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Abstract—App reviews can provide valuable information about

user needs but analyzing them manually is challenging due to

their large quantity and noisy nature. To overcome this problem,

a variety of app review mining techniques have been proposed.

So far, however, research in this area has paid little attention

to the software engineering use cases of the mining techniques.

This limits the understanding of their usefulness, applications and

desired future developments. We address this problem by elabo-

rating a reference model relating app review mining techniques to

specific software engineering activities. In this paper, we present

a unified description of software engineering use cases for mining

app reviews and define a reference architecture realizing these use

cases through a combination of natural language processing and

data mining techniques. The use cases provide a novel systematic

exposition of the envisioned applications and benefits of app

review mining for software engineers. The reference architecture

synthesises the diversity of research to realise these benefits

and provide a general framework guiding the development and

evaluation of future research and tools.

Index Terms—Requirements Engineering, Mining User Feed-

back, Software Engineering, Reference Architecture, Software

Analytics

I. INTRODUCTION

App reviews provide a rich source of information that can
help software engineers to maintain and evolve their prod-
ucts [13], [59], [73]. Exploiting this information, however, is
challenging due to the large number of reviews [29], [36], [56],
[73] and the difficulty in extracting actionable information
from short informal texts [43], [56].

A variety of app review mining techniques have been
proposed to address the problem [43], [44], [59], [73]; for
example, to classify reviews by topics [29], [38], [56], [61],
to extract information like bug descriptions [23], [45], or
to analyze user opinions [30], [39]. Research in this area
has grown rapidly [23], [59], resulting in a large number
of scientific publications (at least 182 between 2012 and
2020) [23].

A few studies take the perspective of practitioners and
analyse the state of practice in exploiting user feedback
for software maintenance and evolution [23], [85]. For in-
stance, studies interviewed practitioners to understand how
user feedback is captured and used by software engineers for
specific tasks, such as verification and validation [46]; and they
found that many practitioners still use a manual approach for
collecting feedback and that the exploitation of feedback in

their software development process is still not systematic [85].
Other interviews with practitioners highlight the importance
that software developers give to user reviews in app stores to
guide the design and evolution of their apps [13], [84].

These studies show that a gap still exists between the
perspectives of researchers and developers on how to leverage
online user feedback for software engineering. Understanding
which tools and techniques should be combined, and how, to
include user feedback mining into software development in a
systematic way is still an open problem.

In this perspective paper, we present a study that aims to
address the problem by elaborating a unified description of
software engineering use cases for mining app reviews and
by defining a reference architecture that realizes these use
cases. The purpose of the reference architecture is to help
researchers and tool developers to identify what components
can be included in app review mining tools and how the
components can be used together the realize specific software
engineering use cases. The use cases describe the usage sce-
narios of this architecture for software engineering purposes.
More specifically, we study the following research questions:
RQ1: What are the software engineering use cases for mining
app reviews?
RQ2: What reference architecture can realise these use cases?
RQ3: What partial implementations of this reference architec-
ture already exist?

We answer these questions by analysing an existing data
set collected for a previous systematic literature review
(SLR) [23]. To answer RQ3, we have extended the SLR data
set with additional information about commercial app review
mining tools. The novelty of this paper with respect to the
SLR is the study of three new research questions (RQ1-RQ3)
by applying systematic information modelling and knowledge
synthesis steps detailed in Section III. This study generates
three novel outputs: (i) a synthesis of the software engineering
uses cases for app review mining, (ii) a reference architecture
for realizing these use cases, and (iii) a mapping between
app review mining tools and the reference architecture compo-
nents. This mapping covers publicly available tools in research
papers as well as those from commercial organisations. The
use cases shed new light on the applications and benefits of app
review mining techniques for software engineers, notably by
relating use cases to software engineering goals. The reference



Fig. 1: The main concepts that we use to describe our reference
architecture.

architecture synthesises the diversity of research to realise
these goals and provides a general framework guiding the
development and evaluation of future research and tools. The
mapping provides evidence of the perceived usefulness of app
review analysis in practice and identifies gaps in research and
commercial tools.

II. TERMINOLOGY

Figure 1 illustrates the main concepts used in the paper to
describe the use cases and reference architecture for app re-
view mining. A reference architecture is a generic architecture
for a class of systems; it can be used as a foundation for the
design of concrete architectures from this class for a particular
domain [14]. In this study, we view a reference architecture as
a generalization of app review analysis tools; each facilitating
one or more app review analyses. Reference architectures can
generally be presented at different level of abstraction [22];
but they typically show a list of services (a.k.a. functions)
organized into components as well as their interactions. We
also define the components and services of our reference
architecture and communicate how integrating the services can
realise software engineering use cases; where a use case is a
description of how an end-user wants to use a system to meet
their goal; it is written from the end-user’s perspective [53].
We consider a software engineering use case as a description
of the ways an app developer uses an app review analysis tool
(‘What’) to accomplish their goals (‘Why’) related to software
engineering activities; where a software engineering activity
refers to any activity in the development, evolution, operation
and maintenance of software [19].

