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Abstract. Goal-oriented methods are increasingly
popular for elaborating software requirements. They offer
systematic support for incrementally building intentional,
structural and operational models of the software and its
environment. They also provide various techniques for
early analysis, notably, to manage conflicting goals or
anticipate abnormal environment behaviors that prevent
goals from being achieved. On the other hand, tabular
event-based methods are well-established for specifying
operational requirements for control software. They
provide sophisticated techniques and tools for late
analysis of software behavior models through simulation,
model checking or table exhaustiveness checks.

The paper proposes to take the best out of these two
worlds to engineer requirements for control software. It
presents a technique for deriving event-based
specifications, written in the SCR tabular language, from
operational specifications built according to the KAOS
goal-oriented method. The technique consists in a series
of transformation steps each of which resolves semantic,
structural or syntactic differences between the KAOS
source language and the SCR target language. Some of
these steps need human intervention and illustrate the
kind of semantic subtleties that need to be taken into
account when integrating multiple formalisms.

As a result of our technique SCR specifiers may use
upstream goal-based processes a la KAOS for the
incremental elaboration, early analysis, organization and
documentation of their tables while KAOS modelers may
use downstream tables & la SCR for later analysis of the
behavior models derived from goal specifications.

1. Introduction

Goal orientation is an increasingly recognized paradigm
for dliciting, elaborating, structuring, specifying,
analyzing, negotiating, documenting and modifying
software requirements [22, 24]. Goals are prescriptive
statements of intent whose satisfaction requires the
cooperation of agents (or active components) in the

software and its environment. Goals are organized in
AND/OR refinement structures; they may refer to
functional or non-functional concerns and range from
high-level, strategic concerns (such as “safe coolant system
for nuclear power plant”) to low-level, technical
prescriptions; the latter can be requirements on the
software-to-be (such as ‘“safety injection overridden when
block switch is on and pressure is less than 'Permit”) or
expectationson its environment (such as “block switch is on
when plant enters normal cooldown phase™).

Goal-based modeling and reasoning has many
advantages:
goals may be specified precisely in a declarative
fashion and refined incrementally into operational
software specifications that provebly assure the
higher-level goals[9, 26, 27];
they allow one to trace low-level details back to high-
level concerns|[8, 29, 1];

strategic goal dependencies among agents can be
analyzed for responsibility assignment [38];

goals provide a criterion for
completeness and pertinence [39];

positive and negative interactions among goals can be
captured and managed appropriately [20, 6, 33];
exceptional conditions in the environment that may
prevent critical goals from being achieved can be
pointed out [32] or even generated and then resolved
to produce more robust requirements [23].

Tables have long been recognized to be a convenient
format for presenting operational specifications in a
compact, readable form amenable to various kinds of
exhaustiveness or redundancy checks [31]. In the context
of embedded control software, such tables may capture
input-output functions and software behavior on a firm,
precise mathematical basis[17, 36, 14]. As aconseguence
a wide range of analysis techniques can be defined and
automated including:

dedicated consistency/completeness checks[13, 14],

requirements



model simulation[15],
model checking [3, 16],
test data generation [11],
invariant generation [19]
or theorem proving [2, 34].

The integration of goal-oriented RE methods such as
KAOS [24] and tabular specification techniques such as
SCR [14] thus provide the following complementary
benefits.

Complex domain and requirements models can be
captured in terms of aricher ontology - goals, agents,
requirements,  expectations, conflicts,  objects
(including entities, associations, explicit events,
monitored/controlled attributes), operational services,
scenarios, etc. The specification can now be
structured and documented using goal refinement and
abstraction as a basic structuring mechanism. It can be
built incrementally using a constructive method [22].
Requirements can be analyzed at earlier stages of the
RE process using available techniques for goal
refinement and operationalization, goal mining from

scenarios,  responsibility  assignment,  conflict
management and obstacl e anticipation.
Once converted into SCR tables the goal

operationalizations are presented in a more readable
format due to tabular display and output-driven
structuring of specification units. The rich arsenal of
techniques and tools can then be deployed on such
tables for later analysis to point out inadequacies,
inconsistencies or incompleteness in the operational
software specification or in the underlying goals this
specification operationalizes.

Our work is motivated by this complementarity. The
objective of this paper is to discuss and illustrate our
procedure for transforming KAOS specifications of
operational services, derived from goals according to
techniques described in [8, 27], into SCR tables.

The paper is organized as follows. Section 2 introduces
some required background on KAOS and SCR together
with our running example. Section 3 presents and
illustrates the various steps of the transformation
procedure together with the KAOS/SCR semantic,
structural or syntactic difference resolved by each step.
Section 4 provides some evaluation based on the use of
the SMV model checker; the SCR specification derived
by our technique is compared with other published
specifications of our running example.

2. Background

Our presentation will rely on the safety injection system
for a nuclear power plant introduced in [7]. The reader
may refer to [25] for afull KAOS elaboration of the goal,
object, agent and operation models, and to [7, 14] for
SCR specifications of this system.

2.1. Goal-Oriented Modeling with KAOS

Operational software requirements are derived gradually
from the underlying system goals. The word “system”
here refers to the software-to-be together with its
environment. The derivation proceeds according to the
following steps[24].

- Goal modeling: A goal refinement graph is elaborated
first by identifying relevant goals from input material
(such as interview transcripts and available documents)
— typicaly, by looking for intentional keywords in
natural language statements and by asking why and how
guestions about such statements.

- Object modeling: UML classes, attributes and
associations are derived systematically from the goal
specifications.

- Agent modeling: Agents are identified together with
their  potential  monitoring/control  capabilities;
aternative assignments of goals to agents are explored.

- Operationalization: Operations and their domain pre-
and postconditions are identified from the goal
specifications; strengthened pre-, post- and trigger
conditions are derived so asto ensure the corresponding
goals.

The above steps are ordered by data dependencies and, of
course, intertwined. Each step may be guided by the use
of heuristics and derivation patterns associated with
specific tactics [9, 26, 27]. Additional parallel steps of the
method handle goal mining from scenarios [21], the
management of conflicts between goals [20] and the
management of obstacles to goa satisfaction [23],
respectively.

Asintroduced before, agoal is a prescriptive statement of
intent to be satisfied through cooperation of various
agents making the system — humans such as operators in
the nuclear power plant, devices such as sensors and
actuators, and software such as the safety injection
controller. Goals capture sets of intended behaviors; they
can be formalized in areal-time temporal logic [8]. AND-
refinement links relate a goal to a set of subgoals (called
refinement) and domain properties; this means that
satisfying all subgoals in the refinement is a sufficient
condition in the domain for satisfying the goal. OR-
refinement links relate a goal to an alternative set of



refinements, this means that satisfying one of the
refinements is a sufficient condition in the domain for
satisfying the goal. The core of the goal model for a given
system thus amounts to an AND/OR graph whose edges
capture refinement/abstraction links. An obstacle to some
goal is a condition whose satisfaction may prevent the
goal from being achieved.

