
From Object Orientation to Goal Orientation: 
A Paradigm Shift for Requirements Engineering

Axel van Lamsweerde and Emmanuel Letier

Département d’Ingénierie Informatique
Université catholique de Louvain 

B-1348 Louvain-la-Neuve (Belgium)
{avl,eletier}@info.ucl.ac.be

Abstract Requirements engineering (RE) is concerned with the elicita-
tion of the objectives to be achieved by the system envisioned, the opera-
tionalization of such objectives into specifications of services and
constraints, the assignment of responsibilities for the resulting require-
ments to agents such as humans, devices and software, and the evolution
of such requirements over time and across system families. Getting high-
quality requirements is difficult and critical. Recent surveys have con-
firmed the growing recognition of RE as an area of primary concern in
software engineering research and practice.

The paper reviews the important limitations of OO modeling and formal
specification technology when applied to this early phase of the software
lifecycle. It argues that goals are an essential abstraction for eliciting,
elaborating, modeling, specifying, analyzing, verifying, negotiating and
documenting robust and conflict-free requirements. A safety injection
system for a nuclear power plant is used as a running example to illus-
trate the key role of goals while engineering requirements for high assur-
ance systems.

Keywords  Goal-oriented requirements engineering, high assurance sys-
tems, safety, specification building process, lightweight formal methods.

1. IN TRO DU CTI ON

The requirements problem has been with us for a long time. An early empirical study
over a variety of software projects revealed that inadequate, inconsistent, incomplete,
or ambiguous requirements are numerous and have a critical impact on the quality of
the resulting software [Bel76]. Late correction of requirements errors was observed to
be incredibly expensive [Boe81]. A consensus has been growing that engineering
high-quality requirements is difficult; as Brooks noted in his landmark paper on the
essence and accidents of software engineering, “the hardest single part of building a
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software system is deciding precisely what to build” [Bro87]. In spite of such early
recognition, the requirements problem is still with us – more than ever. Recent surveys
over a wide variety of organizations and projects in the United States and in Europe
have confirmed the problem on a much larger scale; poor requirements have consis-
tently been recognized to be the major cause of software problems such as cost over-
run, delayed delivery or failure to meet expectations [Sta95, ESI96]. The problem gets
even more serious in the case of safety-critical or security-critical systems; most severe
failures have been recognized to be traceable back to defective specification of require-
ments [Lut93, Lev95, Kni02].
Semi-formal modeling notations à la UML and formal specification techniques have
been proposed as candidate solutions to address the requirements problem. The
strength of the former is their usability (at the price of fairly imprecise semantics), their
support for multiple system views and their standardization. The strength of the latter
is the wide variety of analysis tools they provide for algorithmic model checking,
deductive verification, specification animation, specification-based testing, specifica-
tion reuse and specification refinement; as a result, the number of success stories in
using formal specification technology for real systems is steadily growing from year to
year [Lam00c].
In spite of such good news, traditional semi-formal modeling and formal specification
techniques suffer from serious weaknesses that explain why they are not fully adequate
for the upstream, critical phase of requirements  elaboration and analysis.

• Limited scope. The vast majority of techniques focus on the modeling and specifi-
cation of the software alone. They lack support for reasoning about the composite
system made of the software and its environment. Inadequate assumptions about
the environment in which the software operates are however known to be responsi-
ble for many errors in requirements specifications [Jac95, Lev95]. Non-functional
requirements are also generally left outside any kind of treatment. Such require-
ments form an important part of any specification; they are known to play a promi-
nent role in the evaluation of alternatives, the management of conflicts, the
derivation of architectures and evolution management [Chu00, Lam00b, Lam03].

• Lack of rationale capture. Detailed requirements specifications are difficult to
understand. Efforts have been made towards formal notations that are more read-
able [Har87, Heim96, Heit96]. Such efforts however do not address the problem of
understanding requirements in terms of their rationale with respect to some higher-
level concerns in the application domain. 