III. RESEARCH METHODOLOGY

We followed four main steps to answer the research ques-
tions RQ1–RQ3: i) data collection, ii) information modeling,
iii) knowledge synthesis and iv) reference architecture val-
idation. We first used information collected from scientific
publications to model the application of app review analysis
in the context of software engineering activates, and then to
synthetise this knowledge into software engineering use cases
for mining app reviews (RQ1). We also used the collected
information to define a reference architecture by generalizing
a set of tools that researchers have proposed in the literature
(RQ2). To evaluate the feasibility of the reference architec-
ture (RQ3), we mapped their components to the features of
research and commercial app review analysis tools that are
publicly available. We collected information about the tools

and their features from the literature as well as the tools’
vendor websites.
i) Data Collection. We used an existing dataset collected
for a previous systematic literature review [23] as it contains
information to answer RQ1–RQ3. The inclusion criteria for
this SLR were all the peer-reviewed papers about app review
analysis for software engineering activities published between
January 1, 2012 and December 31, 2020. The SLR identified
182 publications satisfying these criteria. These publications
were identified and analysed using recommended practices for
systematic literature reviews [48]. The SLR analysed each
publication by systematically extracting and collecting 18
pre-specified types of information (from now called ‘data
items’) that have been reported in a publication. These data
items concerned the information about the supported software
engineering activities, the type of app review analysis, the type
of mining technique, and the empirical evaluation presented in
a publication. The complete set of the extracted information
is stored in a spreadsheet [28]. Table I lists the data items
used in this paper; we have selected these data items because
they contain information to answer RQ1–RQ3. The SLR
applied classification schemas on selected data items for the
purpose of information synthesis. The schemas were applied
on such collected information of a given type which could
not be grouped directly; the information, reported among the
publications, was too diverse to be synthetized directly. In
particular, the SLR classified the collected information for
the software engineering activity (F1) as one of 14 standard
software engineering activities as defined in the software
engineering body of knowledge [19]; and the app review
analysis (F3) as one of 9 broad types identified from the
previous surveys on intelligent mining techniques [83] and
text analytics [62], [78], [79]. The classification categories
have been systematically derived from 182 publications using
content analysis [18]. The SLR evaluated the quality of its
data extraction and data classification by measuring inter- and
intra-rater agreements between the first author of that study
and an external assessor. The SLR data set does not contain
explicit data items listing the software engineering uses cases
and reference architecture components for app review mining
tools.
ii) Information Modeling. We used the collected information
F1–F3 (‘software engineering activity’, ‘justification’ and ‘app
review analysis’) to model relationships between software en-
gineering activities and different types of app review analysis;
and to model the realization of a software engineering activity
when the app review analysis is applied in their context. To
construct the models, we followed the inductive reasoning
method proposed for software system modeling [81], [82]; the
method supports a creative process in which different pieces of
information are combined to form a new artifact [82]. We first
manually examined and compared the collected information
about the use of different types of app review analysis for
a software engineering activity (F1–F3); we then interpreted
this information and iteratively constructed the models. We
modeled each software engineering activity realization from



TABLE I: Data items from a previous systematic literature review [23] used to answer RQ1-RQ3.

ID Data Item Description

F1 Software Engineering Activity
What software engineering activity is supported by mining app reviews. We
refer to activities generally accepted in the SE community (e.g. requirements
elicitation) [19].

F2 Justification An explanation of why software engineering activity is supported.

F3 App Review Analysis
App review analysis used to support SE activity. We separated collected data
item into an app review analysis type (F3.1) e.g. classification; and a mined
information type (F3.2) e.g. bug report.

F4 Replication Package
An availability of the replication package, including details about its content
such as a tool implementation or an evaluation dataset.

the process and the service viewpoints using ArchiMate mod-
elling language [89]; we chose ArchiMate as it is a standard
modeling language in business and information technology
domains. The title of a model documents the name of a
modeled software engineering activity. The process viewpoint
in a model describes the steps that a developer would follow to
complete a software engineering activity; whereas the service
viewpoint documents the types of app review analysis that sup-
port the developer’s steps (e.g. through their automation). We
identified the types of app review analysis used in the context
of a software engineering activity from the collected informa-
tion F1 (‘software engineering activity’) and F3 (‘app review
analysis’); we specified each type of app review analysis at
the coarse-grained level (e.g. ‘Classification’) and fine-grained
level (e.g. ‘Classification by request type’). We identified the
developer’s steps for a software engineering activity and their
relationships with the types of app review analysis from the
collected information F1 (‘software engineering activity’) and
F2 (‘justifications’). As a result of the modeling step, we
obtained 19 models for 14 software engineering activities
reported in the literature; each model presents the realisation
of a software engineering activity with the use of app review
analysis. The number of models is greater than the number
of activities as the literature proposed alternative realisations
of some of these activities (e.g. requirements elicitation). The
models can be found in full as supplementary material [31].
iii) Knowledge Synthesis. We used the models derived from
the information modeling step to define the use cases (RQ1)
and the reference architecture (RQ2) [34]; we manually ex-
amined the models, identified their commonalities, and syn-
thetised the obtained knowledge to form the target artifacts.

We first used the models to define the description of the use
cases; each model was initially transformed into a separate use
case description. A use case description included four types
of information: the description of a developer’s interaction
with an app analysis tool (the ‘What’), a goal of a use case
(the ‘Why’), a software engineering activity related to this
goal, and the justification of how app review analysis supports
this activity. We used the information about the elements
in the process view of a model (i.e., developer’s steps) to
elaborate the description of a developer’s interactions with
an app analysis tool; each developer’s step corresponds to
a sentence describing such an interaction (e.g. ‘developer
can identify user sentiment about feature of an app’). We