For example, the goal named EffectiveCoolantSystem is a
basic one in any nuclear power plant system. This goal
can be obstructed by an obstacle such as LossOfCoolant.
The goal SafetylnjectionlffLossOfCoolant is introduced to
mitigate that obstacle. This goal is seen to be conflicting
with another goal elicited from the source document,
namely, the goal NoSafetylnjectionWhenStartUp/CoolDown
(Formal developments are skipped here for space
reasons.) The conflict is resolved by weakening the first
goa which yields a new goa textually specified as
follows:

Goal Maintain [SafetylnjectionlffLossOfCoolantExceptlf-
StartUp/CoolDown]
Def The safety injection signal should be ‘On’ whenever
there is a loss of coolant except during normal start-up or
cool down.

FormalSpec SafetylnjectionSignal = ‘On’ U
LossOfCoolant U@ (StartUp U CoolDown)

Fig. 1 shows a portion of the goal model in which this
weakened goal is refined by application of the “Introduce
accuracy goal” tactics; the latter is frequently used to make
phenomena referenced in goal formulations monitorable
or controllable by software agents [26].

SafetylnjectionlffLossOfCoolant
ExceptlfStartUp/CoolDown

SafetylnjectionlffLowWaterPressure/f | LowWaterPressurelffLossOfCoolant|
ExceptlfStartUp/CoolDown Or StartUp/CoolDown

Figure 1 — Goal refinement towards monitorability

The textual specifications annotating the two child nodes
in Fig. 1 are the following:

Goal Maintain [SafetylnjectionlffLowWaterPressureExceptlf-
StartUp/CoolDown]

Def The safety injection signal should be ‘On’ whenever the
water pressure is below the ‘Low’ set point except during
normal start-up or cool down.

FormalSpec SafetylnjectionSignal = ‘On’ U

WaterPressure < ‘Low’'U@ (StartUp U CoolDown)

DomProp LowWaterPressurelff
LossOfCoolantOr StartUp/CoolDown
Def The water pressure is below the ‘Low’ set point if and
only if there is a loss of coolant or the plant is in normal
start-up or cool down mode.

FormalSpec WaterPressure < ‘Low’ U
LossOfCoolant U StartUp U CoolDown

Note that goals are prescriptive whereas domain
properties are descriptive [40].

Goal refinement ends up when every subgoal is realizable
by some candidate individual agent, that is, expressiblein
terms of objects that are monitorable and controllable by
the agent. Goal refinement is thus partially driven by the
target of reaching a 2-variable model for each agent [30].
A requirement is a terminal goal assigned to an agent in
the software-to-be; an expectation is a terminal goal
assigned to an agent in the environment.

The state of the system is defined by aggregation of the
states of its objects. An object can be an entity, a
relationship, an event or an agent (active object). Objects
are characterized by attributes and domain invariants; as
opposed to goals, the latter are descriptive statements.
The object model is represented as a UML class diagram,
it is derived systematically from the goal model by
highlighting the attributes and relationships referenced in
goal formulations.

The agent model captures responsibility links between
agents and goals together with monitoring/control links
between agents and object attributes. The object
attributes monitored and controlled by an agent define its
interface to other agents; these monitored/controlled
variables are derived systematically, see [26, 24].
Although not necessarily required for simple control
systems, modeling objects and agents may be essential for
multi-component applications involving complex, inter-
related objects.

A goal assigned to some agent in the software-to-be is
operationalized into functional services, called
operations, to be performed by the agent. The operation
model collects all such operations together with their
operationalization links to the goal model, performance
links to the agent model and input/output links to the
object model. An operation is an input-output relation
over objects; operation applications define state
transitions. When specifying an operation, a distinction is
made between domain pre/postconditions and additional
pre-, post- and trigger conditions required for achieving
some underlying goal.
- A pair (domain precondition, domain postcondition)
captures the elementary state transitions defined by
operation applicationsin the domain.

- A required precondition for some goal captures a
permission to perform the operation when the condition
istrue.

- A required trigger condition for some goal captures an
obligation to perform the operation when the condition



becomes true provided the domain precondition is true.

- A required postcondition defines some additional
condition that any application of the operation must
establish in order to achieve the corresponding goal.

To produce consistent operation models, a required
trigger condition on an operation must imply the
conjunction of itsrequired preconditions.

Consider the goal SafetylnjectionlffLowWaterPressureAnd-
NotOverridden, assigned to the Engineered Safety Feature
Actuation agent (ESFAS). This goa is operationalized
partly by the following operation:

Operation StopSafetylnjection
Input WaterPressure, Overridden;
Output SafetylnjectionSignal

DomPre SafetylnjectionSignal = ‘On’
DomPost SafetylnjectionSignal = ‘Off’
ReqPre/Trig For
SafetylnjectionlffLowWaterPressureAndNotOverridden:
WaterPressure 3 ‘Low’ U Overridden

In this specification, the required trigger condition
prescribes that the safety injection signal must be set to
‘Off’ as soon as the water pressure is higher than ‘Low’ or
the safety injection signal is overridden. In this case the
condition is a required precondition as well; the safety
injection may be set to ‘Off’ only when the water pressure
is higher than ‘Low’ or the safety injection signa is
overridden.

Our mapping from KAOS to SCR assumes that correct
and complete operationalizations have been derived from
goal specifications using the techniques described in [27].

2.2. Operational Specification with SCR

SCR is built on the original 4-variable model that defines
requirements as a relation between monitored and
controlled variables, and software specifications as a
relation between software input and output variables [30].
The system globally consists of two agents: the machine
consisting of the software-to-be together with its
associated input/output devices, and the environment. The
former defines values for the controlled variables whereas
the latter defines values for the monitored variables.

Two basic constructs in SCR are modes and terms. A
mode class is an auxiliary variable whose behavior is
defined by a state machine on monitored variables. The
states are called modes; a mode name is thus a shorthand
for some implicit logical expression on monitored
variables. Mode transitions are triggered by events. A
complex machine may be defined by several mode classes
operating in parallel. A term is an auxiliary variable
defined by a function on monitored variables, mode
classes or other terms. Using term names instead of

repeating their definition helps making the specification
more concise.

A SCR specification defines the machine through a set of
tables together with associated information such as
variable declarations, type definitions, initial state
definitions, assumptions, etc. Each table specifies the
behavior of avariable as a mathematical function. A table
may be a mode transition table, a condition table or an
event table.

A mode transition table specifies a mode class by
defining its various modes as a function of the previous
corresponding mode and events. A condition table
defines the various values of a controlled variable or of a
term as a function of a corresponding mode from the
associated mode class (AMC) and conditions. An event
table defines the various values of a controlled variable or
of a term as a function of a corresponding AMC mode
and events.

A condition is a predicate defined on one or more
monitored, controlled or internal variables at some point
in time. Conditions in a condition table are expected to be
disjoint (for the table to be a function) and covering the
entire state space (for the function to be total). An event
occurs when avariable changes its value. In particular, an
input event occurs when a monitored variable changes its
value. A conditioned event occursif an event occurs when
some specified condition istrue. Unlikein KAOS, events
are implicit in SCR; they are manipulated through
notations such as
@T(v) WHEN C
which means . .
CuUgvuv
where C and v are evaluated in the current state and v’ is
evaluated in the next state. For example,
@T (Block = On) WHEN Reset = Off

amountsto
@ Block=0n U Block'=On U Reset=0ff.

This event occurs when both Block and Reset are ‘Off’ in the
old state and Block becomes ‘On’ in the new one. Note thus
that a condition refersto one single state whereas an event
refersto apair of consecutive states.

