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ABSTRACT
Goal orientation is an increasingly recognized paradigm for elicit-
ing, modeling, specifying and analyzing software requirements.
Goals are statements of intent organized in AND/OR refinement
structures; they range from high-level, strategic concerns to low-
level, technical requirements on the software-to-be and assump-
tions on its environment. The operationalization of system goals
into specifications of software services is a core aspect of the
requirements elaboration process for which little systematic and
constructive support is available. In particular, most formal meth-
ods assume such operational specifications to be given and focus
on their a posteriori analysis.
The paper considers a formal, constructive approach in which
operational software specifications are built incrementally from
higher-level goal formulations in a way that guarantees their cor-
rectness by construction. The operationalization process is based
on formal derivation rules that map goal specifications to specifi-
cations of software operations; more specifically, these rules map
real-time temporal logic specifications to sets of pre-, post- and
trigger conditions. The rules define operationalization patterns that
may be used for guiding and documenting the operationalization
process while hiding all formal reasoning details; the patterns are
formally proved correct once and for all. The catalog of operation-
alization patterns is structured according to a rich taxonomy of
goal specification patterns. 
Our constructive approach to requirements elaboration requires a
multiparadigm specification language that supports incremental
reasoning about partial models. The paper also provides a formal
semantics for goal operationalization and discusses several seman-
tic features of our language that allow for such incremental reason-
ing.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specification -
methodologies, languages . D.2.4 [Software Engineering ]: Soft-
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Keywords
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1. INTRO DUCTIO N
Research on formal specification has produced an impressive
amount of helpful techniques and tools for specification analysis
(such as algorithmic model checking or deductive verification),
specification animation, specification-based testing, specification
reuse and specification refinement [30]. All these techniques pre-
suppose that a formal specification is available. Building formal
specifications for complex software is not an easy task though.
The problem is not merely one of translating natural language
statements into some formal language. Specification-in-the-large
in general requires complex models to be elaborated, structured,
interrelated and negotiated [29].
Goal-oriented requirements engineering refers to the use of goals
for requirements elicitation, elaboration, organization, specifica-
tion, analysis, negotiation, assignment, documentation and evolu-
tion [31]. Goals are objectives the system under consideration
must achieve. The word “system” here refers to the software-to-be
together with its environment [11]. Goals are formulated in terms
of optative statements [41] which may refer to functional or non-
functional properties [5] and range from high-level concerns (such
as “safe transportation“ for a flight control system) to lower-level
ones (such as “reverse thrust enabled when wheels pulse on“).
There are multiple reasons why goals must be made explicit in the
requirements engineering process [31]. Goals drive the elaboration
of requirements to support them; they provide a criterion for
requirements completeness and pertinence; they induce rich speci-
fication structuring mechanisms such as AND-decomposition/
composition for refinement/abstraction and OR-decomposition for
reasoning about alternatives; they thereby provide a rationale for
requirements and allow one to trace low-level details back to high-
level concerns. The higher-level a goal is, the more stable it is
likely to be; goals are thus essential elements for managing
requirements evolution. Last but not least, goals have been recog-
nized to be the roots at which conflicts should be detected and
resolved. 
Achieving goals in general requires the cooperation of multiple
agents  such as humans, devices and software. For example, the
high-level goal of “safe transportation“ might require the coopera-
tion of the pilot, the autopilot software, the on-board TCAS soft-
ware, the on-ground tracking system, etc. The essence of goal
refinement is to decompose a goal into subgoals so that each sub-
goal requires the cooperation of fewer agents; the refinement pro-
cess stops when goals can be assigned as responsibility of single
agents [6]. Terminal goals assigned to agents in the software-to-be
become requirements; terminal goals assigned to agents in the
environment become assumptions (or normative policies); the lat-
ter cannot be enforced by the software-to-be. In general, alterna-
tive responsibility assignments are to be explored; for example,
the goal “FlightPathAngle mode engaged until aircraft near desired
altitude” might be assigned to the Pilot  or to the Autopilot agent.
Different alternatives for goal refinement and assignment yield
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alternative system proposals in which more or less features are
automated.
Functional goals assigned to software agents need to be operation-
alized into specifications of services the agents should provide to
meet them [Myl92, 6]; in general, non-functional goals about qual-
ity of service are used to select goal refinement/assignment alterna-
tives that meet them best [5]. Formally speaking,
operationalization is a process that maps declarative property spec-
ifications to operational specifications satisfying them.
How to produce “correct” operationalizations is the topic explored
by this paper. Suppose, for example, that the goal “reverse thrust
enabled when wheels pulse on” has been assigned to the Autopilot
agent; we would like to infer, from a formal specification of that
goal, the need for two Autopilot operations, namely, EnableRe-
verseThrust and DisableReverseThrust, together with a formal
specification for these operations that guarantees goal achievement.
The paper presents a pattern-based technique for operationalizing
goals, specified in real-time linear temporal logic (RT-LTL), into
operations specified by pre-, post- and trigger conditions (PPTC).
The technique is
• constructive:  the operationalizations derived are guaranteed cor-

rect by construction;
• incremental: the operational specifications can be built gradually

from partial models;
• lightweight: formal correctness proofs remain hidden.
Roughly speaking, an operationalization pattern captures a rule for
inferring generic PPTC specifications from a generic RT-LTL
specification. Our patterns are proved correct once and for all
(using the STeP verification system [36]); ”correct” means here
that the “conjunction” of the PPTC specification patterns entails the
RT-LTL specification pattern (this notion of correctness will be
made fully precise in the paper). The derivation of goal operational-
izations through pattern instantiation then gives instantiated cor-
rectness proofs for free. 
Our operationalization patterns were identified from a taxonomy of
frequently used goal patterns; this taxonomy is partially adapted
from the catalog of specification patterns in [9] for which some
empirical evidence has been reported on breadth of coverage.
There is a considerable body of work on the problem of refining
software specifications into programs, e.g., [8, 1, 38]). In contrast,
this paper is concerned with the much less explored, upstream prob-
lem of refining declarative goals  into operational software specifi-
cations at requirements engineering time. From a strictly
mathematical point of view, the two problems may appear as vari-
ants of a similar problem, that is, one of refining some higher-level
model into some lower-level one. There are three important differ-
ences however:
• our specification language has features important for require-

ments engineering that are not present in specification formal-
isms used in the later phase of program derivation --such as the
distinction between domain properties and requirements [16], the
distinction between pre- and trigger conditions [6], the traceabil-
ity of software specifications to system goals underlying them
[31];

• our approach supports incremental derivations of partial specifi-
cations from incomplete goal models (in contrast with program
derivation techniques which generally require a complete formal
specification to start from);

• our derivation rules aim at supporting a lightweight, pattern-
based refinement process for frequent temporal logic specifica-
tions (in contrast with the lower-level rules used in refinement
calculi).