also examined all the steps in a model to infer an overall
developer’s goal for using the tool; we used this information
to define the goal of a use case. In principle, an overall goal
of using any data analytics tool is to analyse a certain type
of information from data [71]; we therefore examined the
developer’s steps in the process view of a model to determine
what type of information a developer is interested in app
reviews. We then defined the goal of a use case based on this
finding. Having analysed all the models derived from the in-
formation modeling step, we identified three broad categories
of information that a developer is interested in app reviews:
user opinions, user requests and non-functional requirements.
We consequently defined the goal of each use case using one
of these three categories (e.g. ‘analyze user opinions’). To
determine a software engineering activity related to this goal,
we referred to the title of model recoding this information
(e.g. ‘requirements elicitation’). As a result, we obtained 19
fine-grained use cases; each fine-grained use case describes
how a developer accomplishes one out of 3 goals related to
14 software engineering activities through an interaction with
an app review analysis tool. We subsequently grouped the
fine-grained use cases based on their goals and defined one
coarse-grained use case for each group. We combined a group
of fine-grained use cases into a coarse-grained use case as the
fine-grained use cases shared a common goal and described
the same or related developer’s use of an app review analysis
tool. A coarse-grained use case aggregated information from
a group of fine-grained use cases: their description of the
developer’s use of an app review analysis tool, their overall
goal for using the tool, software engineering activities related
to the goal, and the justification of how an app review analysis
supports the software engineering activities. As a result, we
obtained 3 coarse-grained use cases that we used to answer
RQ1.

We next defined the reference architecture using the infor-
mation about the elements in the service view of the models
derived from the information modeling step; we defined the
components of this architecture and their services using the
information about the types of app review analysis modeled in
this view. We used information about both fine- and a coarse-
grained types of app review analysis that the models described.
We first extracted information about all the fine-grained types
of app review analysis that have been described in the models
(e.g. ‘classify reviews by request type’, ‘identify feature’,



etc.); we then grouped the extracted information thematically.
To define the grouping categories, we used the information
about the coarse-grained type of app review analysis that have
been described in the models. We used this information to
define the grouping categories as the coarse-grained types
of app review analysis were more general than fine-graine
ones; and coarse-grained types of app review analysis (e.g.
‘classification’) were shared among fine-grained ones (e.g.
‘classify reviews by request type’ and ‘classify reviews by non-
functional requirements’). We consequently obtained 8 broad
groups of 18 fine-grained types of app review analysis. Each
group aggregated one or more fine-grained types of app review
analysis. We defined the architectural components and their
services based on these groups. We defined an architectural
component using a group of related fine-grained types of
app review analysis. We derived the name of a component
using a grouping category (e.g. ‘classification component’);
whereas the information about a fine-grained type of app
review analysis in a group corresponded to a service of that
component. As a result, we obtained 8 components, each
facilitating between 1 and 3 services. We next structured these
components into three logical layers of our reference archi-
tecture [17]. We used the list of the components to describe
the presentation and the service layers of the architecture; we
then added a new ‘Database’ component to describe the data
layer. We added this new component as none of the previously
identified components were intended to store and facilitate
data to the other already identified components. We inferred
the missing services of the ‘Database’ component using the
list of the already identified components and the input/output
dependency matrix [33]; we listed all the services of the
already identified components in the rows to the left of the
matrix and in the columns above the matrix; and next marked
their input/output dependencies on off-diagonal cells. Having
analysed the dependencies, we identified 3 missing services
whose outputs served as inputs to the other already identified
components and their services. We added the missing services
to the ‘Database’ component. We consequently obtained the
target list of 9 components and their 21 services that we used
to answer RQ2.
iv) Reference Architecture Validation. The objective of our
reference architecture is to facilitate the future design and
comparisons of app review mining tools for software engi-
neers. The success of our reference architecture can only be
established in the long term by the extent to which it supports
this objective. In this study, we validated the feasibility of the
reference architecture by verifying whether partial implemen-
tations of this architecture already exist (RQ3). As previous
studies (e.g. [49], [65]), we validated our reference architec-
ture using the matrix traceability method [21]; this method
supports the re-use of parts of a system by comparing compo-
nents of new and existing systems. We therefore mapped the
features of app review mining tools to the components of our
architecture. We selected both research and commercial tools
that are publicly available. We opted for publicly available
tools to increase the reliability of our findings [47]. To identify

research tools and their features, we used information F3
(‘app review analysis’) and F4 (‘replication package’) from
the SLR data set [23]. To identify commercial tools, we
used popular software comparison platforms: TrustRadius [9]
and G2 [7]. In each platform, we listed all the tools in the
‘Mobile Analytics Tools’ category. We then examined short
descriptions of the tools and selected those facilitating app
review analysis. For the selected tools, we further examined
the full descriptions of the tools on their vendor’s websites
to identify features that these tools facilitate. As a result,
our analysis considered 29 app review mining tools: 20 peer-
reviewed and publicly available research tools referenced in
the SLR and 9 commercial tools that we identified from
the software comparison platforms. We then constructed a
traceability matrix showing which components of the reference
architecture are implemented in each tool [14].

IV. SOFTWARE ENGINEERING USE CASES

We now present three coarse-grained software engineering
use cases for mining app reviews (RQ1). They cover all
the usage scenarios of app review analysis tools that have
been envisioned in the literature; we have inferred the use
cases from the literature using data items F1-F2 (‘software
engineering activity’ and ‘justification’) as described in the
modeling and knowledge synthesis steps in the previous sec-
tion. The use cases can help app developer to: i) analyze
user opinions, ii) analyze user requests and iii) analyze non-
functional requirements. The use cases are related to 14
software engineering activities from the Software Engineering
Body of Knowledge [19]. The following sections describe each
use case and explain how they contribute to these activities.
For each use case, we give a brief description of the intended
use of a system from the app developer’s perspective (the
‘What’); we describe what app developers do with a system
to accomplish their goal; and specify the relation of this use
case to software engineering activities (the ‘Why’) [53]. We
give references to the papers justifying the relevance of the
use cases for software engineering activities.

