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Abstract. Goal-oriented methods are increasingly
popular for elaborating software requirements. They offer
systematic support for incrementally building intentional,
structural and operational models of the software and its
environment. They also provide various techniques for
early analysis, notably, to manage conflicting goals or
anticipate abnormal environment behaviors that prevent
goals from being achieved. On the other hand, tabular
event-based methods are well-established for specifying
operational requirements for control software. They
provide sophisticated techniques and tools for late
analysis of software behavior models through simulation,
model checking or table exhaustiveness checks.
The paper proposes to take the best out of these two
worlds to engineer requirements for control software. It
presents a technique for deriving event-based
specifications, written in the SCR tabular language, from
operational specifications built according to the KAOS
goal-oriented method. The technique consists in a series
of transformation steps each of which resolves semantic,
structural or syntactic differences between the KAOS
source language and the SCR target language. Some of
these steps need human intervention and illustrate the
kind of semantic subtleties that need to be taken into
account when integrating multiple formalisms.
As a result of our technique SCR specifiers may use
upstream goal-based processes à la KAOS for the
incremental elaboration, early analysis, organization and
documentation of their tables while KAOS modelers may
use downstream tables à la SCR  for later analysis of the
behavior models derived from goal specifications.

1. Introduction

Goal orientation is an increasingly recognized paradigm
for eliciting, elaborating, structuring, specifying,
analyzing, negotiating, documenting and modifying
software requirements [22, 24]. Goals are prescriptive
statements of intent whose satisfaction requires the
cooperation of agents (or active components) in the

software and its environment. Goals are organized in
AND/OR refinement structures; they may refer to
functional or non-functional concerns and range from
high-level, strategic concerns (such as “safe coolant system
for nuclear power plant”) to low-level, technical
prescriptions; the latter can be requirements on the
software-to-be (such as “safety injection overridden when
block switch is on and pressure is less than ’Permit’”) or
expectations on its environment (such as “block switch is on
when plant enters normal cooldown phase’”).
Goal-based modeling and reasoning has many
advantages:

• goals may be specified precisely in a declarative
fashion and refined incrementally into operational
software specifications that provably assure the
higher-level goals [9, 26, 27];

• they allow one to trace low-level details back to high-
level concerns [8, 29, 1];

• strategic goal dependencies among agents can be
analyzed for responsibility assignment [38];

• goals provide a criterion for requirements
completeness and pertinence [39];

• positive and negative interactions among goals can be
captured and managed appropriately [20, 6, 33];

• exceptional conditions in the environment that may
prevent critical goals from being achieved can be
pointed out [32] or even generated and then resolved
to produce more robust requirements [23].

Tables have long been recognized to be a convenient
format for presenting operational specifications in a
compact, readable form amenable to various kinds of
exhaustiveness or redundancy checks [31].  In the context
of embedded control software, such tables may capture
input-output functions and software behavior on a firm,
precise mathematical basis [17, 36, 14]. As a consequence
a wide range of analysis techniques can be defined and
automated including:

• dedicated consistency/completeness checks [13, 14],
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• model simulation [15],

• model checking [3, 16],

• test data generation [11],

• invariant generation [19]

• or theorem proving [2, 34].

The integration of goal-oriented RE methods such as
KAOS [24] and tabular specification techniques such as
SCR [14] thus provide the following complementary
benefits.

• Complex domain and requirements models can be
captured in terms of a richer ontology - goals, agents,
requirements, expectations, conflicts, objects
(including entities, associations, explicit events,
monitored/controlled attributes), operational services,
scenarios, etc.  The specification can now be
structured and documented using goal refinement and
abstraction as a basic structuring mechanism. It can be
built incrementally using a constructive method [22].
Requirements can be analyzed at earlier stages of the
RE process using available techniques for goal
refinement and operationalization, goal mining from
scenarios, responsibility assignment, conflict
management and obstacle anticipation.

• Once converted into SCR tables the goal
operationalizations are presented in a more readable
format due to tabular display and output-driven
structuring of specification units.  The rich arsenal of
techniques and tools can then be deployed on such
tables for later analysis to point out inadequacies,
inconsistencies or incompleteness in the operational
software specification or in the underlying goals this
specification operationalizes.

Our work is motivated by this complementarity. The
objective of this paper is to discuss and illustrate our
procedure for transforming KAOS specifications of
operational services, derived from goals according to
techniques described in [8, 27], into SCR tables.
The paper is organized as follows.  Section 2 introduces
some required background on KAOS and SCR together
with our running example. Section 3 presents and
illustrates the various steps of the transformation
procedure together with the KAOS/SCR semantic,
structural or syntactic difference resolved by each step.
Section 4 provides some evaluation based on the use of
the SMV model checker; the SCR specification derived
by our technique is compared with other published
specifications of our running example.

2. Background
Our presentation will rely on the safety injection system
for a nuclear power plant introduced in [7]. The reader
may refer to [25] for a full KAOS elaboration of the goal,
object, agent and operation models, and to [7, 14] for
SCR specifications of this system .

2.1. Goal-Oriented Modeling with KAOS

Operational software requirements are derived gradually
from the underlying system goals. The word “system”
here refers to the software-to-be together with its
environment. The derivation proceeds according to the
following steps [24].

• Goal modeling: A goal refinement graph is elaborated
first by identifying relevant goals from input material
(such as interview transcripts and available documents)
– typically, by looking for intentional keywords in
natural language statements and by asking why and how
questions about such statements.

• Object modeling: UML classes, attributes and
associations are derived systematically from the goal
specifications.

• Agent modeling: Agents are identified together with
their potential monitoring/control capabilities;
alternative assignments of goals to agents are explored.

• Operationalization: Operations and their domain pre-
and postconditions are identified from the goal
specifications; strengthened pre-, post- and trigger
conditions are derived so as to ensure the corresponding
goals.

The above steps are ordered by data dependencies and, of
course, intertwined. Each step may be guided by the use
of heuristics and derivation patterns associated with
specific tactics [9, 26, 27]. Additional parallel steps of the
method handle goal mining from scenarios [21], the
management of conflicts between goals [20] and the
management of obstacles to goal satisfaction [23],
respectively.
As introduced before, a goal is a prescriptive statement of
intent to be satisfied through cooperation of various
agents making the system – humans such as operators in
the nuclear power plant, devices such as sensors and
actuators, and software such as the safety injection
controller. Goals capture sets of intended behaviors; they
can be formalized in a real-time temporal logic [8].  AND-
refinement links relate a goal to a set of subgoals (called
refinement) and domain properties; this means that
satisfying all subgoals in the refinement is a sufficient
condition in the domain for satisfying the goal. OR-
refinement links relate a goal to an alternative set of
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refinements; this means that satisfying one of the
refinements is a sufficient condition in the domain for
satisfying the goal. The core of the goal model for a given
system thus amounts to an AND/OR graph whose edges
capture refinement/abstraction links. An obstacle to some
goal is a condition whose satisfaction may prevent the
goal from being achieved.

For example, the goal named EffectiveCoolantSystem is a
basic one in any nuclear power plant system. This goal
can be obstructed by an obstacle such as LossOfCoolant.
The goal SafetyInjectionIffLossOfCoolant is introduced to
mitigate that obstacle. This goal is seen to be conflicting
with another goal elicited from the source document,
namely, the goal NoSafetyInjectionWhenStartUp/CoolDown.
(Formal developments are skipped here for space
reasons.)  The conflict is resolved by weakening the first
goal which yields a new goal textually specified as
follows:

Goal Maintain [SafetyInjectionIffLossOfCoolantExceptIf-
StartUp/CoolDown]

Def The safety injection signal should be ‘On’ whenever
there is a loss of coolant except during normal start-up or
cool down.

