work could extend the KAOS language and method to support a requirements ela
tion process in which goals and agents are refined in parallel.
260

a-

ge

-

e-
11,

pec-

ents
-
r-

of

s-

y a
8.

nd

in
10

-

S:

: a
nt,
References

[Aba89] Abadi M, Lamport L, Wolper P, “Realizable and Unrealizable Specific
tions of Reactive Systems”,Proc 16 th ICALP, 1989, LNCS 372, pp 1-17

[Abr96] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambrid
University Press, 1996

[Alp87] B. Alpern and F.B. Schneider. “Recognizing safety and liveness”,Distrib-
uted Computing, 2:117--126, 1987.

[Amo94] E. G. Amoroso.Fundamentals of Computer Security Technology. Prentice-
Hall PTR, Upper Saddle River, NJ, 1994.

[And81] T. Anderson and P.A. Lee,Fault Tolerance: Principles and Practice. Pren
tice Hall, 1981.

[Ant94] Anton, A. I., McCracken, W. M., Potts, C., “Goal Decomposition and Sc
nario analysis in Business Process Engineering”, CAiSE’94, LNCS 8
Springer-Verlag, pp. 94-104.

[And89] J.S. Anderson and S. Fickas, “A Proposed Perspective Shift: Viewing S
ification Design as a Planning Problem”,Proc. IWSSD-5 - 5th Intl. Work-
shop on Software Specification and Design, IEEE, 1989, 177-184.

[And95] T. Anderson, R. de Lemos, and A. Saeed, “Analysis of Safety Requirem
for Process Control Systems”, inPredictably Dependable Computing Sys
tems, B. Randell, J.C. Laprie, B. Littlewood and H. Kopetz (ds.), Springe
Verlag, 1995.

[Aro93] A. Arora and M.G. Gouda, “Closure and Convergence: A Foundation
Fault-Tolerant Computing”,IEEE Trans. Software Eng., vol. 19, no. 11, pp.
1015- 1027, 1993.

[Aro98] A. Arora and S. Kulkarni, “Component Based Design of Multitolerant Sy
tems”,IEEE Trans. Software Eng., vol. 24, no. 1, pp. 63 - 78, Jan 1998.

[Bel76] Bell, T. E., and Thayer, T. A., "Software Requirements: are they reall
problem," Proc. 2nd Int. Conf. on Software Engineering, 1976, pp. 61-6

[Ber98] D.M. Berry, “The Safety Requirements Engineering Dilemma”,Proc.
IWSSD’98 - 9th International Workshop on Software Specification a
Design, Isobe, IEEE CS Press, April 1998.

[Bor85] A. Borgida, “Language Features for Flexible Handling of Exceptions
Information Systems”, ACM Transactions on Database Systems Vol.
No. 4, Dec. 1985, 565-603.

[Bra85] R.J. Brachman and H.J. Levesque (eds.),Readings in Knowledge Represen
tation, Morgan Kaufmann, 1985.

[But96] Ricky W. Butler. An Introduction to Requirements Capture Using PV
Specification of a Simple Autopilot. NASA Technical Memorandum
110255. NASA Langley Research Center, May 1996.

[Chu93] Lawrence Chung.Representing and using Non-functional Requirements
Process-Oriented Approach. PhD thesis, Computer Science Departme
University of Toronto, Toronto (Canada), June 1993.
261

e-
on,

cept
-

ire-
, 3-

ou-

for

S:
ro-
ring,

ns
-

nt of
s-

ood
-

r

n”,
[Chu2K] L. Chung, B. A. Nixon, E. Yu and J. Mylopoulos, Non-Functional Requir
ments in Software Engineering, Kluwer Academic Publishers, Bost
2000.

[Cri91] F. Cristian, “Understanding Fault-Tolerant Distributed Systems”,Comm. of
the ACM, February 1991.

[Cri95] F. Cristian, “Exception Handling”, in:Software Fault Tolerance, M.R. Lyu
(Ed.), Wiley, 1995.

[Dar91] Dardenne, A., Fickas, S., van Lamsweerde, A., “Goal-Directed Con
Acquisition in Requirements Elicitation”, Proc. IWSSD-6 - 6th Intl. Work
shop on Software Specification and Design, Como, 1991, 14-21.

[Dar93] Dardenne, A., van Lamsweerde, A., Fickas, S., “Goal-Directed Requ
ments Acquisition”, Science of Computer Programming, Vol. 20, 1993
50.

[Dar95] R. Darimont,“Process Support for Requirements Elaboration”, PhD The-
sis, Université catholique de Louvain, Dépt. Ingénierie Informatique, L
vain-la-Neuve, Belgium, 1995.

[Dar96] R. Darimont and A. van Lamsweerde, “Formal Refinement Patterns
Goal-Driven Requirements Elaboration”,Proceedings 4th ACM Symposium
on the foundation of Software Engineering (FSE 4), San Fransisco, Oct.
1996, pp. 179-190.

[Dar98] Darimont, R, Delor, E., Massonet, P., van Lamsweerde, A.,GRAIL/KAO
An Environment for Goal-Driven Requirements Engineering, IEEE, P
ceedings of the 20th Interactional Conference on Software Enginee
Kyoto, April 1998, Vol 2, pp. 58-62.

[Dem78] T. DeMarco,Structured Analysis and System Specification, Yourdon Press,
New York, 1978.

[Dij71] E.W. Dijkstra, “Hierarchical Ordering of Sequential Processes,”Acta Infor-
matica 1, 1971, pp. 115-138.

[Dij76] E.W. Dijkstra, A Discipline of Programming. Prentice-Hall, Englewood
Cliffs, N.J. (1976).

[Dwy99] M. Dwyer, G. Avrunin, and J. Corbett. “Patterns in property specificatio
for finite-state verification”, InProceedings of the 21st International Con
ference on Software Engineering, May 1999.

[Fea87] M. Feather, “Language Support for the Specification and Developme
Composite Systems”,ACM Trans. on Programming Languages and Sy
tems 9(2), Apr. 87, 198-234.

[Fea91] M. Feather, S. Fickas, and R. Helm, “Composite System Design: the G
News and the Bad News”, inProceedings of the 6th Annual Knowledge
Based Software Engineering (KBSE) Conference, Syracuse, NY, Septembe
1991, pp. 16-25, IEEE Computer Society Press.

[Fea94] M. Feather, “Towards a Derivational Style of Distributed System Desig
Automated Software Engineering 1(1), 31-60.
262

iling

the

on-
8):

ign,

in

fer-
une

tem

eck-

nal-

ck-
-

m-

ms:

son-
d

[Fea98] M. Feather, S. Fickas, A. van Lamsweerde, and C. Ponsard, “Reconc
System Requirements and Runtime Behavior”,Proc. IWSSD’98 - 9th Inter-
national Workshop on Software Specification and Design, Isobe, IEEE CS
Press, April 1998.

[Fic92] S. Fickas and R. Helm, “Knowledge Representation and Reasoning in
Design of Composite Systems",IEEE Trans. on Software Engineering,
June 1992, 470-482.

[Fin94] A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh, "Inc
sistency Handling in Multi-perspective Specifications", IEEE TSE, 20(
569-578, 1994.

[Fin96] A. Finkelstein, “The London Ambulance System Case Study”,succedings
of IWSSD8 - 8th Intl. Workshop on Software Specification and Des
ACM Software Engineering Notes, September 1996.

[Gar99] F.C. Gartner, “Fundamentals of Fault-Tolerant Distributed Computing
Asynchronous Environment”,ACM Computing Surveys, Vol. 31, No. 1,
March 1999. pp 1-26.

[Gri81] D. Gries,The Science of Programming. Springer-Verlag, 1981.

[Gun2K] Carl A. Gunter, Elsa L. Gunter, Michael Jackson, and Pamela Zave. A re
ence model for requirements and specifications. IEEE Software, May/J
2000.