A. Use Case 1: Analyze User Opinions
Description (What): The app developer’s goal is to analyze

user opinions. To accomplish this goal, an app developer
can use a system to: identify users’ sentiments (positive,
negative or neutral) about features of an app; search for
reviews referring to a concrete opinion of their interest; and
to summarize these reviews to present their main points.
Software Engineering Activities (Why): This use case con-
tributes to several software engineering activities:

• Requirements Elicitation, Problem and Modification
Analysis: Negative opinions may indicate problems with
app features or dissatisfied users [13], [66]. Examining
reviews providing users justifications for these opinions
can help to identify problems with app features [29], [30],
requested modification [45] or new requirements [29].

• Requirements Specification: Reviews justifying negative
opinions can be used as information for requirements



specification or ad-hoc documentation [52], [57], [66];
they can communicate why negatively commented fea-
tures do no meet users’ goals and provide rationale for
alternative variants of app behavior.

• Requirements Prioritization, Requested Modification Pri-
oritization: When added with statistics, user opinions
may help developers prioritize their work [39], [45],
[57]. Developers may compare how often these opinions
appear, for how long they have been made, and whether
their frequency is increasing or decreasing [29], [30].

• Validation by Users: Knowing what features users like or
dislike can indicate user acceptance of these features [30],
[39]. Examining reviews of these opinions may help to
know what users say about these features [13], [23].

B. Use Case 2: Analyze User Requests
Description (What): The app developer’s goal is to analyze

user requests. To accomplish this goal, an app developer
can use a system to: classify app reviews by the types of
user requests (e.g., bug report or feature request); identify
what specific user requests have been made in reviews (e.g.,
“add ability to make a phone call”); summarize app reviews;
identify which app reviews should be replied and generate a
response to the reviews; and to link user requests to the other
software artifacts (e.g., stack traces, or source code).
Software Engineering Activities (Why): This use case con-
tributes to several software engineering activities:

• Requirements Elicitation, Problem and Modification
Analysis, User Interface Design: Reviews requesting new
features may point to new requirements [56], whereas
those requesting changes or reporting problems may
indicate potential perfective and corrective modifica-
tions [66], [86].

• Requirements Specification, Test Documentation: Re-
views with user requests can serve as ad-hoc specification
as they include information about bugs and ideas for
new features that users communicate [56], [57]. Reviews,
describing steps to reproduce bugs, can be useful to
complement crash reports of stack traces which could be
difficult to understand standalone [37], [70].

• Test Design: Analyzing reviews reporting problems may
describe scenarios in which an unusual situation emerged
or there was lack of workarounds [57]. The information
can be used to design test cases capturing such exception
and exercising the scenarios [38], [57].

• Requirements Prioritization, Requested Modification Pri-
oritization, Test Prioritization: User requests may help
developers prioritize their work when added with statis-
tics [64], [73]. Comparing how often these requests
appear, for how long these requests have been made, and
whether their frequency is increasing or decreasing may
indicate relative users importance of these requests [29].

• Validation by Users: Identifying and quantifying reviews
reporting problems can help during public beta testing
before an official release [13], [56]. If the number of
problems is high, or the problems concern core features,

a new release can be postponed [13], [29]. Analyzing
the reviews can help to know what users say about these
problems [13], [30].

• Help Desk: Responding to reviews may answer app users
questions or assist in troubleshooting [41], [60]. Such
responses may also inform users about addressing their
requests (e.g., new modifications or fixing problems) [60].

• Impact Analysis: Reviews with change requests can be
linked to source code and indicate code snippets requiring
modifications [20], [67], [68]. And vice versa, source
code modifications can be traced back to reviews; Quan-
tifying these reviews could help determine the impact of
implemented modifications e.g., how many user requests
have been satisfied by the modifications [20], [67], [68].

C. Use Case 3: Analyze Non-Functional Requirements
Description (What): The app developer’s goal is to analyze

non-functional requirements (NFRs). To accomplish this goal,
an app developer can use a system to: classify app reviews
by the types of NFRs they convey; identify what specific
requirements have been made in app reviews; summarize app
reviews; and to identify user sentiment related to the reviews.
Software Engineering Activities (Why): This use case con-
tributes to several software engineering activities:

• Requirements Elicitation, Problem and Modification
Analysis, Test Design: Negative reviews discussing qual-
ity attributes may indicate poor app quality, problems
with features, or conditions an app must satisfy to be ac-
cepted by users [44], [55]. Understanding what user says
about these attributes may help to elicit new requirements,
identify issues, or serve as inspiration for designing test
scenarios or acceptance criteria [38], [38], [57].

• Requirements Categorization: Reviews discussing NFRs
can be labeled with quality attributes they discuss (e.g.,
performance, or usability) [38], [44], [55].

• Requirements Specification, Design Rationale Capture:
Reviews discussing NFRs can serve as ad-hoc docu-
mentations of user requirements [44], [56], [57]. Such
specification may be later used by software engineer to
justify reasons why certain decisions has been made e.g.,
why certain mobile phone model has been supported,
or why certain security protection mechanism has been
implemented [51].

• Requirements Prioritization, Requested Modification Pri-
oritization: Added with statistics, reviews reporting NFRs
may help development team to prioritize their works [13],
[52], [57]. Comparing how frequently NFRs are reported,
for how long do user reported them and whether these
numbers are increasing or decreasing may indicate users
relative importance of these requirements [51], [73].