FormalSpec  SafetyInjectionSignal = ‘On’  ⇔
 LossOfCoolant ∧ ¬ (StartUp ∨ CoolDown)

Fig. 1 shows a portion of the goal model in which this
weakened goal is refined by application of the “Introduce
accuracy goal” tactics; the latter is frequently used to make
phenomena referenced in goal formulations monitorable
or controllable by software agents [26].

Figure 1 – Goal refinement towards monitorability

LowWaterPressureIffLossOfCoolant
OrStartUp/CoolDown

    SafetyInjectionIffLossOfCoolant
ExceptIfStartUp/CoolDown

SafetyInjectionIffLowWaterPressure
ExceptIfStartUp/CoolDown

The textual specifications annotating the two child nodes
in Fig. 1 are the following:

Goal Maintain [SafetyInjectionIffLowWaterPressureExceptIf-
StartUp/CoolDown]

Def The safety injection signal should be ‘On’ whenever the
water pressure is below the ‘Low’ set point except during
normal start-up or cool down.

FormalSpec SafetyInjectionSignal = ‘On’  ⇔
  WaterPressure < ‘Low’ ∧ ¬ (StartUp ∨ CoolDown)

DomProp LowWaterPressureIff
LossOfCoolantOrStartUp/CoolDown

Def The water pressure is below the ‘Low’ set point if and
only if there is a loss of coolant or the plant is in normal
start-up or cool down mode.

FormalSpec   WaterPressure <  ‘Low’  ⇔
     LossOfCoolant ∨ StartUp ∨ CoolDown

Note that goals are prescriptive whereas domain
properties are descriptive [40].
Goal refinement ends up when every subgoal is realizable
by some candidate individual agent, that is, expressible in
terms of objects that are monitorable and controllable by
the agent. Goal refinement is thus partially driven by the
target of reaching a 2-variable model for each agent [30].
A requirement is a terminal goal assigned to an agent in
the software-to-be; an expectation is a terminal goal
assigned to an agent in the environment.
The state of the system is defined by aggregation of the
states of its objects. An object can be an entity, a
relationship, an event or an agent (active object). Objects
are characterized by attributes and domain invariants; as
opposed to goals, the latter are descriptive statements.
The object model is represented as a UML class diagram;
it is derived systematically from the goal model by
highlighting the attributes and relationships referenced in
goal formulations.
The agent model captures responsibility links between
agents and goals together with monitoring/control links
between agents and object attributes.  The object
attributes monitored and controlled by an agent define its
interface to other agents; these monitored/controlled
variables are derived systematically, see [26, 24].
Although not necessarily required for simple control
systems, modeling objects and agents may be essential for
multi-component applications involving complex, inter-
related objects.
A goal assigned to some agent in the software-to-be is
operationalized into functional services, called
operations, to be performed by the agent. The operation
model collects all such operations together with their
operationalization links to the goal model, performance
links to the agent model and input/output links to the
object model. An operation  is an input-output relation
over objects; operation applications define state
transitions. When specifying an operation, a distinction is
made between domain pre/postconditions and additional
pre-, post- and trigger conditions required for achieving
some underlying goal.

• A pair (domain precondition, domain postcondition)
captures the elementary state transitions defined by
operation applications in the domain.

• A required precondition for some goal captures a
permission to perform the operation when the condition
is true.

• A required trigger condition for some goal captures an
obligation to perform the operation when the condition
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becomes true provided the domain precondition is true.

• A required postcondition defines some additional
condition that any application of the operation must
establish in order to achieve the corresponding goal.

To produce consistent operation models, a required
trigger condition on an operation must imply the
conjunction of its required preconditions.

Consider the goal SafetyInjectionIffLowWaterPressureAnd-
NotOverridden, assigned to the Engineered Safety Feature
Actuation agent (ESFAS). This goal is operationalized
partly by the following operation:

Operation StopSafetyInjection
Input WaterPressure, Overridden;
Output SafetyInjectionSignal

DomPre SafetyInjectionSignal = ‘On’
DomPost SafetyInjectionSignal = ‘Off’

ReqPre/Trig For
  SafetyInjectionIffLowWaterPressureAndNotOverridden:

    WaterPressure ≥ ‘Low’  ∨  Overridden

In this specification, the required trigger condition
prescribes that the safety injection signal must be set to
‘Off’ as soon as the water pressure is higher than ‘Low’ or
the safety injection signal is overridden. In this case the
condition is a required precondition as well; the safety
injection may be set to ‘Off’ only when the water pressure
is higher than ‘Low’ or the safety injection signal is
overridden.
Our mapping from KAOS to SCR assumes that correct
and complete operationalizations have been derived from
goal specifications using the techniques described in [27].

2.2. Operational Specification with SCR

SCR is built on the original 4-variable model that defines
requirements as a relation between monitored and
controlled variables, and software specifications as a
relation between software input and output variables [30].
The system globally consists of two agents: the machine
consisting of the software-to-be together with its
associated input/output devices, and the environment. The
former defines values for the controlled variables whereas
the latter defines values for the monitored variables.

Two basic constructs in SCR are modes and terms. A
mode class is an auxiliary variable whose behavior is
defined by a state machine on monitored variables. The
states are called modes; a mode name is thus a shorthand
for some implicit logical expression on monitored
variables. Mode transitions are triggered by events. A
complex machine may be defined by several mode classes
operating in parallel. A term is an auxiliary variable
defined by a function on monitored variables, mode
classes or other terms. Using term names instead of

repeating their definition helps making the specification
more concise.
A SCR specification defines the machine through a set of
tables together with associated information such as
variable declarations, type definitions, initial state
definitions, assumptions, etc. Each table specifies the
behavior of a variable as a mathematical function. A table
may be a mode transition table, a condition table or an
event table.
A mode transition table specifies a mode class by
defining its various modes as a function of the previous
corresponding mode and events.  A condition table
defines the various values of a controlled variable or of a
term as a function of a corresponding mode from the
associated mode class (AMC) and conditions. An event
table defines the various values of a controlled variable or
of a term as a function of a corresponding AMC mode
and events.
A condition is a predicate defined on one or more
monitored, controlled or internal variables at some point
in time. Conditions in a condition table are expected to be
disjoint (for the table to be a function) and covering the
entire state space (for the function to be total). An event
occurs when a variable changes its value. In particular, an
input event occurs when a monitored variable changes its
value. A conditioned event occurs if an event occurs when
some specified condition is true.  Unlike in KAOS, events
are implicit in SCR; they are manipulated through
notations such as

@T(v) WHEN C
which means

C ∧ ¬ v ∧ v’

where C and v are evaluated in the current state and v’ is
evaluated in the next state. For example,

@T (Block = On) WHEN Reset = Off

amounts to
¬ Block=On ∧  Block’=On ∧  Reset=Off.

This event occurs when both Block and Reset are ‘Off’  in the
old state and Block becomes ‘On’ in the new one. Note thus
that a condition refers to one single state whereas an event
refers to a pair of consecutive states.
Unlike KAOS, SCR is built upon the synchrony
hypothesis, that is, the machine is assumed to react
infinitely fast to changes in its environment [4]; it handles
one input event completely before the next one is
processed. In the 4-variable framework, this means that
the value of a controlled variable in the next state may
depend on the values of monitored variables in the current
and next state.  The synchrony hypothesis justifies that (a)
a mode transition table specifies the next value of the
mode class in terms of the current and next values of
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monitored variables (and the current value of the mode
class), (b) an event table specifies the next value of the
target variable in terms of the current and next values of
other variables (and the current value of this variable),
and (c) a condition table defines the next value of the
target variable in terms of the next value of other
variables.