[Hal98] R.J. Hall, “Explanation-Based Scenario Generation for Reactive Sys
Models”,Proc. ASE’98, Hawaii, Oct. 1998.

[Har87] D. Harel, “Statecharts: A Visual Formalism for Complex Systems”,Science
of Computer Programming, vol. 8, 1987, 231-274.

[Heim96] M.P. Heimdahl and N.G. Leveson, “Completness and Consistency Ch
ing in Hierarchical State-Based Requirements”,IEEE Transactions on Soft-
ware Engineering, Vol. 22, No. 6, June1996, pp. 363-377.

[Heim98] M.P.E Heimdahl, J.M. Thompson and B.J. Czerny, “Specification and A
ysis of Intercomponent Communication”,IEEE Computer, Vol. 31, No. 4,
1998, pp. 47-54.

[Heit96] C. Heitmeyer, R. Jeffords and B. Labaw, “Automated Consistency Che
ing of Requirements Specifications”,ACM Transactions on Software Engi
neering and Methodology, Vol. 5, No. 3, July 1996, pp. 231-261.

[Heit96b] Heitmeyer, C.; Mandrioli, D.: editors. Formal methods for real-time co
puting. New York: John Wiley, 1996.

[Hen80] K.L. Heninger, “Specifying Software Requirements for Complex Syste
New Techniques and Their Application”,IEEE Transaction on Software
Engineering, Vol. 6, No. 1, January 1980, pp. 2-13.

[Hol97] G. Holtzman, “The Model Checker SPIN”,IEEE Trans. on Software Engi-
neering Vol. 23 No. 5, May 1997, 279-295.

[Hun98] A. Hunter and B. Nuseibeh. Managing inconsistent specifications: Rea
ing, analysis and action.ACM Transactions on Software Engineering an
Methodology, 7(4):335--367, 1998.
263

are

: an
re

chni-
el-

el-

ess-

.

uire-

tems
ter

sis

G.
ro-
ring,

m-

ith

m-

bo-
sons
ng
[Jac96] D. Jackson and C.A. Damon, “Elements of Style: Analyzing a Softw
Design Feature with a Counterexample Detector”,Proc. ISTA '96 - Intl.
Symp. on Software Testing and Analysis, ACM Softw. Eng. Notes Vol. 21
No. 3, 1996, 239-249.

[Jac83] M.A. Jackson,System Development, Prentice Hall, 1983.

[Jac93] M. Jackson and P. Zave, “Domain Descriptions”,Proc. RE’93 - 1st Intl.
IEEE Symp. on Requirements Engineering, Jan. 1993, 56-64.

[Jac95] M. Jackson and P. Zave, “Deriving Specifications from Requirements
Example”, Proc. ICSE’95 - 17th International Conference on Softwa
Engineering, April 1995, pp. 15-24.

[Jac95b] D. Jackson and M. Jackson, "Problem Decomposition for Reuse," Te
cal Report: CMU-CS-95-108, School of Computer Science, Carnegie M
lon University, Pittsburgh, Pa., 1995.

[Jac2K] M. Jackson,Problem Frames: Analyzing and Structuring Software Dev
opment Problems. Addison-Wesley, 2000.

[Jaf91] M.S. Jaffe et al., “Software Requirements Analysis for Real-Time Proc
Control Systems”,IEEE Transactions on Software Engineering, vol. 17, no.
3, March 1991, pp. 241-258.

[Jal94] P. Jalote,Fault Tolerance in Distributed Systems, Prentice Hall, 1994.

[Jon90] Jones, C.B.,Systematic Software Using VDM, 2nd ed., Prentice Hall, 1990

[Jon2K] Edwin de Jong, Jaco van de Pol, and Jozef Hooman. Refinement in req
ments specification and analysis: A case study. In7th IEEE International
Conference and Workshop on the Engineering of Computer Based Sys
(ECBS), pages 290-298, Edinburgh, Scotland, April 2000. IEEE Compu
Society.

[Jos96] M. Joseph.Real-Time Systems: Specification, Verification and Analy.
Prentice Hall Intl., 1996.

[Kaz99] Kazman, R.; Barbacci, M.; Klein, M.; Carriere, S. J.; &Woods, S.
"Experience with Performing Architecture Tradeoff Analysis," 54-63. P
ceedings of the 21 st International Conference on Software Enginee
Los Angeles, CA, May 1999.

[Ken93] S.J.H. Kent, T.S.E. Maibaum and W.J. Quirk, “Formally Specifying Te
poral Constraints and Error Recovery”,Proc. RE’93 - 1st Intl. IEEE Symp.
on Requirements Engineering, Jan. 1993, pp. 208-215.

[Koy92] R. Koymans,Specifying message passing and time-critical systems w
temporal logic, LNCS 651, Springer-Verlag, 1992.

[Lamp94] L. Lamport. The temporal logic of actions. ACM Transactions on Progra
ming Languages and Systems, 16(3):872--923, May 1994.

[Lam95] A. van Lamsweerde, R. Darimont and P. Massonet, “Goal-Directed Ela
ration of Requirements for a Meeting Scheduler: Problems and Les
Learned”,Proc. RE’95 - 2nd Intl. Symp. on Requirements Engineeri,
York, IEEE, 1995.
264

ven

in

ts

12,

en

A
onal

93.
rity,
age,
es /

ts in

om-

EE

nts

al

h.
-

nt
[Lam98a] A. van Lamsweerde and E. Letier, “Integrating Obstacles in Goal-dri
Requirements Engineering”,Proc. ICSE’98 - 20 th Intl Conf. on Software
Engineering, Kyoto, IEEE, April 1998.

[Lam98b] A. van Lamsweerde, R. Darimont and E. Letier, “Managing Conflicts
Goal-driven Requirements Engineering”,IEEE Transactions on Software
Engineering, Vol. 24, No. 11, Nov. 1998, pp.908-926.

[Lam98b] A. van Lamweerde A., L. Willemet, ‘Inferring Declarative Requiremen
Specification from Operational Scenarios’,IEEE Transactions on Software
Engineering, Special Issue on Scenario Management, Vol. 24, No.
1089- 1114, Dec. 1998.

[Lam2Ka] A. van Lamsweerde and E. Letier, “Handling Obstacles in Goal-driv
Requirements Engineering”,IEEE Transactions on Software Engineering,
Special Issue on Exception Handling, 2000.

[Lam2Kb] A. van Lamsweerde, "Formal Specification: a Roadmap". InThe Future of
Sofware Engineering, A. Finkelstein (ed.), ACM Press, 2000.

[Lam2Kc] A. van Lamsweerde, "Requirements Engineering in the Year 00:
Research Perspective", Keynote Paper for ICSE’2000 - 22nd Internati
Conference on Software Engineering, Limerick, ACM Press, 2000

[LAS93] Report of the Inquiry Into the London Ambulance Service, February 19
The Communications Directorate, South West Thames Regional Autho
ISBN 0-905133-70-6. See also the London Ambulance System home p
http://hsn.lond-amb.sthames.nhs.uk/http.dir/service/organisation/featur
info.html.

[Lem95] R. de Lemos, B. Fields and A. Saeed, “Analysis of Safety Requiremen
the Context of System Faults and Human Errors”,Proceedings of the IEEE
International Symposium and Workshop on Systems Engineering of C
puter Based Systems. Tucson, Arizona. March 1995. pp. 374-381.

[Lev87] N.G. Leveson and J.L. Stolzy, “Safety Analysis using Petri Nets”, IE
Trans. Software Eng., vol. 13, no. 3, pp. 386-397, March 1987.

[Lev94] N. G. Leveson, M.P.E. Heimdahl, H. Hildreth, J.D. Reese, “Requireme
Specification for Process-Control Systems, IEEE Transactions on Software
Engineering, Vol. 20, No. 9, September 1994.

[Lev95] N.G. Leveson,Safeware - System Safety and Computers, Addison-Wesley,
1995.

