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ABSTRACT
Exploring alternative options is at the heart of the requirements
and design processes. Different alternatives contribute to different
degrees of achievement of non-functional goals about system
safety, security, performance, usability, and so forth. Such goals
in general cannot be satisfied in an absolute, clear-cut sense.
Various qualitative and quantitative frameworks have been
proposed to support the assessment of alternatives for design
decision making. In general they lead to limited conclusions due
to the lack of accuracy and measurability of goal formulations and
the lack of impact propagation rules along goal contribution links.
The paper presents techniques for specifying partial degrees of
goal satisfaction and for quantifying the impact of alternative
system designs on the degree of goal satisfaction. The approach
consists in enriching goal refinement models with a probabilistic
layer for reasoning about partial satisfaction.  Within such models,
non-functional goals are specified in a precise, probabilistic way;
their specification is interpreted in terms of application-specific
measures; impact of alternative goal refinements is evaluated in
terms of refinement equations over random variables involved in
the system's functional goals. A systematic method is presented
for guiding the elaboration of such models. The latter can then be
used to assess the impact of alternative decisions on the degree of
goal satisfaction or to derive quantitative, fine-grained
requirements on the software to achieve the higher-level goals.

Categories & Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specification -
methodologies, languages .

General Terms
Design, Languages, Documentation.

Keywords
Partial satisfaction of requirements, probabilistic requirements
modeling, reasoning about design alternatives, non-functional
requirements, goal-oriented requirements engineering.

1 INTRODUCTION
Requirements engineering (RE) is concerned with the
identification of the goals to be achieved by the system-to-be, the
operationalization of such goals into specifications of services and

constraints, and the assignment of responsibilities for such
services and constraints among human, physical, and software
components forming the system.
A significant part of the RE process consists in exploring
alternative system proposals in which more or less functionality is
automated and different services and constraints are retained to
achieve the higher-level goals.
A goal is a prescriptive statement of intent whose satisfaction in
general requires the cooperation of some of the agents forming the
system [18]. Agents are active components such as humans,
devices, legacy software or software-to-be components that play
some role towards goal satisfaction. Some agents thus define the
software whereas others define the environment. Goals may refer
to functional or non-functional properties and range from high-
level concerns (such as “an ambulance must arrive at the incident
scene within 14 minutes“ for an ambulance dispatching system) to
finer-grained ones (such as “information about ambulance location
must be updated every 5 seconds”). Requirements are fine-grained
goals under the sole responsibility of the software-to-be;
expectations are fine-grained goals under responsibility of some
agent in the environment.
Goals often do not need to be satisfied in an absolute, clear-cut
sense. For example, standards for ambulance dispatching require
that “an ambulance must arrive at the incident scene within 14
minutes after receiving the first call in at least 95% of the cases”
[19]. For a mine pump control system, a typical goal is that  “the
mine should not be overflowed for more than 1 working shift in a
thousand” [14]. For a train control system¸ a typical goal is that
“the distance between two trains should always be bigger than the
worst-case stopping distance of the following train, with a mean
time between hazards of the order of 109 hours” [34]. Partial
degree of satisfaction may be due to, e.g., limited resources,
possible failures, or conflicting goals.
In the process of exploring alternative system proposals,
requirements, and designs, different alternatives have in general
different impacts on the degree of satisfaction of higher-level
goals. Consider the goal stating that an ambulance must arrive at
the incident scene within 14 minutes, and non-functional goals
concerning development costs and time. The elaboration of
requirements to meet such goals may lead to the identification of
numerous alternatives. For example, call taking and the recording
of incident details may be done on paper or on-screen; on-screen
call taking may be done with or without a map gazetteer feature to
help locate incidents; ambulance allocation could be made fully
automatically, interactively, or by only a human allocator;
communication with ambulance crews could be done via radio or
via mobile data terminals in ambulances; alternative designs can
also be considered for detecting failed mobilizations and
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recovering from them; and so on [17, 20, 21]. All such
alternatives have different impacts on higher-level goals.
Evaluating such impacts is necessary to guide the selection of a
“most preferred” alternative.
In previous work, we have developed systematic techniques for
producing alternative system designs by (a) generating alternative
goal refinements and responsibility assignments [3, 21], (b)
detecting goal conflicts and finding alternative conflict resolutions
[16], and (c) generating potential obstacles to goal satisfaction and
finding alternative obstacle resolutions for more robust systems
[17]. Those techniques consider absolute goal satisfaction only;
they do not support the evaluation of generated alternatives to
guide the selection of  most appropriate ones.
The purpose of this paper is to address such limitations. We
present techniques for specifying partial degrees of goal
satisfaction and for quantifying the impact of different system
alternatives on high-level goals that may be satisfied only
partially. Such techniques may then be used to guide requirements
elaboration and design decision making.
The paper is organized as follows. Section 2 summarizes some
material on goal-oriented RE together with our running example.
A short state of the art on reasoning about partial satisfaction is
also presented there to motivate our approach more precisely.
Section 3 describes our technique for specifying goals that may be
achieved only partially. Section 4 presents a technique for
propagating partial degrees of satisfaction along goal
refinement/abstraction links. The use of this technique for various
kinds of analysis is discussed in Section 5.

2 BACKGROUND
2.1 Goal-oriented requirements engineering
Fig. 1 shows a portion of the goal model built in [17, 20] for the
London Ambulance Service (LAS). This case study is based on a
report on the inquiry that followed a major system failure [19].
The top goal is specified as follows:

Goal Achieve [AmbulanceIntervention]
Definition For every urgent call reporting an incident, there should

be an ambulance at the incident scene within 14 minutes after
receiving the first call.