• Poor guidance. The main emphasis in modeling and specification has been on suit-
able sets of notations and tools for a posteriori analysis. Constructive methods for
building correct models/specifications for complex systems in a systematic, incre-
mental way are by and large non-existent. The problem is not merely one of trans-
lating natural language statements into some semi-formal model and/or formal
specification. Requirements engineering in general requires complex requirements
to be elicited, elaborated, structured, interrelated and negotiated.

• Lack of support for exploration of alternatives.  Requirements engineering is
much concerned with the exploration of alternative system proposals in which



more or less functionality is automated. Different assignment of responsibilities
among software/environment components yield different software-environment
boundaries and interactions. Traditional modeling and specification techniques do
not allow such alternatives to be represented, explored, and compared for selection.

In this paper, we argue that goals  offer the right kind of abstraction to address such
inadequacies, notably, in the specific context of high assurance systems, that is, sys-
tems for which compelling evidence is required that the system delivers its services in
a manner that satisfies safety, security, fault-tolerance and survivability requirements
[Lea95].

Goals are declarative statements of intent to be achieved by the system under consider-
ation [Dar93, Lam00b]. The word “system” here refers to the software-to-be together
with its environment [Fea87, Fic92]. Goals are formulated in terms of prescriptive
assertions (as opposed to descriptive ones) [Zav97]; they may refer to functional or
non-functional properties and range from high-level concerns (such as “safe nuclear
power plant“) to lower-level ones (such as “safety injection overridden when block switch is on
and pressure is less than ’Permit’). Agents are system components such as humans playing
specific roles, devices and software. A requirement is a goal whose achievement is
under responsibility of a single software agent. An expectation is a goal whose
achievement is under responsibility of a single environment agent.

Modeling and reasoning about goals is especially important for high assurance systems
as some of the system goals correspond to the application-specific safety, security,
fault tolerance and survivability properties that need be achieved with high assurance.
Positive/negative interactions with the other system goals can be captured in goal mod-
els and managed appropriately [Lam98]; exceptional conditions in the environment
that may prevent critical goals from being achieved can be identified and resolved to
produce more robust requirements [Lam00a]; the goals can be specified precisely and
refined incrementally into operational software specifications that provably assure the
higher-level goals [Dar96, Let02a, Let02b]. Requirements in fact “implement” goals
much the same way as programs implement design specifications.

The paper discusses the relevance and benefits of explicitly modeling and reasoning
about goals at various levels of abstraction in the specific context of high assurance
systems. We illustrate the use of a comprehensive set of goal-oriented techniques to
build and analyze the requirements for a safety injection control system [Cou93].
Although fairly small, this case study comes from a real application, raises many of the
issues found in high assurance systems and is frequently used to illustrate other meth-
ods such as, e.g., the SCR method [Heit96] and its analysis techniques [Bha99, Jef98,
Gar99]. Other illustrations involving first-order formalizations can be found in
[Lam00a, Lam00b, Let01].

2. GO AL -ORIE NTE D  RE IN  A CT IO N: EL AB O RAT ING  REQ UIR EM E NTS  
FO R  A  S AFET Y  I NJ ECT IO N  SYST EM

We follow our KAOS method to gradually derive operational requirements for the
safety injection software from the underlying system goals. (KAOS stands for “Keep
All Objectives Satisfied”).



A goal refinement graph is elaborated first by identifying relevant goals from the pre-
liminary system description [Cou93], typically by looking for intentional keywords in
natural language statements and by asking why  and how  questions about such state-
ments (goal elaboration step); conceptual classes, attributes and associations are
derived from the goal specification (object modeling step); agents are identified
together with their potential monitoring/control capabilities, and alternative assign-
ments of goals to agents are explored (agent modeling step); operations and their
domain pre- and postconditions are identified from the goal specifications, and
strengthened pre-, post- and trigger conditions are derived so as to ensure the corre-
sponding goals (operationalization step). In parallel, two other steps of the method
handle conflicting goals and obstacles that may obstruct goal satisfaction, respectively.
The suggested ordering among steps corresponds to an idealized process; in practice
however there is significant intertwining and backtracking between them.
Our presentation will be succinct and fragmentary for space reasons; the interested
reader may refer to [Let02c] for a full treatment of the case study.