V. REFERENCE ARCHITECTURE

This section presents the reference architecture that we
defined upon the generalisation of existing app review mining
tools (RQ2). We inferred the components and their services
from the literature using data item F3 (‘app review analysis’)



Fig. 2: Reference architecture for mining app reviews: components illustrated by rectangles; their name written in bold; services
they facilitate written in italics.

as described in the modeling and knowledge synthesis in the
research methodology (see Sec. III). Figure 2 illustrates the
structure of the reference architecture that is comprised of
functional components; each component is a modular set of
services. The components are organized in three layers: pre-
sentation, service and data layer. In the following subsections,
we define the components and present examples of how they
can be wired to realize the software engineering use cases.
For simplicity, we present the realisation of each use case in
isolation. The architectural components can, however, be wired
in more complex configurations and facilitate, for example, the
realisation of a combination of these use cases.

A. Architectural Components and Services

Visualization Component. The visualisation component
aids developers in interpreting mined information from re-
views. This component provides three services, each generat-
ing analytics dashboard per review mining use case: Display
user opinion analysis, Display user request analysis and
Display NFRs analysis. Generated dashboards organize and
visualize mined information using typical graphical widgets
such as tables, pie charts, bar charts and trend analysis.
Search and Information Retrieval Component. This com-
ponent provides three services: Find feature-related reviews
searches for reviews discussing a specific feature of interest.
An example of a retrieved review for a queried feature “add
reservations” is “Please, improve adding reservations”; Find
code-related reviews links reviews requesting modifications to
a source code component these modifications refer to (e.g.,

class or method). An example of such a link is between a
review “I cant download most of the songs” and a code class
“SongDownloadManager”; Find stack-trace related reviews
finds reviews referring to a specific stack trace. An example
of a retrieved review for a stack trace “..com.hideKeyboard..”
is a review “Crashing when I hide keyboard”.
Information Extraction Component. Relevant information
can be located at different places within a review (e.g., in the
middle of a sentence). The information extraction component
locates relevant information in a review and pulls it out.
The component facilitates three services extracting information
from reviews; Identify features extracts features discussed in
reviews. An example of an extracted feature from a review “I
have to send message to my colleague” is “send message”.
Identify user requests extracts user requests reported in re-
views. Given a review “Please, add the ability to send message.
I need it.”, the extracted user request is “please add the
ability to send message”. Identify non-functional requirements
extracts phrases discussing quality attributes of an app. An
example of a non-functional requirement extracted from a
review “I like the app, but the navigation should work faster on
my iPhone” is “navigation should work faster on my iPhone”.
Classification Component. The classification component or-
ganises reviews into predefined categories. The component
provides two services classifying reviews based on different
categorization schemas. Classify reviews by request types clas-
sifies reviews based on types of user request reviews convey
(e.g. bug report, feature request or modification suggestion).
An example of a review classified as “bug report” is “The app



crash when I send message. Please, fix it”. Classify reviews
by non-functional requirements categories reviews based on
quality attributes mentioned in reviews. An example review
classified as “performance” is “The uploading file works very
slow, any improvements?”.
Clustering Component. The clustering component organizes
reviews, their sentences or textual snippets into groups (called
clusters) whose members share some similarity, e.g. discussing
the same problem. The component provides two services
grouping different types of information; Cluster user requests
groups user requests based on their similar content. An exam-
ple of user requests clustered together are “The application is
slow” and “the app could work faster”; Cluster user opinions
groups opinions referring to the same features. User opinion
referring to features “attach file in message” and “add file to
message” are an example of the same cluster.
Sentiment Analysis Component. Sentiment Analysis pro-
vides services interpreting users sentiments discussed in re-
views. The component provides two services; Identify feature-
specific sentiment interprets users sentiments about features
that users discuss in reviews (also known as user opinions).
A “positive” sentiment about a feature “send message” is an
example of a user opinion in a review “I like the current
app version”. Identify review sentiment interprets overall senti-
ments expressed in reviews. An example of review expressing
“positive” sentiment is “I like the current app version”.
Summarization Component. This component provides the
service summarize reviews that produces a short and compact
description outlining the overall content of a review collection.
“Fix the problem with sending messages” is an exemplary
summary of reviews “The app creates some problems. Sending
message crashes whenever I try it. Fix it” and “Love this app,
but it often crashes. Fix the problem with sending messages”.
Recommendation Component. This component provides the
service suggest review response. The service identifies reviews
that should be responded to and generates responses to these
reviews. A sample response to a review “The app drains my
phone battery. Please fix it” is “Thank you for the comment.
We will fix the problem in the next release.”
Database Component. The database stores review mining
related data and provide the data to other architectural compo-
nents. This component provides access to stored data through
three services; Provide reviews facilitates reviews collected
from app store and stored in the database; Provide stack-trace
shares stack traces generated from automatic testing tool and
stored in the database; Provide source-code retrieves files with
source code stored in the database.

B. The Realisation of Software Engineering Use Cases

In the previous section, we have presented the static view
of the reference architecture by specifying its components and
services. We now present its dynamic view [63]; we present an
example of how the architecture could facilitate the use cases
defined in Section IV. As for other reference architectures in
other domains [32], [65], we present an example of how –and

in what order– the components of the architecture can be wired
together to realise these use cases.

For each use case realisation, we first give a short paragraph
describing what a developer does with a system based on
the previous use case specification (see Sec. IV). We then
present what components can facilitate the intended system
use, what services these components exploit, and what data-
flows between these components are.