FormalDef ∀inc: Incident
Reported (inc)

⇒ ◊ ≤14min (∃ amb:Ambulance ) Intervention (amb, inc)
This specification fragment introduces a goal named
AmbulanceIntervention together with its natural language
definition The Achieve keyword declares a goal pattern; in this
case, it states that some target property must eventually hold. A
formal counterpart may be specified optionally in a real-time
linear temporal logic for formal reasoning.
The top goal in Fig. 1 is AND-refined in two subgoals:
AmbulanceMobilized and MobilizedAmbulanceIntervention. The
former requires an ambulance to be mobilized for an incident once
an urgent call is received; the latter requires an ambulance to
arrive at the incident scene once it is mobilized. An AND-
refinement is complete if the conjunction of the subgoals, together
with domain properties, is sufficient to establish the satisfaction of
the parent goal [3]. In the above example, the conjunction of the
assertions formalizing the goals AmbulanceMobilized and

MobilizedAmbulanceIntervention can be proved to entail the
assertion formalizing the parent goal.
A goal may also be OR-refined into alternative sets of subgoals.
Each alternative corresponds to an alternative design for achieving
the parent goal. Consider the goal AllocatedAmbulanceMobilized in
Fig. 1; this goal requires an ambulance to be effectively mobilized
once it has been allocated to an incident. In a first alternative, the
goal is AND-refined into subgoals AmbulanceMobilization
CommunicatedOnRadio and AmbulanceMobilizedFromRadio
Mobilization, which corresponds to a non computer-based
ambulance dispatching system. In the second alternative, the goal
is AND-refined into subgoals AmbulanceMobilizationCom-
municatedOnMobileDataTerminal and AmbulanceMobilizedFrom
MobileDataTerminalMobilization, which corresponds to a
computer-based mobilization system.

AmbulanceIntervention

AmbulanceMobilized MobilizedAmbulanceIntervention

IncidentFormEncoded AmbulanceMobilized
BasedOnIncForm

AmbulanceAllocated
BasedOnIncForm

AllocatedAmbulance
Mobilized

AmbulanceMobilization
CommunicatedOnRadio

AmbulanceMobilized
FromRadioMobilization

AmbulanceMobilization
CommunicatedOnMDT

AmbulanceMobilized
FromMDTMobilization

OR

Figure 1 - Portion of a goal model for the LAS

Goals need to be refined until they can be assigned as
responsibilities of single agents [18]. In general, alternative
assignments of goals to agents have to be explored as well. For
example, the goal requiring the most appropriate ambulance to be
selected for an incident might be assigned to a human allocator
agent, to a software agent, or to a combination of the two (in
which case the goal has to be further refined to reach single
responsibility assignments).
First-sketch goals elicited during goal modelling tend to be
unrealistic; they are likely to be violated from time to time due to
unexpected agent behavior that cannot be controlled by the
software.  An obstacle to some goal is a condition that may
prevent the goal from being satisfied [17]. For example, obstacles
such as AmbulanceCrewPushingWrongButtonOnMDT or
AmbulanceCrewTakingUnalloccatedVehicle obstruct the goal
AccurateAmbulanceStatusInfo; an obstacle such as RadioBlackSpot
obstructs the goal AmbulanceMobilizationCommunicatedOnRadio.
Obstacles can be generated and resolved systematically [17]. In
general, alternative obstacle resolutions need to be explored.

2.2 Reasoning about partial goal satisfaction
The problem of evaluating alternatives with respect to degrees of
goal satisfaction has been addressed by qualitative and
quantitative reasoning techniqes.



2.2.1  Qualitative reasoning techniques
Typical examples are the NFR framework [2] and the WinWin
model [11]. The idea is to expose positive or negative influences
of different alternatives on non-functional goals formulated in
high-level terms.
Fig. 2 shows a simplified NFR model for the LAS system.
Compared with the goals in Fig. 1, which have a precise semantics
defined in terms of admissible system behaviors [20], NFR
softgoals are goals whose satisfaction cannot be established in a
clear-cut sense [25]. They are used to compare refinement
alternatives; the extent to which each alternative contributes to the
softgoals is determined qualitatively. In Fig. 2, the NFR softgoal
FastIntervention is refined into softgoals FastMobilization and
CloseMobilization. Each of these softgoals is further refined into
subgoals.

Fast Intervention

Fast Mobilization Close Mobilization

Fast
CallTaking

Fast
Allocation

Allocation
Accuracy

Ambulance
Availability

ContributesTo

Figure 2 - Portion of a NFR model of the LAS system
Suppose that we have to choose between two alternative options A
and B that contribute with different degrees to the various
softgoals in Fig. 2. Table 1 suggests the contribution of the two
alternatives to the leaf softgoals, e.g., A contributes very positively
to FastAllocation, positively to AllocationAccuracy, very negatively
to FastCallTaking, and negatively to AmbulanceAvailability.

Fast
CallTaking

Fast
Allocation

Allocation
Accuracy

Ambulance
Availability

Option A -- ++ + -

Option B ++ -- ++ +

Table 1 - Qualitative contributions to softgoals

Qualitative propagation rules  are proposed in the NFR framework
to compute the qualitative degree of goal satisfaction for each
alternative system.  They allow the satisfaction status of non-
functional goals to be determined in each alternative, namely
“satisficed” (partially satisfied), “denied” or “undetermined”.
NFR models provide useful information about the kind of
influence different alternatives may have on high-level goals
identified at an early stage of the RE process. However, the goals
remain too vague for deep, accurate understanding of the model;
degrees of satisfaction have no clear meaning; the propagation
rules often result in undetermined satisfaction for higher-level
goals. The applicability of such frameworks for accurate decision
support appears thus limited.

2.2.2  Quantitative reasoning techniques
Qualitative techniques may be extended by quantifying positive
and negative influences of alternative options on the degree of
goal achievement. The simplest and most obvious technique
consists in replacing qualitative contribution values such as “++”
or “-” by numerical weights. For example, Table 2 suggests
quantitative measures on contributions of options A and B to the
leaf softgoals in Fig.2. The numbers there capture degrees to
which the goals are satisfied in the corresponding alternative.
Each contribution link in Fig. 2 would be numerically weighted as

well, e.g., the contribution weights of FastMobilization and
CloseMobilization on the parent goal FastIntervention might be
given the values 3 and 5, respectively.
The degree of satisfaction of a goal is then computed as some
weighted average of the degree of satisfaction of its subgoals. The
alternative for which the top-level goal has highest degree of
satisfaction would then be selected.

