
A Case Study in Eliciting Scalability Requirements

Leticia Duboc1 Emmanuel Letier1 David Rosenblum1 Tony Wicks2

1Department of Computer Science
University College London

Gower Street
London WC1E 6BT

United Kingdom
{l.duboc, d.rosenblum, e.letier}@cs.ucl.ac.uk

2Fortent Ltd
80-110 New Oxford Street

WC1A 1HB
United Kingdom

t.wicks@fortent.com

Abstract

Scalability is widely recognized as an important software
quality, but it is a quality that historically has lacked a con-
sistent and systematic treatment. To address this problem,
we recently presented a framework for the characterization
and analysis of software systems scalability. A key weakness
of that initial work was that its quantitative analysis was
based on arbitrarily defined variables and functions, which
could compromise its results. This risk can be mitigated
through a systematic exploration of system scalability goals
and application domain during requirements engineering.

This paper describes our application of goal-oriented re-
quirements engineering (GORE) for eliciting the scalability
requirements of a large, real-world financial fraud detection
system. The case study reveals both the suitability and the
limitations of GORE as a technique for eliciting the infor-
mation needed by stakeholders to specify scalability goals
of a system. In the paper, we describe these findings in
detail and chart a course for future research in extending
goal-oriented techniques to scalability requirements.

1 Introduction

Scalability is a software quality largely overlooked dur-
ing requirements engineering, in part because of the lack
of techniques for eliciting quantifiable and testable scala-
bility requirements. In previous work, we have proposed
a framework to characterize and analyze the scalability of
software systems [3]. A problem with that initial work is
that it did not provide sufficient means to instantiate pre-
cisely the elements it uses in its scalability analysis, which
could compromise its results. To address this problem, it

is necessary to undertake a clear, consistent and systematic
exploration of the system’s scalability goals and application
domain. After an investigation of available techniques, we
settled on goal-oriented requirements engineering (GORE)
as a good candidate and investigated its suitability by apply-
ing it to elicit the scalability requirements of a real-world
financial fraud detection system, the Intelligent Enterprise
Framework (IEF).

In this paper, we describe our experience with the appli-
cation of GORE to IEF and discuss its advantages and short-
comings as a technique to elicit scalability requirements.
The paper is structured as follows: Section 2 presents a brief
discussion of how scalability requirements are viewed in
the software industry, our scalability framework and GORE.
Section 3 introduces IEF and section 4 demonstrates our ap-
plication of GORE to elicit IEF’s requirements. Section 5
presents a critical evaluation of both our experience with
IEF and of GORE as a technique for eliciting scalability re-
quirements. Finally, Section 6 concludes the paper.

2 Background

2.1 Scalability Requirements in Industry

To the best of our knowledge, there is no established
work specifically on scalability and requirements. Tra-
ditional requirements elicitation techniques, such as use
cases, focus on functional requirements. For non-functional
requirements, approaches such as the NFR framework [2]
allow one to specify non-functional concerns as soft goals
at a high level of abstraction only, in a way that is too vague
for a precise scalability analysis of the system.

In industry, the lack of techniques to elicit and articu-
late quantifiable and testable scalability requirements leads

1



to a number of problems. Our discussions with develop-
ers of 16 companies of different sizes and industries reveals
that they generally paid no systematic attention to scalabil-
ity during requirements engineering. Many companies con-
centrate on functional requirements, never considering load,
growth characteristics, or technical and physical boundaries
when designing and building their systems. Although time-
to-market concerns are arguably justifiable for some sys-
tems, ignoring non-functional requirements often leads to
scalability problems that cannot be fixed quickly, and the
repeated use of workarounds can make the system unman-
ageable.

When scalability is not completely ignored, require-
ments are often described only in terms of application do-
main boundaries. These boundaries are based on assump-
tions that often change, either because they are found to be
incorrect or because the application domain has changed.
Furthermore, focusing on limiting cases of relevant do-
main or design variables may lead to a solution that does
not perform at its best for the sub-ranges of greatest inter-
est to the stakeholder (such as the sub-ranges correspond-
ing to the market segment that generates most of its rev-
enue). Sometimes, scalability requirements can be drawn
naturally from quality of service agreements with respect to
different values of the scaling ranges. Other times, how-
ever, functions describing scalability requirements seem to
be derived from folklore or the willingness to comply with
generally accepted good practices in software development,
which could impose unjustifiable demands on the system
design (such as the vague belief in the need for linear scal-
ability [1]). Furthermore, management often pushes for a
quick solution, even when scalability problems have been
predicted. As a result, people tend not to take responsibil-
ity for scalability, leading to non-functional and workload
tests being largely overlooked. Scalability problems are, as
a consequence, often discovered during production.