2.1. Goal identification from the source document
Fig. 1 shows some preliminary goals that have been directly identified from the first
two paragraphs of the preliminary description of the safety injection system [Cou93].
This figure can be read as follows. One goal in a nuclear power plant is to maintain an
effective coolant system (EffectiveCoolantSystem). This goal can be obstructed by an
obstacle  such as LossOfCoolant. (Obstacles may be seen as a high-level faults derived
from goal negations; techniques for systematically identifying ways in which a system
may fail will be discussed more precisely below.) 
The goal SafetyInjectionIffLossOfCoolant is introduced to mitigate the obstacle. This goal
is then refined into 

• an accuracy property about the environment: LossOfCoolant IffLowWaterPressure, 

• the subgoal SafetyInjectionIffLowWaterPressure.

EffectiveCoolantSystem

Ineffective
Coolant

LossOf
Coolant

SafetyInjection IffLossOfCoolant
Mitigates

...

SafetyInjection
IffLowWaterPressure

LossOfCoolant Iff
LowWaterPressure

Figure 1: Preliminary goals identified from initial description of the safety injection system [Cou93]



2.2. Formalizing goals, modeling objects and identifying state variables
Formal analysis techniques may complement informal or semi-formal ones in order to
provide higher assurance in the correctness and completeness of the system require-
ments. Goals then need to be formalized to enable their use. As we will see, goal for-
malization also allows for more systematic guidance in the requirements elaboration
process.
In addition to the usual logical connectives, the following linear temporal operators
will be used in this paper:

◊ P P holds in some future state

o P P holds in all future states
A ⇒ C In every future state A implies  C, i.e., o(A → C) 

A  ⇔ C In every future state A is equivalent to C , i.e., o (A ↔ C) 

• P P holds in the previous state
@  P P has just become true, i.e., •¬ P ∧ P 

For example, the goal Maintain[SafetyInjectionIffLowWaterPressure]  may be defined as fol-
lows:

Goal Maintain [SafetyInjection IffLowWaterPressure]

InformalDef The safety injection signal should be ‘On’ when and only when the water pressure
is below the ‘Low’ set point.

FormalDef SafetyInjectionSignal = ‘On’ ⇔ WaterPressure < ‘Low’

The above goal refers to state variables WaterPressure and SafetyInjectionSignal that are
declared as attributes of corresponding conceptual classes in a preliminary object
model (see Fig. 2).

These attributes receive the following physical interpretation:
WaterPressure: the actual pressure of water in the coolant system

SafetyInjectionSignal: signal sent by the ESFAS (Engineered Safety Feature Actuation System)
to safety features components to command the actual safety injection mechanisms

Conceptual classes, attributes and associations are incrementally identified and defined
as the requirements model is elaborated. When first-order formalizations are used,
associations are typically derived from atomic formulas involved in the formal goal
assertions [Lam00b]. As opposed to standard OO modeling where it is never clear how
and why such or such class/attribute/association should enter the picture,  goal-based
object modeling is grounded on a precise criterion for identifying elements of the
object model; such elements are modelled when and only when they are involved in
declarative assertions about goals and requirements. Also note the difference with use-
case driven modeling; here we start from higher-level, general, declarative and precise
statements of intent rather than generally overspecific, operational and often imprecise

CoolantSystem

WaterPressure : PressureUnit

ESFAS

SafetyInjectionSignal: {On, Off}
... ...

Regulated
By

Figure 2: Goal-driven object modeling



descriptions of operations achieving goals left implicit. In fact, use cases can be trivi-
ally generated at the very last, operationalization step of our method (see Section 2.7).

