
Early Failure Prediction in Feature Request Management Systems:
An Extended Study

Camilo Fitzgerald
Dept. of Computer Science
University College London
London, United Kingdom
c.fitzgerald@cs.ucl.ac.uk

Emmanuel Letier
Dept. of Computer Science
University College London
London, United Kingdom

e.letier@cs.ucl.ac.uk

Anthony Finkelstein
Dept. of Computer Science
University College London
London, United Kingdom
a.finkelstein@cs.ucl.ac.uk

Abstract—Online feature request management systems are
popular tools for gathering stakeholders’ change requests dur-
ing system evolution. Deciding which feature requests require
attention and how much upfront analysis to perform on them is
an important problem in this context: too little upfront analysis
may result in inadequate functionalities being developed, costly
changes, and wasted development effort; too much upfront
analysis is a waste of time and resources. Early predictions
about which feature requests are most likely to fail due to
insufficient or inadequate upfront analysis could facilitate such
decisions. Our objective is to study whether it is possible to
make such predictions automatically from the characteristics
of the online discussions on feature requests.

This paper presents a study of feature request failures in
seven large projects, an automated tool-implemented frame-
work for constructing failure prediction models, and a compar-
ison of the performance of the different prediction techniques
for these projects. The comparison relies on a cost-benefit
model for assessing the value of additional upfront analysis.
In this model, the value of additional upfront analysis depends
on its probability of success in preventing failures and on the
relative cost of the failures it prevents compared to its own
cost. We show that for reasonable estimations of these two
parameters automated prediction models provide more value
than a set of baselines for many failure types and projects.
This suggests automated failure prediction during requirements
elicitation to be a promising approach for guiding requirements
engineering efforts in online settings.

Keywords-Early failure prediction; Cost-benefit of require-
ments engineering; Feature requests management systems;
Global software development; Open source.

I. INTRODUCTION

An increasing number of software development projects
rely on online feature request management systems to elicit,
analyse, and manage users’ change requests [3][8]. Such sys-
tems encourage stakeholder participation in the requirements
engineering process, but also raise many challenges [21]:
the large number of feature requests and poor structuring
of information make the analysis and tracking of feature
requests extremely difficult for project managers; this affects
the quality of communication between project managers
and stakeholders, and makes it hard for project managers
to identify stakeholders’ real needs. Consequently various

problems may arise later in the feature’s development life-
cycle: an implemented feature may contain bugs caused
by ambiguities, inconsistencies or incompleteness in its
description; a newly implemented feature may cause build
failures that are caused by unidentified conflicts between
the new feature and previous ones; an implemented feature
may turn out to be of low value to stakeholders while some
other request for a valuable feature may have been wrongly
rejected.

There are many ways in which current online feature
request management systems could be improved: techniques
have been proposed to cluster similar threads of discussions
to detect duplicates [7] and to facilitate the requirements
prioritisation process [22]; our first approach to improve
such systems was to allow project stakeholders to annotate
discussions with standard requirements defect types (am-
biguity, inconsistency, incompleteness, infeasibility, lack of
rationale, etc.), providing a more structured way to review
and revise feature specifications [11]. This latter approach,
however, requires a radical change from the way feature
requests management systems are currently used, and the
benefits of such a change are hard to demonstrate. The
general argument that every defect found and corrected
during requirements elaboration saves up to 100 times the
cost it would take to correct it after delivery is hard to make
in this context: it is not clear whether a requirements defect
will actually cause a failure later on in the development
process (many features are implemented correctly even if
starting from an ambiguous description), and the speed of
feature delivery is often viewed as more important than its
quality [2].

Our objective in this paper is different: instead of detecting
defects in feature requests, we wish to predict failures,
i.e. the possible undesirable consequences of these defects,
and we wish to predict these failures automatically from
information already present in feature management systems
as they are used today. Our approach uses machine learning
classification techniques to build failure prediction models
by analysing past feature requests with both successful and
unsuccessful outcomes. Project managers can then use these

prediction models to assess the risk that a decision they
are about to make on either assigning a feature request for
implementation or rejecting it may later cause a failure. If
they find the risk to be too high, they can decide to per-
form additional upfront requirements analysis on the feature
request before making their decision. Performing additional
upfront analysis means performing more elicitation, valida-
tion, documentation, and negotiation on the feature request
before assigning it for implementation [28][32]. They can
also use information on the likelihood of failure to monitor
high-risk features more closely during their development.

There is a large volume of work on predicting failures at
the code level at later stages of software development life-
cycle [36], [35]. Our objective in this paper is to study the
extent to which it is possible to predict a variety or product
and process failures much earlier in the development process
from characteristics of online feature request discussions
before a decision is made to implement or reject the feature.

Our specific contributions are the following:
1) We define and present a study of failure types that

can be associated with feature requests in 7 large scale
online projects. These failure types extend the usual
product failures and integration problems that have
been the focus of failure prediction techniques applied
at later stage of the life-cycle [26][35] to include
process failures such as abandoned implementation,
stalled development and rejection reversal, which are
specific to early failure predictions.

2) We present a cost-benefit model for assessing and
comparing the value of early failure predictions. This
model provides criteria that are more meaningful to
project managers than the standard measures of recall
and precision. The model also shows that the random
predictor that is often used as a baseline in failure pre-
diction research to generate alerts based on the failure
density is not an appropriate baseline for comparing
early failure prediction models.

3) We present a tool-supported framework for construct-
ing and evaluating early failure prediction models. The
framework supports data extraction from online fea-
ture requests management systems, preparation of this
data for machine learning classification techniques,
and uses an off-the-shelf machine learning tool-set
[15] to train and evaluate prediction models using
a variety of classification algorithms and predictive
attributes.

4) We report experiments in which early failure predic-
tion models for different failures are evaluated using
alternate predictive attributes for seven large scale
open source projects. Our experiments consider simple
predictive attributes such as the number of participants
in a discussion, the number of posts, the length of
discussions, and their textual content. The results show
that it is possible to make failure predictions that can

be of value at an early stage. The results also tell us
which predictive attributes work in this context.

This paper describes in more detail the concepts and
techniques originally presented at the 19th International
Requirements Engineering Conference [13]. It extends the
work presented thereby giving more technical detail on the
process of the failure prediction approach and gives the
results of 4 new experiments on large open source projects.
These experiments improve the significance of our findings,
and allow us to make further observations on the contexts
in which early failure prediction is likely to be beneficial to
a project. Together with the tool-supported framework and
evaluation model they provide the basis for future work into
exploring the possibilities for deployment of the approach in
the wild, and the use of more elaborate predictive attributes
to increase the accuracy of predictions.

II. FAILURES IN FEATURE REQUEST MANAGEMENT
SYSTEMS

A. Context

Most open-source projects and an increasing number of
enterprise-level projects rely on web-based feature request
management systems to collect and manage change requests
[7][21]. These systems allow project stakeholders to submit
feature requests, contribute to discussions about them, and
offer varying possibilities to track their status and develop-
ment. Stakeholders and developers alike contribute to feature
request discussions by submitting posts to an associated
discussion thread. Once submitted, these posts may not
be edited. Each feature request is associated with meta-
data that record its current state (e.g. whether it is opened,
in development, or integrated in the product), to which
developer it has been assigned, and once developed whether
there are bug reports that have been linked to the feature.
The meta-data that can be associated with a feature request
varies across systems. Some projects rely on general forums
where feature requests are discussed in standard discussion
threads; others rely on more dedicated collaboration and
issue tracking platforms such as JIRA or IBM Jazz. In this
paper we study projects that manage feature requests using
the Bugzilla issue tracking system. Bugzilla combines the
reporting of bugs and feature requests; in this system, feature
requests are distinguished from bug reports by being marked
as ‘enhancement requests’.