There is also a considerable body of work on formal techniques that
combine declarative and operational specifications (e.g., [35, 24]).

In contrast with the constructive approach proposed here, such
techniques focus on the a posteriori verification of operational
specifications with respect to declarative ones.
The principle of using derivation rules for guiding goal operational-
ization was already suggested in [6]. The rules there are more lim-
ited in coverage, do not rely on a fully formal basis and lack some
desirable semantic properties we discuss below. The rules in this
paper complement a catalog of formal refinement patterns we have
developed for the upstream phase of goal refinement [7]; the pat-
terns there involve the goal specification language only. 
The rest of the paper is organized as follows. Section 2 introduces
some background material on goal-oriented elaboration of require-
ments that will provide some context, terminology and examples
used in the sequel. Section 3 discusses some semantic features of
our operational language needed for incremental reasoning about
partial models; a formal characterization of operationalization is
then provided in this semantic framework. Section 4 presents our
pattern-based approach, illustrates the use of a few typical opera-
tionalization patterns and discusses the structure and coverage of
our pattern catalog. 

2. GO AL-ORIE NTED  ELABO RAT IO N  OF  
REQ UIREM ENT S  

Our operationalization techniques were developed in the KAOS
framework for goal-oriented requirements engineering [6, 29]. We
briefly introduce some background which the paper relies on.

2.1 Modeling and specifying requirements
An application model is composed of four submodels: a goal model
in which the goals to be achieved by the system are described
together with their alternative refinement links and their conflict
links; an object model  in which the application objects involved are
described together with their relationships and attributes; an agent
model  in which the agents in the system are described together with
their interfaces and responsibilities with respect to the goals; and an
operation model in which the services operationalizing the goals
assigned to software agents are described. Each model has a sepa-
rate semantics and is related to the others through inter-model con-
sistency rules. The paper concentrates on the derivation of the
operation model from the goal model; some features of the opera-
tion model will therefore be presented in greater detail as they pro-
vide the basis for our operationalization process.
The specification language is a multiparadigm language with a two-
layer structure: an outer graphical layer for modeling concepts
(such as goals, objects or agents) and an inner assertion layer for
specifying such concepts formally. The assertion layer is optional
and used for formal reasoning.

2.1.1 The goal model
The various objectives the system should meet are defined in this
model and interrelated through AND/OR refinement links. For
example, the following safety goal might be considered for a mine
pump control system [23, 21]:

Goal Maintain [PumpOnWhenHighWater]
InformalDef The pump shall be on when the water level is too high
FormalDef ∀ m: Mine, p: Pump

m.WaterLevel ≥ ‘High’ ∧ HasPump (m, p) 
 ⇒ m p.Motor = ‘On’

Refines Avoid [MineOverflowed]
RefinedToHighWaterDetected,

PumpSwitchOnWhenHighWaterDetected,
PumpOnWhenPumpSwitchOn

This specification fragment introduces a concept of type “goal”



named PumpOnWhenHighWater, corresponding to some property
that should always hold in future states (“Maintain” verb), defined
by some informal statement, refining a parent goal Avoid[MineOver-
flowed], and refined into three subgoals. (For lack of space the
graphical layer is represented in textual form here.)
A goal defines a set of admissible histories in the composite system
under consideration. A history is a temporal sequence of global sys-
tem states; a state is a mapping that assigns a value to each object
attribute and relationship from the object model. A real-time linear
temporal logic is therefore natural for specifying goals [35, 22, 6].
The following temporal operators are used in this paper:

m (in the next state) • (in the previous state)

◊ (some time in the future) ♦ (some time in the past)

o (always in the future) n (always in the past)

W (always in the future unless) U (always in the future until )

◊≤d  (some time in the future within deadline d)

o≤d  (always in the future up to deadline d) 

P B Q (P has remained true back to the last time Q was true, if any)
P S=d Q (P has remained true since Q was true d time units ago)  

The following standard logical connectives are also used: ∧ (and),
∨ (or), ¬ (not), → (implies), ↔ (equivalent), ⇒ (strongly implies),
⇔ (strongly equivalent), with

P ⇒ Q iff  o (P → Q ) P ⇔ Q iff  o (P ↔ Q)

Goal definition patterns are used for lightweight specification of
goals at the modeling layer, e.g., 

Achieve: C ⇒ ◊ T , C ⇒ ◊≤d T

Cease: C ⇒ ◊ ¬ T , C ⇒ ◊≤d ¬ T

Maintain : C ⇒ T , C ⇒ TW N
Avoid: C ⇒ ¬ T , C ⇒ ¬ TW N

where C, T, and N denote some current, target, and new condition,
respectively. Section 4 will introduce further specializations of
these patterns as a basis for identifying relevant goal operational-
ization patterns.
In the above specification of the goal PumpOnWhenHighWater, the
conjunction of the assertions formalizing the subgoals HighWater-
Detected, PumpSwitchOnWhenHighWaterDetected and PumpOn-
WhenPumpSwitchOn must entail the formal assertion of the parent
goal PumpOnWhenHighWater they refine together. Every formal
goal refinement generates a corresponding proof obligation [7].

2.1.2 The object model
This model defines the domain entities, relationships and attributes
that are relevant to goal formulations. 
For example, in the assertion formalizing the goal PumpOnWhen-
HighWater above, WaterLevel is an attribute of the Mine object; the
predicate HasPump (m, p) captures a relationship between Mine and
Pump objects. The corresponding declarations are found in the
object model, e.g.,

Entity Mine
Has WaterLevel: WaterLevelUnit

Relationship HasPump
Links Mine {card  0:1}, Pump {card 0:1}

Objects are further specified informally and/or formally by means
of domain invariants that capture their indicative properties in the
domain [41].