2.2 A Framework for Scalability

In previous work, we defined scalability as a quality of
software systems characterized by the operational impact
that scaling aspects of the system environment and design
have on certain measured software qualities, as these as-
pects are varied over expected operational ranges [3]. If
the system can accommodate this variation in a way that is
acceptable to appropriate stakeholders, then it is a scalable
system. We also defined a technique to reveal through mod-
elling or testing the causal relationships underlying system
scalability in terms of variables representing the application
domain (such as the number of simultaneous users), the sys-
tem design (such as the thread pool size), and relevant soft-
ware qualities (such as average or peak throughput). The
technique is built around the use of preference functions and

utility functions.
As in other software analysis techniques, the correctness

and usefulness of the results are highly dependent on the se-
lection and measurement of variables, their scaling bounds,
and functions to be used during testing and analysis. How-
ever, in case studies we conducted in our previous work, we
discovered that it is all too easy to make these selections ar-
bitrarily. Consequently, it is apparent that it is necessary to
derive the variables, scaling ranges, bounds on the ranges
and characteristic functions in a clear, consistent and sys-
tematic manner from system goals in order to increase the
precision and usefulness of scalability analysis results. We
therefore have begun to use GORE for such purposes.

2.3 GORE

Goal-oriented requirements engineering (GORE) sup-
ports a natural elicitation of software requirements in the
context of high-level goals [2, 5]. Goals may be formulated
at different levels of abstraction, ranging from high-level
strategic concerns to low-level, technical concerns. Goals
also cover different types of concerns: functional con-
cerns associated with the services to be provided, and non-
functional concerns associated with quality of service—
such as safety, accuracy, performance and so forth. A re-
quirement is a goal under the responsibility of a single agent
in the system-to-be becomes, while an assumption is a goal
under the responsibility of an agent in the environment.

Often, non-functional goals do not need to be satisfied in
an absolute sense. In the exploration of alternative system
proposals, each alternative may have a different impact on
the degree of satisfaction of higher-level goals. The partial
degree of satisfaction of a goal can be modeled by annotat-
ing goals with measurable quality attributes and objective
functions defined over these quality variables [4].

3 The Intelligent Enterprise Framework

Over the last 10 years, the banking and finance sector has
seen a considerable consolidation. The rate of electronic
transactions has increased, analytical methods have become
more complex, and system performance expectations are
higher. Fortent’s Intelligent Enterprise Framework (IEF) is
a platform designed to process large volumes of data, builds
adaptive profiles of business entities (such as accounts and
account holders) that are represented within the data and,
through the applications of analysis methods, generate au-
tomated alerts to notify users of behavior that appears fraud-
ulent. In order to maintain the system’s performance as data
volumes have grown, in a lifespan of seven years, the sys-
tem has been subjected to significant enhancements in an-
ticipation of scalability barriers; these extensions involved
significant time and effort on the part of developers.

2



The first stages of the data analysis are performed by a
critical sub-system, the Data Manager, which is responsible
for the validation, preprocessing and migration of the trans-
actional data to the database. In IEF’s first design (in 2000),
the Data Manager had known scalability limits. Its imple-
mentation incurred a high storage overhead, increasing both
memory footprint and processor activity. The Data Manager
was then re-designed in 2003. The new design decreased
the demand for memory by using a combination of memory
and disk storage during data manipulation. Over the sub-
sequent few years, the number of distinct business entities
continued to grow further, requiring time-consuming I/O. It
then became apparent that the second design would even-
tually incur unacceptable processing times in the system.
Therefore, in 2007, the Data Manager entered its third gen-
eration of design, to avoid predicted scalability problems.
The implementation of this third design is written in Java
and contains 1,556 classes and 326,293 lines of code.

4 Scalability Requirements of IEF

Our requirements engineering activity took place in par-
allel with the third major enhancement of the Data Manager.
Therefore, the requirements for this new version, arguably,
had been defined. As originally stated, scalability require-
ments were more a statement of idealized goals rather than
rational requirements with clear understood objectives and,
in particular, they relied on implicit assumptions. However,
without a clear statement of these assumptions it would not
be possible to perform a reliable analysis of IEF’s scala-
bility. For example, the initial requirements document did
not include adequate quantitative figures about the expected
growth in data volumes, about the operating environment
on which the new version of the software would have been
and about the expected behaviour of the system if data vol-
ume and machine capacity were scaled beyond the stated
limits. This figures were needed in order to adequately test
the design of the new system.

