
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X,NO. DAY, MONTH 2012 1

Systematic Elaboration of Scalability
Requirements through Goal-Obstacle Analysis

Leticia Duboc
Dept. of Computer Science

State University of Rio de Janeiro
Brazil 20550 900

Email: l.duboc@cs.ucl.ac.uk

Emmanuel Letier
Dept. of Computer Science
University College London

United Kingdom WC1E 6BT
Email: e.letier@cs.ucl.ac.uk

David S. Rosenblum
School of Computing

National University of Singapore
Singapore 117417

Email: david@comp.nus.edu.sg

F

Abstract—Scalability is a critical concern for many software systems.
Despite the recognized importance of considering scalability from the
earliest stages of development, there is currently little support for rea-
soning about scalability at the requirements level. This paper presents a
goal-oriented approach for eliciting, modeling and reasoning about scal-
ability requirements. The approach consists of systematically identifying
scalability-related obstacles to the satisfaction of goals; assessing the
likelihood and severity of these obstacles; and generating new goals
to deal with them. The result is a consolidated set of requirements in
which important scalability concerns are anticipated through the precise,
quantified specification of scaling assumptions and scalability goals. The
paper presents results from applying the approach to a complex, large-
scale financial fraud detection system.

Index Terms—D.2.1 Requirements/Specifications, D.2.0.a Analysis,
D.2.8.b Performance measures, D.2.10.h Quality analysis and evalua-
tion, Goal-oriented requirements engineering, KAOS, Scalability

1 INTRODUCTION

S CALABILITY is widely regarded as one of the most
important qualities of software-intensive systems [1],

yet fundamental principles for developing scalable sys-
tems are still poorly understood. As with other non-
functional system qualities, a system’s ability to scale
is strongly dependent on decisions taken at the re-
quirements and architecture levels [2], [3]. Failure to
consider scalability adequately in these stages may result
in systems that are impossible or too costly to change if
scalability problems become apparent during testing or
system usage.

Current technologies, such as virtualization and cloud
computing, may help to achieve scalability in software
systems. However, a system whose architecture fails to
support some of its scalability goals cannot be made
scalable simply by employing virtualization and clouds
for its implementation. In order to take advantage of
these technologies, one must understand and define the
system’s scalability goals precisely. An a priori analysis
of scalability goals prevents system analysts from being
caught prematurely into discussions about technology

and gives them more freedom to explore, negotiate and
fulfill these goals. There is therefore a strong need for
systematic techniques to reason about scalability during
the early stages of development.

In our previous studies of scalability, we defined scala-
bility as the ability of a system to maintain the satisfaction of
its quality goals to levels that are acceptable to its stakeholders
when characteristics of the application domain and the system
design vary over expected operational ranges [4]. A system’s
scalability is therefore relative to other primary quality
goals for the system. For example, the scalability of a
Web search engine may be characterized by its ability
to return search results in a time that remains almost
instantaneous (a performance goal) when the number
of simultaneous queries and the number of pages in-
dexed increase. Scalability, however, is not limited to
performance goals. The scalability of an air traffic control
system may be characterized by its ability to keep safe
separation distances between airplanes (a safety goal)
when the number of airplanes in the airspace managed
by the system increases. One should note that, as illus-
trated by the latter example, scalability is not limited to
performance goals. Performance is only one of the many
possible indicators of scalability; there are others such as
are reliability, availability, dependability and security [4].

Defining the scalability requirements of a complex
system is not trivial. Many issues arise during their
elaboration [5]:
• how to specify scalability requirements that are

precise and testable so that they provide adequate
inputs for architectural design and analysis;

• how to identify and manage scalability-related risks
early in the development process, and in particular
how to make sure one has identified all application
domain quantities whose variations could have an
impact on the system’s scalability;

• how to deal with the inevitable unknowns, uncer-
tainties and disagreements about expected ranges of
variations for these domain quantities;



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X,NO. DAY, MONTH 2012 2

• how to ensure that the specified scalability require-
ments are neither too strong nor too weak with
respect to business goals, to expected ranges of vari-
ations in the application domain, and to capabilities
of current technologies; and

• how to find adequate tradeoffs between scalability
requirements and other qualities, in particular those
related to cost and development time.

Existing requirements engineering techniques provide
little concrete support to address these specific issues.
User stories and use-case based approaches to require-
ments engineering overlook scalability concerns and
other non-functional requirements altogether. A few in-
dustry white papers provide high-level guidelines for
writing quantifiable scalability requirements, but no pre-
cise foundations nor any guidance to deal with the
above issues [6], [7]. Goal-oriented approaches such as
KAOS [8], i* [8] [9], and Problem Frames [10] provide
generic support for elaborating, structuring and analyz-
ing software requirements, including both functional and
non-functional requirements, but no specific support to
deal with scalability concerns. A rudimentary applica-
tion of a goal-oriented approach that would consist of,
say, specifying a high-level goal named Scalable System
and gradually refining it into more precise requirements
is not satisfying because of the lack of a precise definition
for the scalability goal and the lack of support for
refining it into testable scalability requirements.