The typical life-cycle of a feature request is shown in the
state transition diagram of Figure 1. When first created, a
feature request is in the state New. In this state, a decision
needs to be made to either reject the request or assign it
for development. When a decision is made to assign the
feature for development, it becomes Assigned. The states
Code Submitted and Verified denote states where code
implementing the feature request has been submitted and
verified respectively. Once verified, the code implementing a

 Open In Development

New Assigned
Code

Submitted

Re-Open

Assign

Integrate

RejectReopened

Verified

Integrated

 Rejected

Immediate
Reject

Abandoned Removed
Remove

Abandon

Submit

Fail Verification

Pass
Verification

Fail Integration

Figure 1. Life-cycle of a Feature Request

feature request can be integrated in the product. At different
stages of its life-cycle, project managers may decide to reject
a feature request, this may happen before it is assigned to
a developer for implementation, during implementation, or
after the feature has been integrated in the product. We use
the labels Immediate Reject, Abandoned, and Removed to
distinguish these three cases. A rejected feature request can
be reopened, meaning that it is again open to decisions to
either reject it or to assign it for implementation. This model
is not one that is followed rigorously or explicitly in the
projects we have studied. It is rather a model that helps
clarify the different conceptual states of feature requests and
define the different failure types that can be associated with
them across a range of feature request management systems.

The state of a feature request in this model can be inferred
from meta-data in the Bugzilla issue tracker or similar
systems. We explain this mapping for the KDE project1 — a
project concerned with the development of a unix graphical
desktop environment. Each project has slightly different
ways to label its bug reports, but the general approach is
similar across projects. Feature requests in the KDE project
correspond to “bug reports” whose severity is labelled as
‘enhancement’ to distinguish them from bug reports corre-
sponding to system failures. A feature request is in the state
‘New’, ‘Reopened’, ‘Verified’ or ‘Assigned’ of our model if
the status of the bug report has the corresponding value in
Bugzilla. A feature request is in the state ‘Integrated’ if the
bug report status is set to ‘Resolved’ and its resolution type
is ‘FIXED’. A feature request is in the state ‘Rejected’ if
the bug report status is ‘Resolved’ and its resolution type is
‘WONTFIX’, ‘INVALID’ or ‘WORKSFORME’. Our study
and analysis of feature requests excludes bug reports marked
as ‘DUPLICATE’ because when this happens, the duplicate
request is abandoned and all discussions and decisions
continue with the original request.

Project managers and developers are responsible for man-
aging feature requests. This essentially involves making
decisions on how to move a feature request forward in
its life-cycle and updating its meta-data accordingly. Many
projects deal with extremely large volumes of feature re-

1https://bugs.kde.org/page.cgi?id=fields.html

quests. The Firefox project contained 6,379 instances, 483 of
which were active in the last three months of 2010; Eclipse
contained 46,427 feature requests of which 5155 were active
in the same period. Discussions within threads are often
quite lengthy, as exemplified in feature request #2624592 of
the Firefox project, which contains 64 posts, approximately
4600 words and lasted four years. The sheer volume of
this data makes managing a feature request management
system very difficult for stakeholders, developers and project
managers alike.

B. Feature Request Management Failures

Defects in the description of feature requests, such as
ambiguities, inconsistencies, and omissions [32] may cause
faults in the decisions to either reject a feature or assign it
to a developer too early before the actual requirements on
the feature are understood well enough. These faults may
in turn cause different types of failures in the product or
development process. It is the occurrence of these failures
that we wish to be able to predict before a decision is
made to either accept or reject a feature. The different types
of failures that can be potentially caused by faults in the
decisions to reject or assign a feature can be defined in
terms of a feature request’s progress though the life-cycle
in Figure 1 and are the following:

Product Failure - A feature request has a product failure
if it is in the ‘Integrated’ state and has at least one confirmed
bug report associated with it. This definition does not cover
failures that are not reported so might be better understood
as ‘reported product failure’.

Feature request #4519953 of the Thunderbird project is an
example of this failure. An archive for auto-saved emails is
implemented and integrated into the product after which two
bugs, #473439 and #474848, are reported as having arisen
from the introduction of the feature.

Abandoned Development - A feature request is aban-
doned if it was once assigned for implementation and
the implementation effort has been cancelled before the
feature is integrated into the product. These correspond to
feature requests that are in the ‘Abandoned’ state in the
model of Figure 1. A subset of feature requests exhibiting
this failure that have been abandoned after code has been
submitted (i.e. those that were in state ‘Code Submitted’
or ‘Verified’ when rejected). We refer to such failures as
‘Abandoned Implementation’. Our studies and prediction
models will focus on abandoned implementation as opposed
to the more general case because this failure is more costly
since effort has been spent developing implementations. Our
study could, however, be extended to cover all abandoned
development failures.

2https://bugzilla.mozilla.org/show_id=262459
3https://bugzilla.mozilla.org/show_id=451995

Feature request #348684 of the Apache project is an
example of an abandoned implementation failure, in which
a change to a server authentication service is suggested,
assigned for implementation and has two code components
and an example developed for it. After this it is discovered
that it is not possible to reach a state when running Apache
where this feature would be useful.

Rejection Reversal - A feature request has a rejection
reversal failure if it was once rejected before eventually
being integrated into the product. Rejecting a feature request
is an explicit decision to remove it from the backlog of
feature requests that can be considered for implementation.
This is different from a decision not to assign a feature
request for implementation at the moment but leaving it in
the backlog. We view the initial decision to wrongly remove
a feature request from the backlog as the fault that causes
this type of failure. This fault delays the introduction of
features of value to stakeholders, can upset stakeholders, and
cost them time and effort to argue for the feature request to
be reopened.

Feature request #1717025 of the Firefox project is an
example of this failure. A developer rejects a feature request
in the first post after it is suggested by simply stating that
it is “Not part of the plan” without fully understanding
the feature request’s full meaning or eliciting stakeholders’
needs. Subsequently, stakeholders become frustrated and
effort is spent arguing the feature’s merits. The feature is
eventually re-opened, implemented and integrated into the
product.

Stalled Development - A feature request has a stalled
development failure when it remains in the ‘assigned’ state
and no code has been submitted for more than one year.
The duration of 1 year is arbitrary; we have chosen it for
our studies because it corresponds to a duration within which
we would expect code to have been developed for feature
requests in the projects studied. Our studies could easily be
repeated with shorter deadlines for this failure type. If a
feature request management system contains information on
the estimated development time for each feature request it
could be used to detect ‘late development’ failures.

Feature request #499706 of the KDE project is an example
of this failure. A fullscreen mode option is suggested and
assigned for development in late 2005 and does not get fixed
until mid 2007. In comment number 17 a developer states
that the assigned developer had not been working for some
time and apologies that the feature would not make it into
the planned release.

Removed Feature - A feature request is removed if it has
been rejected after having been integrated into the product.
Feature requests rejected in this way signify that a decision

4https://issues.apache.org/bugzilla/show_id=34868
5https://bugzilla.mozilla.org/show_id=171702
6http://bugs.kde.org/show_id=49970

was made to discard the feature before shipping the next
release of the product. This is a failure because it is caused
by the need to remove a feature that introduces undesirable
behaviours for stakeholders. Such failures may be caused by
insufficient upfront analysis of the feature request before its
development.

Feature request #1714657 of the Netbeans project is
an example of this failure. A feature is implemented and
integrated into the project, after which it is disabled due to
a lack of support in the Netbeans framework for the feature.
Finally, a developer states that the feature ”Does not fit into
our current strategy”.

C. A Study of Failures in Seven Projects

We conducted a study assessing the frequency of failures
in seven large scale open source projects. We developed
a scraper in PHP that automatically traced the life-cycle
of all feature requests in these projects and checked for
failures against the rules that define them. The purpose of
this study was to assess the degree to which failures can
be automatically identified and determine their impact on
projects. These projects were the Apache web server8, the
Eclipse development environment9, Firefox web browser10,
the KDE operating system11, the Netbeans development en-
vironment12, Thunderbird email client13, and the Wikimedia
content management system14. The projects were all large
in size, ranging from 5,000 to 50,000 feature requests.