[Lon82] London, P.; Feather, M.: Implementing Specification Freedoms.Science of
Computer Programming, Vol. 2, 1982, pp. 91--131.

[Lut93] R.R. Lutz, “ Analyzing Software Requirements Errors in Safety-Critic
Embedded Systems”, Proc. RE’93, pp. 126-133.

[Mai93] T. Maibaum, “Temporal Reasoning over Deontic Specifications,” in J.C
Meyer and R.J. Wieringa (Eds.),Deontic Logic in Computer Science - Nor
mative System Specification, Wiley, 1993, pp. 141-202.

[Man92] Z. Manna and A. Pnueli,The Temporal Logic of Reactive and Concurre
Systems, Springer-Verlag, 1992.
265

ion

,

ents
ing,

te

nce

dys,
-97,
olis,

c-

ri-

en
for-
mes.

hy to

ses,

in:

ools
and,
[Man96] Z. Manna and the STep Group, “STeP: Deductive-Algorithmic Verificat
of Reactive and Real-Time Systems”,Proc. CAV’96 - 8th Intl. Conf. on
Computer-Aided Verification, LNCS 1102, Springer-Verlag, July 1996
415-418.

[Mas97] P. Massonet and A. van Lamsweerde, "Analogical Reuse of Requirem
Frameworks", Proc.RE-97 - 3rd Int. Symp. on Requirements Engineer
Annapolis, 1997, 26-37.

[McM93] K.L. McMillan, Symbolic Model Checking: An Approach to the Sta
Explosion Problem, Kluwer, 1993.

[Mei93] J. Ch. Meyer and R.J. Wieringa (Eds.), Deontic Logic in Computer Scie
- Normative System Specification, Wiley, 1993.

[Mod97] F. Modugno, N.G. Leveson, J.D. Reese, K. Partridge, and S.D. San
Integrated Safety Analysis of Requirements Specifications, Proc. RE
3rd International Symposium on Requirements Engineering, Annap
1997.

[Myl92] Mylopoulos, J., Chung, L., Nixon, B., “Representing and Using Nonfun
tional Requirements: A Process-Oriented Approach”,IEEE Trans. on Soft-
ware. Engineering, Vol. 18 No. 6, June 1992, pp. 483-497.

[Myl99] Mylopoulos, J., Chung, L. and Yu E., “From Object-Oriented to Goal-O
ented Requirements Analysis”,Communication of the ACM, Vol. 42, No. 1,
January 1999, pp. 31-37.

[Myl2K] J. Mylopoulos and J. Castro. Tropos: A framework for requirements-driv
software development. In J. Brinkkemper and A. Solvberg, editors, In
mation Systems Engineering: State of the Art and Research The
SpringerVerlag, 2000.

[Par86] D.L. Parnas and P.C. Clements. A rational design process: How and w
fake it. IEEE Transactions on Software Engineering, SE-12:251--257,
1986.

[Par95] D.L. Parnas, J. Madey, “Functional documents for computer systems”,Sci-
ence of Computer Programming, Vol. 25, 1995, pp. 41-61.

[Per89] D.E. Perry, “The Inscape Environment”,Proc. ICSE-11, 11th Intl. Conf. on
Software Engineering, 1989, pp. 2-12.

[Pot91] B. Potter, J. Sinclair and D. Till,An Introduction to Formal Specification
and Z. Prentice Hall, 1991.

[Pot95] C. Potts, “Using Schematic Scenarios to Understand User Needs”,Proc.
DIS’95 - ACM Symposium on Designing interactive Systems: Proces
Practices and Techniques, University of Michigan, August 1995.

[Ran95] B. Randel and J. Xu, “The evolution of the recovery block concept”,
Software Fault Tolerance, M.R. Lyu (Ed.), Wiley, 1995.

[Rat96] V. Ratan, K. Partridge, J.D. Reese and N.G. Leveson, Safety Analysis T
for Requirements Specifications, Compass 96, Gaithersburg, Maryl
June1996.
266

ca-

s”,

efi-
7,

on

-

, J.,
me

233.

e

e-

t,
ch-
ers/

ts
ng

?”,
tion

ring.
[Ree97] J.D. Reese and N. Leveson, “Software Deviation Analysis”,Proc. ICSE’97
- 19th Intl. Conference on Software Engineering, Boston, May 1997, 250-
260

[Rob90] Robinson, W.N., “Negotiation Behaviour During Requirements Specifi
tion”, Proc. 12th International Conference on Software Engineering, pp
268-276, IEEE, 1990.

[Ros92] D.S. Rosenblum, “Towards a Method of Programming with Assertion
Proc. ICSE-14, 14th Intl. Conf. on Software Engineering, 1992, pp. 92-104.

[Ros77] D.T. Ross and K.E. Schoman, “Structured Analysis for Requirements D
nition”, IEEE Transaction on Software Engineering, Vol. 3, No. 1, 199
pp. 6-15.

[Rub92] K.S. Rubin and A. Goldberg, “Object Behavior Analysis”, Communicati
of the ACM, Vol. 35, No. 9, September 1992, pp. 48-62.

[Rum91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.Object-
Oriented Modeling and Design. Prentice-Hall, Englewood Cliffs, New Jer
sey, 1991.

[Rum98] James Rumbaugh, Ivar Jacobson, and Grady Booch.The Unified Modeling
Language Reference Manual. Addison-Wesley, 1998.

[Smi2K] Smith, G. Stepwise development from ideal specifications. In Edwards
editor, Australasian Computer Science Conference (ACSC 00), volu
22(1) of Australian Computer Science Communications, pages 227--
IEEE Computer Society.

[Som97] I. Sommerville and P. Sawyer,Requirements Engineering: A Good Practic
Guide. Wiley, 1997.

[Ste74] W.P. Stevens, G.J. Myers and L.L. Constantine, ‘Structured Design’,IBM
Systems Journal, Vol. 13, No. 2, 1974, pp. 115-139.

[Sut98] A.G. Sutcliffe, N.A. Maiden, S. Minocha and D. Manuel, “Supporting Sc
nario-Based Requirements Engineering”,IEEE Trans. Software Eng. vol.
24, no. 12, Dec.1998, 1072-1088.

[Win99] V. Winter, R. Berg, and J. Ringland, “Bay Area Rapid Transit Distric
Advance Automated Train Control System: Case Study Description”. Te
nical Report, Sandia National Labs, 1999. www.sandia.gov/ast/pap
BART_case_study.pdf.

[Yu93] E. Yu, “Modelling Organizations for Information Systems Requiremen
Engineering”,Proc. RE'93 - 1st Intl Symp. on Requirements Engineeri,
IEEE, Jan 1993, pp. 34-41.

[Yue87] K. Yue, “What Does It Mean to Say that a Specification is Complete
Proc. IWSSD-4, Fourth International Workshop on Software Specifica
and Design, Monterey, 1987.

[Zav97] P. Zave and M. Jackson. Four dark corners of requirements enginee
ACM Trans. Software Eng. and Methodology, 6(1):1-30, Jan. 1997. 85
267

268

Annex A. Proofs of Chapter 4

A. 1. Properties of Agent Runs

Property 1 (interface restriction) -- For allσ1, σ2 ∈ Run(ag), s ∈ State(V),
if σ1 ∼Voc(ag) σ2 thenσ1+s ∈ Run(ag) iff σ2+s ∈ Run(ag)

Proof: Let σ1, σ2 ∈ Run(ag), ands ∈ State(V), such that σ1 ∼Voc(ag) σ2.