Unlike KAOS, SCR is built upon the synchrony
hypothesis, that is, the machine is assumed to react
infinitely fast to changes in its environment [4]; it handles
one input event completely before the next one is
processed. In the 4-variable framework, this means that
the value of a controlled variable in the next state may
depend on the values of monitored variables in the current
and next state. The synchrony hypothesisjustifies that (a)
a mode transition table specifies the next value of the
mode class in terms of the current and next values of



monitored variables (and the current value of the mode
class), (b) an event table specifies the next value of the
target variable in terms of the current and next values of
other variables (and the current value of this variable),
and (c) a condition table defines the next value of the
target variable in terms of the next value of other
variables.

The formal model of SCR is defined in terms of
functions; it therefore prescribes deterministic machine
behaviors [14]. The behavior of the environment is of
course non-deterministic.

Old Mode Event New Mode
ToolLow @T (WaterPressure 3 ‘Low’) Permitted
Permitted @T (WaterPressure < ‘Low’) ToolLow
Permitted @T (WaterPressure 3 ‘Permit’) | TooHigh
TooHigh @T (WaterPressure < ‘Permit) Permitted

Table1: Modetransition table for mode class PressureState

Let us come back to our running example. The SCR
specification for the ESFAS software agent includes a
mode class PressureState with modes TooLow, Permitted and
High, a term Overridden and a controlled variable
SafetylnjectionSignal; the monitored variables are Block,
Reset and WaterPressure. Table 1 illustrates a mode
transition table for the PressureState mode class. The first
row of this table states that if PressureState is TooLow and
the event @r (WaterPressure 3’Low) occurs then the
PressureState switches to ‘Permitted’. If none of the rows
appliesto the current state, PressureState does not change.

Mode Events
ToolLow, @T (Block = ‘On’) @T(Reset="0On’)
Permitted WHEN Reset = ‘Off’ OR @T(Inmode)
TooHigh False @T(Inmode)
Overridden True False

Table2: Event tablefor term Overridden [14]

Table 2 illustrates an event table defining the term
Overridden to capture situationsin which safety injection is
blocked. This term is defined as a function of the AMC
PressureState and variablesBlock and Reset. An entry False
in an event table means that no event may cause the
variable defined by the table to take the value in the same
column as the entry; e.g., when PressureState iSTooHigh no
event may cause Overridden to become true. The notation
@T(Inmode) in a row captures a transition into one of the
modes specified in that row; e.g., the last column of the
first row in Table 2 states that “if PressureState becomes
TooLow or Permitted (Or if Reset becomes On) then
Overridden must become false.”

Table 3 illustrates the use of a condition table to specify

the controlled variable SafetylnjectionSignal as a function of
the AMC PressureState and term Overridden. The last
column of the first row states that if PressureState is
ToolLow and Overridden is true then SafetylnjectionSignal must
be ‘off'. Note that there is always one output value whose
corresponding conditionistrue.

Mode Conditions
ToolLow NOT Overridden Overridden
Permitted, False True
TooHigh

Safetylnjection- ‘on’ ‘Off’

Signal

Table 3: Condition tablefor controlled variable
SafetylnjectionSignal [14]

Also note that the rationale for some rows in those tables
may not be obvious. A KAOS model upstream to such
tables may explain them by tracing specification decisions
back to some underlying goals and obstacles. For
example, our derivation in [25] shows that the
unexplained condition @T(Inmode) in the second row of
Table 2 resolves an obstacle we generated, namely, the
obstacle of an operator forgetting to push the “reset”
button at the end of anormal start-up phase. Without such
resolution we might end up with no safety injection being
actuated because of Overridden being still true while the
plant isno longer in normal start-up phase.

Note finally that SCR is a “flat” language in that it
provides no structuring mechanism for table
refinement/composition and incremental specification
[37]. We argue that such mechanism is not really needed
when goal refinement is used upstream as a mechanism
for structuring and documenting the specification.

3. Deriving SCR Tablesfrom KAOS models

Our mapping procedure assumes that the goal model has
been transformed into a KAOS operation model
according to the techniques described in [27]. The
procedure converts such a model into a “semantically
close” set of SCR tables. By “semantically close” we
mean that the following relation must hold between the
source KAOS operation model KOM and the target set of
tables SST:

SST |% KOM*
where KOM* denotes the source operation model KOM in
which a one-state shift is performed to squeeze the model
into SCR’s synchrony hypothesis — that is, required pre-
and trigger conditions are evaluated in the next state with
respect to the state in which the corresponding domain
precondition is evaluated (see below). In other words, the
set of SCR behaviors is included in the set of KAOS
behaviors modulo such a one-state shift required by the



synchrony hypothesis.

Every step of the procedure resolves some difference
between KAOS and SCR - a semantic difference (e.g.,
allowed form of non-determinism, synchrony hypothesis),
a structural difference (e.g., grouping of expressions) or a
syntactic difference. The various steps are now reviewed
successively, namely,

moving from a pruning semantics to a generative one,
mapping a multi-agent model into a bi-agent one,
getting rid of non-determinism,

grouping transition classes by output,

translating  transition  predicates into SCR
expressions,
identifying mode classes and deriving mode
conditions,

generating SCR event tables and mode transition
tables,

simplifying some tables into condition tables.

3.1. From a pruning semantics to a generative
one

The KAOS specification language has a pruning
semantics; every behavioral change is alowed except the
ones explicitly forbidden by the specification [27]. On the
other hand, SCR like other state machine formalisms has
a generative semantics, every behavioral change is
forbidden except the ones explicitly required by the
specification.

This semantic difference is resolved by making a closure
assumption; the source operation model is assumed to
capture all acceptable behaviors and only those. In other
words, every behavioral change not captured in the source
operation model is forbidden (this corresponds to a
“nothing else changes’ frame assumption). In case a new
operation is added to the source model, the conversion
procedure has thus to be reapplied to this model to
produce a new set of tables.

3.2. From a2N-variable modd to a 4-variable one

The KAOS agent model captures multiple cooperating
agents: software agents from legacy software or in the
software-to-be, human agents, devices such as sensors or
actuators, etc. On the other hand, the SCR specification
considers two agents only: the machine and its
environment (see Section 2.2). In KAOS, the controlled
variables of an agent may be any object attribute whose
values may be modified by the agent; a controlled
variable can therefore be an interface variable or an
internal variable. In SCR, the machine's controlled
variables are restricted to variables at the interface with

the environment.

To resolve those differences, the analyst is first asked
which agent aggregate she wants to consider as the
machine to be specified by SCR tables. All other agents
will be aggregated to make the SCR environment. The
monitored and controlled variables of the SCR
specification are then derived according to the following
rules:

- every KAOS variable monitored by a machine agent
and controlled by an environment agent becomes a
monitored variable in the SCR specification,

- every KAOS variable controlled by a machine agent
and monitored by at least one agent in the environment
becomes a controlled variable in the SCR
specification,

- every KAOS variable controlled by a machine agent but
not monitored by an environment agent becomes an
auxiliary variable in the SCR specification (i.e., aterm
or amode class).

For our running example, the machine will be an
aggregation of the ESFAS software agent and
corresponding sensors and actuators; the environment will
include the coolant system, the plant operator and the
actual safety injection mechanisms. The variable
SafetylnjectionSignal becomes a controlled variable in the
SCR model since it is among the variables controlled by
the ESFAS agent and monitored by the environment. The
variables WaterPressure, Block and Reset become monitored
variables in the SCR model since they are among the
variables monitored by the ESFAS agent and controlled
by the environment. On the other hand, the variable
Overridden becomes an auxiliary variable (e.g., a term)
because it is controlled by the ESFAS agent but it is not
monitored by any agent in the environment.