Table I shows occurrences of these failures recorded in
the 7 projects. Failures were automatically identified from
the meta-data of all feature requests within the projects
from their start date until October 2012. The first four rows
show the number of years for which the feature request
management systems have been in use, the total number of
feature requests that have been created in that period, and
how many of these features have been assigned or rejected
at some stage in their life-cycle. The following five rows
show the rate at which failures occur in terms of failure
density - the percentage of failures among all feature requests
to which the particular failure type applies. For product
failure, abandoned implementation, stalled development, and
removed feature, this corresponds to the number of failures
divided by the number of assigned feature requests; for rejec-
tion reversal, it corresponds to the number of failures divided
by the number of rejected features. In the three cases where
the failure density is shown no failures were automatically
identified. These failure densities are visualised in Figure 2.

7http://netbeans.org/bugzilla/show_id=171465
8https://issues.apache.org/bugzilla/
9https://bugs.eclipse.org/bugs/
10https://bugzilla.mozilla.org/
11https://bugs.kde.org/
12http://netbeans.org/bugzilla/
13https://bugzilla.mozilla.org/
14http://bugzilla.wikimedia.org/

Apache Eclipse Firefox KDE Netbeans Thunderbird Wikimedia

Duration 10.8yrs 9.2yrs 8.3yrs 11.1yrs 10.3yrs 11.8yrs 7.2yrs

Assigned Feature Requests 354 7,564 382 1,800 2,152 199 824

Rejected Feature Requests 1,444 12,247 1,975 11,156 5,008 791 3,129

Total Feature Requests 5,242 46,247 6,379 55,349 24,167 5,150 13,797

Product Failure - 0.1% 21.7% - 2.3% 14.1% 0.2%

Abandoned Implementation 4.0% 0.8% 6.1% 1.3% 1.4% 3.5% 4.5%

Rejection Reversal 5.9% 2.5% 13.1% 4.3% 4.4% 2.3% 9.6%

Stalled Development 26.1% 60.6% 12.9% 26.0% 34.3% 14.1% 15.6%

Removed Feature - 0.1% 0.8% 0.6% 2.3% 0.5% 1.7%

Table I
FEATURE REQUESTS AND FAILURES IN LARGE SCALE PROJECTS

!"

#!"

$!"

%&
'(
)*
""

+(
,-&
.*
""

/-
0*
12
3"
"

45
+"
"

6
*7
8*
'9
."
"

:)
;9
<*
08
-0<
""

=
->
-?
*<
-'
""

!"#$%&'()*+,%"-(

!"

#"

$!"

%&
'(
)*
""

+(
,-&
.*
""

/-
0*
12
3"
"

45
+"
"

6
*7
8*
'9
."
"

:)
;9
<*
08
-0<
""

=
->
-?
*<
-'
""

!"#$%&$'%()*+,'*'$-#.&$(

!"

#!"

$!"

%&
'(
)*
""

+(
,-&
.*
""

/-
0*
12
3"
"

45
+"
"

6
*7
8*
'9
."
"

:)
;9
<*
08
-0<
""

=
->
-?
*<
-'
""

!"#"$%&'(!")"*+,-(

!"

#!"

$!!"

%&
'(
)*
""

+(
,-&
.*
""

/-
0*
12
3"
"

45
+"
"

6
*7
8*
'9
."
"

:)
;9
<*
08
-0<
""

=
->
-?
*<
-'
""

!"#$$%&'(%)%$*+,%-"'

!"

#"

$"

%&
'(
)*
""

+(
,-&
.*
""

/-
0*
12
3"
"

45
+"
"

6
*7
8*
'9
."
"

:)
;9
<*
08
-0<
""

=
->
-?
*<
-'
""

!"#$%"&'(")*+,"'

Figure 2. Failure Densities (%)

The majority of the failure types identified have a rel-
atively high densities, occurring in abundance within the
seven projects. It is important to note, however, that the
process used to identify these failures is not infallible as
it relies on users of feature request management systems
updating their meta-data consistently.

Product failures will not have been caught using our
approach if developers do not place a trace between feature
requests and any bugs they may give rise to. In the KDE
and Apache systems, for example, the user interface hides
the means of placing such traces. The Firefox project,
meanwhile, has a culture of maintaining consistency with
these links. While many product failures were not caught
using our approach, we found that a sample of 100 failures
of this type over the 7 projects corresponded to cases that
were clearly instances of this failure.

Automated detection of abandoned implementation fail-
ures relies on developers submitting code they have devel-
oped to the feature request thread. In the Eclipse project, for
example, we found that there was a culture of working on
code outside of the feature request management system, and
therefore fewer failures of this type could be detected. In the
other projects, meanwhile, the feature request management
system was the primary means of collaborating on code
and a higher failure density for this failure was detected
correspondingly.

Rejection reversal failures were caught consistently in

these projects since updating a feature request’s meta-data
is the only means by which a developer can mark it as
having been rejected. Features that eventually make it into
the final software product will invariably also have their
meta-data updated accordingly. One may argue whether all
the instances identified are necessarily failures; rejecting the
feature request may have been the right decision at the time
it was made and the decision to reopen it may be due to
new circumstances. Attention should be given to this caveat,
and in the projects studied we sampled 100 feature requests
containing this failure and found that in all cases the initial
rejection of the feature request appeared to be premature and
wrong at the time it was made.

Accurate capture of stalled development failures depends
heavily on whether code developed for the feature is sub-
mitted to the feature request’s ticket, and whether features
that have been integrated into the product have their meta-
data updated in a timely fashion. We found this to be the
general case in all the projects apart from Eclipse, where
most discussions and code development took place outside
of the feature request management system through mailing
lists, code repositories and IRC channels. Further, we found
the Eclipse project did not have a culture of aiming to
integrate features that have been assigned for development -
a consequence of the project’s loose reliance on the feature
request management system for communicating and collab-
orating on feature development. Feature requests identified

as a failure of this type in Eclipse might therefore not be
considered as severe as in the other projects.

Increasing the period of inactivity after which we con-
sider stalled development failure to occur would decrease
the failure rate, and visa versa. When assessing prediction
models for this failure using the cost model we describe in
this paper a project manager can adjust the estimated cost
of a failure occurring to reflect the damage that this period
of inactivity does to a project.

Identification of removed feature failures is dependent
on features removed from the software product having
their meta-data updated to reflect the change. We found
many examples across the projects studied where this was
not done - once a feature request has been implemented
developers tend to forget about the thread representing it
and do not update its status when it is removed. Our figures
are therefore likely to underestimate the true numbers of
removed features. However, even if not all removed feature
failures are detected and the density of detected failures
is low (between 0.1 and 2.3% in our studies), we believe
that detecting and addressing them is valuable to a project
because their costs - which includes wasted effort to fully
implement, integrate, and then remove the feature - is so
big.

One could question whether all removed features are
really failures; integrating the feature into the product may
have been a good decision at the time it was made, and
the feature may have been removed later only because
circumstances have changed and it was no longer needed.
We have inspected all 86 instances of removed feature
failures detected in the 7 projects, and we found that they do
correspond to cases where a feature was removed because
it conflicted with another feature, stakeholder needs, or the
high level goals of the project. In all cases, the feature was
removed shortly after it was integrated in the product (within
a month). As explained above, features that are removed
long after they have been introduced in the product tend to
not have the status of their original feature request updated.
If such status was updated, we might have found instances
of removed feature that does not correspond to failures. To
avoid including such good cases of removed feature, we
could refine our rule for detecting removed feature failures
by including only features that have been removed shortly
after they have been integrated, for example 30 days.

An analysis of a sample of approximately 100 automat-
ically identified instances of each failure type across the 7
projects confirmed that they correspond to failures as we
have defined them, making the data a strong candidate for
the construction of failure prediction models. The exception
to this was stalled development failures in the Eclipse project
for the reasons discussed above. Inconsistent updates in the
meta-data of feature requests does lead to many failures not
being caught using our approach. While prediction models
constructed with missing data are consistent, we expect that

more value could be obtained from predicting failures in
projects like Firefox that have a strong culture of consistently
updating their meta-data allowing for more instances of
failure to be detected.