2.1.3 The agent model
This model defines the responsibilities and interfaces of the various
agents forming the composite system (humans, devices or soft-
ware). Goal refinement ends when all subgoals can be assigned to
single agents. For example, consider the goal PumpSwitchOnWhen-

HighWaterDetected that was declared to be subgoal of the goal
PumpOnWhenHighWater; it might be specified as follows:

∀ c: PumpController
c.HighWaterFlag = ‘On’ ⇒ m c.PumpSwitch = ‘On’

This goal might be assigned to the PumpController agent provided
the latter has sufficient monitoring and control capabilities to real-
ize the goal [39, 16, 33]; the agent must be able to monitor the
quantity denoted by c.HighWaterFlag and to control the quantity
denoted by c.PumpSwitch . Such monitoring and control links
define the agent’s interface in the agent model:

Agent  PumpController
Monitors PumpController.HighWaterFlag, ...
Controls PumpController.PumpSwitch, ...
ResponsibleFor PumpSwitchOnWhenHighWaterDetected, ...
Has PumpSwitch, HighWaterFlag: {On, Off}

Agents are in fact objects; they may be further characterized by
domain-specific attributes (e.g., PumpSwitch), relationships and
invariants.

2.1.4 The operation model
This model defines the various services to be provided by software
agents. An operation is an input-output relation over components of
the object model; operation applications define state transitions
along the histories prescribed by the goal model. Operations are
declared by signatures over objects and specified by pre-, post- and
trigger conditions. An important distinction is made between
domain pre-/postconditions, which capture the elementary state
transitions defined by operation applications in the domain, and
required  pre-/postconditions, which capture additional strengthen-
ings to ensure that the goals are met. The former conditions are
descriptive  whereas the latter conditions are prescriptive [16, 41].
Traceability between operations and their underlying goals is
thereby supported.
For example, the operation SwitchPumpOn might be partially speci-
fied by:

Operation SwitchPumpOn
Input c: PumpController; Output c: PumpController/PumpSwitch
DomPre c.PumpSwitch ≠ ‘On’ 
DomPost c.PumpSwitch = ‘On’

The signature part declares an input-output relation between sets of
states of the instance variable c of type PumpController. The Output
clause restricts the scope of the operation to the PumpSwitch
attribute of the PumpController object; this means that the operation
is allowed to change the value of this attribute only. The above
domain conditions describe what an application of the operation
means in the domain without any prescription as to when the opera-
tion must be applied and when it may not be applied [34]. 
Operationalization  refers to the process of prescribing additional
pre-, trigger-, and postconditions on operations in order to achieve
goal specifications. For example, the following operational require-
ment has to be added in order to ensure the goal PumpSwitchOn-
WhenHighWaterDetected introduced before:

Operation SwitchPumpOn
... 
ReqTrig for PumpSwitchOnWhenHighWaterDetected:

c.HighWaterFlag = ‘On’
This trigger condition captures an obligation to trigger the opera-
tion when the high water flag is ‘On’ provided the pump switch is
not ‘On’ (see the DomPre assertion). 
The domain precondition of an operation is formalized by a state
predicate on the initial state of the operation; the domain and
required postconditions are formalized by predicates on the opera-
tion’s final state, with possible references to the previous state (that
is, the operation’s initial state); the required pre- and trigger condi-



tions are formalized by predicates on the operation’s initial state,
with possible references to past states through past temporal opera-
tors. The semantics of required pre-, trigger-, and postconditions is
the following:
• a required precondition captures a permission to perform the

operation when the condition is true;
• a required trigger condition captures an obligation to perform the

operation when the condition becomes true provided  the domain
precondition is true;

• a required postcondition captures an additional condition that
must hold after any application of the operation.

Each required pre-, trigger-, and postcondition is linked to the goal
it operationalizes. In general, several required conditions on differ-
ent operations may be needed to operationalize the goal completely.
A set of required pre-, trigger-, and postconditions on operations is
said to be a complete operationalization of a goal if satisfying all
required conditions in the set guarantees the satisfaction of the goal.
Like for goal refinement, every goal operationalization generates a
corresponding proof obligation. A formal semantics of what is
meant for a goal operationalization to be complete is presented in
Section 3.
Back to our example, a complete operationalization of the goal
PumpSwitchOnWhenHighWaterDetected will be given by the above
required trigger condition on the operation SwitchPumpOn together
with the following required precondition on the operation Switch-
PumpOff:

Operation SwitchPumpOff
Input  c: PumpController; Output c: PumpController/PumpSwitch
DomPre c.PumpSwitch ≠ ‘Off’ 
DomPost c.PumpSwitch = ‘Off’
ReqPre for PumpSwitchOnWhenHighWaterDetected:

c.HighWaterFlag ≠ ‘On’

This required precondition is necessary to ensure the goal; it states
that the pump switch may not be turned off when the high water
flag is ‘On’. 
Operations capture atomic state transitions. In our real-time tempo-
ral logic framework, the application of an operation maps a state to
a next state whose time distance is one time unit in the smallest unit
scale. When an activity lasting over several states has to be mod-
elled, one has to introduce an atomic operation that starts the activ-
ity, an atomic operation that ends the activity (or several operations
if there are different ways in which the activity can terminate); con-
straints on activities are then formulated as assertions in the goal
model that link events corresponding to applications of the start/end
operations. Operation models that include such operations to
encode activities can be derived systematically from the goal model
like any other operation model. Note thus that all the structuring
and decomposition/refinement in KAOS is done at the declarative,
goal level.
Operations may be applied concurrently. A non-interleaving
semantics is required by the semantics of trigger conditions as
immediate obligations. With an interleaving semantics, an opera-
tion model would be inconsistent when the trigger conditions of
two (or more) operations are true at the same time.
Goal operationalization is an incremental process. New goals may
need to be operationalized through new operations and/or new
required pre-, trigger and postconditions on operations already
identified. The semantics of the operational language therefore
needs to be compositional (see Section 3).
The incremental operationalization process may result in inconsis-
tent operation models in which, for example, an operation must be
applied due to one of its required trigger conditions (to achieve
some goal G1) and at the same time it may not be applied due to
one of its required preconditions (to achieve some other goal G2).

