Measure What Counts:
An Evaluation Pattern for Software Data Analysis

Emmanuel Letier
Dept. of Computer Science
University College London
London, United Kingdom

eletier@cs.ucl.ac.uk

Abstract—The Measure what counts’ pattern consists in eval-
uating software data analysis techniques against problem-specific
measures related to cost and other stakeholders’ goals instead of
relying solely on generic metrics such as recall, precision, F-
measure, and Receiver Operating Characteristic area.

I. INTRODUCTION

How we evaluate our software data analysis techniques
drives what techniques we develop, how we optimise these
techniques, and even what problems we dare to work on.
Currently, the most common evaluation method consists in
reporting generic information retrieval metrics such as pre-
cision, recall, accuracy, F-measures and the area under the
Receiver Operating Characteristic (ROC) curve. This results in
research that attempts to optimise these metrics. But are these
the right metrics to optimise? And do they lead us to work on
the right problems? We believe not. The perils of using these
metrics as evaluation criteria has notably been expressed by
Martin Shepperd at a recent workshop [1]. The purpose of
this pattern is to show why and how we should replace such
generic metrics by evaluation criteria that are specific to the
software engineering activities we intend to support. It is a call
to arms for the application of good requirements engineering
techniques to discover, model, and analyse the stakeholders’
goals, application context, and true requirements of software
data analysis tools.

II. PATTERN: MEASURE WHAT COUNTS
A. Problem

The pattern is to be used when we want to evaluate how
well a software data analysis method contributes to solving a
specific software engineering problem, or when we want to
compare how different analysis methods contribute to solving
this problem. It should also be used when we need a sound
method for identifying cut-off values for selecting an optimal
trade-off between precision and recall.

The pattern is relevant when the data analysis method
is considered in the context of providing decision support
for a specifc software engineering problem. Examples are
to provide support for prioritising testing activities based on
which files are most likely to be error prone [8], or for
prioritising requirements engineering activities based on which

978-1-4673-6296-2/13 © 2013 IEEE

Camilo Fitzgerald
Dept. of Computer Science
University College London
London, United Kingdom

c.fitzgerald@cs.ucl.ac.uk

requirements have the highest risks of failures during and after
development [2]. It is not applicable when the sole purpose of a
software data analysis is to perform an empirical study without
explicit intention to support software engineering decisions.

B. Solution

The solution is to develop a goal model [3] [4] that
relates characteristics of the data analysis methods (such their
precision and recall) to the goals of decision makers and other
stakeholders of the data analysis tool. A frequent goal is to
minimise cost where cost is some measure related to the costs
incurred due to misclassification made by the data analysis
tool [5]. Other goals may be about maximising value that the
predictions bring to different stakeholders. In some cases, the
goal model may lead to a multi-objective decision problem
where data analysis methods are evaluated against a set of
conflicting goals.

Let’s illustrate this first with an example from another
domain that is analogous to many software data analysis
problems. Credit card fraud detection systems analyse credit
card transactions to generate fraud alerts for cards they suspect
have been compromised by fraudsters. These alerts are then
investigated by human fraud inspectors who may decide to
contact the cardholder and block the card. To design such
system, it is essential to understand its stakeholders’ goals and
the context in which the system is to be used. Here, stakehold-
ers’ goals include minimising financial loss due to credit card
fraud, minimising costs of the fraud investigation process, and
minimizing inconveniences to cardholders [6], [7]. These goals
are conflicting, yielding a multi-objective decision problem.
Most importantly, the data analysis algorithm generating the
fraud alerts is only one of the components that impact on
these goals; other components include the bank procedures
for handling potential frauds and the judgements made by
human fraud investigators. A good credit card fraud detection
system is one where all these components work together to
optimise the goals. Optimising the fraud detection software
with respect to rates of false alerts and missed frauds only,
without understanding the stakeholders’ real goals and the
context in which the software is to be used is unlikely to yield
an adequate system. A goal model for such a system defines
equations that relates the stakeholders’ goals to characteristics

20 DAPSE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



of the fraud deteciton algorithm (its false alert rate, missed
fraud rate, and timing of the alerts) and characteristics of
its context of use (the proportion of fraud, the transaction
amounts, the cost associated with investigating an alert, etc.).
This model can then be used to evaluate and optimise fraud
detection systems against these goals.

Software data analysis tools are similar. Optimising a
software data analysis tool for precision and recall without
understanding the context in which the tool is use and the
stakeholders’ actual goals for such system is unlikely to yield
an optimal, or even adequate system. For examples, Arisholm
et al. [8] have shown that optimising the recall and precision
of fault-prediction methods is inadequate if we do not take
into account the costs involved in inspecting and testing files
predicted to be faulty . A goal model for a software data
analysis tool will define a set of equations relating stakeholders
goals to characteristics of the data analysis method and of
its context of use. This model will then allow us to evaluate
software data analysis tools against stakeholders’ real goals
rather generic measures such as precision and recall.