Dedicated requirements engineering techniques exist
for other important categories of non-functional require-
ments such as safety [11], [12] and security [13], [14], [15];
however, up to now no specific attention has been given
to scalability requirements. Surprisingly, scalability is not
even included in some taxonomies of non-functional
requirements in industrial standards or in the software
engineering literature [8], [16], [17], [18], [19]. As a con-
sequence, scalability requirements are often overlooked
or defined in vague terms at best [5].

This paper presents a systematic method for elab-
orating and analyzing scalability requirements, and it
presents the results of a case study in which we applied
the method to a complex, large-scale financial fraud
detection system. The method has been formulated in
the context of the KAOS goal-oriented requirements
engineering method [8], and it relies on KAOS for the
elaboration of goal models, for managing conflicts be-
tween goals, and for evaluating and selecting among
alternative system designs. We extend the conceptual
framework of KAOS with precise characterizations of
the concepts of scalability goals, scalability requirements and
scaling assumptions that are essential for reasoning about
scalability at the requirements level. We also extend the
KAOS model elaboration process with concrete support
for elaborating and analyzing such concepts.

Our approach deals with scalability concerns during
the goal-obstacle analysis steps of the goal-oriented elab-
oration process [20]. The basic idea consists in system-
atically identifying and resolving potential variations

in domain quantities that will cause goals to fail; we
will define such conditions as scalability obstacles. The
aim of a scalability obstacle analysis is to anticipate
scalability related risks at requirements elaboration time,
when there is more freedom for finding adequate ways
to deal with them, rather than discovering them during
system development or, worse, experiencing unantici-
pated scalability failures at runtime. Existing obstacle
analysis techniques [20] are not sufficient for handling
scalability obstacles because they support only generic
analyses in which the specifics of scalability obstacles are
not considered. As a result, scalability obstacles are likely
to be overlooked during obstacle identification (as they
were, for example, in a previous obstacle analysis of the
London Ambulance Service case study [20]). We present
new, more specific heuristics, formal patterns, and Even
though, we recognize the potential of virtualization and
cloud for achieving scalabilitymodel transformation tactics
for identifying and resolving scalability obstacles.

2 BACKGROUND

2.1 The Intelligent Enterprise Framework

Our presentation relies on examples of a real-world
system, Searchspace’s Intelligent Enterprise Framework
(IEF), that we used to develop and validate our tech-
niques.

IEF is a platform used by banks and other financial
institutions for processing large volumes of financial
transaction data, and notifying users (such as bank em-
ployees) of potentially fraudulent behavior within the
data. IEF has important scalability requirements due to
the recent widespread consolidation in the banking and
finance sector. The rate of electronic transactions has
increased dramatically, analytical methods have become
more complex, and system performance expectations
have become higher. Over the last 10 years, the number
of installations of the company’s software went from a
handful of deployments in a small number of countries
to many hundreds of deployments, spread worldwide.
The volume of data processed increased from a single
deployment peak of about 3 million transactions per day
to over 90 million transactions for a recent deployment,
coupled with an increase in the complexity of the pro-
cessing performed.

The system uses a number of analytical methods for
recognizing fraudulent transactions. For simplicity, we
consider here only the comparison of transactions de-
livered by a bank against known fraudulent patterns,
which may be done continuously or overnight. In the
former, transactions are streamed by the bank system
into the IEF and processed as soon as they arrive. In
the latter, transactions are provided periodically and
processed in data batches. The choice of approach de-
pends on the type of fraud being addressed and the
upstream banking processes. Alerts about potentially
fraudulent transactions are generated by the IEF and



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X,NO. DAY, MONTH 2012 3

then investigated by the bank, which will dismiss or
confirm the frauds and then take appropriate measures.

2.2 Goal-Oriented Requirements Engineering

Goal orientation is a paradigm for the elicitation, evalu-
ation, elaboration, structuring, documentation and anal-
ysis of software requirements. The KAOS approach is
composed of a modeling language and a constructive
elaboration method supported by informal heuristics
and formal techniques [8]. The modeling language com-
bines multiple system views for modeling goals, do-
main objects, agents and their responsibilities, agent
operations, and system behaviors through scenarios and
state machines. The method consists of a series of steps
for elaborating and analyzing the different views. In
this section, we focus on presenting the key concepts
that are used in the paper. Further details about the
KAOS modeling language and elaboration method can
be found in Lamsweerde’s book [8].

A goal is a prescriptive statement of intent that a
system should satisfy through the cooperation of agents.
Agents are active system components, such as humans,
hardware devices and software components, that are
capable of performing operations that modify system
state in order to satisfy goals. The word system refers to
the composition of the software under development and
its environment. Goals range from high-level business
objectives whose satisfaction involves multiple agents
(such as minimizing loss due to financial fraud, and
maintaining the bank’s reputation, etc.), to fine-grained
technical properties involving fewer agents (such as
processing all transaction batches within eight hours).
Unlike goals that are prescriptive, domain properties are
descriptive statements that are always true in the appli-
cation domain, irrespective of agents’ behaviors. Physical
laws are typical examples of domain properties. Do-
main hypotheses are also descriptive statements about the
application domain, but unlike domain properties are
considered to be more uncertain and subject to change.