Such situations correspond to violations of the following consis-
tency meta-rule of the KAOS language [6]:

ReqTrig ∧ DomPre ⇒ ReqPre

Violations of this rule can actually be traced back to conflicts
between the goals from which the operational requirements were
derived (see [32] for examples of this). Such conflicts are better
resolved at the goal level as discussed in [26]. 

2.2 Elaborating the models
A method is available for elaborating the goal, object, agent and
operation models in a systematic fashion; see, e.g., [6, 25, 29] for
details and illustrations. Roughly, the method consists in the fol-
lowing intertwined steps: (1) the goal model is elaborated first by
asking HOW questions (top-down goal refinement) and WHY ques-
tions (bottom-up goal abstraction) and by using refinement patterns
[7]; (2) the object model is derived by collecting the objects,
attributes and relationships appearing in goal formulations and
domain properties involved in goal refinements; (3) agents are iden-
tified together with their interfaces and possible responsibilities
with respect to goals; (4) “best” alternatives are selected among
multiple goal OR-refinements and agent OR-assignments as best
trade-offs to achieve the non-functional goal offsprings from the
goal graph; (5) functional goals assigned to software agents are
operationalized into operations to meet them. 
Variants of this general scheme are available to integrate scenario-
based elicitation [30], conflict analysis [26] and obstacle analysis
[28]. The next sections focus on the last step of goal operationaliza-
tion.

3. SEM ANTICS  OF  OP ERATIO NALIZA TION

This section provides the necessary foundations for the operational-
ization techniques presented in the next section; in particular, the
notion of “correct” operationalization is made fully precise. As
mentioned before, we want operationalization to be an incremental
process; the correctness of a goal operationalization should be
established locally, based only on the specifications of the goal and
operations involved in the operationalization. We first discuss how
such incrementality influences the semantics to be given to the
operation model. The formal semantics of operationalization is pre-
sented next.

3.1 Generative semantics vs. pruning semantics
Two alternative styles of semantics are generally considered for an
operational specification language.
Generative semantics: Every behavioral change is forbidden,
except the ones explicitly required by the specification.
Pruning semantics: Every behavioral change is allowed, except
the ones explicitly forbidden by the specification.
With a generative semantics, operations are viewed as generating
the set of admissible histories of the system; these are assumed to
cover the only transitions that are possible. Examples of languages
defined through such a semantics include languages based on tran-
sition systems (e.g., the state machines in [35], Statecharts [14] or
SCR tables [15]) and state-based languages such as VDM [20]. One
advantage of this style of semantics is its built-in assumption that
nothing changes except if an operation explicitly requires it; the
specifier is relieved from explicitly specifying what does not
change --in other words, a generative semantics avoids the frame
problem [2]. There is a price to pay though; the built-in frame
assumption is incompatible with the idea of partial models or views
[17]. A generative semantics makes it extremely difficult to support
incremental reasoning about partial models.



To illustrate the point, consider again the operationalization of the
goal Maintain[PumpSwitchOnWhenHighWaterDetected] into a
required trigger condition on the operation SwitchPumpOn and a
required precondition on the operation SwitchPumpOff (see Section
2.1.4). Assume now that instead of this complete operationaliza-
tion, we would have built an operation model without the operation
SwitchPumpOff; the goal would have been operationalized only
through the required trigger condition on the operation SwitchPum-
pOn. With a generative semantics, it would be possible to prove
that this required trigger condition alone is sufficient to guarantee
the satisfaction of the goal, because the semantics would rely on the
assumption that there are no transitions of the pump switch from
‘On’ to ‘Off’ . The problem now is that if the operation SwitchPum-
pOff is added later on to the model (e.g., to operationalize another
goal), the satisfaction of the original goal is no longer guaranteed
by the required trigger condition on the operation SwitchPumpOn
alone; the goal is violated if the operation SwitchPumpOff is applied
when the high water signal is ‘On’. A process in which the correct-
ness of a goal operationalization needs not be reconsidered every
time a new operation is added to the model is of course undesirable.
To avoid the problem induced by a generative semantics, languages
such as Z [40], LARCH [13] or temporal logic-based formalisms
have taken the dual perspective of a pruning semantics in which
operational specifications are viewed as restrictions on the state
transitions allowed; the specifications prune the set of admissible
histories of the system. Incremental elaboration and reasoning
through composition of partial models then becomes possible pro-
vided the frame problem is handled in an appropriate way. 
We take this approach and handle the frame problem through two
built-in axioms within our semantics in order to relieve the specifier
from the obligation to explicitly state everything that does not
change.
Frame axiom 1: Any attribute/relationship variable not declared
in the output clause of the specification of an operation is left
unchanged by any application of this operation. 
Note that this built-in axiom is not incompatible with incremental
elaborations from partial models because our semantics allows
operations to be applied concurrently. A variable that is not among
the output of an operation is still free to change through the applica-
tion of other operations provided the latter are applied concurrently
with that operation.
This frame axiom is enforced by requiring the DomPost and Req-
Post conditions of an operation to refer only to those state variables
which are explicitly declared in the output clause of the operation
(in a way similar to LARCH [13]).
Frame axiom 2: Every state transition that satisfies the domain
pre- and postconditions of an operation corresponds to an applica-
tion of this operation. 
This second axiom corresponds to the following meta-rule (which
will be made more rigorous later on):

for any operation op:
DomPre (op) ∧ m DomPost (op) ⇒ Performed (op) 

Note again that this axiom is not incompatible with incremental
elaborations from partial specifications. It does not say that the
operation is the only one that can cause a transition from a state sat-
isfying its domain precondition to a state satisfying its domain post-
condition. What it does is to force the simultaneous application of
operations with overlapping domain pre- and postconditions; this
allows multiple views to be combined by synchronization of their
operations, as discussed in [17]. 
To illustrate how this second frame axiom enables one to reason
locally about the correctness of goal operationalizations, let us
come back to the operationalization of the goal Main-
tain[PumpSwitchOnWhenHighWaterDetected] into the trigger con-

dition on the operation SwitchPumpOn  and the required
precondition on the operation SwitchPumpOff (see Section 2.1.4).
The latter condition requires that the operation SwitchPumpOff  be
performed only if the high water flag is not ‘On’. Our second frame
axiom instantiated to this operation states that every transition from
a state where the pump switch is not ‘Off’ to a state where it is ‘Off’
corresponds to an application of the SwitchPumpOff  operation. This
guarantees that the goal operationalization is complete even if
another operation that turns the pump switch to ‘Off’  is added later
to the model; in such a case the second frame axiom will allow the
new operation to be included only if the operation SwitchPumpOff
can also be included.
Our second frame axiom bears some similarities with the frame axi-
oms in [2] and the locality axioms in [10].