1. Suppose thatσ1+s ∈ Run(ag), we show thatσ2+s ∈ Run(ag).

σ1+s ∈ Run(ag)

implies {definition ofRun(ag)}
< σ1|Voc(ag) , s|Ctrl(ag) > ∈ Next(ag)

implies {σ1 ∼Voc(ag) σ2}

< σ2|Voc(ag) , s|Ctrl(ag) > ∈ Next(ag)

implies {σ2 ∈ Run(ag), definition ofRun(ag)}
σ2+s ∈ Run(ag)

2. By symmetry, we also have that ifσ2+s ∈ Run(ag), thenσ1+s ∈ Run(ag).

Property 2 (control restriction) -- For allσ ∈ Run(ag), s1, s2 ∈ State(V),
if s1 ∼Ctrl(ag)s2 thenσ +s1 ∈ Run(ag) iff σ +s2 ∈ Run(ag)

Proof: Let σ ∈ Run(ag), ands1, s2 ∈ State(V), such thats1 ∼Ctrl(ag)s2.

1. Suppose thatσ +s1 ∈ Run(ag), we show thatσ +s2 ∈ Run(ag).

The proof is done by cases, dependent on whether the pathσ is empty or not.

Case 1: σ = <>.
s1 ∈ Run(ag)

implies {definition ofRun(ag)}
s1|Ctrl(ag) ∈ Init(ag)

implies {s1 ∼Ctrl(ag)s2}
s2|Ctrl(ag) ∈ Init(ag)

implies {definition ofRun(ag)}
s2 ∈ Run(ag)

Case 2: σ ≠ <>.
σ +s1 ∈ Run(ag)

implies {definition ofRun(ag)}
< σ|Voc(ag) ,s1|Ctrl(ag) ∈ Next(ag)

implies {s1 ∼Ctrl(ag)s2}
< σ|Voc(ag) ,s2|Ctrl(ag) ∈ Next(ag)

implies {definition ofRun(ag)}
σ +s2 ∈ Run(ag)
269

f is

n

2. By symmetry, we also have that ifσ +s2 ∈ Run(ag), thenσ +s1 ∈ Run(ag).

Property 3 (finitely violable) -- For allh ∈ History(V),
if h ∉ Behaviour(ag) then there exists a finite prefixσ of h such thatσ ∉ Run(ag)

Proof: Let h ∈ History(V), such that h ∉ Behaviour(ag).

By definition ofBehaviour(ag), if h ∉ Behaviour(ag), then

h(0)|Ctrl(ag) ∉ Init(ag)
or there existsi ∈ Nat such that
< h[i-1]|Voc(ag), h(i)|Ctrl(ag) > ∉ Next(ag)

If h(0)|Ctrl(ag) ∉ Init(ag), thenh(0) is a finite prefix ofh such thath(0) ∉ Run(ag). Other-
wise, there existsi ∈ Nat such thath[i] is a finite prefix ofh such thath[i] ∉ Run(ag).

The following corollary will be used in the proof of Theorem 2 of Chapter 5. Its proo
similar to the proofs of Properties 1 and 2.

Corollary 1. For allh1, h2 ∈ Hist(V),
if h1 ∼Voc(ag)h2 thenh1 ∈ Behaviour(ag) iff h2 ∈ Behaviour(ag).

A. 2. Semantic Conditions for Realizability

The following lemmas are used in the proof of Theorem 1.

Lemma 1.Let ∆(ag) = <Init(ag), Next(ag)> be a agent transition system. Ifσ ∈ Run(ag)
then every prefix ofσ is also among the agent runs.

Proof. The lemma follows directly from the definition ofRun(ag).

Lemma 2. Let ∆(ag) = <Init(ag), Next(ag)> be a agent transition system. Every finite ru
σ ∈ Run(ag) can be extended to an infinite behaviourh ∈ Behaviour(ag).

Proof. The lemma follows from the fact thatNext(ag) is a total relation -- see Section
4.2.4.

Lemma 3.Let G ⊆ History(V) and let∆(ag) = <Init(ag, Next(ag)> be an agent transition
system. If

Behaviour(ag) = G,

then for allσ ∈ Path(V),

σ ∈ Run(ag) iff σ |= G.

Proof:

1. If σ ∈ Run(ag), thenσ |= G.

σ ∈ Run(ag)
implies {Lemma 2}

there exists an infinite suffixh of σ such thath ∈ Behaviour(ag)
iff { Behaviour(ag) = G}

there exists an infinite suffixh of σ such thath |= G
iff {definition of σ |= G}

σ |= G.
270

m

2. If σ |= G, thenσ ∈ Run(ag).

σ |= G
iff {definition of σ |= G}

there exists an infinite suffixh of σ such thath |= G
iff { Behaviour(ag) = G}

there exists an infinite suffixh of σ such thath ∈ Behaviour(ag)
implies {Lemma 1}

σ ∈ Run(ag).

Theorem 1 (Semantic Conditions for Realizability).Let G ⊆ Hist(V) such thatG ≠ φ.
G is realizable by an agentag iff the following conditions hold:

(1) for all σ1, σ2 ∈ Path(V), s ∈ State(V),
if σ1 ∼Voc(ag) σ2 thenσ1+s |=G iff σ2+s |= G

(2) for all σ ∈ Path(V), s1, s2 ∈ State(V),
if s1 ∼Ctrl(ag)s2 thenσ +s1 |= G iff σ +s2|= G

(3) for all h ∈ History(V)
if h |≠G then there exists a finite prefixσ of h such thatσ |≠ G

Proof:

1. The fact that conditions (1) to (3) hold when G is realizable follows directly fro
Lemma 3 and the properties of agent runs in Section 4.2.6.

1.1. If G is realizable byag then Condition (1) holds.

Let σ1, σ2 ∈ Path(V), s ∈ State(V), such thatσ1 ∼Voc(ag) σ2.

σ1+s |=G

iff { Behaviour(ag) = G, Lemma 3}
σ1+s ∈ Run(ag)

iff {Property (1),σ1 ∼Voc(ag) σ2}
σ2+s ∈ Run(ag)

iff { Behaviour(ag) = G, Lemma 3}
σ2+s |= G

1.2. If G is realizable byag then Condition (2) holds.

Let σ ∈ Path(V), ands1, s2 ∈ State(V), such thats1 ∼Ctrl(ag)s2.

σ +s1|=G
iff { Behaviour(ag) = G, Lemma 3}

σ +s1∈ Run(ag)
iff {Property (2),s1 ∼Ctrl(ag)s2}

σ +s2∈ Run(ag)
iff { Behaviour(ag) = G, Lemma 3}

σ +s2|= G
271

it an

tem is
ystem
o

1.3. If G is realizable byag then Condition (3) holds.

Let h ∈ History(V) such thath |≠G.

h |≠G
iff { Behaviour(ag) = G}

h ∉ Behaviour(ag)
iff {Property (3)}

there exists a finite prefixσ of h such thatσ ∉ Run(ag)
iff { Behaviour(ag) = G, Lemma 3}

then there exists a finite prefixσ of h such thatσ |≠ G

2. If Conditions (1) to (3) hold, theG is realizable byag.

To show that these conditions are sufficient for a goal to be realizable, we exhib
agent transition system characterized by the following properties:

sc ∈ Init(ag) iff s |= G for all s ∈ State(V) such thats|Ctrl(ag) = sc

< σm, sc > ∈ Next(ag) iff σ+s |= G or σ|≠ G for all σ such thatσ|Voc(ag) = σm

for all s such thats|Ctrl(ag) = sc

Steps 2.1 and 2.2 show that the set of behaviours generated by this transition sys
equal to the set of histories admitted by the goal. Step 2.3 show that this transition s
is well-defined, that is,Init(ag) ≠ φ, andNext(ag) is a total relation. (Steps 2.1 and 2.2 d
not rely on Step 2.3.)

2.1. If h ∈ Behaviour(ag) thenh |= G

By contraposition of Condition (3), we show thath |= G, by showing that

σ |= G for every finite prefixesσ of h.

The proof is done by induction on the length of the prefixes ofh.