In a goal model, goals are organized in AND/OR re-
finement structures. An AND-refinement relates a goal to
a set of subgoals; this means that satisfying all subgoals
in the refinement is a sufficient condition in the domain
for satisfying the goal. OR-refinement links relate a goal
to a set of alternative AND-refinements; this means that
each AND-refinement represents an alternative way to
satisfy the parent goal.

The KAOS elaboration process consists in constructing
a system’s goal model both top-down (by asking HOW
questions to refine goals into subgoals) and bottom-up
(by asking WHY questions to identify parent goals).
During the goal refinement process, goals are decom-
posed into subgoals so that each subgoal requires the
cooperation of fewer agents for its satisfaction; the refine-
ment process stops when it reaches subgoals that can be
assigned as the responsibility of single agents. In order
to be assignable to an agent, a goal must be realizable

Fig. 1. Partial Model for a Previous Version of the IEF [5].

by the agent. Realizability here is a formal condition
requiring that the goal definition corresponds to a transi-
tion relation between the agent’s monitored variables (its
input) and controlled variables (its internal and output
variables) [21]. A goal assigned to the software under
development is called a software requirement. A goal as-
signed to an agent in the environment is called a domain
expectation. The term domain assumption is used to refer
to both domain expectations and domain hypotheses.

As an example, Figure 1 shows a portion of the goal
model we have elaborated for a previous version of the
IEF system that supported batch processing only [5].
Graphically, goals are depicted as parallelograms, and
AND-refinement links are represented as arrows from
subgoals to a parent goal. Agents are depicted as
hexagons, and a link between an agent and a goal means
that the agent is responsible for the goal. The top of the
figure shows three stakeholders’ goals for this system,
namely Avoid [Loss Due to Fraud], Maintain [Bank Reputation], and
Avoid [Inconvenience to Account Holder]. The goal Achieve [Fraud
Detected and Resolved] contributes to these three goals and is
refined into the goal Achieve [Alerts Generated] requiring that
fraud alerts be generated for potentially fraudulent bank
transactions, and the expectation Achieve [Alerts Investigated
and Acted Upon Quickly], under the responsibility of a human
Fraud Investigator, requiring that generated alerts either be
confirmed as fraudulent and resolved, or cleared as false
alerts. The goal Achieve [Alerts Generated] is itself refined
into an expectation on the Bank System to provide the
batches of transactions data, and a requirement on the
Alert Generator software component to process the batches
of transactions overnight.

2.3 Specifying Goals

Each goal has a specification including its pattern (e.g.,
Achieve, Maintain, Avoid), name and natural language defini-
tion. A goal also may be specified as belonging to one
or more categories (e.g., functional, performance, safety)



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X,NO. DAY, MONTH 2012 4

and be given an optional formal definition expressed in
Metric Linear Temporal Logic [22], which is used to
disambiguate natural language definitions and to allow
automated reasoning on goal models. In this paper, we
will use the following standard temporal logic operators:

�P (P is true in all future states)

♦P (P is true in some future state)

♦≤dP (P holds in some future state that is less
than d time units from the current state)

The natural language and formal definitions of a goal
define what it means for the goal to be satisfied in
an absolute sense. Partial levels of goal satisfaction are
specified by extending goal specifications with domain-
specific quality variables and objective functions [23]. Math-
ematically, quality variables correspond to probabilistic
random variables. The specification of objective func-
tions and quality variables extends the goal model with
a probabilistic layer that can be used to compute the
impact of alternative goal refinements and responsibility
assignments on the degrees of goal satisfaction.

As an example, the goal Achieve [Batch Processed Overnight]
has the following specification.

Goal Achieve [Batch Processed Overnight]

Category Performance goal

Definition Batches of bank transactions provided by the bank
system should be processed in less than 8 hours. Processing
consists in generating alerts about transactions in the batch that
match known fraudulent patterns stored in the system.

Formal Spec (∀ b:Batch)
� (EndOfDay ∧ b.Submitted→ ♦ ≤8hours b.Processed)

Quality Variable: procTime: Batch→ Time
Definition The time to process the full batch of transactions after
the end of the day;
Sample Space The set of daily batches of bank transactions
submitted by the bank system.

Objective Functions At least 9 out of 10 batches should be
processed within 8 hours, and all batches should be processed
within 9.6 hours.