Developing and validating a goal model for a particular data
analysis technique is not trivial and can become a research
problem in itself. The guidance we provide here will remain
at a high level only; the topic deserves a whole set of patterns,
many of which still have to be discovered and tailored to the
problems of software data analysis tools.

The whole field of system requirements engineering is de-
voted to techniques for discovering, modelling, and analysing
stakeholders’ goals and their relation to the domain context
and software characteristics[4]. Among these techniques, there
are numerous heuristics and formal patterns for transform-
ing stakeholders’ vague concerns into measurable goals and
guiding the elaboration of goal models [3]. Although useful
in practice, these patterns are not specific to software data
analysis tools and their guidance is still relatively general.
The field of decision analysis also offers useful practical
guidance on how to construct appropriate measures and deal
with uncertainties [9]. Empirical research techniques are also
needed to inform and validate these models [10], [11].

The equations relating variables attached to different goals
in the goal hierarchy can take different forms: simple equations
over random or non-random variables, or probability tables of
Bayesian Belief Networks. The relation between goal models
and BBN is discussed in [3].

As initial high-level guidelines, the following steps are
essential to good requirements engineering and may be useful
for developing evaluation criteria for data analysis tools:

1) Identify stakeholders, i.e. all the persons and groups who
have an interest in the data analysis tool and its impacts
on software development process (there’s often many
more stakeholders than you think);

Identify the stakeholders’ goals and define appropriate
measures for these goals by focussing on what observ-
able changes the stakeholders would like to see in their
work;

3) Scope the area of software development you intend

2)

21

to support by drawing a context diagram showing the
different agents involved (human and software) and
their interfaces between themselves and with adjacent
software engineering activities;

4) Within this scope, understand the process and context in
which your tool will be used;

5) Develop and validate the model relating the stakehold-
ers’ goals to characteristics of the data analysis tech-
niques and domain assumptions.

These steps are performed iteratively rather then sequen-
tially. Each of these steps require much further explanation
than what we can provide here (see [4] for a comprehensive
descriptions of these activities). The last one in particular can
become quite complex. Generally the best approach is to start
simple by making strong simplifying assumptions about the
problem context and simplifying the goals. A simple model
with explicit and clearly justified simplifying assumptions is
already preferable to using precision and recall alone. This
model can then be critiqued and iteratively improved.

We wish we could provide detailed goal modelling patterns
specific to software data analysis. Unfortunately, we currently
lack detailed examples from which to infer these patterns.
We hope that by highlighting the needs for such models and
providing initial high-level guidance and pointers to general
literature on how to elaborate them, we will soon see a
much wider use of goal modelling and other requirements
engineering techniques in the development and evaluation of
software data analysis tools.

C. Examples

Although there are no detailed examples of the systematic
application of the goal modelling steps outlined in the previous
section, there are examples where alternative software data
analysis methods are evaluated using a goal model rather than
by relying on generic measures only.

Arisholm et al. apply this pattern to evaluate fault-prediction
models against a measure of cost-effectiveness that takes into
account the effort taken to inspect and test an implementation
class predicted to be faulty [8]. Their cost model assumes
that this effort is proportional to the size of the class. Even
though this cost model is a rough approximation of real costs,
it is more accurate than assuming equal cost for all classes
(which is what previous evaluation criteria amount to). The
paper shows that using this cost-effectiveness measure instead
of precision, recall, and F-measure has a significant impact on
which prediction methods are considered to be most effective.
Mende and Koschke later use this cost-effectiveness measure
to develop and assess cost-sensitive prediction models tailored
to this evaluation criteria [12].

In our own work, we have applied this pattern to evaluate the
value of early failure predictions in change request manage-
ment systems [2]. This work compares classification methods
intended to assist decisions about the amount of requirements
analysis to be performed on a change request before assigning
it to implementation or rejecting it. The classifiers analyse
characteristics of change requests and their online discussions



(eg. the length of the discussions, the number and roles of
participants, the words used in the discussions) to predict
which change requests are likely to result in problems later on
in their development, such as an abandoned implementation,
an integration problem, bugs associated to the change, or
a removal of the change from the product shortly after its
integration. To evaluate these classifiers, we have developed a
simple cost-value based model of upfront requirements anal-
ysis activities that has for parameters the ratio of the cost of
failure to the cost of additional upfront requirements analysis
and the probability that additional analysis will effectively
prevent subsequent failures from happening. Estimation for
these parameters is partially supported by empirical evidences
[13], but because there remain large uncertainties (and dis-
agreements) about their values, our tool allows stakeholders to
vary these parameters to reflect their own beliefs and compute
the range of values for these parameters for which the failure
predictions are sufficiently accurate to justify the decision to
perform or not additional requirements analysis.