Fast
CallTaking

Fast
Allocation

Allocation
Accuracy

Ambulance
Availability

Option A 0.1 0.7 0.5 0.3

Option B 0.7 0.1 0.7 0.5

Table 2 - Quantitative contributions to softgoals

This elementary principle is used fairly often in practice [33].
There are, however, still key problems with such quantifications.

• What do such numbers mean? In general, the meaning of
numbers capturing partial satisfaction and partial contribution is
subjective; such numbers have no physical interpretation in the
application domain. What does it mean to say that the softgoal
FastIntervention is satisfied at degree 0.7? Goal formulations
and degrees of satisfaction remain vague and non measurable.
This violates a fundamental principle of requirements
engineering calling for precise and measurable requirements
and specifications. Numerous quantitative techniques proposed
in the literature are based on subjective concepts of partial
satisfaction – see, e.g., the house-of-quality weight matrix in
the QFD method for evaluating impacts of alternatives on
customers goals [1]; the utility weights in [28] for requirements
negotiation support; the fuzzy logic values in [35] for detecting
conflicts among imprecise requirements; the degrees of
evidence of satisfiability/deniability in quantitative extensions
of the NFR framework [8]; and degrees of goal achievement in
[6] for guiding the selection of alternatives to prevent or
mitigate risks.

• Where are such numbers coming from?  The usual answer is
that stakeholders are responsible for providing numerical values
for degrees of satisfaction/contribution. There are two ways of
eliciting such values:  by considering absolute values for goal
contribution weights, as in [6], or by considering relative values
through pairwise comparison, as in the AHP technique [30]
used in [12] for requirements prioritization. In methods based
on weighted averages, contribution weights correspond to
substitution rates between criteria. Eliciting relative values
through pairwise comparison is therefore preferable as it may
reflect mathematical properties of the weights. It provides the
additional benefit of allowing consistency checks on the elicited
values. In both cases, however, there are no clear criteria for
validating estimations – e.g., how can we check whether the
contribution weights of goals FastMobilization and
CloseMobilization are really 3 and 5? Even after system
deployment the subjective nature of parameter estimations
makes it difficult to test whether such estimations were correct
or not.

Beside quantitative techniques based on subjective criteria, there
are many quantitative methods based on objective criteria, that is,
criteria with some domain-specific physical interpretation such as
the percentage of incidents resolved within 14 minutes or the
mean time between application-specific hazards. Dedicated
techniques are widely used to reason about specific categories of



non-functional properties. For example, queuing models is a
standard technique for assessing system performance; reliability
block diagrams, fault-trees, event trees and Markov models are
standard techniques for assessing system reliability; stochastic
models are also used for analyzing system availability. More
recently, probabilistic models have been proposed to
quantitatively assess system security [24].
The application of such techniques during requirements
engineering is limited in two respects: (a) there is little
constructive support for elaborating the models to be analyzed; (b)
there is little integration of such models with the other models
used in the RE process.
Our objective is therefore to integrate quantitative techniques for
reasoning about non-functional properties, based on objective
criteria, with goal-oriented techniques for building requirements
models. In particular, systematic support should be provided to:

• specify and propagate partial degrees of goal satisfaction
precisely, in terms of domain-specific phenomena;

• guide the elaboration of models that help stakeholders assess
the impact of alternatives on the degree of goal satisfaction.

Our work is related to the Architecture Tradeoff Analysis Method
(ATAM) [13]. This method provides support for quantitatively
assessing the impact of architectural parameters on multiple non-
functional requirements in order to determine satisfactory trade-
offs. The goal-oriented method described below might be used as
input to ATAM in order to guide (a) the identification, refinement
and precise specification of the non-functional requirements that
drive architectural decisions, and (b) the elaboration of the
quantitative models needed to quantify the impact of alternative
designs on those non-functional requirements.
Our work is also related to the use of Bayesian networks (BN) for
making predictions about non-functional properties such as safety
or reliability [7]. The elaboration and validation of BNs prove to
be very difficult for complex systems. As it will be seen below,
our approach provides constructive support for building
probabilistic networks that are somewhat similar to BNs.

2.3 A few basics from probability theory
A sample space S is the set of possible outcomes of a random
experiment. A random variable V of type T on a sample space S is
a mathematical function V: S → T. The cumulative distribution
function (CDF) of a random variable V is the probability that the
value of V on an experiment run is less than or equal to some
value x: CDFV(x) =  P (V ≤ x). The probability density function
(pdf) of a continuous variable V is the derivative of its cumulative
distribution function: pdfV(x) = d CDFV(x) / dx. A comprehensive
introduction to probability theory can be found in [31].

3 SPECIFYING DEGREES OF GOAL
SATISFACTION

We first introduce objective functions and quality variables to
specify partial goal satisfaction in a semi-formal but precise,
application-specific way (Section 3.1). Heuristics for identifying
objective functions and quality variables from goal specifications
are presented next (Section 3.2). Section 3.3. then shows how to
optionally specify objective functions formally in a probabilistic
temporal logic.

3.1 Objective functions and quality variables
The partial degree of satisfaction of a goal is modeled by
annotating that goal with the following domain-specific attributes.
• One or more quality variables  corresponding to domain-

specific, goal-related random variables defined over specified
sample spaces; each quality variable has a name, a sort, and a
natural language definition that relates it to the quantity it
denotes in the application domain.

• Zero, one or more objective functions that define domain-
specific, goal-related quantities to be maximized or minimized;
each  objective function is given a name, a mathematical
definition refering to the goal quality variables, a modality
recording whether the function is to be maximized or
minimized, and a target value for the system-to-be. (The value
currently achieved by the system-as-is may be specified as well
for comparison purpose.)