The formal model of SCR is defined in terms of
functions; it therefore prescribes deterministic machine
behaviors [14]. The behavior of the environment is of
course non-deterministic.

Old Mode Event New Mode
TooLow @T (WaterPressure ≥ ‘Low’) Permitted

Permitted @T (WaterPressure < ‘Low’) TooLow

Permitted @T (WaterPressure ≥ ‘Permit’ ) TooHigh

TooHigh @T (WaterPressure < ‘Permit’) Permitted

Table 1:  Mode transition table for mode class PressureState

Let us come back to our running example. The SCR
specification for the ESFAS software agent includes a
mode class PressureState with modes TooLow , Permitted and
High, a term Overridden and a controlled variable
SafetyInjectionSignal; the monitored variables are Block,
Reset and WaterPressure. Table 1 illustrates a mode
transition table for the PressureState mode class. The first
row of this table states that if PressureState is TooLow and
the event @T (WaterPressure ≥ ’Low’) occurs then the
PressureState switches to ‘Permitted’ . If none of the rows
applies to the current state, PressureState does not change.

Mode Events
TooLow,
Permitted

@T (Block = ‘On’)
WHEN Reset = ‘Off’

@T(Reset=‘On’)
OR @T(Inmode)

TooHigh False @T(Inmode)

Overridden True False

Table 2:  Event table for term Overridden [14]

Table 2 illustrates an event table defining the term
Overridden to capture situations in which safety injection is
blocked. This term is defined as a function of the AMC
PressureState and variables Block and Reset. An entry False
in an event table means that no event may cause the
variable defined by the table to take the value in the same
column as the entry; e.g., when PressureState is TooHigh no
event may cause Overridden to become true. The notation
@T(Inmode) in a row captures a transition into one of the
modes specified in that row; e.g., the last column of the
first row in Table 2 states that “if PressureState becomes
TooLow or Permitted (or if Reset becomes On) then
Overridden must become false.”
Table 3 illustrates the use of a condition table to specify

the controlled variable SafetyInjectionSignal as a function of
the AMC PressureState and term Overridden. The last
column of the first row states that if PressureState is
TooLow and Overridden is true then SafetyInjectionSignal  must
be ‘Off’. Note that there is always one output value whose
corresponding condition is true.

Mode Conditions
TooLow NOT Overridden Overridden

Permitted,
TooHigh

False True

SafetyInjection-
Signal

‘On’ ‘Off’

Table 3:  Condition table for controlled variable
SafetyInjectionSignal [14]

Also note that the rationale for some rows in those tables
may not be obvious. A KAOS model upstream to such
tables may explain them by tracing specification decisions
back to some underlying goals and obstacles. For
example, our derivation in [25] shows that the
unexplained condition @T(Inmode) in the second row of
Table 2 resolves an obstacle we generated, namely, the
obstacle of an operator forgetting to push the “reset”
button at the end of a normal start-up phase. Without such
resolution we might end up with no safety injection being
actuated because of Overridden being still true while the
plant is no longer in normal start-up phase.

Note finally that SCR is a “flat” language in that it
provides no structuring mechanism for table
refinement/composition and incremental specification
[37]. We argue that such mechanism is not really needed
when goal refinement is used upstream as a mechanism
for structuring and documenting the specification.

3. Deriving SCR Tables from KAOS models
Our mapping procedure assumes that the goal model has
been transformed into a KAOS operation model
according to the techniques described in [27]. The
procedure converts such a model into a “semantically
close”  set of  SCR tables.  By “semantically close” we
mean that the following relation must hold between the
source KAOS operation model KOM  and the target set of
tables SST:

SST  |   KOM*
where KOM* denotes the source operation model KOM  in
which a one-state shift  is performed to squeeze the model
into SCR’s synchrony hypothesis – that is, required pre-
and trigger conditions are evaluated in the next state with
respect to the state in which the corresponding domain
precondition is evaluated (see below). In other words, the
set of SCR behaviors is included in the set of KAOS
behaviors modulo such a one-state shift required by the



6

synchrony hypothesis.

Every step of the procedure resolves some difference
between KAOS and SCR – a semantic difference (e.g.,
allowed form of non-determinism, synchrony hypothesis),
a structural difference (e.g., grouping of expressions) or a
syntactic difference. The various steps are now reviewed
successively, namely,
• moving from a pruning semantics to a generative one,
• mapping a multi-agent model into a bi-agent one,
• getting rid of non-determinism,
• grouping transition classes by output,
• translating transition predicates into SCR

expressions,
• identifying mode classes and deriving mode

conditions,
• generating SCR event tables and mode transition

tables,
• simplifying some tables into condition tables.

3.1. From a pruning semantics to a generative
one

The KAOS specification language has a pruning
semantics; every behavioral change is allowed except the
ones explicitly forbidden by the specification [27]. On the
other hand, SCR like other state machine formalisms has
a generative semantics; every behavioral change is
forbidden except the ones explicitly required by the
specification.
This semantic difference is resolved by making a closure
assumption; the source operation model is assumed to
capture all acceptable behaviors and only those. In other
words, every behavioral change not captured in the source
operation model is forbidden (this corresponds to a
“nothing else changes”  frame assumption). In case a new
operation is added to the source model, the conversion
procedure has thus to be reapplied to this model to
produce a new set of tables.

3.2. From a 2N-variable model to a 4-variable one

The KAOS agent model captures multiple cooperating
agents: software agents from legacy software or in the
software-to-be, human agents, devices such as sensors or
actuators, etc. On the other hand, the SCR specification
considers two agents only: the machine and its
environment (see Section 2.2). In KAOS, the controlled
variables of an agent may be any object attribute whose
values may be modified by the agent; a controlled
variable can therefore be an interface variable or an
internal variable. In SCR, the machine’s controlled
variables are restricted to variables at the interface with

the environment.

To resolve those differences, the analyst is first asked
which agent aggregate she wants to consider as the
machine to be specified by SCR tables. All other agents
will be aggregated to make the SCR environment. The
monitored and controlled variables of the SCR
specification are then derived according to the following
rules:

• every KAOS variable monitored by a machine agent
and controlled by an environment agent becomes a
monitored variable in the SCR specification,

• every KAOS variable controlled by a machine agent
and monitored by at least one agent in the environment
becomes a controlled  variable in the SCR
specification,

• every KAOS variable controlled by a machine agent but
not monitored by an environment agent becomes an
auxiliary variable in the SCR specification (i.e., a term
or a mode class).

For our running example, the machine will be an
aggregation of the ESFAS software agent and
corresponding sensors and actuators; the environment will
include the coolant system, the plant operator and the
actual safety injection mechanisms. The variable
SafetyInjectionSignal becomes a controlled variable in the
SCR model since it is among the variables controlled by
the ESFAS agent and monitored by the environment. The
variables WaterPressure, Block and Reset become monitored
variables in the SCR model since they are among the
variables monitored by the ESFAS agent and controlled
by the environment. On the other hand, the variable
Overridden becomes an auxiliary variable (e.g., a term)
because it is controlled by the ESFAS agent but it is not
monitored by any agent in the environment.