Name Definition Target

% of Batches Processed Pr(procTime ≤ 8h) 90%

in 8 hours

% of Batches Processed Pr(procTime ≤ 9.6h) 100%

in 9.6 hours

Responsibility Alert Generator

The natural language and formal definitions state that
this goal is satisfied in an absolute sense if every batch
of transactions submitted to the IEF is processed in less
than 8 hours. The quality variable procTime is a random
variable whose sample space is the set of daily batches
submitted to the IEF and whose value denotes the time
to process a batch. The first objective function states
that the system should be designed to maximize the
probability that a batch is processed in less than 8 hours.

Fig. 2. Obstacles to the Expectation Achieve [Transac-
tions Submitted in Daily Batches].

The final column specifies the target to be achieved
for each objective function; at least 90% of the batches
should be processed within 8 hours, and there is a
tolerance of 20% in the processing time (i.e., 9.6 hours)
for the remaining batches. The goal is assigned to the
Alert Gnerator agent, a subsystem of the IEF.

2.4 Goal-Obstacle Analysis
Goals, requirements and assumptions elaborated during
a requirements elaboration process are often too ideal
because they fail to take into consideration exceptional
conditions in the application domain that may violate
them. The principle of obstacle analysis is to take a
pessimistic view of the model elaborated so far by
systematically considering how the actual system might
deviate from the model.

An obstacle to some goal is an exceptional condition
that prevents the goal from being satisfied [20], [24]. An
obstacle O is said to obstruct a goal G in some domain
characterized by a set of domain properties Dom if, and
only if:
• the obstacle entails the negation of the goal in the

domain (i.e., O,Dom � ¬G); and
• the obstacle is not inconsistent in the domain (i.e.,

Dom 2 ¬O)
Graphically, obstacles are depicted as “reverse” par-

allelograms and related to the goals they obstruct by
“negated” arrows. Obstacles can be refined into sub-
obstacles. The resulting model correspond to a goal-
anchored form of risk model. For example, Figure 2
shows the obstacle Daily Transactions Batch Not Submitted
obstructing the goal Achieve [Transactions Submitted in Daily
Batches] and its OR-refinement into sub-obstacles No Batch
Submitted, Submitted Batch is Corrupted and Wrong Batch Submitted.

Starting from an idealized goal model, a goal-obstacle
analysis consists of

1) identifying as many obstacles as possible by system-
atically considering all leaf goals and assumptions
in the goal graph;

2) assessing the relative importance of the identified
obstacles in terms of their likelihood and impacts
on top-level goals;



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X,NO. DAY, MONTH 2012 5

3) resolving the more critical obstacles by modifying
existing goals, requirements and assumptions, or
by introducing new ones so as to prevent, reduce
or tolerate the obstacles.

For example, having identified the obstacle that the
Bank System could provide a corrupted batch of transac-
tions will generate additional requirements on the Alert
Generator. This identify-assess-resolve loop is repeated
until all remaining obstacles are considered acceptable
without further resolution.

3 SPECIFYING SCALABILITY REQUIREMENTS

According to our definition of scalability, the elements
required to define what it means for a system to be
scalable are (1) the quality goals of the system; (2) the
characteristics of the application domain and system
design that are expected to vary, and their ranges; and
(3) the acceptable levels of quality goal satisfaction under
these variations. In the KAOS framework, these elements
can be represented as follows:

1) Quality goals correspond to goals whose specifi-
cation includes domain-dependent objective func-
tions.

2) Expected variations of characteristics in the appli-
cation domain correspond to a new kind of domain
assumption that we call a scaling assumption.

3) The acceptable levels of quality goal satisfaction
under these variations are specified as target values
for the quality goal objective functions. We refer
to quality goals that are constrained by scaling
assumptions as scalability goals.

Note that, even though scalability is highly influenced
by the system design and implementation, goals and
assumptions related to scalability should be described
in terms of domain phenomena only and should not
refer to design or implementation concerns. Goals will
impose constraints on the system design by making
reference to assumptions about variations in the domain.
Stating the constraints in terms of domain phenomena
not only avoids over-specification, but also gives system
designers more freedom in choosing the design that will
satisfy these goals best. We describe these elements and
their roles in more detail in the following sections.

3.1 Specifying Scaling Assumptions
We define a scaling assumption as a domain assumption
specifying how certain characteristics in the application
domain are expected to vary over time and across de-
ployment environments. The latter dimension is espe-
cially important in the context of product families. The
specification of scaling assumptions should therefore be
defined in terms of the following items:

1) one or more domain quantities whose expected vari-
ations are defined in the assumption;

2) the periods of time and classes of system instances over
which the assumption is defined; and

3) the range of values each quantity is expected to
assume for each system class over each period of
time.

For example, the scaling assumption Expected Batch Size
Evolution presented below specifies how the number of
transactions in daily batches submitted to the IEF is
expected to vary over time and for banks categories.
Assumption Expected Batch Size Evolution
Category Scaling assumption
Definition From 2011 to 2015, daily batches are expected to contain up
to the following numbers of transactions for different bank categories:1

Bank 2011 until 2013 until 2015

small 10,000 15,000 20,000

medium 1 million 1.2 million 1.8 million

large 50 million 55 million 60 million

merger 80 million 85 million 95 million

Our definition of scaling assumption covers the case
where variations of domain quantities refer to a single
period of time and a unique class of system instances.
For example, an alternative, simpler scaling assumption
on the batch size could be the following:

Assumption Expected Batch Size Evolution
Category Scaling assumption
Definition Over the next five years, daily batches of transactions for all
banks are expected to vary between 10,000 and 95 million transactions.