We have not included the Eclipse project in the prediction
experiments that follow in this paper due to the poor quality
of the data - inconsistent updating of the meta-data in this
project meant that many failures were not identified for
our training sets. Further, the feature request management
system was not the primary means of collaboration meaning
little data is available within the system to provide patterns
for the generation of predictive models. We did attempt to
generate failure prediction models for Eclipse to validate
this claim and found them to perform poorly. Subsequently
we suggest that the approach described in the paper should
not be considered for projects where communication, col-
laboration and timely updates of meta-data are scarce in the
feature request management system.

III. THE VALUE OF EARLY FAILURE PREDICTIONS

Some failures of the types characterized in the previous
section may be caused, or at least partly caused, by defects
in the requirements elicitation and analysis activities carried
out in a feature requests discussion thread. Such defects
include the equivalent of classic defect types of requirements
documents, such as ambiguities, poor structuring, incom-
pleteness, and inconsistencies, as well as process-related
defects such as failing to involve the right stakeholders [32].
The purpose of an early failure prediction technique is to
generate alerts for the feature requests that are at risk of
failure so that the project stakeholders can take counter-
measures such as resolving ambiguities or inconsistencies
about a desired feature, or monitoring and guiding its later
progress.

An early failure prediction model for a failure of type T is
a function that generates an alert for each feature request that
it believes will result in a failure of this type. Formally, if FR
is a set of feature requests for which predictions are sought,
the result of applying a prediction model is a set Alert ⊆ FR
denoting the set of feature requests that are predicted to
result in failure.

The quality of such predictions can be assessed using
the standard information retrieval measures of precision and
recall. Let Failure ⊆ FR be the set of feature requests
that will actually have a failure of type T . This set is
unknown at prediction time. The true positives are the alerts
that correspond to actual failures, i.e. we define the set
TruePostive = Alert ∩ Failure. The precision of a set of
predictions is the proportion of true positives in the set of
alerts, and its recall is the proportion of true positives in the
set of all actual failures, i.e.

precision =
|TruePositive|
|Alert|

recall =
|TruePositive|
|Failure|

When designing a prediction model, there’s an inherent
conflict between these two measures: generating more alerts
will tend to increase recall but decrease precision, whereas
generating less alerts will tend to increase precision but
decrease recall. An important question when designing and
evaluating prediction models is to find the optimal trade-off
between precision and recall.

A standard measure used in information retrieval for com-
bining precision and recall is an f-score, which corresponds
to a harmonic mean between precision and recall. This score,
however, relies on attaching an arbitrary importance to the
two measures and has little meaning in our context.

We instead assess the relative weights to be given to
precision and recall by assessing the costs and benefits to
a project for a set of predictions. The model is deliberately
simple to facilitate its use and comprehension. To use our
model, a user need estimate only two parameters: Ps, which
denotes the probability that additional upfront analysis on a
feature request will be successful at preventing a failure of
type T , and Cf

Ca
, which denotes the relative cost of a failure

of type T compared to the cost of the additional upfront
analysis. Finer-grained cost-benefit models are possible but
would require estimations for a more complex set of model
parameters and thereby reduce our confidence in the results.

We evaluate the expected benefit of a set of predictions
P as follows. Assuming that each failure of type T imposes
a cost Cf to the project when it occurs, if we could prevent
all failures for which an alert is generated, the benefit to
the project would be |TruePositive|.Cf . We have to take
into consideration, however, that not all additional upfront
analysis will be successful at preventing a failure. If we
assume that the probability of success of additional upfront
analysis is Ps then the expected total benefit of a set of
predictions is the product |TruePositive|.Ps.Cf . Given that
|TruePositive| = |Alert|.precison we obtain the following
equation characterizing expected benefit:

ExpectedBenefit = |Alert|.precision.Ps.Cf

We evaluate the expected cost of a set of predictions as
follows. Assuming that each alert is acted upon and that
the cost of additional requirements elaboration is Ca for
each alert, the total expected cost associated with a set of
predictions is given by the following equation:

ExpectedCost = |Alert|.Ca

The expected net value of a set of predictions is then given
by the difference between its expected benefit and cost:

ExpectedV alue =|Alert|.(precision.Ps.Cf − Ca)

Since |Alert| = |Failure|. recall
precision , the equation can be

reformulated as:

ExpectedV alue = |Failure|.
recall

precision
.(precision.Ps.Cf − Ca)

By simplifying and factoring Ca, the formula is expressed
as:

ExpectedV alue = Ca.|Failure|.recall.(Ps.
Cf

Ca
−

1

precision
)

Difficulties lie in estimating absolute values for Ca and
Cf , so instead we assume that the cost of additional upfront
analysis provides the unit of measure and ask model users
to estimate the relative cost of failure with respect to the
cost of additional upfront action. This relative measure is
often used in empirical studies about the cost of failures in
software development projects, although there are caveats
about the context of applicability of the different results [31].
The ratio between the cost of fixing a requirement defect
after product release compared to fixing it during upfront
requirements analysis is commonly cited to be between 10
and 100 for large projects [4][32][24], and between 5 to 10
for smaller projects with lower administrative costs [5][24].

Fixing the cost of action to 1 gives our final formula
characterizing expected value:

ExpectedV alue = |Failure|.recall.(Ps.
Cf

Ca
−

1

precision
)

We have kept the term Cf
Ca

instead of simply Cf to
make explicit that the cost of failure is relative to the cost
of additional analysis. Since the number of failures is a
constant for a given set of feature requests, we can compare
alternative prediction models by assessing their expected
value per failure:

ExpectedV alue

|Failure|
= recall.(Ps.

Cf

Ca
−

1

precision
)

In this formula precision and recall are characteristics
of the prediction technique that can be estimated from its
performance on past feature requests. If one wants to know
the expected value per feature request, this can be obtained
by multiplying the expected value per failure by the failure
density |Failure||FR| - a constant that can be derived from past
feature requests.

The parameters to be estimated by model users are Ps and
Cf
Ca

. The expected value actually depends on the product of
these parameters denoted α, i.e. α = Ps.

Cf
Ca

. We therefore
obtain the following equation:

ExpectedV alue

|Failure|
= recall.(α−

1

precision
) (1)

In principle, it might be possible to estimate Ps and Cf
Ca

empirically from past project data. However, such project
specific data is rarely available. In the absence of this data,
model users can estimate these numbers based on the general
findings from the empirical studies reported in the previous
subsection, and assess the value of a prediction model for a
range of α values rather than a single point. Considering
product failures in the Firefox project, for example, if a
model user estimates the ratio of the cost of failure to the

λ

λ

Figure 3. Expected value per failure as a function of α

cost of action to be between 50 and 100, and estimates
the probability of success in preventing such failure by
additional upfront analysis to be between 0.1 and 0.3, then
the α values of interest will be between 5 (50*0.1) and 30
(100*0.3).

The advantage of assessing predictive models using equa-
tion 1 as opposed to more commonly used techniques such
as an f-score is that the expected value has a clear meaning
for the project and the parameters to be estimated for
computing it are at least in principle measurable. We argue
that it is more meaningful to ask model users to provide
estimates for Ps and Cf

Ca
than asking them estimate the

relative weights of precision and recall.
To understand equation 1 we can look at how the expected

value per failure varies with α for some prediction models
with known precision and recall, as shown in Figure 3.

A perfect predictor would be one that generates alerts
for all failures and generates no false alerts. Its precision
and recall are both 1. We can observe that even for a
perfect predictor, the expected value is positive only if
α = Ps.

Cf
Ca

> 1. This means that for any upfront activity to
have a positive value the ratio between the cost of the failure
it may prevent and its own cost must be higher than the
inverse of its probability of success in preventing the failure.
For example, if additional upfront requirements analysis may
prevent some failure type with an estimated probability of
success of 0.1, the cost of this activity (e.g. the number of
man-hours it takes) must be at least 10 times smaller than
the cost of late correction of the failure it intends to prevent.