As a first example, the degree of satisfaction for the goal
Achieve[AmbulanceIntervention] in Fig. 1 might be specified as
follows:

Goal  Achieve[AmbulanceIntervention]

Def For every urgent call reporting an incident, an ambulance must
arrive at the incident scene within 14 minutes.

Objective Functions
Name Def Modal Target Current

8MinRespRate P (RespTime ≤ 8') Max 50% 35%

14MinRespRate P (RespTime ≤ 14') Max 95% 80 %

Quality Variables
ResponseTime: Time

{Sample Space: set of reported incidents.
 Def: time between first report of the incident and arrival of the

first ambulance at the incident scene}

The goal Achieve[AmbulanceIntervention] has two objective
functions, namely, 8MinRespRate and 14MinRespRate, defined as
the probability that the response time for an incident is less than 8
minutes and 14 minutes, respectively. These functions have to be
maximized. (For the real LAS system, the target values for these
objective functions were set in 1992 by government standards to
50% and 95%, respectively.) Those objective functions refer to a
quality variable ResponseTime of sort Time.

There may be different choices of objective functions and quality
variables for the same goal. For example, an alternative objective
function for the above goal might have been to minimize the
average response time. Identifying appropriate objective functions
is critical; wrong decisions may be taken if they are based on
wrong objectives. This observation is among the key reasons for
preferring a domain-specific approach for modeling partial goal
satisfaction to a subjective, domain-independent one.
A single goal may have more than one objective function, and the
range of such functions is not necessarily [0, 1] – think of, e.g.,
the average response time for a performance goal, the mean time
between hazards for a safety goal, and so on.
Objective functions need not to be specified for every goal. As we
will see later, propagation rules are defined on quality variables,
not on objective functions. Such functions need to be defined only
when there are measures  on the goal quality variables that are of
interest to the decision making process. Typically, objective
functions will be specified on important high-level goals of the
application domain, and on a few key lower-level goals.



Our approach ensures a complete separation of concerns between
the behaviors prescribed by a goal (as specified by its informal
and formal definition in temporal logic) and the quantitative
aspects of partial satisfaction (specified by the quality variables
and objective functions). Such separation of concerns provides
several benefits.
• One may elaborate and analyze the behavioral aspects of a goal

model, using techniques mentioned in Section 2.1,
independently from the quantitative, probabilistic aspects. It is
thus possible to model and reason about partial goal satisfaction
at a later stage of the RE process, only if desired.

• Requirements engineers may specify and reason about
quantitative goal models even when the goals are specified only
semi-formally. When the optional formal layer of the goal
model is used, however, probabilistic extensions of temporal
logic may be used to specify objective functions formally and
relate them to the goal specification in temporal logic (see
Section 3.3).

• Quality variables and objective functions may change
independently from the behavioral specification of the
associated goal. For the goal Achieve[Ambulance Intervention],
the definition of objective functions related to response time
may be different from one region to another; they may evolve
over the years to take into consideration different incident
categories (e.g., incidents such as strokes requiring faster
intervention than others). However, the behavior prescribed by
the goal, namely, that an ambulance must arrive at the incident
scene, remains the same.

3.2 Identifying quality variables and objective
functions

Identifying the right objective functions and quality variables, and
specifying them correctly, is critical for evaluating alternative
designs against the right criteria. We propose five heuristics to
support this task.

(H1) Identify quality variables from conditions constrained by
the goal

Goals constrain system behaviors. Finding out in a goal
specification which conditions are being constrained by the goal
provides a good source for candidate quality variables; such
conditions may explicitly or implicitly refer to them.
For example, the specification of Achieve[Ambulance Intervention]
constrains two conditions: (i) an ambulance eventually arriving at
the incident scene, and (ii) within a specified delay of 14 minutes.
From condition (i) we may identify a Boolean quality variable
IncidentDropped, defined on the sample space of all reported
incidents, whose value is true when no ambulance ever responds
to the incident. One objective function on this quality variable
would be to to minimize the probability that IncidentDropped is
true. From condition (ii) we may identify the quality variable
ResponseTime specified in the previous section.
As another example, consider the following subgoal of Achieve
[Ambulance Intervention] (see Fig. 1):

Goal  Achieve [Ambulance Mobilized]
Def For every urgent call reporting an incident, an ambulance must

be mobilized to the incident location within less than three
minutes; the mobilized ambulance should be at less than 11
minutes from the incident location.

This goal constrains four conditions: (i) an ambulance being

mobilized, (ii) the location to which the ambulance is mobilized
being the incident location, (iii) the mobilization being within the
specified delay, and (iv) the distance between the ambulance and
the incident location being less than 11 minutes. The following
quality variables are then identified systematically from these
conditions:

NoAmbMobilized: Boolean
{Sample Space set of reported incidents
 Def NoAmbMobilized is true if no ambulance is ever mobilized for

the incident }

MobilizationTime: Time
{Sample Space set of reported incidents
 Def time between first report of the incident and mobilisation of the

first ambulance}

WrongMobDest: Boolean
{Sample Space set of reported incidents
 Def WrongMobDest is true if the mobilized ambulance is mobilized

to a wrong location}

DistMobilizedAmbulance: Time
{Sample Space set of reported incidents
 Def distance, measured in time to go from one location to the other,

between the first mobilized ambulance and the incident
location}

Some of these quality variables, like WrongMobDest, are clearly
related to obstacles on the same goal [17]. The concepts of
obstacle and quality variable are in fact both related to the idea
that a goal may not be fully satisfied. However, the two concepts
are quite different and should not be confused. An obstacle is a
condition that captures a set of behaviors violating the goal; a
quality variable is a random variable used to assess how well the
goal is satisfied. The purpose of obstacle analysis is to identify
what might go wrong; the purpose of quality variables is to help
determine how much it might go wrong or, conversely, how much
the goal will be satisfied.
As another example of use of this heuristic, consider the following
goal for a mine pump control system [14].