(Initial Case). h[0] |= G

h ∈ Behaviour(ag)
implies {satisfaction ofInit(ag)}

h(0)|Ctrl(ag) ∈ Init(ag)
iff {definition of Init(ag)}

s |= G for all s ∈ State(V) such thats|Ctrl(ag) = h(0)|Ctrl(ag)

implies {instantiatings to h(0)}
h(0) |= G

(Inductive Step). if h[i] |= G thenh[i+1] |= G for all i ∈ Nat

h ∈ Behaviour(ag)
implies {satisfaction ofNext (ag)}

< h[i]|Voc(ag) , h(i+1)|Ctrl(ag) > ∈ Next(ag)
iff {definition of Next(ag)}

σ+s |= G or σ|≠ G for all σ such thatσ|Voc(ag) = h[i]|Voc(ag)

for all s such that s|Ctrl(ag) = h(i+1)|Ctrl(ag)

implies {instantiatingσ to h[i] ands to h(i+1)}
h[i+1] |= G or h[i] |≠ G.
272

2.2. If h |= G thenh ∈ Behaviour(ag)

By definition,h ∈ Behaviour(ag) iff

(Satisfaction of Init): h(0)|Ctrl(ag) ∈ Init(ag)
(Satisfaction of next): < h[i]|Voc(ag) , h(i+1)|Ctrl(ag) > ∈ Next(ag) for all i ∈ Nat

Each condition is proved in turn.

2.2.1. (Satisfaction of Init): if h |= G then h(0)|Ctrl(ag) ∈ Init(ag)

h |= G
implies {from definition ofσ |= G}

h(0) |= G
implies {Condition (2)}

s |= G for all s ∈ State(V) such thath(0)|Ctrl(ag) = s|Ctrl(ag)

iff {definition of Init(ag)}
h(0)|Ctrl(ag) ∈ Init(ag)

2.2.2. (Satisfaction of Next): if h |= G
then< h[i]|Voc(ag) , h(i+1)|Ctrl(ag) > ∈ Next(ag) for all i ∈ Nat

h |= G
implies {from definition ofσ |= G}

h[i]+h(i+1) |= G
implies {Condition (1)}

σ+h(i+1) |= G for all σ such thatσ ~Voc(ag) h[i]
implies {Condition (2)}

σ+s |= G for all σ such thatσ ~Voc(ag) h[i]
for all s such thats~Ctrl(ag) h(i+1)

implies {definition ofNext}
< h[i]|Voc(ag) , h(i+1)|Ctrl(ag) > ∈ Next(ag)

2.3. We now show that this transition system is well-defined, that is,Init(ag) ≠ φ, and
Next(ag) is a total relation.

2.3.1.Init(ag) ≠ φ

SinceG ≠ φ, there existsh such thath |= G.

Form Step 2.2.1, we have thath(0)|Ctrl(ag) ∈ Init(ag). Therefore,Init(ag) ≠ φ.

2.3.2.Next(ag) is a total relation

Let σm ∈ Path(Voc(ag)). We prove that there exists asc ∈ State(Ctrl(ag) such that

< σm, sc > ∈ Next(ag).

The proof is done by cases.

Case 1. Suppose thatσ |≠ G, for all σ ∈ Path(V) such thatσ|Vov(ag) = σm.

By definition ofNext(ag),

< σm, sc > ∈ Next(ag) for anysc ∈ State(Ctrl(ag)
273

Case 2. Suppose thatσ |= G, for someσ ∈ Path(V) such thatσ|Voc(ag) = σm.

Sinceσ |= G, there existsh ∈ History(V), suffix ofσ, such thath |= G.

Let n = length(σ). We haveh[n]|Voc(ag) = σm.

We define:

sc = h(n+1)|Ctrl(ag)

We show that< σm , sc> ∈ Next(ag) as follows:

h |= G
implies {Step 2.2.2}

< h[n]|Voc(ag) , h(n+1)|Ctrl(ag) > ∈ Next(ag)
implies {h[n]|Voc(ag) = σm, andsc = h(n+1)|Ctrl(ag)}

< σm , sc> ∈ Next(ag)
274

les
Annex B. Proofs of Chapter 5

Definition. Let G be an assertion.Voc(G) is defined as the smallest set of state variab
X satisfying the following property:

for all h, h’ ∈ Hist(V)
if h ~X h’, thenh |= G iff h’ |= G

Example. Let G be defined by

P ⇒ Q ∧ (R ∨ ¬ R)

Then,Voc(G) = {P, Q}.

Lemma 4.Let G be a goal, andC ⊆ Voc(G) andM = Voc(G)\C.

For allh ∈ Hist(V),

h |= G iff (h|M, h|C) ∈ G(M,C)

Proof:

1. If h |= G then(h|M, h|C) ∈ G(M,C).

h |= G
implies {definition ofVoc(ag)}

h’ |= G for all h’ such thath’ ~Voc(G) h
implies {M ∪ C = Voc(G)}

h’ |= G for all h’ such thath’|M = h|M and h’|C = h|C

iff {definition of G(M,C)}
(h|M, h|C) ∈ G(M,C)

2. If (h|M, h|C) ∈ G(M,C) thenh |= G.

(h|M, h|C) ∈ G(M,C)

iff {definition of G(M,C)}
h’ |= G for all h’ such thath’|M = h|M and h’|C = h|C

implies {instantiatingh’ to h}
h |= G
275

-

Lemma 5.Condition (iv) of Theorem 2 is equivalent to the following condition (iv’):

For all hm , h’m ∈ dom G(M,C) andi ≥ 0
if i =0 or h’m[i-1] = hm[i-1]

then for allhc ∈ Hist(C)
if (hm, hc) ∈ G(M,C)

then there existsh’c ∈ Hist(C) such thath’c[i] = hc[i] and(h’m, h’c) ∈ G(M,C).

Proof:

1. (iv) implies (iv’)

Let hm , h’m ∈ dom G(M,C) andi ≥ 0 such thati =0 or h’m[i-1] = hm[i-1].

Let hc ∈ Hist(C) such that(hm, hc) ∈ G(M,C).

(hm, hc) ∈ G(M,C)

implies {definition ofG(M, C) (hm) [i]}
hc[i] ∈ G(M, C) (hm) [i]

implies {Condition (iv) of Theorem 2}
hc[i] ∈ G(M, C) (h’m) [i]

implies {definition ofG(M, C) (h’m) [i]}
existsh’c ∈ Hist(C) such thath’c[i] = hc[i] and(h’m, h’c) ∈ G(M,C)

2. (iv’) implies (iv)

Let hm , h’m ∈ dom G(M,C) andi ≥ 0 such thati =0 or h’m[i-1] = hm[i-1].

We show thatG(M, C) (hm) [i] ⊆ G(M, C) (hm’) [i]. The inverse inclusion follows by symme
try.

σc ∈ G(M, C) (hm) [i]
iff {definition of G(M, C) (hm) [i]}

existshc ∈ Hist(C) such thathc[i] = σc and(hm, hc) ∈ G(M,C)

implies {Condition (iv’)}
existsh’c ∈ Hist(C) such thath’c[i] = σc and(h’m, h’c) ∈ G(M,C)

iff {definition of G(M, C) (h’m) [i]}
σc ∈ G(M, C) (h’m) [i]
276

s

i-
h

uiva-
Theorem 2 --Let G ⊆ Hist(V) andag an agent with monitoring and control capabilitie
given byMon(ag) andCtrl(ag), respectively.G is realizable byag if, and only if, there
existsC ⊆ Voc(G) andM = Voc(G)\Ctrl(ag) such that the following conditions hold:

(i) the agent has sufficient monitoring capabilities

M ⊆ Voc(ag)

(ii) the agent has sufficient control capabilities

 C ⊆ Ctrl(ag)

(iii) G(M,C) is a total relation, that is,

for all hm ∈ Hist(M) there existshc ∈ Hist(C) such that(hm, hc) ∈ G(M,C)

(iv) G(M,C) does not refer to future values ofM, that is, the values at timei of variables in
C only depend on the previous values of variables inM up to timei -1.