3.3. Getting rid of non-determinism

KAOS agents are non-deterministic. While it is obliged to
perform an operation when one of the operation’s trigger
condition becomes true an agent may have the freedom to
perform an operation or not when its required
preconditions are all true. On the other hand, a SCR
environment is non-deterministic but a SCR machine is
deterministic.

To remove KAOS non-determinism when necessary, the
analyst is asked to choose between an eager or lazy
behavior scheme for each operation performed by the
machine agent. In the eager behavior scheme the agent
performs the operation as soon as it can, that is, as soon as
all required preconditions are true. In the lazy behavior
scheme the agent performs the operation when it is really
obliged to do so, that is, when one of its required trigger
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conditions becomes true.

Note that a lazy scheme still guarantees that no
permission is violated because of the consistency meta-
rule of the KAOS language imposing any required trigger
condition on an operation to imply all its required
preconditions:

(∨ k ReqTrigk) ∧ DomPre ⇒  ∧i ReqPrei

Similarly, an eager scheme still guarantees that any
obligation is fulfilled.

3.4. Grouping transitions by output

Operational specification units can be organized in
several ways, e.g., grouping by input, grouping by output
or grouping by transition class. In case of grouping by
transition class, the focus of a specification unit is the set
of state transitions that meet some pre-, trigger- and
postconditions. In case of grouping by output, the focus of
a specification unit is the set of state transitions that affect
the value of some output.
In a KAOS operation model, specification units are
grouped by transition class (the latter being grouped by
agent and by goal the operation contributes to). SCR
specification units are grouped by output.
A standard way of resolving structure clashes is to
introduce an intermediate data structure [18]. An output
table is therefore associated with every controlled or term
variable to collect the various transition classes for this
variable. Each row in an output table is associated with a
KAOS operation that declares the variable associated with
the table in its Output clause. Table 4 shows the output
table for the controlled variable SafetyInjectionSignal.  (SILW
is an abbreviation for the goal SafetyInjectionIffLowWater-
Pressure AndNotOverridden.) The last row of this table is
derived from the StopSafetyInjection operation specification
given in Section 2.1 by transferring its DomPre ,
ReqPre/Trig and DomPost conditions to the DomPre,
Trigger and TargetValue cells, respectively. The previous
row is similarly obtained from the specification of the
StartSafetyInjection operation.

SafetyInjectionSignal

Operation DomPre Trigger Target
value

Goals

StartSafety-
Injection

SafetyInject-
ionSignal =

‘Off’

WaterPressure
< ‘Low’  ∧

¬ Overridden

‘On’ SILW

StopSafety-
Injection

SafetyInject-
ionSignal =

‘On’

WaterPressure
≥ ‘Low’ ∨

Overridden

‘Off’ SILW

Table 4:  Output table for SafetyInjectionSignal

Table 5 shows the output table for the controlled variable

Overridden, similarly derived from the specification of the
operations OverrideSafetyInjection and EnableSafetyInjection.

A row in an output table defines a transition class through
the following information:
• the name of the KAOS operation defining the transition

class and the name of the goals operationalized by it
(this information is used to keep track of the original
specification at each step of the transformation);

• the domain precondition of this operation (in general it
is a condition on the variable defined by the table);

• the condition triggering transitions in that class; this
condition is the operation’s conjunction of required
preconditions, in case an eager behavior scheme has
been selected for that operation at the previous step, or
the operation’s disjunction of required trigger
conditions in case a lazy behavior scheme has been
selected (in the latter case the conjunction of required
preconditions is satisfied because of the KAOS
consistency meta-rule recalled in Section 3.3);

• the new value taken by the target controlled variable or
term variable when a transition in that class is enabled
(this format assumes that domain postconditions are
specified equationally; the case of implicit, non-
constructive postconditions leading to another form of
non-determinism is not considered in this paper).

The semantics of a transition class captured by row R of
an output table associated with some controlled or term
variable x  is the KAOS semantics for the corresponding
operation [27], that is,

R.DomPre  ∧  R. Trigger ⊃  m (x = R.TargetValue)

where “m P” means “P holds in the next state”.

Overridden

Operation DomPre Trigger Target
value

Goals

Override-
Safety-
Injection

 ¬ Overridden @ (Block = On)  ∧

 WaterPressure < ‘Permit’

true …

Enable-
Safety-
Injection

Overridden @ (Reset = On)  ∨

 WaterPressure ≥ ‘Permit'

false …

Table 5:  Output table for Overridden

3.5. Translating output table expressions into
SCR expressions

The next step extends output tables with an extra column
composed of SCR translations of the corresponding
DomPre and Trigger expressions. The objective is to
translate the DomPre and Trigger conditions of output
tables into disjunctions of SCR events, each taking the
following form:
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@T(c) WHEN d

where c is a simple condition and d is a simple condition
or a conjunction of simple conditions. A simple condition
is an expression of the form r  #  v where r is a SCR
variable, v a value and # is a binary relation in {=, ≠ <, >,
≥, ≤} [14].

The main problem here is that sub-expressions of the
form @T(Trigger) in the SCR translation refer to the current
and next states whereas conditions Trigger in the output
tables produced at the previous step refer to the current
state but not to the next state. This is the point where we
have to introduce a one-state shift  in order to squeeze
output table expressions into SCR’s synchrony hypothesis
– see the impact of the synchrony hypothesis on the
evaluation of SCR expressions in Section 2.2 and the
specification of our conversion procedure at the beginning
of Section 3. This shift may be visualized as follows:

current state next state
KAOS

transition
DomPre,
Trigger

x = TargetValue

SCR
transition

DomPre,
¬ Trigger

Trigger,
x = TargetValue

Correspondingly, a pair (DomPre, Trigger) in an output
table row will be mapped to a SCR expression according
to the following definition of the mapping function Μ.

• If the trigger is a simple condition Trig or an event @Trig
on such a simple condition:
Μ (DomPre, Trig)  =   @T (Trig)  WHEN DomPre

Μ (DomPre, @Trig)  =   @T (Trig)  WHEN DomPre

• If the trigger is a conjunction Trig1 ∧ Trig2 or @Trig1 ∧

Trig2 where Trig1 and Trig2 are simple conditions:
 Μ (DomPre, Trig1 ∧ Trig2) =  

@T(Trig1) WHEN (DomPre AND Trig2)
 OR @T(Trig2) WHEN (DomPre AND Trig1)

Μ (DomPre, @Trig1 ∧ Trig2) =  
        @T (Trig1) WHEN (DomPre and Trig2)

• If the trigger is a disjunction Trig1 ∨ … ∨Trign where Trig1,
…, Trign are not necessarily simple conditions:

Μ (DomPre, Trig1 ∨ … ∨Trign)  =
    Μ (DomPre, Trig1) OR  … OR Μ (DomPre, Trign)

The result of applying this translation step to our running
example is shown in Tables 6 and 7.
Strictly speaking, our translation rules do not fully
preserve the semantics of our tables. Full semantics
preservation is impossible because of the restricted form
allowed for SCR expressions and the incompatibility
between SCR's synchrony hypothesis and the KAOS
semantics. The above rules have been defined so as to
keep the semantics “as close as possible” when a one-
state shift is tolerated between the KAOS and SCR
expressions.
The rule for conjunctive triggers Trig1 ∧ Trig2 is motivated
by the following logical property of the “@T” operator:

@T (c1 AND c2)  WHEN d
≡   @T(c1) WHEN (d AND c2) OR @T(c2) WHEN (d AND c1)

under the condition that it never happens that
simultaneously c1 becomes true and c2 becomes false
(or vice-versa).