Our main objective was, therefore, to derive precise and
correct measurable requirements in order to test the scal-
ability of the Data Manager. Scalability requirements are
highly dependent on the application domain and should be
explored in the context of high-level business goals. We
therefore focused our analysis by looking at the interests of
Fortent’s customers and the nature of their operating envi-
ronments that most affected the Data Manager1. Fortent’s
customers are primarily retail, investment banks and other
financial institutions, but for the reminder of this paper, we
will use the word banks to consider this group.

We applied the KAOS goal-oriented method [5] in or-
der to elicit and specify the scalability requirements of IEF.

1Please note that the actual numbers used in the requirements have been
changed in order to protect Fortent’s proprietary information.

Figure 1 presents a portion of the goal tree we developed. A
bank is concerned with recognizing unusual transactions, as
they can represent illicit activities, such as fraud or money
laundering. It is in the interest of the bank that fraudulent
transactions are detected and acted upon in a timely man-
ner, as represented by Node a.1 in Figure 1. For this goal to
be achieved, it requires that possible fraudulent transactions
are signaled quickly (Figure 1, Node b.1), signaled transac-
tions are investigated (Figure 1, Node b.2), and fraudulent
transactions are acted upon (Figure 1, Node b.3), which
may mean not authorizing the completion of the transac-
tion. While the last two goals are solely the responsibility
of the bank staff, the signaling of suspicious transactions
should be performed with the support of IEF.

Suspicious fraudulent transactions can be signaled in
real-time or before the next working day. In the for-
mer, transactions are provided and processes continu-
ously, while in the latter, transactions are provided in daily
batches and processed overnight. The selection depends on
the type of fraud being addressed and the upstream bank-
ing processes. Both alternatives are captured by Nodes c.1
to c.4 in Figure 1. We have only considered the refine-
ment of the “batch-based” solution’. In order to guaran-
tee that the bank staff can start to investigate suspicious
transactions as soon as possible on the next working day,
the stakeholders established an acceptable processing time
window of 4 hours, with a tolerance of 20%, thereby es-
tablishing a maximum threshold of 4.8 hours. However,
ideally, they would like the new version of the system to
maintain the processing time of the previous version, which
was around 3 hours. These objectives are modelled as func-
tions in the goal “Batch Processed Within Time Window”
(Figure 1, Node c.3). Furthermore, as the goal refers to the
ability of processing the data batch within a specified time,
processing time was chosen as a quality variable. The de-
scription of this goal is as follows:

Goal Achieve[Data Batch Processed Within Time Window]
Instance of performance goal
Def System should be able to process the data batch within an spe-

cified time window. Processing encompasses all the required
tasks from reading the data files until all suspicious transac-
tions are signaled for investigation by the bank.

Objective Functions
Target %

Name Definition Mode of Batches
3hrProcTime p time within 3 hrs Max 50%
4hrProcTime p time within 4 hrs Max 80%
4.8hrProcTime p time within 4.8 hrs Max 100%

Quality Variable
p time : time

Def: Total time required from reading the data batch files until

the signaling of all suspicious transactions.

Sample Space: Set of batches submitted.

In order for the data batch to be processed successfully,
IEF must be able to handle the bank’s transactional volume.

3



Figure 1. IEF Goal Tree

Therefore, Fortent has to determine the range of the data
volume IEF must support and assumes that the data batch
provided by the bank will never exceed the assumed maxi-
mum data batch size (Figure 1, Node d.1). This assumption
is defined as follows:

Assumption Maintain[Batch Size Within Bounds]
Def For every bank, the size of the data batch submitted to the sys-

tem should be less than the expected maximum size for the

bank. Data batch size corresponds to the number of records in

the batch, since every record can be roughly considered of the

same size. The number of records can be estimated from the

number of accounts in a bank. This varies between 0.5 and 3

transactions per account per day. The number of accounts va-

ries from 200 transactions to 100 million transactions, with

majority of banks in range 2 million to 10 million transactions

Quality Variable
batch size : size

Def Number of records in a batch.

Sample Space: Set of batches submitted.
Responsibility: Bank source system. The precise specifica-

tion of the assumptions required much elicitation effort and
allowed us to uncover inconsistencies and disagreements
about projected values. These inconsistencies could be re-
solved through negotiation with all parties and was one of
the main benefits of the requirements activity.