The most pessimistic predictor is one that generates alerts
for all feature requests. Its recall is equal to 1 and its
precision to the failure density. The most optimistic predictor
is one that never generates any alerts. Its recall is 0, precision
1, and expected value is therefore always null. The random
predictor is one that randomly generates alerts for feature
requests using the failure density for past feature requests
as the probability of alert. We can observe from equation 1
that the best of these three baseline predictors is the most
optimistic predictor when α is less than the inverse of the
failure density; and it is the most pessimistic predictor when
α is more than the inverse of the failure density. The random

predictor is always outperformed by one of these two.
This means that, unlike other failure prediction models that
compare themselves against a random predictor [26][7][35],
the baselines in our context are the most optimistic and most
pessimistic predictors.

Figure 3 also shows the expected values for a predictor
λ whose precision is higher than the failure density. Such
a predictor outperforms the most optimistic baseline when
α < 1

precisionλ
and it outperforms the most pessimistic

one when α is below some value αx (where αx can be
determined to be 1

1−recallλ .(
1

FailureDensity −
recallλ

precisionλ).
When α is outside of this range - either below or above it
- the most optimistic or pessimistic predictors have better
expected values. This provides a quantitative justification
for the intuition that for a given set of failure predictions
with imperfect recall and precision, if the relative cost of
failure and the probability of success of additional upfront
analysis in preventing the failure are low, then it is more
cost-effective not to do any additional analysis; whereas if
the cost of failure and probability of success are high, then
it is more cost-effective to perform additional analysis on all
feature requests.

If a predictor has a precision that is less than the failure
density it is always outperformed by the most optimistic or
most pessimistic predictors. Our objective when developing
prediction models will therefore be to generate predictors
whose precision is higher than the failure density and
whose range of α values for which it outperforms the most
optimistic and most pessimistic predictors is as large as
possible.

IV. PREDICTING FAILURES

The class of machine learning techniques that apply to our
problem, known as classification algorithms, first construct
prediction models from historical data and then use these
models to predict classifications for new data. In our case
the historical data used to generate prediction models is
past feature requests, while the new data consists of feature
requests that are about to be assigned or rejected on which
we wish to predict future failures.

We have developed a tool-supported framework that gen-
erates alternative prediction models from historical data sets.
These models vary according to the characteristics of feature
requests discussions they take into account for predicting
failures and the classification algorithms they rely on for
constructing prediction models.

A. Generating a Prediction Model

To generate a single prediction model a user of our
framework must specify the following inputs:

• The feature request management database to be used
and the failure type to be predicted.

• The classification algorithm to be used. In our experi-
ments alternative models were generated using the De-
cision Table, Naive Bayes, Linear Regression and M5P-
Tree algorithms, which constitute a good representation
of the different types of classification algorithm [34].
The Decision Table and Naive Bayes algorithms are the
least computationally complex, but have been known
to perform well for less computational effort. Deci-
sion table constructs a simple decision tree to predict
failures from the attributes and Naive Bayes computes
a median value of each attribute for historical failed
and non-failed feature requests and matches a new
feature request’s attributes to the case that they lie most
closely to. Linear Regression, meanwhile, performs a
full correlative analysis by constructing a set of ‘best fit’
linear functions from historical data to predict failures
from attributes. Lastly, the M5P-Tree algorithm creates
a decision tree to group feature requests with attributes
that result in similar probabilities of failure, and then
generates a linear regression prediction model for each
node. The computational complexity is usually reduced
when compared to Linear Regression since each node
typically generates a simpler correlative function.

• A predictive attribute of feature requests used to train
a predictive model. In our experiments we use the fol-
lowing 13 attributes that can be automatically extracted
to generate a prediction model for each failure type in
each project:

– Attributes relating to discussion participants: the
number of participants, the number and percentage
of posts by the person who reported the feature
request, the number and percentage of posts made
by the person who is assigned to develop the
feature request.

– Attributes relating to the structure and development
of the discussion: The total number of posts, the
number of words in each post, the number of
words in the whole discussion, the number of code
contributions submitted to the ticket during the
discussion, the time elapsed between posts, and the
total time elapsed in the discussion.

– Textual attributes: Bag of words and term fre-
quency in document frequency (TFIDF), which are
two approaches for finding patterns in the textual
content of discussions. Bag of words assigns an
attribute to each unique word in a feature re-
quest with a value corresponding to the number
of occurrences of the word. TFIDF, meanwhile,
uses the same process but multiplies this value
by the ‘uniqueness’ of each word (the inverse of
the number of occurrences of the word across all
feature requests in the historical dataset).

• An estimated value for α used by our framework

Trimmed Feature
Request Discussions

Feature Requests

1. Classify
Historical Data

2. Trim
Discussions

Prediction Model
4. Generate

Prediction Model

Classified Feature
Request Discussions

Training Set

3. Generate Dataset
for Predictive Attribute

Figure 4. Framework for Generating a Prediction Model

to make trade-offs between precision and recall in
predictive models, and to compare the expected value
of these models to the baselines for validation.

Using these inputs, our automated failure prediction
framework follows the process shown in Figure 4 performing
the following steps to construct a failure prediction model:

1. Classify Historical Data: A large dataset is extracted
from the feature request management forum. This data in
its raw form includes the textual content of discussions,
their structure, their associated meta-data and the history
of changes made to this meta-data. To build a prediction
model for rejection reversal failures we extract all feature
requests that have been rejected at some point in their
lifetime, and for the other four failures we extract all those
that have at some time been assigned for implementation.
Each feature request is then automatically identified as a
positive or negative instance of failure with respect to the
rules defined in the Section II.

2. Trim Discussions: Posts within each feature request
are trimmed to the point in its life-cycle where we want to
make predictions. This will be just before it was rejected for
the rejection reversal failure, and just before it is assigned
for the other four types of failure.

3. Generate Dataset for Predictive Attribute: The
trimmed discussions are then transformed into a data set
that contains the relevant information about the attribute of
interest and in a format that can be processed by classifi-
cation algorithms. For example, if the attribute of interest
is the number of participants in the discussion, this set
will generate a set of tuples <feature request, number of
participants, classification>.

4. Generate Prediction Model: The data set is then used
to generate a prediction model using the selected classifi-
cation algorithm. If the classification algorithm is one that
directly classifies a feature request as a failure or not, such at
the Decision Table and Linear Regression algorithms, then
no further steps are needed. Other classification algorithms

Threshold

Figure 5. Recall, Precision and Expected Value as a function of Alert
Threshold

such as the Naive Bayes and M5P-Tree algorithms assign to
each feature request a numerical score between -1 and +1
indicating whether the feature is more likely to be a failure
(if its score close to 1) or not (if close to -1). In these cases,
we still need to set a threshold such that all feature requests
whose score exceeds the threshold generate an alert. Our
framework sets this threshold automatically by estimating
the model precision, recall, and expected value (using 10
fold cross validation as described in the next subsection)
for a range of threshold values and selecting the threshold
that yields the highest expected value. For example, Figure
5 shows how the recall, precision and expected value vary
with this threshold for a set of predictions made on product
failures in the Firefox project and an estimated α of 3.
In this case a threshold of 0.36 will be chosen. In cases
where a prediction model cannot provide a positive value
the threshold is automatically set so as to generate no alerts,
thus mimicking the most optimistic baseline. Conversely, in
cases where the highest value is provided by generating all
alerts the most pessimistic baseline is mimicked.

B. Evaluating a Predictive Model

A standard technique for evaluating prediction models
consists in performing a 10-fold cross validation [34]. The
data set is split into a training set composed of 90% of fea-
ture request selected at random and a testing set composed
of the remaining 10%. A prediction model is built using
the training set, and its precision and recall computed for
the testing set. This experiment is repeated 10 times with
different training sets and testing sets. The precision and
recall of the prediction model obtained from the full data set
are then estimated as the mean of the precision and recall for
the 10 experiments. Equation 1 in Section III is then used
to evaluate the prediction model’s expected value from its
precision, recall, and assumed α value. The results of such
evaluation are reported in Section V.