In both examples, the evaluation models make strong sim-
plifying assumptions about the application domain and the
models have not been validated empirically. However, they
have the benefits of making their simplifying assumptions ex-
plicit and of providing clear justification why these evaluation
criteria are adequate in the context of a particular software
engineering problem. The models therefore provides the basis
for further validation and refinement of evaluation criteria that
reflect as closely as possible the actual stakeholders’ goals.

D. Discussion

o While we presented this pattern as an evaluation pattern,
one of its main benefits will be to influence the design
of software data analysis tools that are optimised to the
novel problem-specific evaluation criteria. Adoption of
this pattern is likely to generate interest for cost-sensitive
(and goal-sensitive) data analysis techniques that exploit
knowledge of these evaluation criteria for generating
optimal predictions.

Possibly one of the biggest difficulty in applying this
pattern will be to dispel the myth (wrongly attributed
to Einstein) that “not everything that counts can be mea-
sured”. This belief is mostly caused by misconceptions
about the concepts, objects, and methods of measurement:
Measurement is not about obtaining precise knowledge of
a quantity; it is rather about reducing uncertainty about
that quantity, however small that reduction of uncertainty
might be [9].

Another potential trap is to a priori exclude from the goal
model soft factors and other variables that are judged to

22

(1]

[2]

[3]

[4]

[3]
[6]

[7]

[8]

[9

—

[10]

(11]

[12]

[13]

be too difficult to measure with precision. If we suspect
that a variable has a high impact on stakeholders goals,
we should include it in the model even if its values have
high uncertainties. Reducing uncertainties about such a
variable, even slightly, may proved to have much more
impact on the stakholders’ goals than further reducing

uncertainties about a variable for which our prediction
models already work well. For example, in the context

of fault predictions, it may be more important to reason
about fault severity rather than continuing to reduce
uncertainties about fault locations irrespective of their
potential severity. (By fault severity, we mean a measure
of the real impact of a defect in the application domain
rather than the label of that name in bug management
systems.) The systematic development and validation of
stakeholders’ goal model will help identifying which
reduction of uncertainties matters most to the software
engineering problem we are interested in.

REFERENCES

M. Shepperd, “Assessing the predictive performance of machine
learners in software engineering.” Presented as the 24th CREST Open
Workshop, London, UK, 30-31 January 2013. [Online]. Available:
http://crest.cs.ucl.ac.uk/cow/24/

C. Fitzgerald, E. Letier, and A. Finkelstein, “Early failure prediction in
feature request management systems: an extended study,” Requirements
Engineering, pp. 1-16, 2012.

E. Letier and A. Van Lamsweerde, “Reasoning about partial goal satis-
faction for requirements and design engineering,” in /2th International
Symposium on the Foundation of Software Engineering (FSE 2004),
vol. 29, no. 6. ACM, 2004, pp. 53-62.

A. Van Lamsweerde, Requirements engineering: from system goals to
UML models to software specifications. Wiley, 2009.

I. Witten, E. Frank, and M. Hall, Data Mining: Practical Machine
Learning Tools and Techniques, 3rd Edition. Morgan Kaufmann, 2011.
D. J. Hand, C. Whitrow, N. M. Adams, P. Juszczak, and D. Weston,
“Performance criteria for plastic card fraud detection tools,” Journal of
the Operational Research Society, vol. 59, no. 7, pp. 956-962, 2008.
W. Heaven and E. Letier, “Simulating and optimising design decisions
in quantitative goal models,” in /9th IEEE International Conference on
Requirements Engineering (RE 2011). 1EEE, 2011, pp. 79-88.

E. Arisholm, L. C. Briand, and E. B. Johannessen, “A systematic and
comprehensive investigation of methods to build and evaluate fault
prediction models,” J. Syst. Softw., vol. 83, no. 1, pp. 2-17, Jan. 2010.
D. Hubbard, How to measure anything: Finding the value of intangibles
in business. Wiley, 2010.

R. Hoyle, M. Harris, and C. Judd, Research methods in social relations.
Wadsworth Fort Worth, TX, 2002.

C. Wohlin, P. Runeson, M. Host, C. Ohlsson, B. Regnell, and
A. Wesslén, “Experimentation in software engineering: an introduction,”
2000.

T. Mende and R. Koschke, “Effort-aware defect prediction models,”
2011 15th European Conference on Software Maintenance and Reengi-
neering, vol. 0, pp. 107-116, 2010.

B. Boehm, “Architecting: How much and when?” Making Software:
What Really Works, and Why We Believe It. OReilly, Sebastopol, CA,
pp. 161-185, 2010.