3.3. Getting rid of non-determinism

KAOS agents are non-deterministic. Whileit is obliged to
perform an operation when one of the operation’s trigger
condition becomes true an agent may have the freedom to
perform an operation or not when its required
preconditions are all true. On the other hand, a SCR
environment is non-deterministic but a SCR machine is
deterministic.

To remove KAOS non-determinism when necessary, the
analyst is asked to choose between an eager or lazy
behavior scheme for each operation performed by the
machine agent. In the eager behavior scheme the agent
performs the operation as soon asit can, that is, as soon as
all required preconditions are true. In the lazy behavior
scheme the agent performs the operation when it is really
obliged to do so, that is, when one of its required trigger



conditionsbecomes true.

Note that a lazy scheme still guarantees that no
permission is violated because of the consistency meta-
rule of the KAOS language imposing any required trigger
condition on an operation to imply all its required
preconditions:

(U« ReqTrig) UDomPre b U, RegPre;

Similarly, an eager scheme still guarantees that any
obligation isfulfilled.

3.4. Grouping transitions by output

Operational specification units can be organized in
several ways, e.g., grouping by input, grouping by output
or grouping by transition class. In case of grouping by
transition class, the focus of a specification unit is the set
of state transitions that meet some pre-, trigger- and
postconditions. In case of grouping by output, the focus of
aspecification unit is the set of state transitions that affect
the value of some output.

In a KAOS operation model, specification units are
grouped by transition class (the latter being grouped by
agent and by goal the operation contributes to). SCR
specification units are grouped by output.

A standard way of resolving structure clashes is to
introduce an intermediate data structure [18]. An output
table is therefore associated with every controlled or term
variable to collect the various transition classes for this
variable. Each row in an output table is associated with a
KAQOS operation that declares the variable associated with
the table in its Output clause. Table 4 shows the output
table for the controlled variable SafetylnjectionSignal. (SILW
is an abbreviation for the goal SafetyInjectionlffLowWater-
Pressure AndNotOverridden.) The last row of this table is
derived from the StopSafetylnjection operation specification
given in Section 2.1 by transferring its DomPre,
ReqPre/Trig and DomPost conditions to the DomPre,
Trigger and TargetValue cells, respectively. The previous
row is similarly obtained from the specification of the
StartSafetylnjection operation.

SafetylnjectionSignal

Operation DomPre Trigger Target | Goals

value

StartSafety- | Safetylnject- | WaterPressure ‘on’ SILW

Injection ionSignal = <‘Low’ U
‘Off’ @ Overridden

StopSafety-| Safetylnject- | WaterPressure ‘Off’ SILW
Injection | ionSignal = 3 ‘Low' U
‘on’ Overridden

Table4: Output tablefor SafetylnjectionSignal
Table 5 shows the output table for the controlled variable

Overridden, similarly derived from the specification of the
operations OverrideSafetylnjection and EnableSafetylnjection.

A row in an output table defines a transition class through

the following information:

- the name of the KAOS operation defining the transition
class and the name of the goals operationalized by it
(this information is used to keep track of the original
specification at each step of the transformation);

- the domain precondition of this operation (in general it
isacondition on the variable defined by the table);

- the condition triggering transitions in that class; this
condition is the operation’s conjunction of required
preconditions, in case an eager behavior scheme has
been selected for that operation at the previous step, or
the operation’s disjunction of required trigger
conditions in case a lazy behavior scheme has been
selected (in the latter case the conjunction of required
preconditions is satisfied because of the KAOS
consistency meta-rule recalled in Section 3.3);

- the new value taken by the target controlled variable or
term variable when a transition in that class is enabled
(this format assumes that domain postconditions are
specified equationally; the case of implicit, non-
constructive postconditions leading to another form of
non-determinism is not considered in this paper).

The semantics of atransition class captured by row R of
an output table associated with some controlled or term
variable x is the KAOS semantics for the corresponding
operation [27], that is,

R.DomPre U R. TriggerE O (x = R.TargetValue)
where*o P” means “ P holdsin the next state”.

Overridden
Operation DomPre Trigger Target| Goals
value

Override- | @ Overridder] @ (Block =0On) U true

Safety- . P

Injection WaterPressure < ‘Permit

Enable- | Overridden @ (Reset=0n) U | false

Safety- WaterPressure 3 ‘Permit

Injection

Table5: Output tablefor Overridden

3.5. Trandating output table expressons into
SCR expressons

The next step extends output tables with an extra column
composed of SCR translations of the corresponding
DomPre and Trigger expressions. The objective is to
translate the DomPre and Trigger conditions of output
tables into disjunctions of SCR events, each taking the
following form:




SafetylnjectionSignal

OR @T (NOT Overridden)

Operation SCR expression Target Goals
value
StartSafetylnjection | @T (WaterPressure < ‘Low’) ‘on’ SILW

WHEN (SafetylnjectionSignal = ‘Off AND NOT Overridden)

WHEN (SafetylnjectionSignal = ‘Off AND WaterPressure < ‘Low’)

StopSafetylnjection | @T (WaterPressure 3 ‘Low’) WHEN (SafetyInjectionSignal = ‘On’) ‘Off’ SILW
OR @T(Overridden) WHEN (SafetylnjectionSignal = ‘On’)
Table 6. Output tablefor SafetylnjectionSignal with SCR expressions
Overridden
Operation SCR expression Target Goals
value
OverrideSafetylnjection | @T(Block = On) WHEN (WaterPressure < ‘Permit’ AND NOT Overridden) true
EnableSafetylnjection | @T(Reset = On) WHEN Overridden false
OR @T (WaterPressure 3 ‘Permit) WHEN Overridden

Table 7. Output table for Overridden with SCR expressions

@T(c) WHEN d

where c is a simple condition and d is a simple condition
or a conjunction of simple conditions. A simple condition
is an expression of the form r # vwhere r is a SCR
variable, v avalue and #isabinary relationin {=,1 <, >,
3 £} [14].

The main problem here is that sub-expressions of the
form @T(Trigger) in the SCR translation refer to the current
and next states whereas conditions Trigger in the output
tables produced at the previous step refer to the current
state but not to the next state. This is the point where we
have to introduce a one-state shift in order to sgueeze
output table expressionsinto SCR’s synchrony hypothesis
— see the impact of the synchrony hypothesis on the
evaluation of SCR expressions in Section 2.2 and the
specification of our conversion procedure at the beginning
of Section 3. This shift may be visualized as follows:

current state next state
KAOS Dompre, x = TargetValue
transition Trigger
SCR DomPre, Trigger,
transition @ Trigger x = TargetValue

Correspondingly, a pair ©omPre, Trigger) in an output
table row will be mapped to a SCR expression according
to the following definition of the mapping functionM.