(v) G is finitely violable, i.e.

for all h ∈ History(V), if h |≠ G then there exists a finite prefixσ of h such thatσ |≠ G

Condition (iv) is formally captured by the following property requiring that if two arb
trary histories of variables inM are equal up to timei - 1, then they accept the same pat
of variables inC up to timei:

for all hm , hm’ ∈ dom G(M,C) andi ≥ 0
if hm’[i-1] = hm[i-1] or i =0 then G(M, C) (hm) [i] = G(M, C) (hm’) [i]

Proof: The structure of the proof is similar to the one of Theorem 1.

1. If G is realizable byag, then Conditions (i) to (v) hold for some set of variablesM, C
⊆ Voc(G).

Let C = Voc(G) ∩ Ctrl(ag) andM = Voc(G)\C. We show that ifG is realizable byag, then
conditions (i) to (v) hold.

1.1.If G is realizable byag, thenM ⊆ Voc(ag).

By definition,M ⊆ Voc(G). We will show thatVoc(G) ⊆ Voc(ag).

From Corollary 1 of Chapter 4, we have that

for all h1, h2 ∈ Hist(V),
if h1 ∼Voc(ag)h2 thenh1 ∈ Behaviour(ag) iff h2 ∈ Behaviour(ag).

Since G is realizable by ag, Behaviour(ag) = G. The above formula is therefore eq
lent to:

for all h1, h2 ∈ Hist(V),
if h1 ∼Voc(ag)h2 thenh1 |= G iff h2 |= G.

By definition,Voc(ag) is the smallest setX satisfying the property:

for all h, h’ ∈ Hist(V)
if h ~X h’, thenh |= G iff h’ |= G

Therefore,Voc(G) ⊆ Voc(ag).
277

-

n

1.2. If G(M, C) is realizable byag, thenC ⊆ Ctrl(ag).

This follows directly from the definition ofC, that is,C = Voc(G) ∩ Ctrl(ag).

1.3.If G is realizable byag, thenG(M, C) is a total relation.

Let hm ∈ Hist(M). We will show the existence of anhc ∈ Hist(C) such that (hm , hc) ∈
G(M, C).

SinceCtrl(ag) ∩ M = φ, Init(ag) ≠ φ, andNext(ag) is a total relation, there exists an his
tory h ∈ Hist(V) such that:

h|M = hm
h(0)|Ctrl(ag) ∈ Init(ag)

and for alli > 0, the statesh(i)|Ctrl(ag) are defined by induction such that:

< h[i]|Voc(ag) , h(i+1)|Ctrl(ag)> ∈ Next(ag).

By construction,h ∈ Behaviour(ag). Therefore, sinceBehaviour(ag) = G, and using
Lemma 4, we have that (h|M , h|C) ∈ G(M, C).

Takinghc = h|C, we have (hm , hc) ∈ G(M, C).

1.4. If G is realizable byag, thenG(M, C) does not refers to the future

Using Lemma 5, we show thatG(M, C) does not refer to the future by proving Conditio
(iv’).

Let hm , h’m ∈ dom G(M,C) andi ≥ 0 such thati =0 or h’m[i-1] = hm[i-1].

Let hc ∈ Hist(C) such that(hm, hc) ∈ G(M,C).

We will show the existence of anh’c ∈ Hist(C) such that

h’c[i] = hc[i] and (h’m , h’c)∈G(M, C).

Let h ∈ Hist(V) such thath|M = hm andh|C = hc. Using Lemma 4, we have that

h |= G;

and sinceBehaviour(ag) = G, we have that

h ∈ Behaviour(ag).

SinceCtrl(ag) ∩ M = φ, andNext(ag) is a total relation,
there exists an historyh’ ∈ Hist(V) such that:

h’|M = h’m
h’|Ctrl(ag)[i] = h|Ctrl(ag)[i]

and for allj ≥ i, the statesh’(i)|Ctrl(ag) are defined by induction such that:

< h’[j]|Voc(ag) , h’(j+1)|Ctrl(ag)> ∈ Next(ag).

Takingh’c = h’|C, we show thath’c[i] = hc[i] and (h’m , h’c) ∈ G(M, C).
278

e

1.4.1.h’c[i] = hc[i].

By definition ofh’c,

h’c[i] = h’|C[i].

Sinceh’|Ctrl(ag)[i] = h|Ctrl(ag)[i] andC ⊆ Ctrl(ag), we have:

h’|C[i] = h|C[i].

And, by definition of h,

h|C[i] = hc[i].

Therefore,h’c[i] = hc[i].

1.4.2. (h’m , h’c) ∈ G(M, C)

(h’m , h’c) ∈ G(M, C)

iff { h’|M = h’m, h’|C = h’c, Lemma 4}
h’ |= G

iff { behaviour(ag) = G}
h’ ∈ Behaviour(ag)

We prove thath’ ∈ Behaviour(ag) by showing that it satisfies the initial condition and th
next state relation.

1.4.2.1. Satisfaction of Init: h’(0)|Ctrl(ag) ∈ Init(ag).

h’(0)|Ctrl(ag) = h(0)|Ctrl(ag) ∈ Init(ag) becauseh ∈ Behaviour(ag);

1.4.2.2. Satisfaction of Next: < h’[j]|Voc(ag) , h’(j+1)|Ctrl(ag)> ∈ Next(ag) for all j ∈ Nat.

For all j < i:

< h’[j]|Voc(ag) , h’(j+1)|Ctrl(ag)> = < h[j]|Voc(ag) , h(j+1)|Ctrl(ag)> ∈ Next(ag)
becauseh ∈ Behaviour(ag).

For all j ≥ i:

< h’[j]|Voc(ag) , h’(j+1)|Ctrl(ag)> ∈ Next(ag) by definition ofh’.

1.5.If G(M, C) is realizable byag, thenG is a ‘safety’ property

This has been proved in Step 1.3 of Theorem 1.
279

tem is
ystem
o

on

e

2. If Conditions (i) to (v) hold for some for some set of variablesM, C ⊆ Voc(G), thenG
is realizable byag.

We define a transition system characterized by the following properties:

sc ∈ Init(ag) iff s |= G for all s ∈ State(V) such thats|Ctrl(ag) = sc

< σm, sc > ∈ Next(ag) iff σ+s |= G orσ|≠ G for all σ such thatσ|Voc(ag) = σm

for all s such thats|Ctrl(ag) = sc

Steps 2.1 and 2.2 show that the set of behaviours generated by this transition sys
equal to the set of histories admitted by the goal. Step 2.3 show that this transition s
is well-defined, that is,Init(ag) ≠ φ, andNext(ag) is a total relation. (Steps 2.1 and 2.2 d
not rely on Step 2.3.)

2.1. If h ∈ Behaviour(ag) thenh |= G

The proof is similar to Step 2.1 in the proof of Theorem 1; it follows from the definiti
of Init(ag) andNext(ag), and uses Condition (v) only.

2.2. If h |= G thenh ∈ Behaviour(ag)

By definition, h ∈ Behaviour(ag) iff it satisfies the initial condition and the next stat
relation. Each condition is proved in turn.

2.2.1.(Satisfaction of Init): if h |= G, then h(0)|Ctrl(ag) ∈ Init(ag)

h(0)|Ctrl(ag) ∈ Init(ag)
iff {definition of Init(ag)}

s |= G for all s ∈ State(V) such thats|Ctrl(ag) = h(0)|Ctrl(ag)

iff {definition of s |= G}
for all s ∈ State(V) such thats|Ctrl(ag) = h(0)|Ctrl(ag)

there existsh’ such thath’(0) = s andh’ |= G

Let s ∈ State(V) such that

s|Ctrl(ag) = h(0)|Ctrl(ag).

SinceC ⊆ Ctrl(ag), we also have that:

s|C = h(0)|C (1)

We will define anh’ such thath’(0) = s andh’ |= G.