3.2 A formal semantics for goal operationalization
The formal semantics of the operation model is defined by mapping
every construct of the operational language into temporal logic
assertions.
As mentioned before, an operation defines a relation over states;
this relation is defined by the domain pre- and postconditions of the
operation. For every operation op in the operation model with logi-
cal variables arg1, ..., argn as arguments and res1, ..., resn as
results, we introduce a temporal logic predicate denoted by

[| op |] (arg1, ..., argn, res1, ..., resn) ,
which expresses that the operation is currently being applied on the
given arguments and results. 
Definition 1 (Semantics of operations). For every operation op in
the operation model, the predicate [| op |] is defined as follows:

[| op |] (arg1, ..., argn, res1, ..., resn) ⇔
DomPre (op) ∧  m DomPost (op)

where DomPre(op) and DomPost(op) are the domain precondition
and postcondition of the operation, respectively.
This definition states that (i) every application of an operation
implies that the operation’s domain precondition is satisfied in the
state before the application and the domain postcondition is satis-
fied in the state after the application, and (ii) every state transition
that satisfies the domain pre- and postconditions of an operation
corresponds to an application of this operation. Condition (ii) thus
captures our second frame axiom.
For example, the operation predicate [| SwitchPumpOn |] (c) associ-
ated with the SwitchPumpOn operation in Section 2.1.4 is defined
as follows:

[| SwitchPumpOn |] (c) ⇔
c.PumpSwitch ≠ ‘On’ ∧  m c.PumpSwitch = ‘On’

Let us denote by ReqPre(op), ReqTrig(op) and ReqPost(op)  the sets
of required pre-, trigger- and postconditions of an operation op in
the operation model, respectively. To define the formal semantics
of these conditions, we introduce a temporal logic predicate for
each required condition R, denoted by [| R |].
Definition 2 (Semantics of required pre-, trigger- and postcondi-
tions). For every required condition R on an operation op in the
operation model, the predicate [| R |]  is defined as follows:
if R ∈ ReqPre (op)  then   [| R |]  =def  (∀*) [| op  |] ⇒  R

if R ∈ ReqTrig (op)   then  [| R |]  =def  (∀*) R ∧ DomPre (op) ⇒ [| op  |]

if R ∈ ReqPost (op)  then   [| R |] =def  (∀*)  [| op |] ⇒ m R

In the above definition, we use the standard notation (∀*)  P for the
universal closure of P.
For example, the semantics of the required trigger condition on the
SwitchPumpOn operation in Section 2.1.4 is expressed by the fol-
lowing temporal logic assertion:



c.HighWaterFlag = ‘On’ ∧ c.PumpSwitch ≠ ‘On’

⇒ [| SwitchPumpOn |]  (c)

We now turn to the definition of the semantics of goal operational-
ization. As introduced before, a set of required pre-, trigger- and
postconditions operationalizes a goal if the satisfaction of the
required conditions on the corresponding operations guarantees the
satisfaction of the goal. 
Definition 3 (Correctness of goal operationalization).  A set {R1, ...,
Rn} of required conditions on operations in the operation model
correctly operationalize a goal G in the goal model iff the following
conditions hold:

1. [| R1 |], ..., [| Rn |] |= G (completeness)
2. [| R1 |], ..., [| Rn |] |≠ false (consistency)
3. G |= [| R1 |], ..., [| Rn |] (minimality)

The completeness condition for goal operationalization has similar-
ities with the corresponding condition for goal refinement [7]. A
first important difference however is that the semantics of goal
operationalization does not rely on domain properties to guarantee
the satisfaction of the goal. This is due to the fact that the agent
responsible for the goal may not rely on domain properties to real-
ize the goal [33]. A second important difference is in the definition
of the minimality condition. For operationalization, this condition
requires that the requirements operationalizing the goal be not
stronger than required by the goal. This is related to the fact that an
agent responsible for a goal must have the capability of satisfying
the goal without being more restrictive than required by the goal
[33].
The formal specification of goals and operations allows the com-
pleteness, consistency and minimality of operationalizations to be
formally verified. For example, the completeness of the operation-
alization of the goal Maintain[PumpSwitchOnWhenHighWaterDe-
tected] in Section 2.1.4 is established by verifying the following
proof obligation (e.g., using STeP [36]):

c.HighWaterFlag = ‘On’ ∧ c.PumpSwitch ≠ ‘On’ 
⇒ [| SwitchPumpOn |] (c)

{ReqTrig of SwitchPumpOn}

∧ [| SwitchPumpOff |] (c) ⇒ ¬ c.HighWaterFlag = ‘On’ 

{ReqPre of SwitchPumpOff}
|=

c.HighWaterFlag = ‘On’ ⇒ m c.PumpSwitch = ‘On’

{Goal PumpSwitchOnWhenHighWaterDetected}

where the predicates [|SwitchPumpOn|](c) and [|SwitchPumpOff|](c)
are defined as in Definition 1:

[| SwitchPumpOn |] (c) ⇔
c.PumpSwitch ≠ ‘On’ ∧ m c.PumpSwitch = ‘On’ ,

[| SwitchPumpOff |] (c) ⇔
c.PumpSwitch ≠ ‘Off’ ∧ m c.PumpSwitch = ‘Off’.

The minimality condition is obtained by inverting the antecedent
and the consequent in the above formula, and can be verified simi-
larly.