2.3. Detecting and resolving goal-level conflicts

Another goal appearing in the available source document is to avoid actuation of the
safety injection system during normal start-up or cool down phases:

Goal Avoid [SafetyInjectionDuringNormalStartUp/CoolDown]

InformalDef Safety injection signals should not be sent during normal start-up or cool down.

FormalDef (NormalStartUp ∨  NormalCoolDown) ⇒ SafetyInjectionSignal = ‘Off’

This new goal introduces a conflict with the goal Maintain[SafetyInjectionIffLowWaterPres-
sure] previously identified. This conflict is detected formally using a predefined con-
flict pattern from [Lam98]. The two goals are in fact not logically inconsistent;
however, they become inconsistent when the plant is in start-up or cool down phase
and the water pressure is below ‘Low’. This condition is called boundary condition for
conflict [Lam98]; its formal definition is generated formally by instantiation of our for-
mal conflict pattern which yields:

◊ ( (NormalStartUp ∨ NormalCoolDown) ∧  WaterPressure < ‘Low’)

Conflict resolution tactics from [Lam98] may then be used to propose alternative reso-
lutions; in this case, the conflict is resolved by weakening the goal Maintain[SafetyInjec-
tionIffLowWaterPressure] with the predicate appearing in the boundary condition. We
thereby obtain:

Goal Maintain [SafetyInjection IffLowWaterPressureExceptDuringStartUp/CoolDown]

InformalDef The safety injection signal should be ‘On’ whenever there is a loss of coolant,
except during normal start-up or cool down.

FormalDef SafetyInjectionSignal = ‘On’ ⇔

 WaterPressure < ‘Low’ ∧ ¬ (NormalStartUp ∨  NormalCoolDown)

This goal will be refined and operationalized in the following sections.

2.4. Refining goals and identifying agent responsibilities

Goals have to be refined until they can be assigned as responsibilities of single agents.
However, a goal can be assigned to an agent only if this agent has sufficient monitor-
ing and control capabilities to realize the goal [Let02a]. (Our terminology here is based
on the 4-variable model [Par95] and the notion of shared phenomena [Jac95].)

For example, the goal Maintain[SafetyInjection IffLowWaterPressureExceptDuringStartUp/

CoolDown] is unrealizable by the ‘Engineered Safety Feature Actuation System’
(ESFAS) because this agent cannot monitor whether the plant is in normal startup or
cooldown phase. 

A catalog of agent-based refinement tactics has been defined to guide the process of
refining unrealizable goals until realizable subgoals are reached [Let02a]. Each tactic
suggests the application of a formal refinement pattern (see Fig. 3).



The first tactic in Fig. 3 may be used to resolve ESFAS’ lack of monitorability of state
variables NormalStartUp and NormalCoolDown. Applying the corresponding pattern yields
a new, monitorable state variable, Overridden say, and a refinement of the unrealizable
goal Maintain[SafetyInjectionIffLowWaterPressureExceptDuringStartUp/CoolDown] into two
subgoals: 

• a subgoal SafetyInjectionIffLowWaterPressureExceptWhenOverriden, formally defined
by

SafetyInjectionSignal = ‘On’ ⇔  
WaterPressure < ‘Low’ ∧ ¬  Overridden 

• a companion accuracy goal SafetyInjectionOverridden DuringStartUp/CoolDown, for-
mally defined by

 Overridden ⇔  (NormalStartUp ∨ NormalCoolDown)