Use Case 1: Analyse User Opinion. We demonstrate the
main scenario in which: (i) an app developer identifies users’
sentiments about features of an app, and then (ii) app developer
summarises reviews to present the main points. We also
present an alternative scenario in which: (iii) an app developer
searches for reviews referring to a concrete opinion of their
interest and read them. For the sake of illustration, we consider
a system storing two app reviews: ‘I love send message’ (R1)
and ‘Video conferences is useless’ (R2). Table II presents what
components and in what orders realise the intended developer’s
use of a system in each scenario. Figure 3 illustrates dataflows
between components in these scenarios.

TABLE II: Realisation of Analyse User Opinion Use Case

Precondition
Database stores app reviews: ‘I love send message’ (R1) and ‘Video
conferences is useless’ (R2).

Main

Scenario

(i) App developer identifies users’ sentiments about features of

an app.

(1) Database provides reviews R1, R2. The reviews are sent to
Information Extraction.

(2) Information Extraction identifies features ‘send message’ and
‘video conferences’. The features are sent to Sentiment Anal-
ysis.

(3) Database provides reviews R1, R2. The reviews are sent to
Sentiment Analysis.

(4) Sentiment Analysis identifies two opinions: ‘positive’ for
‘sending message’ and ‘negative’ for ‘video conferences’. The
opinions are sent to Visualization.

(ii) App developer summarises reviews to present the main

points.

(5) Database provides review R1. The review is sent to Summa-
rization.

(6) Summarization generates a review summary ‘I love sending
messages’. The summary is sent to Visualization.

Alternative

Scenario

(iii) App developer searches for reviews referring to a concrete

opinion of their interest (e.g., ‘video conference’).

(1) Database provides reviews R1 and R2. The reviews are sent
to Searching and Information Retrieval.

(2) Searching and Information Retrieval finds feature-related re-
views R2. The review is sent to Information Extraction.

Steps 2 to 4 from the main scenario are followed.

Use Case 2: Analyse User Request. We demonstrate the
main scenario where: (i) an app developer identifies what user
requests have been made in reviews, then (ii) an app developer
summarises reviews to present the main points for a bug report.
We also present an alternative scenario in which: (iii) an app
developer responds to reviews requesting new features. For
the sake of illustration, we consider a system storing three app
reviews: ‘Please, add the ability to make video call’ (R1), ‘Fix
sending messages’ (R2) and ‘Sending messages is broken, it
crashes with large attachments’ (R3). Table III presents what
components and in what orders realise the intended developer’s
use of a system in each scenario. Figure 4 illustrates dataflows
between components in these scenarios.

Use Case 3: Analyse Non-functional Requirements. We



Fig. 3: Dataflow between components for Analyse User Opin-
ion Use Case

TABLE III: Realisation of Analyse User Request Use Case

Precondition

Database stores app reviews: ‘Please, add the ability to make video
call’ (R1), ‘Fix sending messages’ (R2) and ‘Sending messages is
broken, it crashes with large attachments’ (R3).

Main

Scenario

(i) App developer identifies what user requests have been made

in reviews.

(1) Database provides reviews R1, R2, R3. The reviews are sent
to Classification.

(2) Classification categorizes R1 as ‘feature request’, R2 and R3
as ‘bug report’. The classified reviews are sent to Information
Extraction.

(3) Information Extraction identifies user requests: ‘add the ability
to make video call’ (U1), ‘Fix sending messages’ (U2) and
‘Sending messages is broken’ (U3). The requests are sent to
Clustering.

(4) Clustering groups U2, U3 together and cluster U1 separately.
The request groups are sent to Visualization.

(ii) App developer summarises reviews to present the main points

for a bug report.

(5) Database provides reviews R2, R3. The reviews are sent to
Summarization.

(6) Summarization generates a summary of reviews ‘Fix sending
messages, it crashes with large attachments’. The review
summary is sent to Visualization.

Alternative

Scenario

(iii) App developer responses to reviews requesting new features.

Step 1 from the main scenario is followed.
(1) Classification categorizes R1 as ‘feature request’, R2 and R3

as ‘bug report’. The classified reviews are sent to Recommen-
dation.

(2) Recommendation suggests review response ‘Thx for the sug-
gestion. We will add the feature it in the next release’. The
response is sent to Visualization.

demonstrate the main scenario in which: (i) an app developer
classifies reviews by the types of NFRs they convey, (ii)
an app developer identifies user sentiment per each NFR
category, and then (iii) an app developer identifies what
specific requirements have been made in app reviews. For
the sake of illustration, we consider a system storing two app
reviews: ‘New GUI is too old-fashioned. Improve it.’ (R1) and
‘This app is not secure anymore. Continuously collects my
data.’ (R2). Table IV presents what components and in what
orders realise the intended developer’s use of a system in this
scenario. Figure 5 illustrates dataflows between components.

Fig. 4: Dataflow between architectural components for User
Request Use Case

TABLE IV: Realisation of Analyse NFR Use Case

Precondition

Database stores app reviews: ‘New GUI is too old-fashioned. Improve
it.’ (R1) and ‘This app is not secure anymore. Continuously collects
my data.’ (R2).

Main

Scenario

(i) App developer classifies reviews by the types of NFRs they

convey.

(1) Database provides reviews R1, R2. The reviews are sent to
Classification.

(2) Classification categorizes R1 as ‘Usability’ and R2 as ‘Secu-
rity’. The classified reviews are sent to Visualization.

(ii) App developer identifies user sentiment per each NFR

category.

(3) Database provides reviews R1, R2. Reviews are sent to
Sentiment Analysis.

(4) Sentiment Analysis identifies ‘negative’ sentiment in R1 and
‘positive’ sentiment in R2. Review-specific sentiments are sent
to Visualization.