Goal  Achieve [WaterAlarmIffCriticalWaterLevel]
Def The water alarm should be raised if, and only if, the water level

exceeds the 'Overflow' limit.

This goal constrains two conditions: (i) the water alarm being
raised when water level is critical, and (ii) the water alarm being
not raised when the level is not critical. This suggests two quality
variables to be specified: WaterAlarmFailure and FalseWaterAlarm;
the former refers to failure to raise the alarm when the water level
is critical; the latter refers to alarm raising when the water level is
not critical. (These variables will be specified more precisely in
the next section.)

(H2) Specify quality variables according to quality variables of
parent goals

The precise definition of quality variables and objective functions
for a goal is strongly related to the choice of quality variables and
objective functions for the parent goals.
In the above mine pump example, the need to raise an alarm when
the water level is critical contributes to the satisfaction of the goal
Avoid [MinerInOverflowedMine]; the objective function for the latter
goal is the conditional probability that a miner is in the mine when
the mine is overflowed. The definition of the quality variable
WaterAlarmFailure and its sample space will be defined
accordingly:

WaterAlarmFailure: Boolean
{Sample Space set of all time points at which the water level

becomes critical



Def WaterAlarmFailure is true if the alarm is not raised when the
water level becomes critical. Its probability is the conditional
probability that the alarm is not raised when the water level
becomes critical.}

Similarly, the need to raise the alarm only if the water level is
critical contributes to the goal Avoid[WorkingShiftLost]; the
objective function for the latter goal is to minimize the probability
of losing an 8-hour working shift in order not to lose more than
one shift in a thousand. The choice of a quality variable for false
water alarms might therefore be defined on the same time interval:

FalseWaterAlarmInShift: Boolean
{Sample Space set of all possible working shifts
 Def FalseWaterAlarmInShift is true if at some time during the

working shift (8 hours) the water alarm is raised when the
water level is not critical

Objective functions for the goal Achieve [WaterAlarmIffCritical
WaterLevel] might then be defined as follows:

Name Def Modal Target
AlarmFailureRate P (WaterAlarmFailure) Min 10-4

FalseAlarmRate P (FalseWaterAlarmInShift) Min 10-3

(H3) Specify quality variables from required level of analysis
The choice of quality variables is also strongly related to the level
of detail at which the quantitative analysis needs to be performed.
For example, the above static Boolean quality variable
WaterAlarmFailure leads to simple time-independent quantitative
analysis of the water alarm system, in the spirit of quantitative
fault-tree analysis. Alternatively, we might have modelled a
dynamic quality variable

WaterAlarmFailure: Time → Bool

that allows for time-dependent analysis of water alarm system
failures, in the spirit of Markovian reliability analysis. We might
have made yet another choice in which the same objective
functions would have been defined in terms of quality variables
TimeToWaterAlarmFailure and TimeToFalseWaterAlarm of type
Time, in the spirit of mean-time-between-failures analysis.
At the early stages of requirements engineering we might start by
building a simple model, for example based on time-independent
analysis, then use this model to identify which parts of the system
may have critical impact on decisions to be taken, from which
more precise models might be defined for more detailed analysis.

(H4) Identify objective functions from domain standards
Many application domains already have well-established
quantified performance measures from which objective functions
can be identified. The standards imposed by the UK government
for ambulance response time is an example of such an objective
function. As another example, two essential objective functions
mentioned in the preliminary description of the BART train
control system are to maximize the number of passengers and
maximize the mean time between hazards [34].

(H5) Identify objective functions from goal categories
Goal categories [18] have specific objective functions that can be
instantiated to the system being modelled. For example, generic
objective functions for safety goals  are to minimize the probability
of failure on demand, to maximize the mean time between
hazards, or to maximize reliability over a specific time interval.
Performance goals have standard objective functions related to
response times and throughputs. Objective functions for security

goals may refer to mean time to security failures [23, 24].
Numerous templates of measurable objective functions for a
variety of functional and non-functional requirements are
suggested in [29]. Further work is required to build a rich,
coherent catalog of reusable objective functions for different goal
categories.

3.3 Formal specification of objective functions
At the optional formal layer of the language, objective functions
may be specified more precisely using probabilistic extensions of
temporal logics such as PCTL [9]. PCTL extends the branching-
time temporal logic CTL with a probabilistic operator Pr for
specification of properties such as "an ambulance must arrive at
the incident scene within 14 min in 95% of the cases". This
property is formalized by the following PCTL assertion:

∀ inc: Incident
  Reported (inc)

  ⇒ Pr≥95%   ◊≤14min (∃ amb:Ambulance ) Intervention (amb, inc)

In this assertion, the CTL symbols F (finally) and G (globally) are
noted ◊ and o, respectively; P ⇒ Q is a shorthand for the
branching-time assertion AG (P → Q).
The semantics of PCTL assertions is defined over different forms
of probabilistic transition systems like Discrete Time Markov
Chains or Markov Decision Processes. Probabilistic model
checkers such as PRISM [15] or ETMCC [10] may be used to
check whether a given probabilistic transition system satisfies
some probabilistic temporal assertion.
Formal PCTL definitions of objective functions are derivable in a
systematic way from the linear temporal logic assertion
formalizing the goal and the semi-formal definitions of the
objective functions. For example, the above PCTL assertion
defining the 14MinResponseRate objective function is derivable
from the linear temporal logic assertion defining the goal
Achieve[AmbulanceIntervention] in Section 2.1 and the semi-
formal definition of this objective function in Section 3.1.
In principle, such systematic derivation is hampered by the
incomparability in expressive power of the linear-time and
branching-time paradigms [32]. In practice, however, our goal
assertions are based on formal patterns [3], similar to those of [4],
that hide the differences between the two paradigms.
We extended our catalog of formal goal patterns with a first set of
objective function specifications. For example, the following three
objective function patterns cover a wide range of PCTL formulas
we encountered in our case studies and in the literature:

C ⇒ Pr≥p ◊≤d T     C ⇒  Pr≥p ¡ T     Pr≥p ̈ ≤d Inv
The first pattern is frequently found for objective functions on
Achieve goals; it was used in the LAS case study to specify
performance-related objective functions. The other two patterns
may be used to specify “probability of failure on demand” and
“reliability” objective functions on safety goals. The objective
functions AlarmFailureRate and FalseAlarmRate for the mine
pump example in Section 3.2.2 are formalized just by instantiating
these patterns, which yields:

WaterLevel ≥ 'Overflow' ⇒  Pr≥1-10
-4 ¡ WaterAlarm = 'On'

Pr≥1-10
-3 ̈ ≤8h (WaterAlarm = 'On' → WaterLevel ≥ 'Overflow')

Our emphasis here is on providing guidance for identifying
objective functions and specifying them formally. Checking these
assertions with a probabilistic model checker assumes a detailed



operational model of the software and its environment to be
available under the form of a probabilistic transition system.
Techniques for systematic construction of such probabilistic
transition systems are to our knowledge still missing.
In the next section, objective function values will be computed
with the help of declarative propagation rules that relate quality
variables of subgoals to quality variables of parent goals. Their
formal PCTL definition will therefore not used for that purpose.

4 PROPAGATING PARTIAL DEGREES
OF SATISFACTION

Propagation rules define how the degree of satisfaction of a goal is
determined from the degrees of satisfaction of its subgoals.
Section 4.1 shows how quality variables of a goal are related to
those of its subgoals through refinement equations. Section 4.2
discusses generic patterns for guiding the specification of such
refinement equations. Section 4.3 describes how probability
density functions on quality variables can be derived from their
refinement equations in order to compute objective functions.

4.1 Refinement equations on quality variables
Refinement equations are domain-specific equations that relate the
quality variables of a parent goal to the quality variables of its
subgoals.
Let us consider the goal Achieve[AmbulanceIntervention], refined
in Fig. 1, with quality variables ResponseTime and
IncidentDropped. The quality variables for its subgoal
Achieve[AmbulanceMobilized] were specified in Section 3.2 using
heuristics (H1). The other subgoal Achieve [MobilizedAmb
Intervention] has two quality variables, namely, AmbDelay and
AmbIntervFailure. The former captures the difference between the
actual and expected times for a mobilized ambulance to reach the
incident location; the latter captures the fact that the mobilized
ambulance fails to arrive at the incident scene.
The refinement equations for quality variables ResponseTime and
IncidentDropped on the parent goal Achieve[Ambulance
Intervention] are then specified as follows.

Goal Achieve [AmbulanceIntervention]

 RefinedInto   Achieve [AmbulanceMobilized] ,
  Achieve [MobilizedAmbulanceIntervention]

Quality Variable Refinements:
ResponseTime =

MobilizationTime + DistMobilizedAmbulance + AmbDelay

IncidentDropped =
NoAmbMobilized or WrongMobDest  or AmbIntervFailure

Note that such equations are associated with goal refinement links
rather than with quality variable specifications because in case of
alternative goal refinements different refinement equations must
be defined for each alternative.
Refinement equations may also be extended to take into
consideration further goals introduced to resolve obstacles in the
ideal goal graph.
For example, Fig. 3 shows the goal Achieve[AmbIntervFailure
Recovered], introduced to mitigate the obstacle
MobilizedAmbulanceFailure. To take such resolution goals into
account, the refinement equations for the goal Achieve[Ambulance
Intervention] need to be modified as follows:

IncidentDropped =
NoAmbMobilized or WrongMobDest
or (AmbIntervFailure and AmbFailureNotRecovered)

ResponeTime =
MobilizationTime + DistMobilizedAmbulance + AmbDelay

    (if  AmbIntervFailure = false)

MobilizationTime + DistMobilizedAmbulance + AmbDelay
      + AmbFailureRecovDelay 

        (if  AmbIntervFailure = true)

Mobilized
AmbFailure

mitigates

AmbulanceIntervention
ResponseTime
IncidentDropped AmbIntervFailureRecovered

AmbFailureRecovDelay
AmbFailureNotRecovered

AmbulanceMobilized

NoAmbMobilized
MobilizationTime
WrongMobDest
DistMobilizedAmb

MobilizedAmbIntervention
AmbDelay
AmbIntervFailure

Figure 3 -  Quantitative refinement with obstacle mitigation
Quality variables and refinement equations can be defined
similarly on obstacles, obstacle refinements and obstruction links
between obstacles and goals. This important issue is not discussed
further for lack of space.
Refinement equations are not always definable in terms of simple
equations on quality variables. They may need to be defined in
terms of probability distribution functions on such variables. For
example, the quality variable DistAllocatedAmbInfo on the goal
Achieve[AmbulanceAllocatedBasedOnIncForm] in Fig. 1 captures
the distance, measured in time units, between the incident location
and the nearest available ambulance according the information
known about ambulances . In our model, this variable is related to
quality variables on subgoals by an equation taking the form:

P(DistAllocatedAmbInfo ≤ x) = 1 - (1-x²/L²) NbAvAmb * (1-P(FalseUnavailability))

where L represents the size of the city (for simplicity we assumed
a square town), NbAvAmb denotes the number of ambulances truly
available, and FalseUnavailability is a Boolean quality variable on
the goal AccurateAmbulanceInfo, capturing that an available
ambulance is believed to be unavailable.
Quantitative models composed of quality variables on goals and
refinement equations on goal refinement links might be seen as
probabilistic networks akin to Bayesian networks. The differences
are that (a) our models are composed of both discrete and
continuous variables (BNs are usually composed of discrete
variables only), and (b) the relationships between variables are
defined here by refinement equations instead of probability tables.
More importantly, the techniques described here provide
systematic guidance for building such probabilistic networks from
goal models while establishing strong relationships between the
two models.