The rule for disjunctive triggers Trig1 ∨ … ∨Trign is
necessary to avoid that the SCR model has less transitions
than the KAOS model. For example, the disjunctive

SafetyInjectionSignal

Operation SCR expression Target
value

Goals

StartSafetyInjection  @T (WaterPressure < ‘Low’)
     WHEN (SafetyInjectionSignal = ‘Off’ AND NOT Overridden)
 OR @T (NOT  Overridden)
     WHEN (SafetyInjectionSignal = ‘Off’ AND WaterPressure < ‘Low’)

‘On’ SILW

StopSafetyInjection  @T (WaterPressure ≥ ‘Low’)  WHEN (SafetyInjectionSignal = ‘On’)
 OR @T(Overridden) WHEN (SafetyInjectionSignal = ‘On’)

‘Off’ SILW

Table 6. Output table for SafetyInjectionSignal with SCR expressions

Overridden

Operation SCR expression Target
value

Goals

OverrideSafetyInjection  @T(Block = On) WHEN (WaterPressure < ‘Permit’ AND NOT Overridden) true …

EnableSafetyInjection  @T(Reset = On) WHEN Overridden
 OR @T (WaterPressure ≥ ‘Permit') WHEN Overridden

false …

Table 7. Output table for Overridden with SCR expressions
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trigger WaterPressure ≥ ‘Low’ ∨ Overridden on the transition
to SafetyInjectionSignal = 'Off' in Table 4 is translated
according to that rule into the following SCR expression:
@T(WaterPressure ≥ ‘Low’)  WHEN (SafetyInjectionSignal = ‘On’)
OR
@T(Overridden) WHEN (SafetyInjectionSignal = ‘On’)

If we had used the translation rule for simple conditions
instead, we would have obtained the expression

@T (WaterPressure ≥ ‘Low’ ∨ Overridden)
  WHEN (SafetyInjectionSignal = ‘On’)

(this would then have been rewritten into a valid SCR
expression using logical properties of the “@T” operator).
The latter event requires that (i)  WaterPressure ≥ ‘Low’ and
Overridden both be false in the current state, and (ii) at
least one of them becomes true in the next state.
Requiring both conditions to be false in the current state is
too restrictive and not required by the semantics of the
KAOS model. In contrast, the SCR expression generated
by our translation rule for disjunctive triggers does not
require both WaterPressure ≥ ‘Low’ and Overridden to be
false in the current state for the transition to take place.

3.6. Identifying mode classes

The next step consists in determining from the enriched
output tables which auxiliary variables will be used as
mode classes. The choice of mode classes determines the
structure of the SCR specification and has a strong impact
on its readability and modifiability. Various heuristics are
available to support the analyst in this task.

• Input history abstraction: Identify a mode class
variable that allows one to abstract away from past
histories of input events. This heuristics is used in many
SCR case studies – see, e.g., the Cruise Control system.

• Input aggregation: Build a mode class as an
aggregation of several discrete monitored variables
whose values in any state are constrained by exclusion
and coverage rules asserted in KAOS goal
specifications or domain invariants. Such rules convey
in application-specific terms that a sequential state
machine can at any time be in one and only one of the
possible states partitioning its state space. An algorithm
implementing this heuristics is described in [35] and
applied to the systematic derivation of mode classes for
the Autopilot case study [5].

• Continuous variable abstraction: Build a mode class
that partitions the range of values for a continuous
monitored variable into a discrete set of subranges.  The
subranges are derived from the corresponding
conditions that constrain the monitored variable in the
output tables where the variable appears.

• Finite output variable promotion: Consider a variable
already defined by some output table as candidate mode
class if (a) it has a finite range, (b) it is an auxiliary
variable (that is, neither monitored nor controlled by the
machine), and (c) its promotion to mode class will
improve the clarity of the specification.

For our safety injection case study, the variable
WaterPressure is continuous and constrained by conditions
in the output tables defining the controlled variable
SafetyInjectionSignal and term Overridden (see Tables 6 and
7). The following range partition is thereby derived using
the variable abstraction  heuristics to define modes of a
mode class named PressureState:

TooHigh: ‘Permit’ ≤ WaterPressure

Permitted:  ‘Low’ ≤ WaterPressure <  ‘Permit’

TooLow: WaterPressure < ‘Low’

The SCR expressions in output tables are then rewritten
by replacing the conditions on continuous monitored
variables by their equivalent formulation in terms of
modes.  For example, the event

@T (WaterPressure < ‘Low’)
   WHEN (SafetyInjectionSignal = ‘Off’ AND NOT Overridden)

in Table 6 is rewritten as
@T (PressureState = 'TooLow’)
  WHEN (SafetyInjectionSignal = ‘Off’ AND NOT Overridden)

Mode-based expressions may involve disjunctions; the
following logical properties of the “@T” operator may
therefore need to be applied to get valid SCR expressions
using events on simple conditions.
   @T(c) WHEN (d1 OR d2)  ≡

@T(c) WHEN d1
 OR @T(c) WHEN d2

   @T (c1 OR c2) WHEN d  ≡
@T(c1) WHEN (d AND NOTc2)
OR @T(c2) WHEN (d AND NOT c1)

For example, the mode-based expression for the event
 @ T (WaterPressure ≥ ‘Low’) WHEN SafetyInjectionSignal = ‘On’

in Table 6 is given by
 @T (PressureState = ‘Permitted’ or PressureState = ‘TooHigh’)
    WHEN SafetyInjectionSignal = ‘On’

which is then expanded using the second rule above into:
 @T (PressureState = ‘Permitted’)  WHEN
 SafetyInjectionSignal = ‘On’ ∧ PressureState ≠ ‘TooHigh’
 OR @T (PressureState = ‘TooHigh’) WHEN
 SafetyInjectionSignal = ‘On’ ∧ PressureState ≠ ‘Permitted’

The rewriting of SCR expressions in Table 6 and 7 into
mode-based expressions yields Table 8 and 9,
respectively.

According to the “finite output variable promotion”
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heuristics, Overridden could be considered as a mode class
as it is an auxiliary variable with finite range.

3.7.  Generating SCR tables

The next step generates mode transition tables and event
tables from the output tables in which SCR expressions
are now mode-based.

3.7.1. Generating mode transition tables
For each mode class obtained through the “continuous
variable abstraction” heuristics, the mode transition table
is derived from its range partition. The table collects the
transitions from each mode to its adjacent modes; the
event triggering a transition is obtained by prefixing by
“@T” the simple condition that appears in the target mode
definition and whose negation appears in the source mode
definition.
In our running example, the generated mode transition
table for mode class PressureState is the one shown in
Table 1. Based on the range partition for PressureState in
Section 3.6, the event triggering the transition from
'Permitted' to 'TooHigh' is @T(WaterPressure ≥ ‘Permit’)
because WaterPressure ≥ ‘Permit’ is among the conditions
for the target state TooHigh and its negation is in the
definition of the source state Permitted.

For each mode class obtained through the “finite output
variable promotion” heuristics, the mode transition table

can be obtained by first deriving an event table (see
below) and then transforming that event table into a mode
transition table using a technique described in [19].

3.7.2. Generating event tables: initialization
Initial event tables for controlled variables or term
variables are obtained by (a) determining which mode
class from the corresponding output table will be the one
associated with the event table, (b) populating the first
column with the various AMC modes, (c) populating the
last row with the various target values from the output
table, and (d) filling in all other cells with “False”.
Selection heuristics may be used in case of multiple
candidate AMC’s, e.g., “select the most referenced mode
class in the corresponding output table”.