4. OP ERAT IO NAL IZ ATIO N  PATT ERNS

Our concern now is to define inference rules based on this seman-
tics that allow a complete, consistent and minimal operationaliza-
tion to be derived from a goal specification in real-time linear
temporal logic (RT-LTL). The operationalization takes the form of
a set of operations specified by domain and required pre, post- and
trigger conditions.
The derivation rules correspond to operationalization patterns that
are defined for frequent goal specification patterns. An operational-
ization pattern  is an abstract AND-operationalization link between

a goal specification pattern in RT-LTL and a set of required pre-,
trigger and postcondition specification patterns that operationalize
the root correctly (in the sense of Definition 3).
The proof of correctness with respect to the above semantics of
goal operationalization is done once and for all; when using such
patterns the specifier is thus relieved from tedious proofs of com-
pleteness, consistency and minimality of operationalizations. More
constructively, patterns guide specifiers in the process of deriving
operational specifications from system goals.
A sample of patterns is first presented together with various exam-
ples of use in order to highlight the benefits of the approach; the
process of building the pattern catalog is discussed next.

4.1 A sample of patterns
Figure 1 shows a first pattern for operationalizing goals of the form
C ⇒ m  T, where T is a meta-variable for a target state formula and C
is a meta-variable for a formula on the current state (and possibly
on past states as well).

The operation model fragment in that pattern states that in order to
operationalize a goal C ⇒ m T, two operations have to be intro-
duced (with appropriate domain-specific renaming): 
• an operation Op1 with domain pre- and postcondition given by

the pair [¬ T , T] and with a required trigger condition stating that
the operation must be applied when C holds provided ¬ T holds; 

• an operation Op2 with domain pre- and postcondition given by
the pair [T, ¬ T ] and with a required precondition stating that the
operation may be applied only when C does not hold.

The correctness of this pattern is established by proving conditions
1-3 in Definition 3. For example, completeness is easily proved by
verifying the following assertion with a temporal verifier such as
STeP:

(C ∧ ¬ T) ⇒ m T
∧
(T ∧ m ¬ T) ⇒ ¬ C

|=
C ⇒ m T

The operationalization of the goal Maintain[PumpSwitchOnWhen-
HighWaterDetected] through the operations SwitchPumpOn and
SwitchPumpOff in Section 2.1.4 was derived by instantiation of the
Immediate Achieve pattern. 
Patterns can of course be instantiated to completely different situa-
tions. For example, consider a flight control system and the goal
“reverse thrust enabled when wheels pulse on” mentioned in the
Introduction section:

WheelsPulseOn ⇒ m ReverseThrustEnabled

This goal specification matches the root of the Immediate Achieve
pattern; the derived instantiations are

C : WheelsPulseOn T: ReverseThrustEnabled

The following operational specifications are thereby derived:

C ⇒ m T

Operation Op1
DomPre ¬ T
DomPost T
ReqTrig  for RootGoal:

C

Operation Op2
DomPre T
DomPost ¬ T
ReqPre  for RootGoal:

¬ C

Figure 1 - The Immediate Achieve  pattern



Operation EnableReverseThrust
DomPre ¬ ReverseThrustEnabled
DomPost ReverseThrustEnabled
ReqTrig for ReverseThrustEnabledWhenWheelsPulseOn:

WheelsPulseOn

Operation DisableReverseThrust
DomPre ReverseThrustEnabled
DomPost ¬ ReverseThrustEnabled
ReqPre for ReverseThrustEnabledWhenWheelsPulseOn:

¬ WheelsPulseOn

Figure 2 shows a frequently used pattern for operationalizing
bounded Achieve goals.

Applicability: The goal has the form C ⇒ ◊≤d T, where T is a target
state condition to be reached from a condition C on the current (and
possibly past) state(s).
Explanation: The operation model fragment in the Bounded
Achieve pattern states that in order to operationalize a goal taking
the form C ⇒ ◊≤d T, an operation Op has to be considered with
domain pre- and postcondition given by the pair [¬ T , T] and with a
required trigger condition stating that the operation must be applied
when T has remained false since C was true d-1 time units ago with-
out T being true.
Example of use: We come back to the mine pump case study and
consider the goal Achieve[AlarmWhenCriticalMethaneLevel]. The
formal specification of this goal is

∀ c: PumpController
c.MethaneMeasure ≥ ‘Critical’ ⇒ ◊≤d c.Alarm = ‘On’

The goal matches the root of the Bounded Achieve pattern; the
operational specification derived after instantiation of the matching
meta-variables is the following:

Operation RaiseAlarm
DomPre c.Alarm ≠ ‘On’ ; DomPost c.Alarm = ‘On’
ReqTrig for AlarmForCriticalMethaneMeasure:

c.Alarm ≠ ‘On’ S=d-1 (c.MethaneMeasure ≥ ‘Critical’ 

∧ c.Alarm ≠ ‘On’)

The derived trigger condition captures an obligation to perform the
operation if the methane measure has been above critical level d-1
time units ago with the alarm remaining off since then.
Figure 3 shows a frequently used pattern for operationalizing Main-
tain/Avoid goals.
Applicability: the goal has the general form C ⇒ T W N, where T is
a state formula to be maintained under some condition C on the cur-
rent (and possibly past) state(s) unless some new condition N
becomes true with T still being true; T is not instantly enforceable in
every state C holds (for operational specification languages
equipped with a synchrony hypothesis such as SCR [15] the latter
condition does not hold and the root goal in Figure 3 simplifies to C
⇒ T W N).
Explanation: The operation model fragment in the “InBetween”
Invariance pattern states that in order to operationalize a goal taking
the form C ⇒ m (T W (N ∧ T)), two operations Op1 and Op2 have to

be considered: the first one with domain pre- and postcondition
given by the pair [¬ T , T] and with a required trigger condition stat-
ing that the operation must be applied when C holds provided ¬ T
holds; and the second one with domain pre- and postcondition
given by the pair [T , ¬ T] and with a required precondition stating
that the operation may be applied only if C has not been true back to
(and including) the last time N was true.

Example of use: Consider the following goal for a simplified light
control system [3].

Goal Maintain [LightOnWhenRoomOccupied]
InformalDef A room light must remain ‘On’ between the time a

first person is entering the room and the time a last person is
leaving it.