C. Intueri: An Implementation

We have developed a research tool, Intueri, that allows
users to generate and evaluate predictive models using the
framework described in this section. Intueri’s front-end is
developed in Flash enabling it to be run in a web browser,
while it’s back-end is powered by ActionScript making
use of PHP to communicate with other components and to
extract, load and save data. Data can currently be extracted
from Bugzilla-based feature request management systems
and is converted to an XML format. The generation of
prediction models makes use of the open source Weka
libraries [15], which provide an interface to many classifi-
cation algorithms. Results are currently stored and analysed
in Matlab.

The tool is available online15 alongside the data we have
used for the experiments in the following section. This
includes the PHP files used to extract raw data from fea-
ture request management systems and automatically identify
failures, raw discussion extractions from feature request
management systems in XML format, the training sets
that can be given as input to the WEKA tool to generate
prediction models, and the full results of our experiments.

V. PREDICTION EXPERIMENTS

We have applied our early failure prediction framework
to the seven large scale open source projects on which
we conducted the failure study in Section II. We do not
report here the results from the Eclipse project due to the
poor quality of the data it contains as discussed in the
Section II. The questions that we wished to answer with
our experiments are the following:

1) What classification algorithms, among the four we
envisaged, generate the most valuable prediction mod-
els?

2) Can feature request failures of the types defined in
Section II-B be predicted from early discussions be-
fore the feature request is either assigned or rejected?
What expected value can a project hope to obtain from
actioning such predictions? Are some of failure types
more susceptible to being predicted from early discus-
sions? Are certain types of projects more susceptible
to early failure prediction approach?

3) What attributes of early feature requests discussions, if
any, can be used as reliable predictors of later failures?
Do some attributes perform better for certain types of
failures and across projects and failure types?

To answer the first question, we have evaluated the
performance of each classification algorithm for all failure
types and all of our 13 feature requests attributes on the data
set for the Firefox project only. The experiment revealed
that prediction models generated by the Decision Table
and Naive Bayes classification algorithms failed to yield

15http://sre-research.cs.ucl.ac.uk/Intueri/

Product Failure Abandoned Implementation Rejection Reversal Stalled Development Removed Feature
Cf
Ca

*Ps = α 10*0.3 = 3 50*0.5 = 25 10*0.5 = 5 10*0.5 = 5 20*0.2 = 4

Apache - Code Contributions Words per Discussion Code Contributions -

Firefox Posts in Discussion (Most Pessimistic) (Most Optimistic) Code Contributions (Most Optimistic)

KDE - Posts by Reporter Bag of Words Bag of Words (Most Optimistic)

Netbeans (Most Optimistic) TF-IDF Words per Discussion Percent by Assignee Bag of Words

Thunderbird Code Contributions Bag of Words (Most Optimistic) Bag of Words (Most Optimistic)

Wikimedia Most Optimistic) Bag of Words Number of Participants Bag of Words (Most Optimistic)

Table II
PREDICTION MODELS WITH BEST EXPECTED VALUES

!"

#"

$"

%&
'(
)*
"

+,
-*
./
0"

12
3"

4
*5
6*
'7
8"

9)
:7
;*
-6
,-;
"

<
,=
,>
*;
,'
"

!"#$%&'()*+,%"-(

!"

#!"

$!"

%&
'(
)*
"

+,
-*
./
0"

12
3"

4
*5
6*
'7
8"

9)
:7
;*
-6
,-;
"

<
,=
,>
*;
,'
"

!"#$%&$'%()*+,'*'$-#.&$(

!"

#"

$"

%&
'(
)*
"

+,
-*
./
0"

12
3"

4
*5
6*
'7
8"

9)
:7
;*
-6
,-;
"

<
,=
,>
*;
,'
"

!"#"$%&'(!")"*+,-(

!"

#!"

$!!"

%&
'(
)*
"

+,
-*
./
0"

12
3"

4
*5
6*
'7
8"

9)
:7
;*
-6
,-;
"

<
,=
,>
*;
,'
"

!"#$$%&'(%)%$*+,%-"'

!"

#"

$"

%&
'(
)*
"

+,
-*
./
0"

12
3"

4
*5
6*
'7
8"

9)
:7
;*
-6
,-;
"

<
,=
,>
*;
,'
"

!"#$%"&'(")*+,"'

Figure 6. Expected Value per 100 Feature Requests from Best Predictive Models

!"!#

!"$#

%"!#

&'
()
*+
#

,-
.+
/0
1#

23
4#

5
+6
7+
(8
9#

:*
;8
<+
.7
-.<
#

=
->
-?
+<
-(
#

!"#$%&'()*+,%"-(

!"!#

!"$#

%"!#

&'
()
*+
#

,-
.+
/0
1#

23
4#

5
+6
7+
(8
9#

:*
;8
<+
.7
-.<
#

=
->
-?
+<
-(
#

!"#$%&$'%()*+,'*'$-#.&$(

!"!#

!"$#

%"!#

&'
()
*+
#

,-
.+
/0
1#

23
4#

5
+6
7+
(8
9#

:*
;8
<+
.7
-.<
#

=
->
-?
+<
-(
#

!"#"$%&'(!")"*+,-(

!"!#

!"$#

%"!#

&'
()
*+
#

,-
.+
/0
1#

23
4#

5
+6
7+
(8
9#

:*
;8
<+
.7
-.<
#

=
->
-?
+<
-(
#

!"#$$%&'(%)%$*+,%-"'

!"!#

!"$#

%"!#

&'
()
*+
#

,-
.+
/0
1#

23
4#

5
+6
7+
(8
9#

:*
;8
<+
.7
-.<
#

=
->
-?
+<
-(
#

!"#$%"&'(")*+,"'

Figure 7. Precision and Recall from Best Predictive Models

meaningful predictions. This might be expected as these
algorithms perform a comparatively low amount of correla-
tive analysis on data. The M5P-tree and Linear Regression
algorithms, meanwhile, consistently produced similar results
in terms of expected value. In all cases, however, the
less computationally complex M5P-tree algorithm generated
prediction models significantly faster than the Linear Regres-
sion approach - in the order of minutes as opposed to hours.
For remainder of the experiments we therefore only used the
M5P-tree algorithm.

To answer the second set of questions we have generated
and evaluated prediction models for all failure types and
predictive attributes in all six projects. The datasets of
failures identified in Section II were used to train these
models. Table II summarises the results by presenting for
each project and failure type the prediction model that
yielded the most expected value. That which gave the most
expected value for product failure predictions in Firefox,
for example, was generated using the ‘number of posts in

the discussion’ attribute and predicted feature requests with
more than 12 posts to fail. The table also shows the estimated
α value we have used for setting the alert threshold and
computing the expected value. When the best prediction
model is shown as being the most pessimistic or most
optimistic this means that there was no predictive model
was generated which performed better than these baseline
predictors. In such cases, as you will recall from Section
IV, the alert threshold for prediction models is automatically
set so that it behaves as the best baseline predictor. Figure
6, meanwhile, shows the expected values per 100 feature
requests for the predictive models, and Figure 7 shows their
respective precision and recall.

The results show that it is possible to generate early failure
prediction models that provide positive expected value to a
project. Rough estimations of the real value expected from
actioning predictions can also be made. As you will recall
from Section III the cost of an action was fixed to 1 in our
equation, and we can therefore multiply the expected value

by an estimation of the real cost of an action in dollars or
man-hours to quantify it. For example, if for product failures
in Firefox the cost of failure is estimated to be 10 times
that of an action and the probability of success is 30% then
acting on failure predictions with a recall of 0.54 and a
precision of 0.42 our equation gives us an expected value
of 0.54.(0.3. 20020 −

1
0.42) = 0.33 per failure. Multiplying this

result by an estimated cost of action of 10 hours gives us a
quantified value of 3.3 hours saved per failure.

The results suggest that on these six projects our approach
is more effective at predicting stalled development and
abandoned implementation failures than the other failures.
A possible explanation for this is that these failures have
higher densities than the others and that they occur earlier
(closer to the time of prediction), than removed feature and
product failures.

While the Netbeans project could benefit the most from
the prediction models constructed, there is no general case
for some projects being more susceptible to early failure
predictions than others. Our hypothesis that the Firefox
project would gain more since it updated its meta-data more
consistently was not confirmed.