Mode Events
TooLow False False

Permitted False False

TooHigh False False

SafetyInjection-
Signal

‘On’ ‘Off’

Table 10:  Initialized event table for SafetyInjectionSignal

Table 10 shows the initialized event table for the
controlled variable SafetyInjectionSignal . In this case the
mode class PressureState is the only one appearing in the
SCR expressions of the output table associated with
SafetyInjectionSignal.  No choice is thus needed. The

SafetyInjectionSignal

Operation SCR expression Target
value

Goals

StartSafetyInjection  @T (PressureState = 'TooLow’)
    WHEN (SafetyInjectionSignal = ‘Off’ AND NOT Overridden)
 OR @T (NOT Overridden)
    WHEN (SafetyInjectionSignal = ‘Off’ AND PressureState = 'TooLow’)

‘On’ SILW

StopSafetyInjection  @T (PressureState = ‘Permitted’
    WHEN (SafetyInjectionSignal = ‘On’ AND NOT PressureState = ‘TooHigh’)
 OR @T (PressureState = ‘TooHigh’)
    WHEN (SafetyInjectionSignal = ‘On’ AND NOT PressureState = ‘Permitted’)
 OR @T (Overridden) WHEN (SafetyInjectionSignal = ‘On’)

‘Off’ SILW

Table 8. Output table for SafetyInjectionSignal with mode-based SCR expressions

Overridden

Operation SCR expression Target
value

Goals

OverrideSafetyInjection  @T (Block = On) WHEN (PressureState = 'Permitted' AND NOT Overridden)
 OR
 @T (Block = On) WHEN (PressureState = 'TooLow' AND NOT Overridden)

true …

EnableSafetyInjection  @T (Reset = On) WHEN Overridden
 OR @T (PressureState = 'TooHigh') WHEN Overridden

false …

Table 9. Output table for Overridden with mode-based SCR expressions
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initialized event table for Overridden is similar.

3.7.3. Generating event tables: filling  in tables with SCR
expressions

The SCR event tables are then derived by (a) brute force
filling of columns of initialized event tables with SCR
expressions from the corresponding output tables, without
considering the associated mode values in each row, and
then (b) simplifying the SCR expressions by propagation
of mode properties (see Section 3.7.4 hereafter).
Brute force filling of event table columns is done by
filling each cell in the column associated with some target

value with the SCR expression associated with that target
value in the corresponding output table. (Each cell in a
column is therefore filled with the same SCR expression.)
The SCR table thereby obtained is trivially equivalent to
the original output table. Tables 11 and 12 show the event
tables obtained for variables SafetyInjectionSignal and
Overridden, respectively.

3.7.4. Simplifying event tables
Some cells in the event tables obtained thus far may be
simplified in some specific cases according to the SCR
semantics of event tables [14]. We capture this by a set of
simplification rules.

Mode Events
TooLow  @T (PressureState = 'TooLow’)

    WHEN (SafetyInjectionSignal = ‘Off’
AND NOT Overridden)

 OR @T (NOT Overridden)
    WHEN (SafetyInjectionSignal = ‘Off’

              AND PressureState = 'TooLow’)

 @T (PressureState = ‘Permitted’)
    WHEN (SafetyInjectionSignal = ‘On’
                  AND NOT PressureState = ‘TooHigh’)
 OR @T (PressureState = ‘TooHigh’)
     WHEN (SafetyInjectionSignal = ‘On’
                 AND NOT PressureState = ‘Permitted)
 OR @T (Overridden)   WHEN SafetyInjectionSignal = ‘On’

Permitted  @T (PressureState = 'TooLow’)
     WHEN (SafetyInjectionSignal = ‘Off’
                  AND NOT Overridden)
 OR @T (NOT  Overridden)
     WHEN (SafetyInjectionSignal = ‘Off’

           AND PressureState = 'TooLow’)

 @T (PressureState = ‘Permitted’)
      WHEN (SafetyInjectionSignal = ‘On’
                 AND NOT PressureState = ‘TooHigh’)
 OR @T (PressureState = ‘TooHigh’)
      WHEN (SafetyInjectionSignal = ‘On’
                AND NOT PressureState = ‘Permitted’)
 OR @T (Overridden)  WHEN SafetyInjectionSignal = ‘On’

TooHigh  @T (PressureState = 'TooLow’)
    WHEN (SafetyInjectionSignal = ‘Off’
                 AND NOT Overridden)
 OR @T (NOT  Overridden)
    WHEN (SafetyInjectionSignal = ‘Off’

          AND PressureState = 'TooLow’)

 @T (PressureState = ‘Permitted’)
      WHEN (SafetyInjectionSignal = ‘On’
                AND NOT PressureState = ‘TooHigh’ )
 OR @T (PressureState = ‘TooHigh’)
      WHEN (SafetyInjectionSignal = ‘On’
               AND NOT PressureState = ‘Permitted’)
 OR @T (Overridden)  WHEN SafetyInjectionSignal = ‘On’

SafetyInjection-
Signal

‘On’ ‘Off’

Table 11. Intermediate Event Table for SafetyInjectionSignal (before simplification)

Mode Events
TooLow  @T (Block = ’On’)

     WHEN (PressureState = 'Permitted' AND NOT Overridden)
 OR @T (Block = ’On’)
     WHEN (PressureState = 'TooLow' AND NOT Overridden)

 @T (Reset = ‘On’)  WHEN Overridden
 OR @T (PressureState = 'TooHigh')  WHEN Overridden

Permitted  @T (Block = ’On’)
     WHEN (PressureState = 'Permitted' AND NOT Overridden)
 OR @T (Block = ’On’)
     WHEN (PressureState = 'TooLow' AND NOT Overridden)

 @T (Reset = ’On’)   WHEN Overridden
 OR @T (PressureState = 'TooHigh')  WHEN Overridden

TooHigh  @T (Block = ’On’)
     WHEN (PressureState = 'Permitted' AND NOT Overridden)
 OR @T (Block = ’On’)
     WHEN (PressureState = 'TooLow' AND NOT Overridden)

 @T (Reset = ’On ’)  WHEN Overridden
 OR @T (PressureState = 'TooHigh')  WHEN Overridden

Overridden True False

Table 12. Intermediate Event Table for Overriden (before simplification)
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Rule 1: Eliminate entry in self-mode
For a cell in a row associated with mode m, an event
@T(AMC = m) WHEN d may be removed from the cell,
since the event then amounts to 'False' (if the current
mode is already m, it is impossible to enter into m).

Rule 2: Eliminate event with WHEN clause inconsistent
with current mode

For a cell in a row associated with mode m, an event
@T(c) WHEN d may be removed when one of the
conjuncts in d is inconsistent with mode m (in
particular, when one of the conjuncts has the form
AMC ≠ m or AMC = n with n ≠ m), since the event then
amounts to 'False'.

Rule 3: Simplify WHEN clause in self mode
For a cell in a row associated with mode m, the
condition AMC = m may be removed from the
conjuncts of a WHEN clause, since the condition then
amounts to 'True'.

Rule 4: Eliminate event inconsistent with mode transition
table

For a row associated with mode m, an event of form
@T(AMC = n) WHEN d may be removed when there is
no transition from mode n to mode m in the mode
transition table of the AMC, since the event then
amounts to 'False'.