4.2 Using quantitative refinement patterns
In order to help requirements engineers specify refinement
equations, we built a preliminary catalog of quantitative goal
refinement patterns. A probabilistic layer was simply added to
frequently used patterns from our existing catalog [3, 21].



As an example, Fig. 4 shows the probabilistic extension of the
milestone-driven refinement pattern.

Quality variable refinements:
   delay0 = delay1 + delay2
   failure0 = failure1 or failure2

C ⇒ ◊ T
delay0
failure0

C ⇒ ◊ M
delay1
failure1

M ⇒ ◊ T
delay2
failure2

 Figure 4 - Quantitative milestone-driven refinement pattern

This pattern was used extensively in the LAS case study. A few
other quantitiative patterns have been defined for refinement
patterns such as “introduce accuracy goal” [21] and “split by
chaining” [3]. Further work is needed to enrich this catalog.

4.3 Computing objective functions
Refinement equations provide a basis for computing objective
functions from estimations of probability distributions on leaf
quality variables. This section describes how to derive equations
defining the probability density functions (pdfs) of quality
variables from the pdfs of lower-level quality variables.
To obtain such equations, we need to assume that leaf quality
variables are mutually independent. (This assumption is also made
for quantitative analysis of fault trees and for the computation of
Bayesian networks.) If this assumption cannot be made, the
dependent quality variables need to be refined further until leaf
variables are reached that may be assumed to be independent.
For Boolean quality variables  that are refined entirely in terms of
other Boolean quality variables, the refinement equations may be
seen as a fault tree (see, e.g., the IncidentDropped variable on the
goal Achieve[AmbulanceIntervention]). Well-known techniques
may therefore be used to compute minimum cut sets and
probabilities for such variables [31].
For non-Boolean variables whose refinement involves a mix of
continuous and Boolean random variables, the refinement
equations are used to derive equations on probability density
functions on the quality variables. For example, if the refinement
of a continuous random variable delay0 is given by the equation

delay0 = delay1 + delay2,
its probability density function pdfdelay0 is given by the following
well-known formula, under the assumption that delay1 and delay2
are independent:

ii)d(xpdf(i)
x

0
pdf  (x)pdf delay2delay1delay0 −×∫=

To apply such formulas we need to make sure that the quality
variables on the right-hand side of the equations are independent.
If we assume that leaf quality variables are mutually independent,
we can infer that quality variables are independent if they have no
common subvariables.
When quality variables are not independent, we first have to
eliminate the non-independent variables from the refinement
equation by expanding their own refinement equation until all
variables in the transformed refinement equation are mutually
independent. For example, the refinement equation of the quality
variable ResponseTime at the end of Section 4.1 refers to the
variables MobTime, DistMobilizedAmb, AmbDelay and

AmbFailureRecovDelay. In our model, these variables are not
independent because AmbFailureRecovDelay depends on the three
other variables according to the following refinement equation:
 AmbFailureRecovDelay = AmbFailureDetectionTime + MobilizationTime

      + DistMobilizedAmb + AmbDelay

The variable AmbFailureRecovDelay is therefore eliminated from
the refinement equation of ResponseTime which yields the
following equation:

ResponeTime =
MobilizationTime + DistMobilizedAmb + AmbDelay

(if  AmbIntervFailure = false )

2 (MobTime + DistMobilizedAmb + AmbDelay)
+ AmbFailureDetectionTime

(if  AmbIntervFailure = true)

All variables in the right hand side of the equation are now
independent, and the pdf of ResponseTime may be expressed in
terms of the pdf of the other variables in the equation.
Once refinement equations have been reformulated in terms of
probability density functions, standard mathematical software
tools such as Mathematica may be used to compute the integrals
numerically.
The process of identifying non-independent quality variables by
identifying shared subvariables may reveal important problems in
the system design. In the mine pump control system, we thereby
identified that our design used the same water sensor to detect
high water levels, that would trigger the pump, and water levels
that would raise the alarm in case of pump failure. In our model,
quality variables on the goals PumpOnWhenHighWater and
AlarmWhenMineOverflowed were therefore not independent. Such
interdependence has a disastrous effect on the higher-level goal
Avoid[MinerInsideOverflowedMine] to which those two goals
contribute [20].

5 REASONING WITH QUANTITATIVE
GOAL MODELS

Section 5.1 describes how alternative system designs can be
evaluated by bottom-up propagation of quality variable values.
Section 5.2 briefly discusses how quantitative requirements can be
derived by top-down propagation of such values.

5.1 Evaluating  alternative designs
The evaluation of alternative system designs proceeds in three
steps:
1. For each alternatbles of the corresponding model.
2. For each alternative, compute the objective functions of the

higher-level goals by bottom-up propagation from the
estimated distribution functions (as described in Section 4.3).

3. Compare the resultive, estimate the distribution functions for
the leaf quality varias obtained.

Distributions of leaf quality variables can be estimated in various
ways, e.g., from statistical data about the current system or about
similar systems, from judgments and experience of experts, from
typical reliability figures about standard devices (such as sensors,
water pumps, radio communication systems, etc.), or from
standard human reliability figures such as those used in safety-
critical applications [22]. For example, an analysis of the old,
paper-based LAS system might have revealed that AmbDelay
follows a normal distribution with a mean of 10 seconds and a



standard deviation of 30 seconds, that CallTakingTime follows an
exponential distribution with a mean of 60 seconds, that the
probability of an ambulance believed to be available and being
actually unavailable (FalseAvailability) is 1%, etc.
Rough estimations of distributions for leaf quality variables in
new system versions can be estimated in comparison with the
current system, based on experience with similar systems, on-site
experiments with simulations of the new system, etc. For
example, experts might estimate that on-screen call taking would
lower the mean call taking time from 60 to 50 seconds.
While estimations on quality variables of goals assigned to agents
in the environment are quantitative assumptions, estimations on
quality variables of goals assigned to the software-to-be are
quantitative requirements .  For example, the above mean call-
taking time for the new on-screen call-taking system yields a
quantitative usability requirement.
As an illustration, Table 3 shows computed objective function
values for three alternative LAS systems based on plausible (but
fictitious) estimations for some of the important parameters in our
model. The Mathematica tool was used to perform a mix a
symbolic and numerical integrations. The three systems are the
following:
• the old, paper-based system that was running before

automation took place [19];

• a system S1 in which call taking and ambulance allocation are
automated, which reduces the mean call-taking time,
allocation time, and allocation errors (ambulances are still
mobilized through radio communication as in the paper-based
alternative);

• a system S2 in which ambulance mobilization is automated as
well, which is expected to reduce the mean ambulance
mobilization time but increase the mean time to detect a
mobilization failure (due to loss of direct radio
communication with ambulance crews).