FormalDef ∀ r: Room
 r.FirstEntry ⇒ m (r.Light = ‘On’ W (r.LastExit ∧ r.Light = ‘On’))

The goal specification matches the root of the “InBetween” Invari-
ance pattern; the operational specification derived after instantia-
tion of the matching meta-variables is the following:

Operation TurnLightOn
Input r: Room;Output r: Room/Light
DomPre r.Light ≠ 'On'; DomPost r.Ligth = ‘On’
ReqTrig for LightOnWhenRoomOccupied:

r.FirstEntry

Operation TurnLightOff
Input r: Room; Output r: Room/Light
DomPre r.Ligth ≠ 'Off’; DomPost r.Ligth = ‘Off’
ReqPre for LightOnWhenRoomOccupied:

¬ r.FirstEntry B (r.LastExit ∧ r.Light = ‘On’) 

This required precondition captures that the light may be turned off
only if no first entry in the room has been detected back to the last
time a last exit from the room was detected with the lights being on.
Note that the derived precondition and the original goal as it is for-
mulated do not require the light to be turned off as soon as a last
exit occurs. Also note that the m-operator is introduced in the goal
specification to ensure that the goal is realizable by the LightCon-
troller agent [33]; the latter cannot both detect a first entry and
switch the light on within the same state.

4.2 Benefits of operationalization patterns
We now argue that operationalization patterns are helpful for a
variety of reasons. Although we have limited experience with oper-
ationalization patterns so far, our arguments are grounded on exten-
sive experience we had in using patterns for the upstream phase of
goal refinement [7] (over 15 industrial projects undertaken by a
consulting company).

4.2.1 Abstraction from formal details
Checking the completeness, consistency and minimality of an oper-
ationalization is in practice a tedious, complex and error-prone. As
mentioned before, each pattern is proved once before inclusion in
the catalog. Patterns involving propositional qualitative temporal
logic were proved correct using the SteP verification tool [36]

C ⇒ ◊≤d T

Operation Op
DomPre ¬ T
DomPost T
ReqTrig  for RootGoal:

 ¬ T S =d-1 (C ∧ ¬ T)

Figure 2 - The Bounded Achieve pattern

Operation Op1
DomPre ¬ T
DomPost T
ReqTrig  for RootGoal:

C

Operation Op2
DomPre T
DomPost ¬ T
ReqPre for RootGoal:

¬ C B (N ∧ ¬ C)

Figure 3 - The “InBetween” Invariance pattern

 C ⇒ m (T W (N ∧ T))



whereas the ones with real-time constructs were proved by hand.
The user of a pattern then gets an instantiated, hidden correctness
proof for free.

4.2.2 Completeness assurance
First-sketch goal operationalizations produced just by intuition tend
to be incomplete. Matching an incomplete operationalization
against a corresponding pattern allows the missing operational
specifications to be pointed out. 
In our running example, a first sketch operationalization of the goal
Maintain[PumpSwitchOnWhenHighWaterDetected] might typically
have produced the operation SwitchPumpOn  together with its
required trigger condition c.HighWaterFlag = ‘On’. Matching this
operationalization against the Immediate Achieve pattern would
then have revealed a missing required precondition c.HighWater-
Flag ≠ ‘On’ on the SwitchPumpOff operation.
Our experience with a similar use of patterns for completing goal
refinements [7] suggests that this particular use of patterns may be
extremely helpful in practice.

4.2.3 Guidance in writing operational specifications
As the various examples of pattern instantiation suggested, the pat-
terns can be used constructively and incrementally to identify all
operations relevant to a goal and derive the requirements on these
operations that are needed to achieve the goal. This contrasts with
traditional formal methods where a complete model must be pro-
vided before a posteriori analysis can take place.

4.2.4 Goal mining from operational specifications
Operationalization patterns can also be used bottom-up to elicit the
goals underlying some available operational specification. Such
pattern usage is important as initial formulations found in prelimi-
nary material provided to requirements engineers tend in practice to
be very operational. Goal mining from operational specifications
allows for various goal-level analysis, e.g., checking the opera-
tional formulation for completeness with respect to goals left
implicit; identifying and resolving obstacles to goal achievement in
order to produce more robust requirements [28, 29]; identifying and
resolving conflicts at the goal level [26]; and exploring alternative
system proposals [33].
To illustrate pattern-based goal mining from operational specifica-
tions, consider the following excerpt from the initial problem state-
ment for a simple autopilot [4]: “If the pilot dials in an altitude that
is more than 1,200 feet above the current altitude and then presses
the alt_eng button, the altitude mode will not directly engage.
Instead, the altitude engage mode will change to “armed” and the
flight-path angle (FPA) select mode is engaged”.
This informal formulation refers to operations such as EngageALT-
mode, ArmALTmode, and EngageFPAmode together with required

conditions on their applications. For instance, the operation
EngageFPAmode  may be specified as follows: 

Operation EngageFPAmode
Input a: AutoPilot, altEng: ALTengagedEvent
Output a: Autopilot/FPAmode
DomPre a.FPAmode ≠ 'on’
DomPost a.FPAmode = ‘on’
ReqTrig For <unknown goal>:

Occurs (altEng) ∧ ALTtarget - ALTactual > 1200

The Immediate Achieve pattern matches the domain pre-, post- and
required trigger condition; the following root goal specification is
obtained as rationale for the trigger condition:

Goal Achieve [FPAModeEngagedWhenHighTargetAltitutde]
FormalDef ∀ a: AutoPilot, altEng: ALTengagedEvent

Occurs (altEng) ∧ ALTtarget - ALTactual > 1200 
∧ a.FPAmode ≠ 'on’

⇒  m a.FPAmode = ‘on’

Higher-level goals can then be elicited further by asking WHY
questions. The resulting goal graph will provide the rationale for
the very operational problem statement provided; goal-level analy-
sis can then be performed on the inferred goal structure. 
The inductive goal inference procedure discussed in [27] and the
bottom-up use of operationalization patterns here are different; the
former starts from concrete scenarios of interaction between agents
whereas the latter starts from operational specifications. 

4.3 A catalog of operationalization patterns
We finally discuss how relevant operationalization patterns can be
identified and organized for retrievability.