We have that:

h |= G
implies {Lemma 4}

(h|M, h|C) ∈ G(M,C)

implies {Condition (iv’) (instantiatingi to 0)}
for all h’m ∈ dom G(M,C)

there existsh’c such thath’c(0) = h|C(0) and(h’m, h’c) ∈ G(M,C)

implies {Condition (iii), i.e.dom G(M,C) = Hist(M)}
for all h’m ∈ Hist(M)
there existsh’c such thath’c(0) = h|C(0) and(h’m, h’c) ∈ G(M,C)
280

Instantiating this last formula with anh’m ∈ Hist(M) such that

h’m(0) = s|M (2)

yields that there existsh’c such that

h’c(0) = h|C(0) and(h’m, h’c) ∈ G(M,C) (3)

We defineh’ ∈ Hist(V) as follows:

h’(0) = s (4)
h’(i)|M = h’m(i) for all i ≥ 1
h’(i)|C = h’c(i) for all i ≥ 1

We have to show thath’ |= G.

By construction ofh’, we have:

h’|M = h’m
because: h’(0)|M = s|M = h’m(0) {4, 2}

h’(i)|M = h’m(i) for all i ≥ 1 {4}
h’|C = h’c

because: h’(0)|C = s|C = h|C(0) = h’c(0) {4, 1, 3}
h’(i)|M = h’m(i) for all i ≥ 1 {4}

And, since(h’m, h’c) ∈ G(M,C), we have:

(h’m, h’c) ∈ G(M,C)

implies {h’|M = h’m , andh’|C = h’c}
(h’|M, h’|C) ∈ G(M,C)

implies {Lemma 4}
h’ |= G

2.2.2.(Satisfaction of Next):
if h |= G, then< h[i]|Voc(ag) , h(i+1)|Ctrl(ag) > ∈ Next(ag) for all i ∈ Nat

Let i ∈ Nat. We have:

< h[i]|Voc(ag) , h(i+1)|Ctrl(ag) > ∈ Next(ag)
iff {definition of Next(ag)}

σ+s |= G orσ|≠ G for all σ such thatσ|Voc(ag) = h[i]|Voc(ag)

for all s such thats|Ctrl(ag) = h(i+1)|Ctrl(ag)

Let σ such that

σ|Voc(ag) = h[i]|Voc(ag)

SinceM ⊆ Voc(ag), andC ⊆ Ctrl(ag), we also have that:

σ|M = h[i]|M (5)
σ|C = h[i]|C (6)

Let s such that

s|Ctrl(ag) = h(i+1)|Ctrl(ag)
281

SinceC ⊆ Ctrl(ag), we also have that:

s|C = h(i+1)|C (7)

We will show thatσ+s |= G by finding anh’ such thath’[i] = σ andh’(i+1) = s andh’ |= G.

We have:

h |= G
implies {Lemma 4}

(h|M, h|C) ∈ G(M,C)

implies {Condition (iv’)}
for all h’m ∈ dom G(M,C) such thath’m[i] = h|M[i]
there existsh’c such thath’c[i+1] = h|C[i+1] and(h’m, h’c) ∈ G(M,C)

implies {Condition (iii), i.e.dom G(M,C) = Hist(M)}
for all h’m ∈ Hist(M) such thath’m[i] = h|M[i]
there existsh’c such thath’c[i+1] = h|C[i+1] and(h’m, h’c) ∈ G(M,C)

Instantiating this last formula with anh’m ∈ Hist(M) such that

h’m[i] = h|M[i] (8)
h’m(i+1) = s|M (9)

yields that there existsh’c such that

h’c[i+1] = h|C[i+1] (10)
(h’m, h’c) ∈ G(M,C)

We defineh’ ∈ Hist(V) as follows:

h’[i] = σ (11)
h’(i+1) = s
h’(j)|M = h’m(j) for all j ≥ i+1
h’(j)|C = h’c(i) for all j ≥ i+1

We have to show thath’ |= G.

By construction of h’, we have:

h’|M = h’m
because: h’[i]|M = σ|M = h|M[i] = h’m[i] {11, 5, 8}

h’(i+1)|M = s|M = h’m(i+1) {11, 9}
h’(j)|M = h’m(j) for all j ≥ i+1 {11}

h’|C = h’c
because: h’[i]|C = σ|C = h|C[i] = h’c[i] {11, 6, 10}

h’(i+1)|C = s|C = h(i+1)|C = h’c(i+1) {11, 7, 10}
h’(i)|M = h’m(i) for all j ≥ i+1 {11}
282

Since(h’m, h’c) ∈ G(M,C), we have:

(h’m, h’c) ∈ G(M,C)

implies {h’|M = h’m , andh’|C = h’c}
(h’|M, h’|C) ∈ G(M,C)

implies {Lemma 4}
h’ |= G

2.3.The proofs thatInit(ag) is not empty and thatNext(ag) is a total relation are similar to
the corresponding proofs for Theorem 1.
283

	Abstract
	Acknowledgments
	Contents
	Introduction
	Goals and Agents in Requirements Modelling
	2.1. Foundations of RE
	2.2. Modelling Goals
	2.3. Modelling Agents
	2.4. Exceptional Behaviours

	Chapter 3 Goal-Oriented Requirements Engineering with KAOS
	3.1. Why a Goal-Oriented Approach?
	3.2. The KAOS Goal-Oriented Requirement Specification Language
	3.2.1 Overview
	3.2.2 Conceptual Modelling
	3.2.2.1 The Meta, Domain, and Instance Levels
	3.2.2.2 Characterizing meta-model components

	3.2.3 Formal Specification of Timed Assertions
	3.2.3.1 Qualitative Temporal Properties
	3.2.3.2 Relative Real-Time Properties
	3.2.3.3 Absolute Real-Time Properties
	3.2.3.4 Flexible real-time Properties

	3.2.4 The Goal Model
	3.2.4.1 Defining Goals
	3.2.4.2 Classifying Goals
	3.2.4.3 Domain Properties
	3.2.4.4 Goal Refinement
	3.2.4.5 Goal Conflicts
	3.2.4.6 Soft Goals and Optimization Goals

	3.2.5 The Object Model
	3.2.5.1 Objects
	3.2.5.2 Entities
	3.2.5.3 Events
	3.2.5.4 Agents
	3.2.5.5 Relationships
	3.2.5.6 Attributes
	3.2.5.7 Specialization
	3.2.5.8 Invariants
	3.2.5.9 Consistency rules between the object and goal model

	3.2.6 The Agent Responsibility Model
	3.2.6.1 Responsibility Links
	3.2.6.2 Instance declarations
	3.2.6.3 Semantics of Responsibility

	3.2.7 The Operation Model
	3.2.7.1 Domain Pre/Post and Required Pre/Trigger/Post Conditions
	3.2.7.2 Inputs and Outputs
	3.2.7.3 Initial Conditions
	3.2.7.4 Performance Links
	3.2.7.5 Operationalization Links
	3.2.7.6 The responsibility meta-constraint

	3.2.8 The Agent Interface Model
	3.2.8.1 Monitoring and Control Links
	3.2.8.2 Instance declarations
	3.2.8.3 The “unique control” meta-constraint
	3.2.8.4 The input/output meta-constraint
	3.2.8.5 The realizability meta-constraint

	3.3. The Goal-Oriented Requirements Elaboration Method
	3.3.1 Overview
	3.3.2 The Mine Pump Example
	3.3.3 Elaborating the goal and object models
	3.3.3.1 Identifying preliminary goals
	3.3.3.2 Formalizing Goals and Identifying Objects
	3.3.3.3 Eliciting New Goals through WHY questions
	3.3.3.4 Eliciting new goals through HOW questions

	3.3.4 Elaborating Alternative Agent Models
	3.3.4.1 Identifying potential responsibility assignments
	3.3.4.2 Deriving agent interfaces
	3.3.4.3 Operationalizing goals