Parameters
Paper-
based
system

Automated
system S1

Automated
system S2

NbAmbulances 300 300 300

Mean CallTakingTime 60 sec 50 sec 50 sec

Mean AllocationTime 60 sec 30 sec 30 sec

Mean AllocationDistError 90 sec 30 sec 30 sec

Mean MobilizationTime 80 sec 80 sec 50 sec

P (FalseAvailability) 1% 1% 1%

P (FalseUnavailability) 2 % 2 % 2 %

P(MobFailureForAvAmb) 1% 1% 1%

Mean
MobFailureDetectionTime

2 min 2 min 4 min

Objective Functions

8MinRespRate 30% 47% 52%

14MinRespRate 84% 93% 95%

Table 3 -  Expected response times for alternative LAS systems

The quantitative model may also be used  to estimate the impact
of obstacles on objective functions. For example, in our
estimations for the automated system S2, the probabilities of
FalseAvailability, FalseUnavailability, and MobFailureForAvAmb
were assumed to be the same as in the old paper-based system.

According to our model, if the probabilities of these three
variables increase to 5%, 10%, and 10%, respectively, the 8-
minute and 14-minute response rates would drop to 45% and 90%,
respectively.
Note that such numbers are not intended to capture accurate
expected values for the objective functions; they are obtained
from rough estimates about leaf quality variables and from
refinement equations in which simplifying assumptions have been
made. More accurate characterizations of expected objective
function values would be hard to get at such early stages of the
development process. The evaluation here is aimed at comparing
alternatives to guide critical high-level decisions that need to be
taken early during requirements and design engineering. We are
therefore more interested in the relative strengths and weaknesses
of alternatives, with respect to objective functions, than in their
accurate quantification.
Validating quantitative models is a key issue when such models
are used for guiding critical decisions. In contrast with
quantitative techniques based on subjective criteria, our approach
makes it possible to validate or unvalidate the models. Before
deployment of the system-to-be, collecting data about the system-
as-is allows one to make assumptions on distribution functions of
quality variables, validate the refinement equations used in the
model, and possibly rectify them. In case many goals and
refinements are common to alternative systems (as it is often the
case at higher levels of goal AND/OR graphs), the validation of
refinement equations may concern large common parts of the
quantitative models for alternative systems-to-be. On the other
hand, after deployment of the selected system-to-be, the validity
of parameter estimations and refinement equations may be
checked through run-time monitoring. Detecting violations on
quality variable estimations at run time may trigger on-the-fly
changes of system parameters or even switching to a completely
different design at run time [5].
The identification of all relevant quality variables is another
important issue when such quantitative models are elaborated
from scratch. We showed how such variables are systematically
identifiable from goal definitions. Formal techniques and tools can
be used in addition to identify missing subgoals and assumptions
together with their associated quality variables [3, 17, 27].

5.2 Deriving quantitative requirements
Beside the bottom-up use of refinement equations for
propagation-based evaluation of alternative models, one might use
such equations top-down to derive quantitative requirements, as
defined in the previous section, that are necessary to achieve given
targets on the objective functions.
For example, given estimations for all leaf variables in Table 3
except FalseAvailability and FalseUnavailability, we could derive
maximum probabilities for these variables to guarantee the 52%
and 95% target values of the 8MinRespRate and 14MinRespRate

objective functions in system S2, respectively. Such probabilities
would define quantitative requirements for achieving the goal
Achieve[AccurateAmbulanceAvailability Info] .

6 CONCLUSION
Our aim is to provide constructive, meaningful and accurate
support for decision-making during requirements and design
engineering. To achieve this, we quantify the impact of alternative



system designs on the degree of satisfaction on non-functional
goals. Partial degrees of satisfaction are characterized precisely in
terms of application-specific phenomena; they are specified
compositionally with declarative behavioral specifications; and
they are propagated upwards or downwards in goal refinement
graphs according to application-specific equations. Rules were
provided to identify, from goal specifications, application-specific
parameters and functions to be used for quantifying impacts of
alternatives requirements options on degrees of goal satisfaction.
Our techniques were applied so far to two non-trivial safety-
critical systems: one for ambulance despatching [19] and the other
for mine pump control [14]. Validation of the probabilistic models
with respect to real operational data would be helpful in
determining the level of accuracy that can be obtained from such
models. More experience in this direction is expected in a near
future from a real air traffic control project.
Our emphasis here was on constructive support for probabilistic
modeling. The actual calculation of objective functions is done
through ad-hoc use of mathematical software. This may turn out
to be hard for complex refinement equations. Dedicated tools to
perform such computations more effectively should be provided.
Our framework should also be extended to handle uncertainties on
parameter estimations by use of confidence intervals. Another
interesting avenue concerns the generation of test cases and
operational profiles from our quantitative models. Extensions to
the Objectiver toolset [26, 27] are planned along those directions.
Many systems have to satisfy conflicting non-functional goals.
Our techniques for evaluating alternative designs against them
could therefore be complemented by techniques for multicriteria
decision making [33].
System design engineering by identification and evaluation of
alternatives is an iterative process. Further work is also required
towards systematic techniques for generating better designs from
the insights gained in the evaluation of the current alternatives.
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