Fortent handles banks of different sizes by varying the
hardware infrastructure on which IEF is executed. Satis-
faction of the goal “Batch Processed Within Time Window”
therefore also relies on the assumption that the hardware
deployed in the bank’s site conforms with Fortent’s advice
for the expected maximum batch size (Figure 1, Node d.2).
Although Fortent has the means to estimate the hardware re-
quired for different data volumes, these estimates are based
on the existing implementation of the system. The new de-

sign means that the relationship between hardware and data
volume will have to be revisited, resulting in an implicit re-
quirement: the behaviour of the system for a varying data
volume and hardware configurations should be predictable.
This assumption is defined as follows:

Assumption Achieve[Deployed Hardware Conforms With Hardware
Advised for Batch Size]

Def For every bank, a hardware configuration is advised based on

the expected maximum batch size for the bank. The bank is

expected to deploy a hardware that is at least as powerful

as the one advised by Fortent to that particular bank.

Hardware configuration is defined in terms of the number

of CPUs, the size of the RAM and the size of the disk.
Responsibility: Bank & Fortent.

Finally, the goal stating that batches should be processed
within a time window for varying assumptions on the banks’
maximum batch size and deployed hardware (Figure 1,
Node d.3) defines the scalability requirement for IEF. The
definition of this requirement is as follows:

Goal Achieve[Data Batch Processed Within Time Window on Varying
Batch Size and Hardware]

Instance of performance goal | scalability goal

Def For every bank, if the bank hardware satisfies Fortent’s

hardware requirements and if the submitted batch is smaller

than the assumed maximum batch size, then the batch process-

ing time should conform with the objective functions defined

in the goal “Data Processed Within Time Window”.

Responsibility: IEF System

Nodes d.1 and d.2 are realized by the combination of two
application domain agents, bank and Fortent, making these
assumptions according to GORE. Node d.3 is assigned to
IEF, turning the goal into a requirement. This requirement
can be used to derive scalability test cases for the system.

4



5 Critical Evaluation

Fortent can use the goal models resulted from the appli-
cation of GORE to support a number of activities, such as
scalability analysis, derivation of test cases and hardware
sizing. As with any requirements engineering exercise, hu-
man issues were a key contributor to the difficulties we ex-
perienced in applying GORE to elicit the scalability require-
ments of IEF. Knowledge is spread across individuals, and
their assumptions are a mix of “common sense” plus peo-
ples’ experiences on different projects. Some data charac-
terization had been performed, but these were isolated at-
tempts, whose results had not been widely circulated. We
found the elicitation of measurable requirements particu-
larly difficult. The varying characteristics of the customer
base led to different assumptions to be considered and peo-
ple found it difficult to provide definite estimates, forcing
us on occasion to perform our own data characterization.

As part of the GORE exercise, we explored high-level
business goals that provided a rationale for low-level re-
quirements. With respect to the scalability framework,
GORE allowed a more precise characterization of scaling
ranges and objective functions. Some scaling bounds hap-
pened to be more flexible than originally stated, while oth-
ers were found to be more rigid. On a previous scalability
analysis of IEF [3], one of the preference functions stated
that the higher the throughput the better. This preference,
however, does not represent the true goals of the business—
in fact, the use of such a function might result in an over-
engineered system. Stakeholders ultimately are not directly
interested in achieving the highest throughput possible. In-
stead, what they really want is to ensure that a data batch
is processed within a given time window, as represented by
the objective functions in the resulting goal graph. One of
the tools that enabled us to elicit goals and estimate bounds
more precisely was to get an explicit statement of all un-
derlying assumptions about the application domain and de-
ployment environments.

With respect to GORE, we found some of its well recog-
nized advantages particularly useful for scalability:

Uncovers assumptions about the application domain:
The scalability of a system is highly dependent not
only on the assumptions made about the current
system environment, but also on the estimation of this
environment in the future. Making such assumptions
explicit is crucial for scalability.

Provides rationale for requirements: Without an explicit
statement of their rationale, scalability requirements
may impose unjustifiable demands on the system de-
sign. Goal refinement trees provide traceability from
high-level strategic objectives to low-level technical

requirements, so that correctness and sufficiency of
scalability requirements can be validated.

Provides traceability: Traceability is particularly useful
in the context of scalability. If assumptions on the
ranges of the application domain are, in the future,
found to be incorrect or no longer valid, they can be
easily traced into the system requirements and design.