- If thetrigger is a simple condition Trig or an event @Trig
on such asimple condition:

M (DomPre, Trig) = @T (Trig) WHEN DomPre
M (DomPre, @Trig) = @T (Trig) WHEN DomPre
- If the trigger is a conjunction Trigl U Trig2 or @Trigl U

Trig2 where Trigl and Trig2 are simple conditions:
M (DomPre, Trigl U Trig2) =
@T(Trigl) WHEN (DomPre AND Trig2)
OR @T(Trig2) WHEN (DomPre AND Trigl)
M (DomPre, @Trigl U Trig2) =
@T (Trigl) WHEN (DomPre and Trig2)
If thetrigger isadisjunction Trig; U... UTrig, where Trig,
..., Trign are not necessarily simple conditions:

M (DomPre, Trigs U ... UTrigs) =
M (DomPre, Trig:) OR ... OR M (DomPre, Trign)
The result of applying this translation step to our running
exampleisshownin Tables6 and 7.
Strictly speaking, our translation rules do not fully
preserve the semantics of our tables. Full semantics
preservation is impossible because of the restricted form
allowed for SCR expressions and the incompatibility
between SCR's synchrony hypothesis and the KAOS
semantics. The above rules have been defined so as to
keep the semantics “as close as possible’” when a one-
state shift is tolerated between the KAOS and SCR
expressions.
The rule for conjunctive triggers Trigl U Trig2 is motivated
by the following logical property of the”@T" operator:
@T (c1 AND c2) WHEN d
° @T(cl) WHEN (d AND c2) OR @T(c2) WHEN (d AND c1)
under the condition that it never happens that
simultaneously c1 becomes true and c2 becomes false
(or vice-versa).

The rule for disjunctive triggers Trigs U ... UTrig, is
necessary to avoid that the SCR model has | ess transitions
than the KAOS model. For example, the disjunctive



trigger WaterPressure 3 ‘Low’ U Overridden on the transition
to SafetylnjectionSignal = 'Off in Table 4 is translated
according to that ruleinto the following SCR expression:

@T(WaterPressure 3 ‘Low’) WHEN (SafetyInjectionSignal = ‘On’)

OR
@T(Overridden) WHEN (SafetylnjectionSignal = ‘On’)

If we had used the translation rule for simple conditions
instead, we would have obtained the expression

@T (WaterPressure 3 ‘Low’ UOverridden)

WHEN (SafetylnjectionSignal = ‘On’)

(this would then have been rewritten into a valid SCR
expression using logical properties of the “@T1” operator).
The latter event requires that (i) WaterPressure 3 ‘Low’ and
Overridden both be false in the current state, and (ii) at
least one of them becomes true in the next state.
Requiring both conditions to be false in the current stateis
too restrictive and not required by the semantics of the
KAQOS model. In contrast, the SCR expression generated
by our translation rule for disjunctive triggers does not
require both waterPressure 3 ‘Low’ and Overridden to be
falsein the current state for the transition to take place.

3.6. Identifying mode classes

The next step consists in determining from the enriched
output tables which auxiliary variables will be used as
mode classes. The choice of mode classes determines the
structure of the SCR specification and has a strong impact
on its readability and modifiability. Various heuristics are
available to support the analyst in this task.

- Input history abstraction: ldentify a mode class
variable that allows one to abstract away from past
histories of input events. This heuristicsis used in many
SCR case studies — seg, e.g., the Cruise Control system.

- Input aggregation: Build a mode class as an
aggregation of several discrete monitored variables
whose values in any state are constrained by exclusion
and coverage rules asserted in KAOS goa
specifications or domain invariants. Such rules convey
in application-specific terms that a sequential state
machine can at any time be in one and only one of the
possible states partitioning its state space. An algorithm
implementing this heuristics is described in [35] and
applied to the systematic derivation of mode classes for
the Autopilot case study [5].

- Continuous variable abstraction: Build a mode class
that partitions the range of values for a continuous
monitored variableinto a discrete set of subranges. The
subranges are derived from the corresponding
conditions that constrain the monitored variable in the
output tables where the variable appears.

- Finite output variable promotion: Consider a variable
aready defined by some output table as candidate mode
class if () it has a finite range, (b) it is an auxiliary
variable (that is, neither monitored nor controlled by the
machine), and (c) its promotion to mode class will
improve the clarity of the specification.

For our safety injection case study, the variable
WaterPressure iS continuous and constrained by conditions
in the output tables defining the controlled variable
SafetylnjectionSignal and term Overridden (see Tables 6 and
7). The following range partition is thereby derived using
the variable abstraction heuristics to define modes of a
mode class named PressureState:

TooHigh: ‘Permit’ £ WaterPressure
Permitted: ‘Low’ £ WaterPressure < ‘Permit’
ToolLow: WaterPressure < ‘Low’

The SCR expressions in output tables are then rewritten
by replacing the conditions on continuous monitored
variables by their equivalent formulation in terms of
modes. For example, the event

@T (WaterPressure < ‘Low’)

WHEN (SafetylnjectionSignal = ‘Off AND NOT Overridden)

in Table 6 is rewritten as
@T (PressureState = 'TooLow’)
WHEN (SafetylnjectionSignal = ‘Off AND NOT Overridden)

Mode-based expressions may involve disjunctions; the
following logical properties of the “@T’ operator may
therefore need to be applied to get valid SCR expressions
using events on simple conditions.
@T(c) WHEN (d1 OR d2) °
@T(c) WHEN d1
OR @T(c) WHEN d2
@T (c1 OR c2) WHEN d ©
@T(c1) WHEN (d AND NOTc2)
OR @T(c2) WHEN (d AND NOT c1)

For example, the mode-based expression for the event

@ T (WaterPressure 3 ‘Low’) WHEN SafetylnjectionSignal = ‘On’

in Table 6is given by

@T (PressureState = ‘Permitted’ or PressureState = ‘TooHigh’)
WHEN SafetylnjectionSignal = ‘On’

which is then expanded using the second rule above into:

@T (PressureState = ‘Permitted’) WHEN
SafetylnjectionSignal = ‘On’ U PressureState ! ‘TooHigh'
OR @T (PressureState = ‘TooHigh’) WHEN

SafetylnjectionSignal = ‘On’ U PressureState ! ‘Permitted’

The rewriting of SCR expressions in Table 6 and 7 into
mode-based expressions yields Table 8 and 9,
respectively.

According to the “finite output variable promotion”



SafetylnjectionSignal
Operation SCR expression Target Goals
value
StartSafetylnjection @T (PressureState = 'TooLow’) ‘on’ SILW
WHEN (SafetylnjectionSignal = ‘Off AND NOT Overridden)
OR @T (NOT Overridden)
WHEN (SafetylnjectionSignal = ‘Off AND PressureState = "'TooLow’)
StopSafetylnjection @T (PressureState = ‘Permitted’ ‘Off’ SILW
WHEN (SafetylnjectionSignal = ‘On’ AND NOT PressureState = ‘TooHigh’)
OR @T (PressureState = ‘TooHigh’)
WHEN (SafetylnjectionSignal = ‘On’ AND NOT PressureState = ‘Permitted’)
OR @T (Overridden) WHEN (SafetylnjectionSignal = ‘On’)
Table 8. Output tablefor SafetylnjectionSignal with mode-based SCR expr essions
Overridden
Operation SCR expression Target Goals
value
OverrideSafetylnjection | @T (Block = On) WHEN (PressureState = 'Permitted’ AND NOT Overridden) true
OR
@T (Block = On) WHEN (PressureState = 'TooLow' AND NOT Overridden)
EnableSafetylnjection |[@T (Reset = On) WHEN Overridden false
OR @T (PressureState = 'TooHigh') WHEN Overridden

Table 9. Output table for Overridden with mode-based SCR expressions

heuristics, Overridden could be considered as a mode class
asitisan auxiliary variable with finite range.