Following the KAOS classification of properties (Sec-
tion 2.2), a scaling assumption could either be a descrip-
tive scaling hypothesis, in which case the assumption is
assumed to hold without being prescribed on any system
agent, or a prescriptive scaling expectation, in which case
some agent would be expected to restrict its behavior
so as to ensure that the scaling assumption is satisfied.
Scaling assumptions are not, however, software require-
ments, as they describe properties that are assumed to
be true in the application domain rather than properties
that must be enforced by the software-to-be.

Scaling assumptions can be specified with varying
levels of precision. For some systems, specifying orders
of magnitude for some of the domain quantities may be
sufficient to inform the early design decisions adequately
at the requirements and software architecture levels. For
others, one may need more precise figures, such as the
ones in the above examples. In some cases, it may be
useful to distinguish between the average and peak
values of some of the domain quantities. The specifi-
cation of a scaling assumption might even refer to the
full probability distribution of a domain quantity under
consideration (e.g., the distribution of the number of
transactions in daily batches and the expected evolution
in the distribution’s parameters or moments over time).

The ranges of values referenced in scaling assumptions
must be elicited and negotiated with project stakehold-

1. These numbers are fictitious and used for illustration only.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X,NO. DAY, MONTH 2012 6

ers. These may be obtained by analyzing characteristics
of the existing system, extrapolating characteristics from
related systems, making predictions about future sys-
tem evolutions, and eliciting and negotiating the ranges
with stakeholders. A variety of requirements elicitation
techniques is available to support such activities [8].
Applying such techniques to elicit these numbers of
course remains difficult, due to uncertainties about fu-
ture behaviors and divergences of opinion among sys-
tem stakeholders. But surfacing the uncertainties and
divergences explicitly during requirements elaboration is
essential to an adequate analysis of a system’s scalabil-
ity requirements. A systematic approach for identifying
what scaling assumptions need to be elicited, such as the
scalability obstacle analysis technique to be described in
Section 4, greatly facilitates this process.

A key feature of our approach is that the values
to be estimated in scaling assumptions denote measur-
able, domain-specific quantities whose validity eventu-
ally can be checked in the running system. This contrasts
with other quantitative techniques for specifying non-
functional requirements that rely on estimating sub-
jective quantities that have no domain specific mean-
ing [25], [26], [27], [28], [29] and can therefore never be
validated empirically.

3.2 The Role of Scaling Assumptions

Like other kinds of domain assumptions, scaling as-
sumptions support the refinement of goals towards re-
quirements and expectations that can be satisfied by a
single agent [8], [30]. Semantically, scaling assumptions
express constraints on the ranges of values that domain
quantities are expected to assume over specified time
periods and classes of system instances. Logically, the
absence of a scaling assumption for a domain quantity
means that there is no assumed constraint on its possible
values; that is, its value at any point in time potentially
could be infinite.

To illustrate this, consider again the goal Achieve [Batch
Processed Overnight] in Section 2.3. In Figure 1, we had
assigned that goal as the responsibility of the Alert
Generator agent. The goal is indeed realizable by the
agent, as it is defined entirely in terms of quantities that
are monitored and controlled by that agent. Realizability
implicitly assumes that agents have infinite resource
capacities to perform the operations required to satisfy
their goals. In practice, however, all agents have finite
capacities that may be insufficient for satisfying the
goal—a form of scalability obstacle. In this example, it
will be impossible for the Alert Generator to guarantee the
satisfaction of the goal for any size of daily batches to
be processed. To obtain a goal whose satisfaction can be
guaranteed by the Alert Generator alone, the goal Achieve
[Batch Processed Overnight] needs to be refined into a scaling
assumption on the size of daily batches, such as one of
those given in the previous section, and a goal requiring
daily batches to be processed within 8 hours only for

batches satisfying the scaling assumption. Using the scaling
assumption Expected Batch Size Evolution in Section 3.1, we
obtain the following subgoal:

Goal Achieve [Batch Processed Overnight Under Expected Batch
Size Evolution]
Category Performance goal, scalability goal
Definition At the end of each day, the batch of transactions submitted
by the bank should be processed in less than 8 hours, provided that
the batch size does not exceed the bounds stated in the scaling as-
sumption ‘Expected Batch Size Evolution’.

This goal can now be satisfied by an Alert Generator with
sufficiently large but nevertheless finite capacities (i.e.,
finite processing speed, memory and storage capacities).