Such formal definitions are generated by instantiation of the formal refinement pattern
associated with the selected tactic. Goal refinement patterns are proved correct once
for all [Dar96]; the STEP verification system [Man96] may be used to check that the
conjunction of leaf nodes entails the parent node. At every pattern application the user
gets an instantiated proof of correctness of the refinement for free.
The above first subgoal SafetyInjectionIffLowWaterPressureExceptWhenOverriden is now
realizable by the ESFAS software agent because it is entirely defined in terms of vari-
ables that turn to be monitorable and controllable by this agent; the first subgoal there-
fore becomes a requirement  on that agent.
The accuracy subgoal SafetyInjectionOverriddenDuringStartUp/CoolDown is still not realiz-
able by the ESFAS agent because this agent still lacks monitorability of state variables
NormalStartUp  and NormalCoolDown . Agent-based refinement tactics may again be used
to guide the generation of alternative refinements for this goal. One alternative consists
in: 
(1) introducing two new variables, Block and Reset,  that represent manual block and

reset buttons controlled by a human Operator agent; 
(2) assigning to the Operator agent the responsibility of pushing the block button when

and only when the plant enters normal cooldown/startup, and the responsibility of
pushing the reset button when and only when the plant leaves normal cooldown/
startup (the latter two subgoals turn out to be realizable by the Operator agent and
therefore become environment assumptions); and 

(3) assigning to the ESFAS agent the responsibility of overriding safety injection if and

q (im = m)

(accuracy goal on variable) (accuracy goal on predicate)

G [m / im] G [p(m) / q(im)] q(im) ⇔ p(m)

GG

Figure 3: The ‘ Introduce accuracy goal’ tactics



only if ‘block’ is pushed, and the responsibility of enabling safety injection if and
only if ‘reset’ is pushed (the latter two subgoals turn out to be realizable by the
ESFAS software agent and therefore become software requirements ). 

Further details about the generated goal graph and responsibility assignments may be
found in [Let02c]. 
Note that both software requirements and environmental assumptions are in general
needed to prove higher-level goals.

2.5. Deriving agent interfaces
Capturing the agents’ monitoring and control capabilities is an important aspect of the
requirements elaboration process [Fea87, Par95, Jac95]. Such capabilities were gradu-
ally identified during the previous goal refinement step. The resulting agent interface
model for the safety injection system is shown in Fig. 4. It corresponds to a context
diagram [Jac95].

Note that alternative goal refinements and alternative responsibility assignments in
general lead to alternative software-environment boundaries , that is, alternative sys-
tem proposals and agent interfaces in which more or less is automated.

2.6. Generating and resolving obstacles to goal achievement

First-sketch specifications of goals, requirements and assumptions tend to be over-
ideal; they are likely to be violated from time to time in the running system due to
unexpected behavior of agents. The lack of anticipation of exceptional behaviors may
result in unrealistic, unachievable and/or incomplete requirements. We capture such
exceptional behaviors by formal assertions called obstacles to goal satisfaction.

An obstacle O is said to obstruct a goal G iff

{O, Dom} |=  ¬ G obstruction
Dom |=/=     ¬ O domain consistency

Obstacle analysis  consists in taking a pessimistic view at the goals, requirements, and
assumptions elaborated. The idea is to identify as many ways of breaking such proper-
ties as possible in order to resolve them and produce more complete requirements for
more robust systems. 

We just illustrate a few results from obstacle analysis for some of the terminal goals
we identified before. For example, in the previous goal refinement process, we made

Operator

Coolant System

WaterPressure

Block

Reset

SafetyInjection
Signal

Figure 4: Derived agent interface model for the safety injection system

Safety Feature
Components

ESFAS



the following idealized assumption on the behavior of the Operator agent:
Assumption Avoid[ManualBlockWhenNoStartUp/CoolDown]

InformalDef The block button should not be pushed when the plant is not entering normal star-
tup or cool down.

FormalDef ¬  @ (NormalStartUp ∨ NormalCoolDown) ⇒  ¬ @ (Block = ‘On’)

UnderResponsibilityOf Operator

In this case, by just taking the negation of the above assumption we would identify the
following obstacle:

Obstacle OperatorPushesBlockWhenNot InStartUp/CoolDown

InformalDef ‘Block’ is pushed when the plant is not entering normal startup or cool down.