3.7. Generating SCR tables

The next step generates mode transition tables and event
tables from the output tables in which SCR expressions
are now mode-based.

3.7.1. Generating mode transition tables

For each mode class obtained through the “continuous
variable abstraction” heuristics, the mode transition table
is derived from its range partition. The table collects the
transitions from each mode to its adjacent modes; the
event triggering a transition is obtained by prefixing by
“@T” the simple condition that appears in the target mode
definition and whose negation appears in the source mode
definition.

In our running example, the generated mode transition
table for mode class PressureState is the one shown in
Table 1. Based on the range partition for PressureState in
Section 3.6, the event triggering the transition from
'Permitted’ t0 'TooHigh' iS @T(WaterPressure 3 ‘Permit)
because WaterPressure 3 ‘Permit is among the conditions
for the target state TooHigh and its negation is in the
definition of the source state Permitted.

For each mode class obtained through the “finite output
variable promotion” heuristics, the mode transition table

can be obtained by first deriving an event table (see
below) and then transforming that event table into a mode
transition table using atechnique described in [19].

3.7.2. Generating event tables: initialization

Initial event tables for controlled variables or term
variables are obtained by (a) determining which mode
class from the corresponding output table will be the one
associated with the event table, (b) populating the first
column with the various AMC modes, (c) populating the
last row with the various target values from the output
table, and (d) filling in al other cells with “False”.
Selection heuristics may be used in case of multiple
candidate AMC's, e.g., “select the most referenced mode
classin the corresponding output table”.

Mode Events
ToolLow False False
Permitted False False
TooHigh False False
Safetylnjection- ‘on’ ‘Off’
Signal

Table 10: Initialized event table for SafetylnjectionSignal

Table 10 shows the initialized event table for the
controlled variable SafetyinjectionSignal. In this case the
mode class PressureState is the only one appearing in the
SCR expressions of the output table associated with
SafetylnjectionSignal.  No choice is thus needed. The

10



Mode Events
TooLow @T (PressureState = "'TooLow’) @T (PressureState = ‘Permitted’)
WHEN (SafetylnjectionSignal = ‘Off’ WHEN (SafetylnjectionSignal = ‘On’
AND NOT Overridden) AND NOT PressureState = ‘TooHigh’)
OR @T (NOT Overridden) OR @T (PressureState = ‘TooHigh’)
WHEN (SafetylnjectionSignal = ‘Off’ WHEN (SafetylnjectionSignal = ‘On’
AND PressureState = 'TooLow’) AND NOT PressureState = ‘Permitted)
OR @T (Overridden) WHEN SafetylnjectionSignal = ‘On’
Permitted @T (PressureState = 'TooLow’) @T (PressureState = ‘Permitted’)
WHEN (SafetylnjectionSignal = ‘Off’ WHEN (SafetylnjectionSignal = ‘On’
AND NOT Overridden) AND NOT PressureState = ‘TooHigh’)
OR @T (NOT Overridden) OR @T (PressureState = ‘TooHigh’)
WHEN (SafetylnjectionSignal = ‘Off’ WHEN (SafetylnjectionSignal = ‘On’
AND PressureState = 'TooLow’) AND NOT PressureState = ‘Permitted’)
OR @T (Overridden) WHEN SafetylnjectionSignal = ‘On’
TooHigh @T (PressureState = 'TooLow’) @T (PressureState = ‘Permitted’)
WHEN (SafetylnjectionSignal = ‘Off’ WHEN (SafetylnjectionSignal = ‘On’
AND NOT Overridden) AND NOT PressureState = ‘“TooHigh')
OR @T (NOT Overridden) OR @T (PressureState = ‘TooHigh’)
WHEN (SafetylnjectionSignal = ‘Off’ WHEN (SafetylnjectionSignal = ‘On’
AND PressureState = "TooLow’) AND NOT PressureState = ‘Permitted’)
OR @T (Overridden) WHEN SafetylnjectionSignal = ‘On’
Safetylnjection- ‘on’ ‘Off’
Signal
Table 11. Intermediate Event Tablefor SafetylnjectionSignal (before simplification)
Mode Events
TooLow @T (Block ='On’) @T (Reset ='On’) WHEN Overridden
WHEN (PressureState = 'Permitted’ AND NOT Overridden) |OR @T (PressureState = 'TooHigh) WHEN Overridden
OR @T (Block ='On’)
WHEN (PressureState = 'TooLow' AND NOT Overridden)
Permitted | @T (Block ='On’) @T (Reset ='0On’) WHEN Overridden
WHEN (PressureState = 'Permitted’' AND NOT Overridden) |OR @T (PressureState = 'TooHigh') WHEN Overridden
OR @T (Block ='0n’)
WHEN (PressureState = 'TooLow' AND NOT Overridden)
TooHigh @T (Block ='0n’) @T (Reset ='0On ") WHEN Overridden
WHEN (PressureState = 'Permitted' AND NOT Overridden) | OR @T (PressureState = 'TooHigh') WHEN Overridden
OR @T (Block ='On’)
WHEN (PressureState = 'TooLow' AND NOT Overridden)
Overridden True False

Table 12. Intermediate Event Table for Overriden (before simplification)

initialized event table for Overridden issimilar.

3.7.3. Generating event tables: filling in tables with SCR
expressions

The SCR event tables are then derived by (a) brute force
filling of columns of initialized event tables with SCR
expressions from the corresponding output tables, without
considering the associated mode values in each row, and
then (b) simplifying the SCR expressions by propagation
of mode properties (see Section 3.7.4 hereafter).

Brute force filling of event table columns is done by
filling each cell in the column associated with some target

value with the SCR expression associated with that target

value in the corresponding output table. (Each cell in a
column is therefore filled with the same SCR expression.)

The SCR table thereby obtained is trivially equivalent to

the original output table. Tables 11 and 12 show the event

tables obtained for variables SafetylnjectionSignal and

Overridden, respectively.

3.7.4. Smplifying event tables

Some cells in the event tables obtained thus far may be
simplified in some specific cases according to the SCR
semantics of event tables [14]. We capture this by a set of
simplification rules.
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Mode

Events

TooLow @T (NOT Dverridden)

@T (PressureState = 'Permitted’)
OR @T (Overridden)

Permitted | @T (PressureState = 'TooLow’) WHEN NOT Overridden [@T (Overridden)

TooHigh False

@T (Overridden)

Safetylnjection-| ‘on’
Signal

‘off’

Table 13. Simplified Event Tablefor SafetylnjectionSignal

Mode

Events

TooLow @T (Block = ‘On’)

@T (Reset ='On’)

Permitted | @T (Block = ‘On’)

@T (Reset ='On’)
OR @T (PressureState = "TooHigh')

TooHigh False

@T (Reset ='On’)

Overridden True

False

Table 14. Simplified Event Tablefor Overridden

Rule 1: Eliminate entry in self-mode

For a cell in arow associated with mode m, an event
@T(AMC = m) WHEN d may be removed from the cell,
since the event then amounts to 'False' (if the current
mode is already m, it isimpossible to enter intom).
Rule 2: Eliminate event with WHEN clause inconsistent
with current mode
For acell in arow associated with mode m, an event
@T(c) WHEN d may be removed when one of the
conjuncts in d is inconsistent with mode m (in
particular, when one of the conjuncts has the form
AMC t m or AMC = nwith nt m), since the event then
amounts to 'False’.