The recall and precision of the models demonstrate how
the cost-benefit equation is used to make the trade-off
between these measures by maximising the expected value
with respect to the failure type. For abandoned implemen-
tation failures, for example, preference is given to recall
over precision since the high estimated α value weights the
benefits of taking action to avoid values to be far more
than the costs. The expected value can also show us where
prediction models might be able to provide value to a project
in cases where a low precision and recall are achieved,
such as for rejection reversal failure predictions in the KDE
project.

The α-values we have used for the different failure
types have been estimated by ourselves and represent our
best informed guesses based on general empirical studies
of software projects [4][32][24][5][24]. In the absence of
empirical validation specific for each project these values
are certainly subject to debate. A benefit of our evaluation
framework is that it is possible to assess how deviation
between the estimated value for α and its real (unknown)
value will impact the expected value of a prediction model.
Figure 8, for example, shows how the expected value for
different product failure prediction models in Firefox (for
which α was set to 3 to determine the alert threshold) vary
with α. We can see from the figure that the prediction model
based on the number of posts in the discussion still performs
better than the most pessimistic predictor if the real value
for alpha goes up to about 6.5, but above that point the most
pessimistic predictor (i.e. the one that suggests performing
additional upfront analysis on all feature requests) yields a
higher value. Similar graphs resulted from the other cases in
which predictive models yielded more expected value than

Figure 8. Expected Value as a Function of α for Product Failure Prediction
Models in the Firefox Project.

the baselines.
Table III helps us to answer the third set of questions.

For each of the 13 predictive attributes the number of
projects in which a prediction model was generated that
outperformed the baselines is shown each failure type. The
numbers shown in brackets are the average expected value of
these models. The code contributions predictive attribute, for
example, generated stalled development prediction models
that performed better than the baselines in 5 of the 6 projects
studied, and the average expected value of these models
was 59.61. Expected values should not be compared across
failure types due to the differences in their units.

Interestingly, the predictive attributes that performed con-
sistently well on all failure types for both projects are the
two text-based attributes: bags-of-words and TFIDF. This
suggests that analysing the actual content of the discussion,
even at a very rudimentary level, could provide more reliable
predictions than analysing attributes such as the number
of persons involved in the discussion and the discussion
length. The actual words that have the highest influences
on whether a feature request is classified as a failure or
not are surprisingly simple words such as “would”, “like”,
and the product name, e.g. “Firefox”. Unfortunately, this
doesn’t provide useful insights on how to write better
feature requests to reduce the true risks of failures. One
should not expect to obtain useful insights from predictive
models using very simple natural language characteristics
related to word occurrences. Richer language-based analysis
based on sentence structures and the presence of specific
keywords and phrases (e.g. typical ambiguous phrases or
typical phrases that reveal the presence of rationale such as
“so that” or “in order to”) may give better and more useful
failure prediction models. This is an interesting avenue for
future research.

No predictive attribute always outperformed the others
for a specific failure type in all the projects studied. When
generating a predictive model for a new project, therefore, a
range of predictive attributes could be evaluated as we have
done in our experiments to find that which gives the highest

expected value.
A much wider range of attributes than the ones we have

used in our experiments could be tested for early failure
predictions. Some of these attributes could be more complex
than the ones we have used here, such as for example an
analysis of the communication structure between stakehold-
ers [35], the roles of the users involved in a discussion,
or the system components affected by a feature request.
We have also performed experiments where we generated
and evaluated prediction models from combinations of the
attributes and found that the results were not significantly
improved and in some case even performed worse than
when the attributes were taken in isolation. Combining
these attributes more intelligently, however, such as via the
use of a feature selection method [14] could yield better
performance.

In the introduction, we raised the hypothesis that some
of the failures are caused by defects in the feature request
descriptions and discussions such as ambiguities, inconsis-
tencies, incompleteness, etc. Our experiments do not test
this hypothesis because information about such defects is
not explicitly present in the feature request system. It would
be interesting, as an extension to this work, to try generat-
ing predictive models from requirements defects. One way
to make information about requirements defects available
would be to extend feature request management systems to
allow its users to explicitly tag feature request descriptions
with defect categories [12], another would be to use the
outputs from natural language requirements analysis tools
[18] [19] [20]. We intend to explore both approaches in
future work.

VI. RELATED WORK

There is a large volume of work on predicting defects
and failures at later stages of development: techniques have
been proposed to predict the location of code defects from
source code metrics [26] [36], to predict build failures from
the communication structure between system developers
(who communicated with who) [35], and to predict the
system reliability from test case results [25]. By contrast,
in this paper we study the extent to which it is possible
to predict failures much earlier in the development process
from characteristics of online feature request discussions
before a decision is made to implement or reject the feature.
Further, our automated predictions extend the usual product
failures to cover process level failures as well. The precision
and recall measure we obtain in our experiments (ranging
approximately between 0.3 and 0.9 recall and between 0.2
and 0.7 precision) are of the same order as those obtained by
the later predictions, such as in Wolf et al.’s paper predicting
build failures from the communication structure in bug
tracking systems at build time with a recall between 0.55 and
0.75 and a precision between 0.5 and 0.76 [35]. We cannot,
however, draw solid conclusions from such comparisons as

they are based on studies involving different projects, failure
types and failure densities.

Failure predictions earlier in the life-cycle can be made
using a causal model that aims at predicting the number
of defects that will be found during testing and operational
usage based on a wide range of qualitative and quantitative
factors concerning a project (such as its size, the regularity of
specification reviews, the level of stakeholder involvement,
the scale of distributed communication, programmer ability,
etc.) [10], [23]. In contrast, we aim at predicting failures in
projects that may have a less disciplined approach than those
for which this causal model has been designed, and we aim
to be able to identify which specific feature requests are most
at risk rather than predicting the number of failures. Further,
the use of a classification algorithm is fully automated and
does not require the human expertise needed to build the
causal model.

The large volumes of data held in many feature request
management systems lends itself to the use of machine learn-
ing approaches to address other requirements challenges.
Clustering of similar feature requests has been proposed
to help users find related feature requests [7], and a tool-
supported approach for partially automating the process of
triaging and prioritizing bodies of feature requests has been
developed [22].

There is a large body of work on predictive techniques
that, like our approach, use a cost model for making trade-
offs between precision and recall when the loss associated to
false positive and false negatives are asymmetric [27] [17].
These papers consider general techniques for developing and
evaluating predictive models in this context. Our work is an
application of such techniques for early failure predictions
on feature requests. Our approach uses the cost model a-
posteriori to find an optimal trade-off between precision and
recall. In some contexts, methods that take cost into account
during the construction of the prediction model have been
shown to perform better than a-posteriori approaches [1].
Such a technique might be used to try to improve our results.

VII. CONCLUSION

Early failure prediction can provide a useful, practical
framework to reason about the amount of upfront analysis to
perform on a feature request before deciding whether or not
to implement it. Such techniques might also find their use in
more traditional document-based requirements engineering
processes.