FormalDef ◊ ( ¬ @ (NormalStartUp ∨ NormalCoolDown) ∧  @ (Block = ‘On’))

Similarly, from the assumption Achieve[ManualResetOnExitFromStartUp/CoolDown]
assigned to the Operator agent, we would identify the obstacle OperatorForgetsToReset.
Other obstacles to assumptions on the Operator agent and to requirements on the ESFAS
agent can be identified in the same way [Let02c]. 
Formal techniques for obstacle generation and refinement are detailed in [Lam00a].
The basic technique amounts to a precondition calculus that regresses goal negations
backwards through known properties about the domain; formal obstruction patterns
may be used as an alternative to shortcut formal derivations. A formal completeness
criterion is also given in [Lam00a]; such completeness is bound by the set of properties
known about the domain. Our techniques allow the analyst to incrementally elicit new
domain properties as well.
Obstacles should be resolved once they have been generated. Obstacle resolution
involves assessing the likelihood and criticality of the obstacle, investigating alterna-
tive ways of resolving it, and choosing one resolution alternative based on various cri-
teria such as cost, risks, performance, etc. 
Obstacle resolution tactics may be used to generate alternative resolutions [Lam00a].
For example, one of our tactics yields a resolution of the obstacle OperatorPushesBlock-
WhenNotInStartUp/CoolDown in which an alternative refinement of the higher-level goal
SafetyInjectionOverriddenDuringStartUp/CoolDown is considered; in this alternative, the
responsibility of the Operator agent is weakened, so as to partially cover the obstacle,
whereas the responsibility of the ESFAS  agent is strengthened. Such an alternative
design might be identified by observing that pushing the block button when the water
pressure is above some specified value ‘Permit’ is necessarily an Operator‘s error
because of a domain property stating that the plant cannot be in normal startup/
cooldown at such high pressure. Accordingly, the requirement on the ESFAS agent is
strengthened so that safety injection does not become overridden if the block button is
pushed when the water pressure is above ‘Permit’ :

Goal Maintain [SafetyInjectionOverriddenWhenBlockSwitchOnAndPressureLessThanPermit]

InformalDef Safety injection should become overridden when, and only when, the block switch
is set to ‘On’ while the water pressure is less than ‘Permit’.

FormalDef @ Overridden ⇔

@ (Block = ‘On’) ∧ WaterPressure ≤ ‘Permit’  ∧ • ¬  Overridden

UnderResponsibilityOf ESFAS



The obstacle OperatorForgetsToReset is resolved in a similar way by weakening the
responsibility of the Operator agent and strengthening the responsibility of the ESFAS
agent. In this case, the requirement of the ESFAS agent is strengthened so that safety
injection becomes automatically enabled when the water pressure raises above ‘Per-
mit’.
Our resolution tactics so far include goal substitution, agent substitution, goal weaken-
ing, goal restoration, obstacle prevention and obstacle mitigation [Lam00a]. In general
several generated resolutions will be applicable so that a “best” alternative needs to
selected according to non-functional goals from the goal graph (we come back to this
below). The selection and application of a resolution may be carried out at specifica-
tion time, to produce more robust requirements specifications, or at run time, when a
requirements monitor detects that the obstacle does occur or is likely to occur [Fea98].