This rule can be used in Tables 11 and 12 to remove the
events with @T(PressureState = 'TooHigh') in the row
associated with mode TooLow , and in Table 11 to remove
the event with @T(PressureState = 'TooLow') in the row
associated with mode TooHigh.
A further rule allows one to simplify WHEN clauses that
refer to the target value of the variable being defined.

Rule 5: Simplify WHEN clauses on target variables
For a cell in a column associated with some target
value v for the variable var being defined, conditions
var ≠ v in WHEN clauses may be removed since they are
trivially satisfied.
Similarly, conditions var = w, with w ≠ v and v, w being
the only two values for var, may be removed from
WHEN clauses.

Back to Table 11, let us consider the cell associated with
mode TooLow and target value 'On'. Rule 1 allows us to
eliminate the first event in the cell; Rule 3 allows us to
simplify the second event of the cell into

@T (NOT Overridden)  WHEN (SafetyInjectionSignal = ‘Off’)

Rule 5 allows us to simplify this event further into
@T (NOT Overridden)

Let us now consider the cell associated with mode
'Permitted' and target value 'On' in Table 11. Rule 5 allows
us to simplify the first event into

@T (PressureState = 'TooLow’)  WHEN NOT Overridden

Rule 2 allows us to remove the second event.

Tables 13 and 14 give the complete result of applying our
simplification rules to Tables 11 and 12, respectively.

3.7.5. Introducing @T(InMode) expressions

The SCR language has a special notation that can be used
in a row of an event table to describe system entry into the
group of modes in that row. For example, the sub-
expression “@T(Inmode)” in the first row of Table 2 means
“if the system enters into TooLow  or Permitted, then
Overridden becomes false.”

The use of the @T(InMode) notation is considered to be
error-prone and is often discouraged. A table using the

Mode Events
TooLow  @T (NOT ?Overridden)  @T (PressureState = 'Permitted')

 OR @T (Overridden)

Permitted  @T (PressureState = 'TooLow’)  WHEN NOT Overridden  @T (Overridden)

TooHigh  False  @T (Overridden)

SafetyInjection-
Signal

‘On’ ‘Off’

Table 13. Simplified Event Table for SafetyInjectionSignal

Mode Events
TooLow  @T (Block = ‘On’)  @T (Reset = ‘On’)

Permitted  @T (Block = ‘On’)  @T (Reset = ‘On’)
 OR @T (PressureState = 'TooHigh')

TooHigh  False  @T (Reset = ‘On’)

Overridden True False

Table 14. Simplified Event Table for Overridden
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@T(InMode) notation can be converted into an equivalent
table without that notation, and vice-versa. Jeffords and
Heitmeyer show how the event table for Overridden in
Table 2 with @T(InMode) constructs can be transformed
into an equivalent InMode-free event table [19]. The
opposite transformation to introduce InMode constructs in
event tables can be performed systematically by
application of the following rule.

Rule 6: @T(InMode)-event introduction
Let AMC be the associated mode class of an event
table. If an event having the form

@T(AMC = m)  WHEN d

appears as one of the disjuncts in a table cell
associated with mode n and target value v, with n≠m,
then this event may be removed from the disjuncts in
this cell whereas the event 

@T(InMode)  WHEN (d AND AMC = n)

is added as a new disjunct in the cell associated with
mode value m and target value v. (The original event
has thereby been moved from the row associated with
mode n to the row associated with mode m).

Let us illustrate this rule on Table 13. The event leading
to target value 'On' from mode Permitted is moved to the
row associated with mode TooLow where it is rewritten as

@T (Inmode)
    WHEN (NOT Overridden AND PressureState = 'Permitted')

Tables 15 and 16 show the result of applying Rule 6 on
Tables 13 and 14, respectively.

Tables generated through @T(InMode)-event introduction
(Rule 6) may sometimes be simplified further thanks to
the following simplification rules.

Rule 7: Simplify WHEN clauses based on possible mode
transitions

An event having the form
@T(InMode)  WHEN d AND AMC = n

in a row associated with mode m may be simplified
into

@T(InMode)  WHEN d

provided n is the only source of transition to mode m
in the mode transition table of the AMC mode.

This rule can be used in Table 15 to simplify the event
@T (InMode)
   WHEN NOT Overridden AND PressureState = 'Permitted'

into mode TooLow , and in Table 16 to simplify the event
@T (InMode)
    WHEN PressureState = 'Permitted'

into mode TooHigh.

Rule 8: Simplify  mode classes covering @T(Inmode)
events

In a row associated with mode m, a disjunction having
the form
   @T (InMode)  WHEN (d AND AMC = i)
   OR …
   OR @T (InMode)  WHEN (d AND AMC = j) ,

covering all possible modes i, j except mode m, may be
replaced by the single event
   @T (InMode)  WHEN d

There is no application of this rule in our tables. Imagine
however that in mode TooLow  in Table 15 we had the
following disjunction of events:

Mode Events
TooLow  @T (NOT Overridden)

 OR @ T(Inmode) WHEN (NOT Overridden
                                         AND PressureState = 'Permitted')

 @T (Overridden)

Permitted  False  @T (Overridden)
 OR @T (Inmode)  WHEN PressureState = 'TooLow'

TooHigh  False  @T(Overridden)

SafetyInjection-
Signal

‘On’ ‘Off’

Table 15. Event Table for SafetyInjectionSignal with InMode constructs (before further simplification)

Mode Events
TooLow  @T (Block = On)  @T (Reset = On)

Permitted  @T (Block = On)  @T (Reset = On)

TooHigh  False  @T (Reset = On)
 OR @ T(Inmode)  WHEN PressureState = 'Permitted'

Overridden True False

Table 16. Event Table for Overridden with InMode constructs (before further simplification)
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   @T (InMode)
     WHEN (PresssureState = 'Permitted' AND NOT Overridden)
   OR @T (InMode)
     WHEN (PresssureState = 'TooHigh' AND NOT Overridden)

Applying Rule 8 would allow us to simplify this
disjunction into the following single event:

   @T (InMode)  WHEN NOT Overridden

Rule 9: Remove useless events due to @T(InMode)

If a row of an event table has all cells being marked
'False' except one having the form @T(Inmode) OR @X
then this cell may be simplified into @T(Inmode), since
once this mode is entered no event can cause the target
value of the output variable to change to another value
in that mode; events @X have thus no effect as they
just prescribe the output variable to keep that same
target value.

This rule can be used in Table 16 to remove the event
@T(Reset = 'On') from the row associated with mode
TooHigh.

Such simplifications should by default be applied until the
simplest possible tables are reached. However, keeping
redundant information in tables may sometimes improve
their clarity. Simplifications might therefore not be
applied sometimes for sake of clarity.
Tables 17 and 18 show the result of applying the above
simplifications rules to Tables 15 and 16, respectively.

3.8. From event tables to condition tables

An event table can be transformed into a semantically
equivalent condition table provided that some invariants
hold on the event table.
For example, consider the event table for variable

SafetyInjectionSignal; an equivalent condition table, if it
exists, would have the general form shown in Table 19.

Mode Conditions
TooLow ?A NOT ?A

Permitted ?B NOT ?B

TooHigh ?C NOT ?C

SafetyInjection-
Signal

‘On’ ‘Off’

Table 19:  General form of a condition table for
SafetyInjectionSignal

In this table, ?A, ?B, and ?C are placeholders for still
unknown SCR conditions. In order to satisfy the
completeness and disjointness criteria on conditions
tables, the conditions in the column for target value 'Off’'
are negations of those in the column for target value 'On'.