Rule 3: Smplify WHEN clause in self mode

For a cell in a row associated with mode m, the
condition AMC = m may be removed from the
conjuncts of a WHEN clause, since the condition then
amounts to 'True'.

Rule 4: Eliminate event inconsistent with mode transition
table
For a row associated with mode m, an event of form
@T(AMC = n) WHEN d may be removed when there is
no transition from mode n to mode m in the mode
transition table of the AMC, since the event then
amounts to 'False'.
This rule can be used in Tables 11 and 12 to remove the
events with @T(PressureState = 'TooHigh) in the row
associated with mode TooLow, and in Table 11 to remove
the event with @T(PressureState = 'TooLow') in the row
associated with mode TooHigh.
A further rule allows one to simplify WHEN clauses that
refer to the target value of the variable being defined.

Rule 5: Smplify WHEN clauses on target variables

For a cell in a column associated with some target
value v for the variable var being defined, conditions
var ! vin WHEN clauses may be removed since they are
trivially satisfied.
Similarly, conditionsvar =w, with w? v and v, w being
the only two values for var, may be removed from
WHEN clauses.
Back to Table 11, let us consider the cell associated with
mode TooLow and target value 'On. Rule 1 allows us to
eliminate the first event in the cell; Rule 3 alows us to
simplify the second event of the cell into
@T (NOT Overridden) WHEN (SafetylnjectionSignal = ‘Off’)

Rule 5 allows us to simplify this event further into
@T (NOT Overridden)

Let us now consider the cell associated with mode
'Permitted’ and target value 'oOn' in Table 11. Rule 5 alows
usto simplify thefirst event into

@T (PressureState = 'TooLow’) WHEN NOT Overridden

Rule 2 allows us to remove the second event.

Tables 13 and 14 give the complete result of applying our
simplification rulesto Tables 11 and 12, respectively.

3.7.5. Introducing @T(InMode) expressions

The SCR language has a special notation that can be used
inarow of an event table to describe system entry into the
group of modes in that row. For example, the sub-
expression “ @T(Inmode)” in the first row of Table 2 means
“if the system enters into TooLow oOr Permitted, then
Overridden becomesfalse.”

The use of the @T(InMode) notation is considered to be
error-prone and is often discouraged. A table using the



Mode Events

TooLow @T (NOT Overridden) @T (Overridden)
OR @ T(Inmode) WHEN (NOT Overridden
AND PressureState = 'Permitted’)
Permitted False @T (Overridden)
OR @T (Inmode) WHEN PressureState = "'TooLow'
TooHigh False @T(Overridden)
Safetylnjection- ‘on Off
Signal

Table 15. Event Table for SafetylnjectionSignal with InMode constr ucts (before further simplification)

Mode Events
TooLow @T (Block = On) @T (Reset = On)
Permitted @T (Block = On) @T (Reset = On)
TooHigh False @T (Reset = 0On)
OR @ T(Inmode) WHEN PressureState = 'Permitted'
Overridden True False

Table 16. Event Table for Overridden with InMode constructs (before further simplification)

@T(InMode) notation can be converted into an equivalent
table without that notation, and vice-versa. Jeffords and
Heitmeyer show how the event table for Overridden in
Table 2 with @T(InMode) constructs can be transformed
into an equivalent InMode-free event table [19]. The
opposite transformation to introduce InMode constructs in
event tables can be performed systematically by
application of the following rule.

Rule 6: @T(InMode)-event introduction

Let AMC be the associated mode class of an event
table. If an event having the form

@T(AMC =m) WHENd
appears as one of the diguncts in a table cell
associated with mode n and target value v, with nt m,
then this event may be removed from the disjuncts in
this cell whereas the event

@T(InMode) WHEN (d AND AMC = n)

is added as a new disjunct in the cell associated with
mode value m and target value v. (The original event
has thereby been moved from the row associated with
mode n to the row associated with mode m).

Let us illustrate this rule on Table 13. The event leading
to target value 'On' from mode Permitted is moved to the
row associated with mode TooLow where it is rewritten as
@T (Inmode)
WHEN (NOT Overridden AND PressureState = 'Permitted’)
Tables 15 and 16 show the result of applying Rule 6 on
Tables 13 and 14, respectively.

Tables generated through @T(InMode)-event introduction
(Rule 6) may sometimes be simplified further thanks to
the following simplification rules.

Rule 7: Smplify WHEN clauses based on possible mode
transitions

An event having the form

@T(InMode) WHEN d AND AMC =n
in a row associated with mode m may be simplified
into

@T(InMode) WHEN d
provided n is the only source of transition to mode m
in the mode transition table of the AMC mode.

Thisrule can be used in Table 15 to simplify the event

@T (InMode)
WHEN NOT Overridden AND PressureState = 'Permitted’

into mode TooLow , and in Table 16 to simplify the event

@T (InMode)
WHEN PressureState = 'Permitted’
into mode TooHigh.
Rule 8: Smplify mode classes covering @T(Inmode)
events

In arow associated with mode m, a disjunction having
theform

@T (InMode) WHEN (d AND AMC = i)
OR ...

OR @T (InMode) WHEN (d AND AMC =) ,
covering all possible modesi, j except mode m, may be

replaced by the single event
@T (InMode) WHEN d

There is no application of this rule in our tables. Imagine
however that in mode TooLow in Table 15 we had the
following disjunction of events:

13



Mode Events

TooLow @T (NOT Overridden) @T (Overridden)
OR @T (Inmode) WHEN NOT Overridden
Permitted | False @T (Overridden)
OR @T(Inmode) WHEN PressureState = 'TooLow'
TooHigh False @T (Overridden)
Safetylnjection- ‘on’ Off
Signal

Table 17. Event Table for SafetyinjectionSignal with InMode constructs (after simplification)

Mode Events
TooLow @T (Block = ‘On’) @T (Reset = 'On’)
Permitted | @T (Block = ‘On’) @T (Reset ='On’)

TooHigh False

@ T(Inmode)

Overridden True

False

Table 18. Event Table for Overridden with InMode constructs (after simplification)

@T (InMode)
WHEN (PresssureState = 'Permitted' AND NOT Overridden)

OR @T (InMode)
WHEN (PresssureState = "TooHigh' AND NOT Overridden)

Applying Rule 8 would alow us to simplify this
digiunction into the following single event:
@T (InMode) WHEN NOT Overridden

Rule 9: Remove useless events due to @ T(InMode)

If arow of an event table has all cells being marked
'False' except one having the form @T(Inmode) OR @X
then this cell may be simplified into @T(Inmode), since
once this mode is entered no event can cause the target
value of the output variable to change to another value
in that mode; events @x have thus no effect as they
just prescribe the output variable to keep that same
target value.

This rule can be used in Table 16 to remove the event
@T(Reset = 'On) from the row associated with mode
TooHigh.

Such simplifications should by default be applied until the
simplest possible tables are reached. However, keeping
redundant information in tables may sometimes improve
their clarity. Simplifications might therefore not be
applied sometimes for sake of clarity.