Note that obstacle analysis is an iterative process; it may produce new goals for which
new obstacles may need to be identified. In the resulting software specification, some
of the obstacles may be totally or partially resolved, some obstacles may remain
unchanged (e.g., if they are highly unlikely, do not matter or are deferred to run time)
and some new obstacles may appear as a result of previous resolutions.
As mentioned before, the selection among alternative resolutions and the decision to
iterate further obstacle analysis cycles should be based on some trade-off assessment
among various non-functional, application-specific goals about safety, security, cost,
performance, etc. This is an area where much work remains to be done. Qualitative
techniques might help here by exposing the competing influences of various alterna-
tives with respect to non-functional goals. A preliminary proposal can be found in
[Chu00] where a procedure is proposed for propagating positive/negative influences
along alternative paths in the goal graph. For high assurance systems, however, more
accurate, quantitative techniques are required. For example, probabilistic risk assess-
ment techniques might provide more precise input to the decision making process.
Such techniques, however, rely on the availability of accurate estimates of probabili-
ties of failure events. Obtaining such data may be problematic; the use of such quanti-
tative techniques has therefore been controversial [Lev95]. The real challenge is
probably to define a decision process that combines qualitative reasoning for those
non-functional aspects of the system for which no accurate quantitative weighting can
be made and quantitative reasoning for those non-functional aspects for which mean-
ingful weighting can be obtained. 
Obstacle analysis may be seen as a goal-oriented, formal, constructive method for
building fault trees and recovery actions. It is particularly relevant to high assurance
systems as many problems and failures of such systems are known to be caused by
poor designs that are unable to cope with errors caused by humans, devices and soft-
ware [Lev95].

2.7. Deriving operational requirements from system goals
The next step of the requirements elaboration process consists in deriving operational
software specifications from the terminal goals assigned to software agents. The result
is an operation model that defines the various services to be provided by the software
in terms of their pre-/postcondition in the domain and strengthened conditions ensur-
ing that the underlying goals in the goal model are met by the services. 



A catalog of formal operationalization patterns is available to support the operational-
ization step [Let02b]. For example, the ‘Immediate Achieve’ pattern is shown in Fig. 5.
Let us come back to the goal

Maintain [SafetyInjectionOverriddenWhenBlockSwitchOnAndPressureLessThanPermit]

that we assigned to the ESFAS agent, and to the right-to-left implication in the formal
definition of this goal given in Section 2.6. The ‘ Immediate Achieve’ operationalization
pattern can be used to derive the following operational requirements:

Operation OverrideSafetyInjection
PerformedBy ESFAS
Input Block, WaterPressure; Output  Overridden
DomPre ¬  Overridden
DomPost Overridden
ReqPre/TrigFor SafetyInjectionOverriddenWhenBlockSwitchOn

AndPressureLessThanPermit:
@ (Block = ‘On’) ∧  WaterPressure ≤ ‘Permit’

Note that a distinction is made between domain pre- and postconditions that capture
what any application of the operation means in the application domain, and required
pre-, trigger, and postconditions that capture requirements on the operations that are
necessary to achieve the goals. (Such distinction somewhat corresponds to the distinc-
tion between indicative and optative properties in [Jac95, Zav97].) 
In the above operation, the ReqPre/Trigger keyword is a syntactic shortcut to express
that the condition is both a required pre- and a required trigger- condition for the satis-
faction of the corresponding goal; the operation may be applied only if the condition is
true and must be applied if the condition becomes true and the domain precondition is
true.
Similarly, from the goal Maintain[SafetyInjectionEnabledWhenPressureAbovePermitOrManu-
alReset], we can systematically derive the need for an operation EnableSafetyInjection
together with strengthened conditions on this operation that will guarantee the satisfac-
tion of this goal. Specifications for the operations SendSafetyInjectionSignal and StopSafe-
tyInjectionSignal are similarly derived from the specification of the goal
Maintain[SafetyInjectionWhenLowWaterPressureAndNotOverridden], see [Let02c] for details.

It is worth noting that our goal-oriented requirements elaboration process ends where
most traditional specification techniques would start.  For example, the operational

C ⇒ m T

Operation Op1
DomPre ¬ T
DomPost T
ReqTrig  for RootGoal:

C

Operation Op2
DomPre T
DomPost ¬ T
ReqPre for RootGoal:

¬ C

Figure 5: The ‘Immediate Achieve’ pattern



specifications obtained above can be mapped to SCR tables for the same system
through a series of transformation steps each of which resolves a semantic, structural
or syntactic difference between the source (KAOS) specification and the target (SCR)
one [Del03].
Note again the difference with use-case driven modeling; we started from higher-level,
general, declarative and precise statements of intent rather than generally overspecific,
operational and often imprecise descriptions of operations achieving goals left
implicit. Use cases emerge at the last step of our method as aggregations of the opera-
tions that operationalize functional goals assigned to software agents.