3.3 Specifying Scalability Goals

We define a scalability goal as a goal whose definition
and required levels of goal satisfaction (as specified by
its objective functions) make explicit reference to one or
more scaling assumptions. The goal Achieve [Batch Processed
Overnight Under Expected Batch Size Evolution] is a scalability
goal because its definition refers to the scaling assump-
tion Expected Batch Size Evolution.

Our definition is consciously in opposition with a com-
mon intuition about scalability that consists of viewing
a system as scalable if it can handle any increased work-
load in a cost-effective way [31]. In this more common
view, the satisfaction of a scalability goal should not be
restricted to bounds explicitly stated in scaling assump-
tions. Our definition, in contrast, takes the view that
expected variations of relevant domain characteristics
should always be stated explicitly in order to adequately
inform a cost-effective design strategy.

The specification of a scalability goal involves describ-
ing how the required level of goal satisfaction is allowed
to vary when domain characteristics vary within the
bounds specified in scaling assumptions. This goal speci-
fication takes different forms, depending on whether the
goal satisfaction level is required to stay the same or
is allowed to vary for different values of the domain
characteristics. For example, for an air traffic control
system, the required safety level would remain the same
when the number of airplanes simultaneously present
in a region increases, whereas for an online store, one
may accept system performance to slow as the number
of simultaneous requests increases.

• A scalability goal with fixed objectives is one in which
the same level of goal satisfaction must be main-
tained under the full range of variations specified in
the scaling assumptions. These are goals for which
the goal definition, objective functions and target
values are the same across the whole range of values
considered in the scaling assumptions.

• A scalability goal with varying objectives is a scalability
goal whose required level of goal satisfaction is not



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X,NO. DAY, MONTH 2012 7

the same under the whole range of variations spec-
ified in the scaling assumptions. Their goal defini-
tion, objective functions definitions, or target values
are different across the range of values considered
in the scaling assumptions.

Scalability goals also can be extended to specify grace-
ful degradation of goal satisfaction when the system
operates outside its nominal scaling range. This can be
done by specifying additional scaling assumptions, or
additional scaling ranges within scaling assumptions,
characterizing possible values for the domain charac-
teristics outside of the initial scaling assumptions that
the system must still be able to react to. More than one
level of degradation could be specified if needed. Such
concerns for handling such cases are typically handled
during the obstacle analysis steps of the goal-oriented
requirements elaboration process that will be presented
in Section 4.

Finally, scalability goals can be specified at different
levels in the goal refinement graph. Following the KAOS
definitions, a scalability requirement is a scalability goal
assigned to an agent in the software-to-be.

4 SCALABILITY OBSTACLE ANALYSIS

This section describes the process of elaborating require-
ments models that include specifications of scalability
goals and scaling assumptions.

As mentioned earlier, what it means for a system to be
scalable is relative to other quality goals for the system.
Identifying the primary quality goals of a system is
therefore a prerequisite to the precise specification of its
scalability goals. Our process for analyzing a system’s
scalability and elaborating scalability goals assumes that
the other functional and quality goals of the system have
been elaborated following a systematic goal-oriented
requirements elaboration process [8].

As was illustrated in Section 3.2, during incremental
elaboration of requirements models, initial specification
of goals and assignments of goals to agents are typically
idealized, in the sense that they are generally elaborated
without explicit considerations for the scaling character-
istics in the application domain and the limited capaci-
ties of agents for fulfilling the goals assigned to them.

Starting from idealized goals and goal assignments is
beneficial as it avoids premature compromises based on
implicit and possibly incorrect perceptions of what might
be possible to achieve [32]. However, later on in the
requirements elaboration process, it is necessary to take
into account what can be achieved realistically by the
system agents and, if needed, modify the specifications
of goals, requirements and expectations accordingly.

Therefore, a natural way to deal with scalability dur-
ing requirements elaboration consists of handling scala-
bility concerns during the goal-obstacle analysis steps of
the goal-oriented method. Starting from an initial goal
model, our process for elaborating scalability require-
ments consists of the following activities:

1) systematically identifying scalability obstacles that
may obstruct the satisfaction of the goals, require-
ments and expectations elaborated so far;

2) assessing the likelihood and criticality of those ob-
stacles; and

3) resolving the obstacles by modifying existing goals,
requirements and expectations, or generating new
ones so as to prevent, reduce or mitigate the obsta-
cles.

The resolution of scalability obstacles leads to the iden-
tification of scaling assumptions and scalability goals
introduced in the previous section.

4.1 Identifying Scalability Obstacles

We define a scalability obstacle to some goal G as a
condition that prevents the goal from being satisfied
when the load imposed by the goal on agents involved
in its satisfaction exceeds the capacity of the agents.

In this definition, we define the concepts of goal load
and agent capacity to denote domain-specific measures
intended to characterize the amount of work needed to
satisfy the goal and the amount of resources available
to the agent to satisfy the goal, respectively. To identify
concrete scalability obstacles, one must instantiate these
concepts to domain-specific measures appropriate to the
goals and agents under consideration.