4.3.1 Identifying patterns
One way of identifying operationalization patterns is to abstract
them from concrete examples of goal operationalizations. Unfortu-
nately, there is no large body of specifications available from which
such patterns could be inferred. The constructive elaboration of
operational requirements from goal specifications is not widely
adopted yet; previous derivations of operational requirements from
goals were done in an ad hoc fashion with no fully precise seman-
tics for operationalization.
Therefore we decided to explore the space of operationalization
patterns on the basis of patterns for the goal to be operationalized.
In order to get a rich set of goal patterns we extended and special-
ized the high-level Achieve/Maintain patterns of the KAOS lan-
guage with specification patterns adapted from [9]. Some of those
goal patterns are not operationalizable due to unrealizability prob-
lems such as the impossibility to evaluate a condition that refers to
the future or to evaluate a condition and react upon it within the
same state [32, 33]. For the goal patterns in this taxonomy that are
operationalizable, we identified and proved corresponding opera-
tionalization patterns.

Goal Patterns

Achieve Maintain/Avoid

Unbounded
Achieve 

Bounded
Achieve 

Immediate
Achieve 

State
Invariance

Figure 4 - A taxonomy of goal patterns

Transition
Invariance

C ⇒ ◊ T C ⇒ ◊≤d T C ⇒ m T T ⇒ • C

Global 
Invariance

C ⇒ T

“After” 
Invariance

C ⇒ o T

“InBetween” 
Invariance

C ⇒ TW N



Figure  4 shows our current taxonomy of goal patterns. Each name
in the hierarchy may have several pattern variants; for example, the
pattern in Fig. 3 is a variant of the “InBetween” Invariance pattern in
Fig. 4. The current catalog of operationalization patterns can be
downloaded from [32]. 

4.3.2 Coverage of the catalog
By construction, the coverage of the catalog of operationalization
patterns is relative to the coverage of the taxonomy of goal pat-
terns. The effectiveness of our approach is based on the assumption
that most properties that occur in practice can be specified using a
small set of specification patterns. This assumption is partly sup-
ported by empirical evidence. Dwyer et al report that 92% of 555
examples of property specifications found in the literature matched
one of their patterns [9]. In our more limited experience, we found
that in every but very rare cases, the goals that we write match one
of the general patterns in Figure 4. Our taxonomy is certainly not
complete however, and it could be enriched with additional goal
patterns that we haven't used in our specifications yet. Further
extensions of the taxonomy of goal specification patterns will trig-
ger the identification of further corresponding operationalization
patterns in our catalog.
The granularity  of the taxonomy of patterns is probably a more
important issue than its coverage. Our taxonomy of goal specifica-
tion patterns and the corresponding catalog of operationalization
patterns are composed of propositional patterns mainly. Although
goals to be operationalized do in general match one of the proposi-
tional patterns in Figure 4, a strict application of the corresponding
operationalization pattern may produce operational specifications
in which the pre-, trigger and post- conditions are too coarse-
grained due to the propositional nature of the pattern involved. As
we did for goal refinement patterns [7], we could enrich the catalog
with first-order patterns. However, the number of variants at a
finer-grained level might then become too large for useful cover-
age, that is, the hypothesis that most properties occurring in prac-
tice can be specified using a small set of patterns might no longer
hold when we consider finer-grained, first-order patterns.
As we experienced it with goal refinement patterns, operationaliza-
tion patterns may prove to be helpful even when they do not match
perfectly. In such cases they produce a first-sketch specification to
be adapted in a second phase. The adapted specification might then
be formally “model-checked” with respect to the originating goal.
The specification environment we are currently building interacts
with tools such as Alcoa [18] and NuSMV for that purpose.

5. CO NCL USIO N

There is a growing consensus that complex software requires
abstract models for analysis and validation in the early phases of
software development. Formal methods most often take it for
granted that such models are available; they do not consider the
process of building the model, focussing on the resulting product.
Usually the model is fairly operational and needs to be complete
before analysis can take place. The analysis then amounts to some
form of model debugging.
The paper described an effort to complement such analysis with
techniques for building operational models from higher-level
abstractions such as the system objectives requirements engineers
have to reason about when they elicit requirements. We gave a for-
mal semantics for this notion of operationalization and discussed
some features that our language provides in order to support an
incremental operationalization process and reasoning techniques
that are applicable to partial models.
Our operationalization patterns amount to high-level inference rules
for deriving pieces of operational specifications compositionally

and constructively. A pattern is proved to produce a complete, con-
sistent and minimal operationalization once and for all; it hides for-
mal details and may be used in fairly different situations as the
various examples in the paper aimed at suggesting. Patterns may be
used for guiding the specification building process, for pointing out
incomplete operationalizations and for mining goal structures from
operational specifications.
A few derivation rules were already proposed in [6] for goal opera-
tionalization. These rules are limited in coverage and do not rely on
the formal semantics of operations defined in this paper; they do
not ensure the completeness, consistency and minimality of goal
operationalizations. 
Our operationalization patterns are domain-independent; in a sense
they are orthogonal to domain-specific [12, 37] or task-specific [19]
model patterns.
Provision of tool support is under way in the context of a wider
ongoing project (FAUST, Formal Analysis Using Specification
Tools). The pattern management tool in the environment we are
building will provide facilities for retrieving matching patterns and
instantiate them, create new patterns or new variants of existing
ones, find near matches and adapt the instantiations produced. The
tool is designed to be generic so that it can manage refinement [7,
33], obstruction [28], conflict [26] and operationalization patterns.
The tool is also expected to cooperate with the FAUST animator
which generates parallel finite state machines from our operational
specifications to animate them; this will allow specification deriva-
tion and adequacy checking to proceed hand-in-hand.
Compared with our extensive experience with goal refinement pat-
terns in industrial projects, we have limited experience to date with
our operationalization patterns - it mostly consists in handling a
wide variety of case studies from the literature on specification,
including non-trivial ones. This preliminary experience so far con-
firms what we have observed with goal refinement patterns,
namely, (a) the patterns are helpful even when they are used infor-
mally to guide first specification drafts, and (b) when used formally
the patterns provide helpful guidance even when the formal instan-
tiations produced need to be subsequently adapted to the specifics
of the problem at hand.
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