(iii) App developer identifies what specific requirements have

been made in app reviews (e.g., about Usability).

(5) Database provides review R1. The review is sent to Informa-
tion Extraction.

(6) Information Extraction identifies requirement ‘GUI is too old-
fashioned’. The requirement is sent to Visualization.

VI. VALIDATION

We now answer RQ3 (what partial implementations of the
reference architecture already exist?) to validate the feasi-
bility of the reference architecture [77]. Following previous
work [49], [65], we validate our reference architecture using
traceability matrix method [21]; this method supports reuse of
parts of a system by comparing components of new and exist-
ing systems. We used information about features of available
app review mining tools that we collected from the research
literature and commercial websites (see Sect. III). We then
related these features to the components of the architecture.

Table V illustrates the mapping between features of app
review mining tools and the components of our reference
architecture. Rows denote app review mining tools with
a breakdown of research prototypes and commercial tools,
whereas columns indicate the architectural components and
their services. A “X” at an intersection indicates that the



Fig. 5: Dataflow between architectural components for Anal-
yse NFR Use Case

particular tool implements the service of the concrete architec-
tural component. The bottom row reports the number of tools
implementing a specific service, whereas the far-right column
shows the number of services implemented in a tool.

The table reports 29 publicly available tools in total: 20
research prototypes and 9 commercial ones. Looking at the
columns, the results show the number of tools implementing
each service ranges from 1 to 19 tools. On average, each
service is implemented in 5 tools. The most commonly im-
plemented service is Classify reviews by request type, present
in 19 tools. The least commonly implemented services are:
Display NFRs analysis, Identify NFRs; each implemented in
only one tool. The results show all the services (and thus
components) of our architecture are implemented in publicly
available tools. When looking at the rows of the table, each
tool implements between 1 and 9 services (out of 17), with
an average of 3 services per tool. Two commercial tools:
Appbot [1] and Applysis [4] implement 9 services - the largest
number. Whereas seven research prototypes implement only a
single service of the architecture [24], [25], [36], [40], [75],
[75], [80]. A closer analysis of these results also indicates
most of the tools implement a different set of services; and the
partial implementations of our architecture are scattered across
these tools. Table V therefore indicates that the reference
architecture provides a suitable generic model for the class
of existing app review mining tools in research and industry.
This reference architecture is not intended to be a definitive
final model but rather to provide the basis for comparing tools
and for further refinement and extension.

VII. PERSPECTIVES

The use cases and reference architecture provide the be-
ginning of a common terminology for researchers and practi-
tioners to discuss and compare their approaches. Identifying
the intended use cases of app review analysis techniques
and describing the architectural components involved in the

realisation of the use cases can help researchers position their
work with respect to related work.

Table V allows researchers to identify what app review
analysis have already been implemented in commercial tools
(e.g. ‘classify review by type’). Commercial implementations
provide evidence of the perceived usefulness of the analysis
in practice. Commercial tools however do not report the
performance of their techniques, and such performance has so
far not be evaluated independently. Such scientific evaluation
and comparison with the corresponding analysis in research
tools would be beneficial to researchers, tool vendors, and tool
users. Evaluating app review analysis in commercial tools may
also enable a better understanding of the real-world contexts
and uses cases for the techniques. This would lead to refining
and extending the uses cases in Sect. IV, which in turn would
enable researchers to study how to improve existing techniques
or to develop new techniques to better support the use cases.

Table V also allows researchers to identify techniques
currently absent from commercial tools (e.g. the identification
of NFRs, the summary of app reviews, and the identification
of reviews related to stack traces). This can help researchers
to identify opportunities for commercialisation or technology
transfer. The lack of commercial implementation may also
indicate the envisioned technique is not aligned with real needs
or that the technique’s performance is not yet sufficient enough
to be useful in practice.

Taking the practitioners’ perspective, the proposed reference
architecture can offer them concrete examples of how feedback
mining techniques can be integrated to realise a software
engineering use case, thus facilitating their systematic use in
practice. Moreover, it can help understand of how to exploit
mining techniques into variants of the proposed use case that
better fit their own way to develop software.

VIII. THREATS TO VALIDITY

Internal Validity. A limitation of our reference model is
that it relied on our interpretation of the literature for mod-
elling the relations between software engineering goals, use
cases and architectural components in our reference model. We
have attempted to make the process as objective as possible by
following a systematic procedure for constructing empirically-
grounded reference architectures [34]. We systematically iden-
tified all model elements and their relationship from data
extracted from a complete survey of all 182 papers on app
review analysis tools published between 2012 and 2020 [23].
We then used standard principles to design and represent our
reference architecture and use cases [34], [63].

Another limitation concerns the architecture validation using
the traceability matrix method. To gather information about
features of research and commercial tools, we have not used
the tools neither verified their actual features. We instead relied
on information reported in the literature and their vendors’
websites. It is not uncommon for tools’ authors or vendors to
overstate the capabilities of their software.