3. CO NC LUS IO N

We used a safety injection system as a running example to illustrate the benefits of a
constructive, goal-oriented approach to requirements elaboration and analysis. The key
points illustrated by this elaboration process are the following.

• Goal-oriented modeling and specification takes a wider system engineering per-
spective; goals are prescriptive assertions that should hold in the system made of
the software-to-be and its environment; domain properties and expectations about
the environment are explicitly captured during the requirements elaboration pro-
cess, in addition to the usual software requirements specifications.

• Operational requirements are derived incrementally from the higher-level system
goals they “implement”.

• Goals provide the rationale for the requirements that operationalize them and, in
addition, a correctness criterion for requirements completeness and pertinence
[Yue87]. 

• Obstacle analysis helps producing much more robust systems by systematically
generating (a) potential ways in which the system might fail to meet its goals and
(b) alternative ways of resolving such problems early enough during the require-
ments elaboration and negotiation phase.

• Alternative system proposals are explored through alternative goal refinements,
responsibility assignments, obstacle resolutions and conflict resolutions.

• The goal refinement structure provides a rich way of structuring and documenting
the entire requirements document.

• A multiparadigm, ‘multi-button’ framework allows one to combine different levels
of expression and reasoning: semi-formal for modeling and structuring, qualitative
for selection among alternatives, and formal, when needed, for more accurate rea-
soning.

• Goal formalization allows RE-specific types of analysis to be carried out, such as
- guiding the goal refinement process and the systematic identification of objects

and agents [Lam00b, Let02a];
- checking the correctness of goal refinements and detecting missing goals and

implicit assumptions [Dar96];
- guiding the identification of obstacles and their resolutions [Lam00a];



- guiding the identification of conflicts and their resolutions[Lam98];
- guiding the identification and specification of operational requirements that sat-

isfy the goals [Dar93, Let02b].
Several important topics are however not yet sufficiently addressed by current goal-
oriented techniques.

• Current support for the evaluation and selection among multiple alternatives
explored during the requirements elaboration process is highly limited. As dis-
cussed before, a blend of qualitative and quantitative reasoning techniques should
be devised for more accurate evaluation of alternatives in terms of measurable
quantities. Such techniques should probably be based on specific models for spe-
cific types of non-functional goals, e.g., risk models for safety goals, cost models
for cost-related goals, performance models for performance-related goals, etc.

• Much work also remains to be done to provide specialized techniques for goal
refinement and obstacle/conflict analysis that are targeted to specific goal catego-
ries relevant to high assurance systems (e.g., safety or security) and to specific
domains (e.g., air traffic control, medical applications). This means characterizing
and refining goal categories more thoroughly (maybe in domain-specific terms at
some point), defining suitable notations and techniques for modeling and specify-
ing properties in each category, and finding systematic ways of reasoning about
their positive/negative interactions at the goal level.

• Further work is also needed to integrate the methodological support provided by
our goal-oriented requirements engineering method with existing specification
analysis tools. Such integration may occur at two levels. First, we would like to use
existing tools to automate some of the RE-specific formal reasoning described
above. For example, we recently built a tool prototype for early model checking of
goal models; the generated counter-examples suggest inconsistent or missing
goals. Second, we would like to map the result of goal-oriented requirements elab-
orations to specialized tools for formal analysis of operational specifications. For
example, we did a mapping of KAOS models to SCR tables [Del03]. Other map-
pings, e.g., to the NuSMV model checker (http://nusmv.irst.itc.it/) or the Alloy
analyzer (http://sdg.lcs.mit.edu/alloy/), are under way.
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