This definition suggests the following heuristic for
identifying a scalability obstacle from a goal: for each goal,
identify what defines the goal load, what agent resources are
involved in its satisfaction, and consider an obstacle of the
form Goal Load Exceeds Agent Capacity. This heuristic extends
the existing catalog of obstacle generation heuristics
in [8], [20].

For example, consider again the goal Achieve [Batch
Processed Overnight] assigned to the Alert Generator agent. The
goal load in this case is the number of transactions in
the batches to be processed, and the agent capacity is
the Alert Generator’s throughput measured as the number
of transactions it can process per second. A scalability
obstacle to this goal is therefore the condition Batch
Size Exceeds Alert Generator Processing Speed. This obstacle’s
name, which refers to a goal load and agent capacity
expressed in different units, is extended with a more
precise obstacle definition, namely that the batch size
exceeds the number of transactions that can be processed
overnight given the alert generator’s throughput, thus
comparing terms expressed in the same unit.

As another example, consider in Figure 1 the goal
Achieve [Alerts Investigated and Acted Upon Quickly] assigned to
human Fraud Investigators. This goal requires every gener-
ated alert either to be confirmed and resolved or to be
cleared by a fraud investigator within a day of the alert
being generated. The goal load in this case is the number
of alerts generated per day, while the agent capacity is
the number of alerts the team of fraud investigators is
able to investigate per day. The scalability obstacle to
this goal is Number of Alerts Exceeds Fraud Investigators Capacity.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X,NO. DAY, MONTH 2012 8

In general, a scalability obstacle can be an obstacle
to a goal residing at any level in the goal refinement
structure. For example, for an air traffic control system,
a scalability obstacle to the high-level goal Maintain [Safe
Airplane Separation] would be the condition Number of Airplanes
in Region Exceeds System Capacity. However, as for standard
goal-obstacle analysis, we found it preferable to generate
scalability obstacles from terminal goals because this
generates more specific obstacles whose likelihoods are
easier to assess and for which more specific obstacle
resolutions can be envisaged.

4.1.1 Formal Patterns of Scalability Obstruction
In addition to informal heuristics, the existing obstacle
analysis method relies on a catalog of formal obstruction
patterns for identifying obstacles from goals [20]. These
patterns provide a formal and more precise character-
ization of the informal heuristics. Two formal patterns
corresponding to the above heuristics are shown in
Table 1. The first pattern considers goals of the form
�P , which do not refer to a scaling assumption; the
second pattern is defined for scalability goals of the
form � (SA → P ), where SA is the condition defined
in a scaling assumption on the goal load. In both cases,
the identification of the scalability obstacle relies on a
domain property � (P → LoadG ≤ CapacityAg) stating
that P can be true only if the goal load does not exceed
the agent capacity. The identified scalability obstacles
have the form shown in the last column of the table.
The first obstacle states that eventually the goal load
exceeds the agent capacity. The second one states that
despite the values of domain quantities being within the
ranges defined in the scaling assumption, eventually the
goal load exceeds the agent capacity. Note that these
patterns require that the goal load and agent capacity
be expressed in or converted to the same units.

4.1.2 Scalability Obstacles to Multiple Goals
When identifying scalability obstacles, it is not suffi-
cient to consider obstacles to each goal in isolation.
There might be situations where an agent’s capacity is
sufficient to satisfy each of its goals in isolation, but
insufficient when having to satisfy all goals together.

This can be characterized formally by the obstruc-
tion pattern shown in Table 2. Consider a set of goals
G1, . . . , Gn assigned to an agent Ag and involving for
their satisfaction the same agent resource AgRes. As-
suming a domain property saying that the agent’s ca-
pacity must always be bigger than the sum of the
goals’ loads in order for the goals to be satisfied, that
is, G1 ∧ . . . ∧ Gn → � (LoadG1 + . . . + LoadGn ≤ M),
then a scalability obstacle to the combined set of goals
G1, . . . , Gn is the obstacle ♦ (LoadG1

+ . . .+LoadGn
> M).

That is, the scalability obstacle is a condition O such that
O,Dom ` ¬ (G1 ∧ . . . ∧Gn).

This pattern relies on the simplifying assumption that
all goal load measures are expressed in the same unit
and that the total load imposed by the goals is the

sum of the load of the individual goals, but it can
be generalized easily to a situation where the domain
property involves any monotonically increasing function
F (LoadG1

, . . . ,LoadGn
) instead of simple addition. When

n = 1, this pattern is equivalent to the first obstruction
pattern to a single goal in Table 1.

To illustrate this pattern, consider the Data Store agent
and the two goals Maintain [Transactions Data Stored] and Main-
tain [Alerts Data Stored] under its responsibility in Figure 3.
Note that Figure 3 is a responsibility diagram—a diagram
showing an agent and a set of goals it is responsible
for [8]—that has been extended with a scalability obsta-
cle obtained by the application of this pattern.

Fig. 3. Scalability Obstacle to Multiple Goals.