We have defined different failure types that can be
associated with feature requests, we have explored how
accurately these failures can be automatically traced in
feature request management systems, we have presented a
cost-benefit equation for evaluating early failure predictions
models, we have presented a tool-supported framework for
the development and evaluation of such models, and we
have reported the results of experiments evaluating failure

Predictive Attribute Product Abandoned Rejection Stalled Removed Total Viable Models

Failure Implementation Reversal Development Feature

Number of participants 1 (0.82) 1 (7.20) 3 (0.21) 4 (53.86) 0 (0.00) 9

Posts by reporter (#) 1 (0.07) 4 (10.78) 1 (0.01) 2 (43.58) 0 (0.00) 8

Posts by reporter (%) 2 (0.87) 1 (7.20) 2 (0.02) 4 (52.92) 0 (0.00) 9

Posts by assignee (#) 2 (1.09) 1 (7.20) 0 (0.00) 4 (56.61) 0 (0.00) 7

Posts by assignee (%) 0 (0.00) 1 (9.63) 1 (0.05) 4 (56.65) 0 (0.00) 6

Posts in discussion 2 (1.18) 4 (9.33) 2 (0.60) 4 (55.49) 0 (0.00) 11

Words per discussion 2 (0.75) 4 (10.04) 1 (0.82) 5 (55.16) 0 (0.00) 11

Words per post 2 (0.87) 5 (13.38) 3 (0.28) 2 (42.41) 1 (0.01) 13

Code contributions 2 (1.35) 2 (13.28) 0 (0.00) 5 (59.61) 0 (0.00) 9

Time elapsed per post 0 (0.00) 5 (10.51) 3 (0.13) 6 (53.78) 1 (0.04) 15

Time elapsed per discussion 1 (0.73) 1 (7.20) 1 (0.35) 3 (52.08) 1 (0.04) 7

Bag of words 1 (0.86) 6 (15.55) 2 (0.73) 6 (63.36) 1 (0.26) 17

TF-IDF 1 (0.36) 4 (14.60) 3 (0.89) 6 (61.86) 1 (0.20) 14

Table III
WHICH PREDICTIVE ATTRIBUTES PERFORM WELL FOR WHICH FAILURE TYPES?

prediction models using a range of predictive attributes for
7 large scale projects. These experiments provide evidence
that an early failure prediction approach can benefit projects
by guiding upfront requirements analysis.

We believe that significant improvements in the perfor-
mance of prediction models can still be achieved. This
could be done by using a richer set of predictive attributes
than the restricted set that has been successfully used in
this paper. These include the presence of rationale in a
feature request discussion (which could be indicated by
common intentional phrases), advanced natural language
processing techniques [29], the presence of manually [12] or
automatically detected requirements defects [18] [19] [20],
the architectural components potentially affected by a feature
request, or the roles, expertise, and communication structure
of the persons involved in the discussion. Techniques also
exist for manipulating and cleaning a dataset before passing
it to a classification algorithm to generate a prediction model
that could improve accuracy, such as for example feature
selection [14]. Directly integrating the cost model from
Section III into a classification algorithm, as opposed to
using it to select an alert threshold, could also yield more
expected value.

It is our hope that early failure prediction techniques will
allow project managers to make better informed decisions
about the kind and amount of upfront requirements analysis
to perform on incoming feature requests. If successful, such
a technique is likely to change how people perform require-
ments analysis activities in a feature request management
system. The early failure prediction models will therefore
need to have the ability to adapt to such changes, for
example through the use of online learning techniques [33].

REFERENCES

[1] Abrahams, A.S. and Becker, A. and Fleder, D. and MacMil-
lan, I.C. Handling generalized cost functions in the partition-
ing optimization problem through sequential binary program-
ming Data Mining, Fifth IEEE International Conference on,
2005.

[2] D. Berry, D. Damian, A. Finkelstein et al., D. Gause, R. Hall,
and A. Wassyng. To do or not to do: If the requirements engi-
neering payoff is so good, why aren’t more companies doing
it? International Conference on Requirements Engineering,
2005.

[3] C. Bird, D. Pattison, and R. D’Souza. Latent social struc-
ture in open source projects. ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2008.

[4] B. Boehm and P. Papaccio. Understanding and controlling
software costs. IEEE Transactions on Software Engineering,
2002.

[5] B. Boehm and R. Turner. Balancing agility and discipline: A
guide for the perplexed. Addison-Wesley Professional, 2003.

[6] B. Cheng and J. Atlee. Research directions in requirements
engineering. Future of Software Engineering, 2007.

[7] J. Cleland-Huang, H. Dumitru, C. Duan, and C. Castro-
Herrera. Automated support for managing feature requests
in open forums. ACM Communications, 2009.

[8] D. Damian. RE challenges in multi-site software development
organisations. International Conference on Requirements
Engineering, 2004.

[9] Fan, W. and Stolfo, S.J. and Zhang, J. and Chan, P.K.
AdaCost: misclassification cost-sensitive boosting Machine
Learning International Workshop then Conference, 1999.

[10] N. Fenton, M. Neil, W. Marsh, P. Hearty, Ł. Radliński,
and P. Krause. On the effectiveness of early life-cycle
defect prediction with bayesian nets. Empirical Software
Engineering, 2008.

[11] C. Fitzgerald. Support for collaborative elaboration of re-
quirements models. Internal UCL Report, 2009.

[12] C. Fitzgerald. Collaborative Reviewing and Early Failure
Prediction in Feature Request Management Systems. UCL
Doctoral Thesis, 2012.

[13] C. Fitzgerald, E. Letier, and A. Finkelstein. Early Failure
Prediction in Feature Request Management Systems. Inter-
national Conference on Requirements Engineering, 2011.

[14] I. Guyon and A. Elisseeff. An introduction to variable and
feature selection. Journal of Machine Learning Research,
2003.

[15] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. Witten. The weka data mining software: An update.
ACM SIGKDD Explorations Newsletter, 2009.

[16] J. Herbsleb and D. Moitra. Global software development.
IEEE Software, 2001.

[17] Kaufhold, J. and Abbott, J. and Kaucic, R. Distributed cost
boosting and bounds on mis-classification cost IEEE Com-
puter Society Conference on Computer Vision and Pattern
Recognition, 2006.

[18] Gnesi, S. and Lami, G. and Trentanni, G. An automatic tool
for the analysis of natural language requirements Computer
Systems: Science and Engineering, 2005.

[19] Kiyavitskaya, N. and Zeni, N. and Mich, L. and Berry, D.
Requirements for tools for ambiguity identification and mea-
surement in natural language requirements specifications In-
ternational Conference on Requirements Engineering, 2008.

[20] Verma, K. and Kass, A. Requirements Analysis Tool: A
Tool for Automatically Analyzing Software Requirements
Documents. International Semantic Web Conference, 2008.

[21] P. Laurent and J. Cleland-Huang. Lessons learned from open
source projects for facilitating online requirements processes.
Requirements Engineering: Foundation for Software Quality,
2009.

[22] P. Laurent, J. Cleland-Huang, and C. Duan. Towards au-
tomated requirements triage. International Conference on
Requirements Engineering, 2007.

[23] R. Madachy and B. Boehm. Assessing quality processes with
ODC COQUALMO. Lecture Notes in Computer Science,
Making Globally Distributed Software Development a Success
Story, 2008.

[24] S. McConnell. Code complete, volume 2. Microsoft Press
Washington, 2004.

[25] J. Musa. Software reliability engineering: more reliable
software, faster and cheaper. Tata McGraw-Hill, 2004.

[26] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to predict
component failures. International Conference on Software
Engineering, 2006.

[27] Granger, C. Investigating causal relations by econometric
models and cross-spectral methods Econometrica, 1969.

[28] B. Nuseibeh and S. M. Easterbrook. Requirements engineer-
ing - a roadmap. ICSE: Future of SE Track, 2000.

[29] F. Sebastiani. Machine learning in automated text categoriza-
tion. ACM computing surveys, 2002.

[30] J. Shawe-Taylor and N. Cristianini. Kernel Methods for
Pattern Analysis. Cambridge University Press, 2004.

[31] F. Shull, V. Basili, B. Boehm, A. Brown, P. Costa, M. Lind-
vall, D. Port, I. Rus, R. Tesoriero, and M. Zelkowitz. What
we have learned about fighting defects. IEEE Symposium
Software Metrics, 2002.

[32] A. van Lamsweerde. Requirements Engineering: From Sys-
tem Goals to UML Models to Software Specifications. Wiley,
2009.

[33] G. Widmer and M. Kubat Learning in the presence of concept
drift and hidden contexts. Machine Learning, 1996.

[34] I. Witten and E. Frank. Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann Pub, 2005.

[35] T. Wolf, A. Schroter, D. Damian, and T. Nguyen. Predicting
build failures using social network analysis on developer
communication. IEEE International Conference on Software
Engineering, 2009.

[36] T. Zimmermann, R. Premraj, and A. Zeller. Predicting defects
for eclipse. International Workshop on Predictor Models in
Software Engineering, 2007.