Tables 17 and 18 show the result of applying the above
simplificationsrulesto Tables 15 and 16, respectively.

3.8. From event tablesto condition tables

An event table can be transformed into a semantically
equivalent condition table provided that some invariants
hold on the event table.

For example, consider the event table for variable

SafetylnjectionSignal; an egquivalent condition table, if it
exists, would have the general form shownin Table 19.

Mode Conditions
ToolLow ?A NOT ?A
Permitted ?B NOT ?B
TooHigh ?2C NOT ?C
Safetylnjection- ‘on’ ‘Off’
Signal

Table19: General form of a condition table for
SafetylnjectionSignal
In this table, ?A, 7B, and ?C are placeholders for still
unknown SCR conditions. In order to satisfy the
completeness and disjointness criteria on conditions
tables, the conditions in the column for target value 'Off"
are negations of those in the column for target value 'on'.
The semantics of this condition table is that the following
three assertions hold in all states of the system:
PressureState = 'TooLow'®
(SafetylnjectionSignal = 'On' « ?A)

PressureState = 'Permitted' ®
(SafetylnjectionSignal = 'On' « ?B)

PressureState = 'TooHigh' ®
(SafetylnjectionSignal = 'On' « ?C)

The problem of building a condition table for
SafetylnjectionSignal from its event table therefore amounts
to finding conditions ?A, ?B, and 2C so that the above
properties are invariants for the event table.

In the general case, the problem of transforming an event
table into an equivalent condition table thus amounts to
finding SCR conditions to fill the condition table so that:

(i) the completeness and disjointness properties of
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condition tables are met,

(i) the assertions capturing the condition table semantics

areinvariants on the event table.

Event tables for which no such conditions can be found

have no eguivalent condition table.

One possible technique for finding those conditions is to

use temporal logic query checking on SCR models [12].

Given

- aSCR event table,

- the assertions defining the condition table semantics as
a query in which the conditions to be found are
placeholders,

temporal logic query checking will give us the solution to

the query or will tell us that no solution exists. (The

technique requires that the SCR model is propositional or
can be treated as a propositional model, which is the case
here.)

For the condition table defining SafetylnjectionSignal, the

solution for conditions?A, ?B, and ?C is given by:

?A = (Overridden = 'False’)
?B = False

?C = False

This corresponds to the original SCR specification shown
in Table 3.

It may be worth noting that the invariant generation
algorithm in [19] when applied to Tables 13 or 17
generates the following invariants:
SafetylnjectionSignal ='On' ® Overridden = 'False'
U PressureState = 'TooLow'
SafetylnjectionSignal = 'Off' ® true

These invariants are not strong enough to build the
condition table for SafetylnjectionSignal.

4. Evaluation

We may now compare the three specifications for the
safety injection case study, namely, the “native” SCR
specification [14], the “native” KAOS specification [25]
and the SCR specification derived in this paper.

4.1. Derived SCR spec vs. original SCR spec

The SCR specification derived from our KAOS model is
nearly identical to the original one found in [14]; the only
two slight differences are in the event table for term
Overridden. The original table for this term is given in
Table 2; the one derived by our procedure is shown in
Table 18.

We may notice that the original specification has an extra
condition WHEN Reset = ‘Off on the event @T(Block = ‘On’)
leading to the state Overridden = True. This seems

redundant in view of descriptive domain properties about
Block and Reset. The original specification also has an
extra disunct @T(Inmode) strengthening the event
@T(Reset="0On") that may lead to the state Overridden = False;
why this disjunct is really needed is hard to understand
without documentation of its rationale in some underlying
goal model.

On the other hand, every expression in the SCR
specification we derived may be traced back to our goal
model. The latter might of course be still incomplete, e.g.,
because of insufficient obstacle analysis. Corrections to
the goal model from further obstacle analysis must be
downpropagated to the tables derived; we feel it much
more difficult to follow the reverse engineering path.

4.2. Derived SCR spec vs. original KAOS spec

We also compared the derived SCR specification with the
original KAOS model in [25] using the SMV model
checker [28]. Basically, we translated both specifications
into SMV syntax and compared the values of the
controlled variables in the original KAOS model and in
the derived SCR specification, respectively [10]. One
would expect that the respective values of controlled
variables do not match in exactly the same state in view
of the one-state shift introduced to squeeze output table
expressions into SCR’ s synchrony hypothesis (see Section
35).

SMV showed that these values are “amost matching”
under a quiet input assumption. This means roughly that
when input events are sparse the respective values are the
same at any time point up to 0, 1 or 2 time unit shifts.

The reason for thisis the lack of synchrony hypothesisin
the KAOS model together with the length of the longest
path in the variable dependency graph. For example,
when the value of one of the monitored variables is
changing in the KAOS model, it will take one time unit to
update the value of Overridden, then another time unit to
update the value of the controlled variable
SafetylnjectionSignal. In the SCR model, all such changes
occur synchronously.

SCR KAOS
| derived SCR spec |«@==jn==d original KAOS spec |

v \ 4
generated SCR spec SMV original KAOS spec
translated into SMV @ translated into SMV

Fig. 2—Comparing the KAOS and derived SCR specifications

Fig. 2 helps visualizing our verification experiment.
Vertical arrows denote translation to SMV syntax, the
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horizontal dotted arrow represents our derivation process
and @denotes the pseudo- equivalence.

5. Conclusion

Thanks to our technique for deriving SCR specifications
from KAOS models, SCR specifiers may follow upstream
goal-based processes to incrementally elaborate, structure
and document their tabular specification in a guided
fashion, and to perform goal-level analysis for earlier
detection and resolution of obstacles [23] and conflicts
[20]. Conversely, KAOS modelers may obtain
downstream tabular specifications in a systematic way for
later specification analysis through exhaustiveness
checking [14], simulation [15], behavior model checking
[16] and test data generation [11].

Our approach led us to point out complementarities and
subtle differences between the two frameworks. The
derivation process consists of a series of steps aimed at
removing semantic, structural and syntactic differences
between the KAOS and SCR frameworks. The derivation
process may thereby be shown to be complete with
respect to those differences.

As we discussed it, there is a price to pay for integrating
such different RE frameworks. Some semantic differences
due to the absence of non-determinism in SCR machine
behaviors and to incompatible rules for evaluation of
expressions over states make it impossible to derive a
target specification whose behavior models are exactly the
same as the source ones.

An alternative approach to combining goal-oriented
specification and tabular event-based specification would
be to derive SCR tables directly from goal specifications
without passing through the KAOS operation model. This
could make the derivation process simpler as it would
bypass the structuring by transition class to proceed
directly to the output-driven restructuring required by
SCR tables. Deriving SCR tables directly from goas
might perhaps overcome some technical problems related
to the synchrony hypothesis; this hypothesis would be
injected directly in our goal model — technically, by
weakening our definition of goal realizability [26] so asto
allow machine agents to take responsibility for goals that
require their synchronous reaction. The problem of
deriving SCR specifications directly from declarative goal
specifications is somewhat the inverse of the problem of
inferring declarative invariants from SCR tables [19].
Several insights and techniques gained from the process
described in this paper would be applicable to the
problem of deriving SCR tables directly from declarative
goals (e.g., the techniques for extracting mode classes, for
simplifying SCR tables, or the eager/lazy strategies for

getting rid of non-determinism). This might be a direction
worth investigating in the future.
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