The semantics of this condition table is that the following
three assertions hold in all states of the system:

PressureState = 'TooLow' →
(SafetyInjectionSignal = 'On' ↔ ?A)

PressureState = 'Permitted' →
(SafetyInjectionSignal = 'On' ↔ ?B)

PressureState = 'TooHigh' →
(SafetyInjectionSignal = 'On' ↔ ?C)

The problem of building a condition table for
SafetyInjectionSignal from its event table therefore amounts
to finding conditions ?A, ?B, and ?C so that the above
properties are invariants for the event table.
In the general case, the problem of transforming an event
table into an equivalent condition table thus amounts to
finding SCR conditions to fill the condition table so that:
(i) the completeness and disjointness properties of

Mode Events
TooLow  @T (NOT Overridden)

 OR @T (Inmode)  WHEN NOT Overridden
 @T (Overridden)

Permitted  False  @T (Overridden)
 OR @T(Inmode)  WHEN PressureState = 'TooLow'

TooHigh  False  @T (Overridden)

SafetyInjection-
Signal

‘On’ ‘Off’

Table 17. Event Table for SafetyInjectionSignal with InMode constructs (after simplification)

Mode Events
TooLow  @T (Block = ‘On’)  @T (Reset = ‘On’)

Permitted  @T (Block = ‘On’)  @T (Reset = ‘On’)

TooHigh  False  @ T(Inmode)

Overridden True False

Table 18. Event Table for Overridden with InMode constructs (after simplification)
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condition tables are met,

(ii) the assertions capturing the condition table semantics
are invariants on the event table.

Event tables for which no such conditions can be found
have no equivalent condition table.
One possible technique for finding those conditions is to
use temporal logic query checking on SCR models [12].
Given
- a SCR event table,
- the assertions defining the condition table semantics as

a query in which the conditions to be found are
placeholders,

temporal logic query checking will give us the solution to
the query or will tell us that no solution exists. (The
technique requires that the SCR model is propositional or
can be treated as a propositional model, which is the case
here.)
For the condition table defining SafetyInjectionSignal, the
solution for conditions ?A, ?B, and ?C is given by:

?A =  (Overridden = 'False')
?B =  False
?C =  False

This corresponds to the original SCR specification shown
in Table 3.

It may be worth noting that the invariant generation
algorithm in [19] when applied to Tables 13 or 17
generates the following invariants:

SafetyInjectionSignal = 'On' → Overridden = 'False'
∧ PressureState = 'TooLow'

SafetyInjectionSignal = 'Off' → true

These invariants are not strong enough to build the
condition table for SafetyInjectionSignal.

4. Evaluation
We may now compare the three specifications for the
safety injection case study, namely, the “native” SCR
specification [14], the “native” KAOS specification [25]
and the SCR specification derived in this paper.

4.1. Derived SCR spec vs. original SCR spec

The SCR specification derived from our KAOS model is
nearly identical to the original one found in [14]; the only
two slight differences are in the event table for term
Overridden. The original table for this term is given in
Table 2; the one derived by our procedure is shown in
Table 18.

We may notice that the original specification has an extra
condition WHEN Reset = ‘Off’  on the event @T(Block = ‘On’)
leading to the state Overridden = True. This seems

redundant in view of descriptive domain properties about
Block and Reset. The original specification also has an
extra disjunct @T(Inmode) strengthening the event
@T(Reset=‘On’) that may lead to the state Overridden = False;
why this disjunct is really needed is hard to understand
without documentation of its rationale in some underlying
goal model.

On the other hand, every expression in the SCR
specification we derived may be traced back to our goal
model. The latter might of course be still incomplete, e.g.,
because of insufficient obstacle analysis. Corrections to
the goal model from further obstacle analysis must be
downpropagated to the tables derived; we feel it much
more difficult to follow the reverse engineering path.

4.2. Derived SCR spec vs. original KAOS spec

We also compared the derived SCR specification with the
original KAOS model in [25] using the SMV model
checker [28]. Basically, we translated both specifications
into SMV syntax and compared the values of the
controlled variables in the original KAOS model and in
the derived SCR specification, respectively [10]. One
would expect that the respective values of controlled
variables do not match in exactly the same state in view
of the one-state shift introduced to squeeze output table
expressions into SCR’s synchrony hypothesis (see Section
3.5).
SMV showed that these values are “almost matching”
under a quiet input assumption. This means roughly that
when input events are sparse the respective values are the
same at any time point up to 0, 1 or 2 time unit shifts.

The reason for this is the lack of synchrony hypothesis in
the KAOS model together with the length of the longest
path in the variable dependency graph. For example,
when the value of one of the monitored variables is
changing in the KAOS model, it will take one time unit to
update the value of Overridden, then another time unit to
update the value of the controlled variable
SafetyInjectionSignal. In the SCR model, all such changes
occur synchronously.

o r i g i n a l  K A O S s p e c

o r i g i n a l  K A O S s p e c
t r a n s l a t e d  i n t o S M V

d e r i v e d  S C R  s p e c

g e n e r a t e d S C R s p e c
t rans la t ed  in to S M V

K A O SS C R

S M V

o r i g i n a l  K A O S s p e c

o r i g i n a l  K A O S s p e c
t r a n s l a t e d  i n t o S M V

g e n e r a t e d S C R s p e c
t rans la t ed  in to S M V ≅
Fig.  2 – Comparing the KAOS and derived SCR specifications

Fig. 2 helps visualizing our verification experiment.
Vertical arrows denote translation to SMV syntax, the
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horizontal dotted arrow represents our derivation process
and ≅ denotes the pseudo- equivalence.

5. Conclusion
Thanks to our technique for deriving SCR specifications
from KAOS models, SCR specifiers may follow upstream
goal-based processes to incrementally elaborate, structure
and document their tabular specification in a guided
fashion, and to perform goal-level analysis for earlier
detection and resolution of obstacles [23] and conflicts
[20]. Conversely, KAOS modelers may obtain
downstream tabular specifications in a systematic way for
later specification analysis through exhaustiveness
checking [14], simulation [15], behavior model checking
[16] and test data generation [11].
Our approach led us to point out complementarities and
subtle differences between the two frameworks. The
derivation process consists of a series of steps aimed at
removing semantic, structural and syntactic differences
between the KAOS and SCR frameworks. The derivation
process may thereby be shown to be complete with
respect to those differences.
As we discussed it, there is a price to pay for integrating
such different RE frameworks. Some semantic differences
due to the absence of non-determinism in SCR machine
behaviors and to incompatible rules for evaluation of
expressions over states make it impossible to derive a
target specification whose behavior models are exactly the
same as the source ones.

An alternative approach to combining goal-oriented
specification and tabular event-based specification would
be to derive SCR tables directly from goal specifications
without passing through the KAOS operation model. This
could make the derivation process simpler as it would
bypass the structuring by transition class to proceed
directly to the output-driven restructuring required by
SCR tables. Deriving SCR tables directly from goals
might perhaps overcome some technical problems related
to the synchrony hypothesis; this hypothesis would be
injected directly in our goal model – technically, by
weakening our definition of goal realizability [26] so as to
allow machine agents to take responsibility for goals that
require their synchronous reaction. The problem of
deriving SCR specifications directly from declarative goal
specifications is somewhat the inverse of the problem of
inferring declarative invariants from SCR tables [19].
Several insights and techniques gained from the process
described in this paper would be applicable to the
problem of deriving SCR tables directly from declarative
goals (e.g., the techniques for extracting mode classes, for
simplifying SCR tables, or the eager/lazy strategies for

getting rid of non-determinism). This might be a direction
worth investigating in the future.
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