Assignment of Responsibilities: By assigning goals to
agents, GORE can distribute the responsibility for
scalability by, for example, making human agents re-
sponsible for characterizing the expected workload.

Measurable Quality variables and objective functions:
The ability to express objective functions in terms of
measurable quality variables was a strong advantage
over our previous use of preferences and utility
functions that relied entirely on untestable values.

However, we found a number of difficulties in applying
GORE for eliciting scalability requirements. Most impor-
tantly, there is currently a lack of sound techniques for elab-
orating scalability goals. In particular:

Handling ranges in the application domain: Although
GORE provides a means of identifying and specifying
measurable quality goals as objective functions, it
overlooks the existence of ranges (and its probability
distribution of values) on the sample spaces of quality
variables and thresholds on the value of these vari-
ables. As a result, techniques are needed for exploring
and articulating such ranges in a goal tree.

Taxonomy of application domain assumptions: While
goals have a clear taxonomy (functional, performance,
reliability, security, etc.), we found no taxonomy for
assumptions. Should an assumption on the range of
a variable of the application domain be treated in the
same way as an assumption on the correctness of the
input format? Which elements should each category of
assumptions contain? Such taxonomy and associated
heuristics would help future modelling efforts.

Handling disagreements on range values: In IEF, some
of the “conflicts” between assumptions were not ac-
tually conflicts or diversions in the usual sense[5], but
rather disagreements about the range of values for ap-
plication domain variables. We were lacking an appro-
priate way to model these disagreements in the goal
model.

Handling time-varying assumptions: How to deal with
assumptions that vary over time? For example, the
increase of electronic transactions and advances on
hardware technologies means that the assumptions on

5



IEF’s application domain and required infrastructure
are bound to vary over time. Can this evolution be rep-
resented in goal models?

Modelling Hardware Characteristics in Goal Trees:
Scalability is frequently dealt with by means of a
hardware-based scaling strategy, where the system’s
capacity is increased to deal with the variation on
the application domain [6]. The boundary between
requirements and design is vague, so when should a
distinction between hardware and software be made in
a goal model? For IEF, we explicitly chose to model
assumptions on hardware infrastructure because such
strategy imposes a requirement on the predictability
of system performance on various infrastructures, and
because the responsibility for software and hardware
were spread over two organizations.

6 Conclusion

In this paper we described our experience in applying
goal-oriented requirements engineering to elicit and artic-
ulate the scalability requirements of a large real-world sys-
tem. We found that a number of well-recognized advantages
of GORE are particularly useful for scalability. However,
there is a lack of techniques for elaborating goal models
with respect to scalability goals.

We intend to use our experience to devise systematic
techniques for the application of GORE to elicit scalability
requirements. In particular, we intend to create refinement
patterns for scalability goals, to devise a taxonomy and de-
scribe elements for scalability assumptions, and to investi-
gate conflicts between and evolution of range assumptions.

7 Acknowledgments

This work was partially supported by the European
IST FET programme in project SENSORIA (IST-2005-
016004). Leticia Duboc is funded under a studentship from
UCL. David Rosenblum holds a Wolfson Research Merit
Award from the Royal Society. The authors gratefully thank
Steve Brewin, Iain Mclaren, Andrew Towers and other sea-
soned developers for discussions of this work.

References

[1] G. Brataas and P. Hughes. Exploring architectural scal-
ability. In Proc. 4th WOSP, pages 125–129. ACM
Press, 2004.

[2] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos.
Non-Functional Requirements in Software Engineer-
ing. Springer, October 1999.

[3] L. Duboc, D. Rosenblum, and T. Wicks. A frame-
work for characterization and analysis of software sys-
tem scalability. In Proceedings of ESEC-FSE’07, pages
375–384, New York, NY, USA, 2007. ACM.

[4] E. Letier and A. van Lamsweerde. Reasoning about par-
tial goal satisfaction for requirements and design engi-
neering. In Proceedings of FSE’04, pages 53–62, New
York, NY, USA, 2004. ACM.

[5] A. van Lamsweerde. Goal-oriented requirements engi-
neering: A guided tour. In Proceedings of RE ’01, page
249, Washington, DC, USA, 2001. IEEE Computer So-
ciety.

[6] C. B. Weinstock and J. B. Goodenough. On system
scalability, 2006. SEI, Carnegie Mellon University
CMU/SEI-2006-TN-012.

6