Another threat to validity concerns the usefulness and the
completeness of the identified use cases. Regarding their use-



TABLE V: Tracability Matrix Mapping Architectural Components and Their Services to Features of Publicly Available Tools.1
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SAFE [45] X X 2
CLAP [73], [86] X X 2
MARK [87] X X 2
ChangeAdvisor [68] X X X 3
SURF [26], [27] X X X X 4
MARC [42]–[44] X X X X 4
Ardoc [69] X X 2
URR [20] X X X 3
IDEA [35] X X X 3
RRGen [36] X 1
OASIS [88] X X 2
AOBTM [40] X 1
BECLoMA [70] X X 2
Deshpande et al. [24] X 1
Dhinakaran et al. [25] X 1
Scoccia et al. [75] X 1
Shah et al. [76] X 1
Grano et al. [37] X X 2
Stanik et al. [80] X 1
Ali et al. [12] X X 2
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Appbot [1] X X X X X X X X X 9
RankMyApp [8] X X X X X X X 7
WonderFlow [10] X X X X X X X 7
AppAnie [15] X X X 3
Applysis [4] X X X X X X X X X 9
AppRadar [5] X X X 3
AppFollow [3] X X X X X X X 7
AppFigures [2] X X X 3
Apptopia [6] X X X X X 5

No. Tools Implementing the Service 8 8 1 3 3 2 7 4 1 19 2 12 3 3 5 9 3
1 V stands for Visualization Component; SIR denotes Search and Information Retrieval Component; IE signifies Information Extraction Component;
C indicates Classification Component; CL marks Clustering Component; S denotes Summarization Component; SA stands for Sentiment Analysis
Component; and R marks Recommendation Component.

fulness, the use cases have been identified from a systematic
study of the literature. Such study of the literature may not
reflect the practitioners’ real needs for app review analysis
tools. We however argue this threat is marginal as the previous
user studies confirmed their usefulness with practitioners [13].

As of their completeness, the use cases are limited to the
scenarios envisioned in the literature. We however are not
aware about any commercial app review analysis tool for
software engineering; the existing commercial tools analyse
user feedback mostly for marketing purposes.
External Validity. The main threat of our work is that studies
upon we constructed the reference architecture and use cases
are not representative. To reduce this threat, we generalized the
work upon a large set of studies, including in total 182 papers

published between 2012 and 2020 that have been searched
and selected using a systematic procedure [23]. Another threat
refers to the extent to which the contributions of our study
can be applied to other context. The previous surveys showed
app review mining techniques and approaches can be used to
mine information from other sources of on-line user feedback
(e.g., twitter, or online discussion) [54], [90]. We thus argue
the result of our study might to some degree extend these
domains.

IX. RELATED WORK

Multiple reference architectures have been proposed for
different types of systems and domains, e.g. for big data



systems [32], [49], [58], [65], [72], control systems for self-
driving vehicles [74], intelligent systems for unmanned vehi-
cle [11], or industrial Internet-of-Things systems [50]. Like in
our work, the overall purpose of these reference models is to
provide a template solution for their domain-specific problems;
and to communicate their use cases.

Similarly, the related work presents their reference archi-
tectures from the use cases and the logical perspectives [16].
The use cases are presented using a textual description [11],
[32], [49], [72], a use case diagram [74] or a class diagram
showing the hierarchy of user requirements [58]. However,
related work rarely explains what user’s goals these use cases
help to accomplish but mostly focuses on presenting what end-
users can do with a system (e.g., [49], [72]). In contrast, our
use cases communicate what the users’s goals are and how
these goals can be satisfied when using a system. Like our
study, other reference architecture for other domains present
the static and dynamic views of the archtitecture (e.g., [58],
[65]). Their static view shows the architectural structure using
block or component diagrams, whereas their dynamic view
presents the interaction of architectural components using a
textual description or data flow diagram.

Similar to our study, related work constructed their refer-
ences models based on a generalization of a set of existing
systems; they surveyed the literature and collected information
to model their reference architecture and use cases [32], [58],
[65], [74]). Unlike our work, their methodology was not sys-
tematic and lacking details how specific steps were conducted
(e.g., [34], [63]). These works, for example, did not report
how they selected the relevant literature (e.g., [32]); how many
publications they used (e.g., [58], [65]); nor what information
they extracted (e.g., [74]). It is also not clear how studies used
the collected information to construct their reference models.
In contrast, we followed a systematic method to construct an
empirically-grounded reference architecture [34]; and detailed
each step to justify resulting models.

The related work validated their references architectures
using different methods, including a prototype implementation
to assess their functional capabilities [50], [74]; interview
with stakeholders to assess their usefulness [32]; or by map-
ping architectural components to available implementations to
demonstrate their feasibility [32], [58], [65], [72]. Similarly,
we validated our architecture using the mapping method as
it was not built from scratch but rather constructed using
components that have been previously elaborated [34].

In summary, our study differs from related work in terms
of their contribution and research methodology. Our study
provides the first reference architectures for app review anal-
ysis tools in software engineering domain [23]. The research
methodology for elaborating and validating this architecture is
more systematic and rigorous compared to previous studies.

X. CONCLUSION

Mining app reviews can be useful to guide different software
engineering activities along requirements, design, maintenance
and testing phases. Yet little is known about how to make use

of review mining approaches to support software engineering.
Previous literature paid little attention to software engineering
use cases of their approaches.

To address the problem, we presented a study consolidating
the knowledge from a large body of app review analysis
literature (182 papers, published between January 1, 2012 and
December 31, 2020). We provided a thorough synthesis of
software engineering use cases and explained how these use
cases could support software engineering activities. We then
introduced a reference architecture generalizing existing app
review mining solutions; and demonstrated how the archi-
tecture can realize the use cases. Finally, we validated their
feasibility and generalizability by mapping their components
to features of publicly available research and commercial tools.

The use cases bring to light the benefits and usage of mining
app reviews for software engineers. The reference architecture
consolidates the diversity of research to gain these benefits and
provides a general framework directing the development and
evaluation of future research and tools. The mapping shows
evidence of the usefulness of app review analysis tools in
practice and identifies new gaps in the research and practice.
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