	3.3.5 Goal refinement and agent identification: an intertwined process
	3.3.6 Goal-Oriented Analysis
	3.3.6.1 Conflict Analysis
	3.3.6.2 Obstacle Analysis
	3.3.6.3 Alternative evaluation and selection

	3.4. Summary and Outlook

	Chapter 4 A Formal Model for Agents
	4.1. Towards a Formal Semantics for the KAOS Language
	4.1.1. Motivation
	4.1.2. Choosing a Semantic Domain
	4.1.3. Overview of a semantics for the KAOS language

	4.2. The Underlying Agent Model
	4.2.1. Preliminary Definitions: State Variables, States and Histories
	4.2.2. Agent Interface
	4.2.3. Agent Views and Indistinguishability
	4.2.4. Agents Transition Systems
	4.2.5. Agent Runs
	4.2.6. Properties of Agent Runs
	4.2.7. Agent Responsibilities
	4.2.8. Relating agent responsibilities and the agent’s transition system

	4.3. Defining Realizability
	4.3.1. Defining Realizability of single responsibility assignments
	4.3.2. Semantic Conditions for Realizability
	4.3.3. Defining Realizability of multiple responsibility assignments

	4.4. Summary

	Chapter 5 Identifying and Classifying Unrealizable Goals
	5.1. Viewing Goals as Relations
	5.2. A Complete Taxonomy of Realizability Problems
	5.3. Identifying Lack of Monitorability
	5.4. Identifying Lack of Control
	5.5. Identifying Unsatisfiable Goals
	5.6. Identifying References to the Future
	5.7. Identifying Unbounded Achieve Goals
	5.8. Summary

	Chapter 6 Agent-Driven Tactics for Elaborating Goal Models
	6.1. Basic Idea
	6.2. A First Example
	6.3. Benefits of Agent-Driven Tactics
	6.3.1. Systematic elaboration of requirements
	6.3.2. Exploration of alternatives
	6.3.3. Formally complete goal refinements

	6.4. Building a Library of Agent-Driven Tactics
	6.4.1. Identifying tactics
	6.4.2. Coverage of the library

	6.5. Resolving Lack Of Monitorability
	6.5.1. Add monitorability
	6.5.2. Split lack of monitorability
	6.5.3. Introduce Accuracy Goals
	6.5.3.1. The basic tactic
	6.5.3.2. Introduce tracking object
	6.5.3.3. Introduce sensor agent
	6.5.3.4. Deidealizing accuracy goals through tolerances and delays

	6.5.4. Split Lack of Monitorability with Milestone
	6.5.5. Split Lack of Monitorability by Chaining
	6.5.6. Split Lack of Monitorability By Cases
	6.5.7. Replace Unmonitorable States by Events

	6.6. Resolving Lack of Control
	6.6.1. Add control
	6.6.2. Split lack of control
	6.6.3. Introduce Actuation Goals
	6.6.3.1. Deidealizing actuation goals through tolerances and delays

	6.6.4. Split Lack of Control with Milestone
	6.6.5. Split Lack of Control by Chaining
	6.6.6. Split Lack of Control By Cases
	6.6.7. Replace Uncontrollable State by Events

	6.7. Resolve Goal Unsatisfiability
	6.7.1. Weaken goal with unsatisfiability condition
	6.7.2. Prevent goal unsatisfiability

	6.8. Resolve References to the Future
	6.8.1. Resolve References to Strict Future
	6.8.1.1. Apply anticipation pattern

	6.8.2. Resolve Synchronization problems
	6.8.2.1. Replace current by previous
	6.8.2.2. Introduce reactiveness hypothesis
	6.8.2.3. Introduce mutual exclusion hypothesis
	6.8.2.4. Apply mutual exclusion refinement pattern
	6.8.2.5. Apply anticipation pattern

	6.9. Resolve Unbounded Achieve Goal
	6.10. Summary

	Chapter 7 Formal Patterns for Goal Operationalization
	7.1. Semantics of the KAOS operation model
	7.1.1. Temporal semantics of operations
	7.1.2. Semantics of Operationalization

	7.2. Operationalization Patterns
	7.3. Benefits of Operationalization Patterns
	7.3.1. Hiding low-level proofs
	7.3.2. Deriving operational requirements from goals
	7.3.3. Checking operational requirements for completeness
	7.3.4. Inferring goals from operations

	7.4. Building a Library of Patterns
	7.4.1. Identifying Patterns
	7.4.2. Coverage of the Library

	7.5. A Library of Operationalization Patterns
	7.5.1. Achieve Goals
	7.5.2. Maintain Goals

	Chapter 8 Obstacle Analysis
	8. 1. Introduction
	8. 2. Goal Obstruction by Obstacles
	8. 2. 1. Obstacles to goals
	8. 2. 2. Completeness of a set of obstacles
	8. 2. 3. Obstacle refinement
	8. 2. 4. Classifying obstacles
	8. 2. 5. Goal obstruction vs. goals divergence

	8. 3. Integrating Obstacles in the RE Process
	8. 4. Generating Obstacles
	8. 4. 1. Regressing goal negations
	8. 4. 2. Completing a set of obstacles
	8. 4. 3. Using obstruction refinement patterns
	8. 4. 3. 1. AND-refinement patterns
	8. 4. 3. 2. Complete OR-refinement patterns

	8. 4. 4. Informal obstacle identification

	8. 5. Resolving Obstacles
	8. 5. 1. Obstacle Elimination
	8. 5. 1. 1. Goal substitution
	8. 5. 1. 2. Agent substitution
	8. 5. 1. 3. Obstacle prevention
	8. 5. 1. 4. Goal Deidealization
	8. 5. 1. 5. Domain transformation

	8. 5. 2. Obstacle Reduction
	8. 5. 3. Obstacle Tolerance
	8. 5. 3. 1. Goal restoration
	8. 5. 3. 2. Obstacle mitigation
	8. 5. 3. 3. Do-nothing

	8. 6. Summary

	Chapter 9 Case Studies
	9. 1. The London Ambulance Service System
	9. 1. 1. Introduction
	9. 1. 2. Elaborating the Goal Model
	9. 1. 2. 1. Identifying preliminary goals
	9. 1. 2. 2. Refining the goal Achieve[AmbulanceMobilization]
	9. 1. 2. 3. Refining the goal Achieve[AllocatedAmbulanceMobilized]
	9. 1. 2. 4. Refining the goal Maintain[AccurateAmbulanceAvailabilityandLocationInfo]

	9. 1. 3. Goal Operationalization
	9. 1. 4. Obstacle Analysis
	9. 1. 4. 1. Obstacles generation
	9. 1. 4. 2. Obstacles resolution

	9. 2. The BART Train Control Case Study
	9. 2. 1. Introduction
	9. 2. 2. Identifying and Formalizing Preliminary Goals
	9. 2. 3. Refining goals and identifying alternative responsibility assignments
	9. 2. 4. Goal Operationalization
	9. 2. 5. Obstacle Analysis
	9. 2. 5. 1. Generating Obstacles
	9. 2. 5. 2. Resolving Obstacles

	9. 3. Discussion

	Chapter 10 Related Work
	10.1. Agent Responsibility, Monitoring and Control
	10.2. Exception Handling and Fault-Tolerance

	Chapter 11 Conclusion
	11.1. Contributions
	11.2. Limitations and Future Directions
	11. 2. 1. Evaluating and Selecting Alternative Designs
	11. 2. 2. Specialized Elaboration Tactics based on Goal Categories
	11. 2. 3. A Rich Taxonomy of Formal Patterns for Requirements Elaboration
	11. 2. 4. Tool Support
	11. 2. 5. Goal-Oriented Elaboration of Software Architecture
	11. 2. 6. Agent Refinement

	References
	Annex A. Proofs of Chapter 4
	A. 1. Properties of Agent Runs
	A. 2. Semantic Conditions for Realizability

	Annex B. Proofs of Chapter 5