In this example, the load for each goal is the size
of the transaction data and alert data to be stored,
respectively; both goals involve the Data Store’s storage
resource for their satisfaction, and a necessary condition
for both goals to be satisfied is that the sum of the
transaction data and alert data does not exceed the Data
Store’s storage capacity. An application of the pattern
generates the scalability obstacle Transactions and Alerts Data
Exceeds Storage Capacity. Note that the strict application of
the pattern for single goals described in the beginning
of this section would have generated two obstacles,
Transactions Data Exceeds Storage Capacity and Alerts Data Exceeds
Storage Capacity. However, the logical conjunction of these
two obstacles is not equivalent to the joined obstacle
Transactions and Alerts Data Exceeds Storage Capacity.

The pattern of scalability obstruction to multiple goals
suggests the following heuristic procedure for the sys-
tematic identification of scalability obstacles from goals:

For each agent,

1) identify the set of all goals assigned to the agent;
2) for each goal, identify what defines the goal load

and what agent resources are involved in its satis-
faction;

3) for each agent resource Resi identified in step 2,
take all goals G1, . . . , Gn requiring this resource
and consider a scalability obstacle of the form
♦ (LoadG1

+ . . . + LoadGn
> M) obstructing these

goals, where M is the minimum value of the agent
resource needed to satisfy all goals together.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X,NO. DAY, MONTH 2012 9

TABLE 1
Scalability Obstruction Patterns

Goal Domain Property Obstacle
G : �P � (P → LoadG ≤ CapacityAg) ♦ (LoadG > CapacityAg)

G : � (SA→ P ) � (P → LoadG ≤ CapacityAg) ♦ (SA ∧ LoadG > CapacityAg)

TABLE 2
Pattern of Scalability Obstruction to Multiple Goals

Goals Domain Property Obstacle
G1, . . . , Gn G1 ∧ . . . ∧Gn → � (LoadG1

+ . . .+ LoadGn ≤ CapacityAg) ♦ (LoadG1
+ . . .+ LoadGn ) > CapacityAg

4.2 Assessing Scalability Obstacles
Once potential scalability obstacles have been identified,
their criticality and likelihood should be assessed. As
for other kinds of obstacles, the criticality of a scalability
obstacle depends on its impact on higher-level goals and
the importance of those goals.

A lightweight technique to support this process con-
sists of using a standard qualitative risk analysis matrix in
which the likelihood of a scalability obstacle is estimated
on a qualitative scale from Very Unlikely to Almost Certain
and its criticality estimated on a scale from Insignificant
to Catastrophic [8]. The goal refinement graph helps in
estimating obstacle criticality by allowing one to follow
goal-refinement links upward to identify all high-level
goals affected by an obstacle.

If there exists a quantitative goal model relating qual-
ity variables on software requirements and domain ex-
pectations to higher-level goals [23], then this model
can be used to perform a more detailed quantitative
analysis of the impact of obstacles on higher-level goals.
However, developing such quantitative models requires
more effort, and a detailed quantitative analysis is not
always needed, as the main objective of the obstacle
assessment step is to separate scalability obstacles for
which resolutions need to be sought from those whose
risk is so low that they can safely be ignored.

4.3 Resolving Scalability Obstacles
Scalability obstacles whose combined likelihood and crit-
icality are considered serious enough must be resolved.
The obstacle resolution process comprises two activities:
the generation of alternative resolutions and the selection
of resolutions among generated alternatives. Only the
generation step is considered here; the selection among
alternatives can be performed using qualitative or quan-
titative techniques covered elsewhere [8], [18], [23].

Ideally, obstacle resolutions should be defined inde-
pendently of any technology adopted to develop the
system. Doing so allows the requirements analyst to
explore a broader range of resolutions and to negotiate
goals with the stakeholders. For example, the resolution
adapt agent capacity at runtime according to load, described

in Section 4.3.3, predicts the future value of the goal load
at runtime and adjusts the agent capacity accordingly.
Later in the development lifecycle, this resolution could
be implemented using, say, a cloud, in which the agents
would be deployed as cloud-based services that can be
replicated to support a growing load. It is important
to note, however, that the decision of which agents
would be cloud-based and which requirements they
would be responsible for is a subsequent activity to our
method and should not be considered in the generation
of alternative resolutions described in this section.

In Kaos, obstacle resolution tactics are model transfor-
mation operators that resolve an obstacle by introduc-
ing new goals, assumptions, and responsibility assign-
ments in the model, or by modifying existing ones. We
have extended the existing catalog of obstacle resolution
tactics [20] with new, specialized tactics to deal with
scalability obstacles. Our tactics have been developed
by systematically considering specializations of the eight
general obstacles resolutions strategies in [20]: goal sub-
stitution, agent substitution, obstacle prevention, goal
weakening, obstacle reduction, goal restoration, obstacle
mitigation, and do-nothing.

The benefit of these tactics is to encode expert knowl-
edge about how to deal with scalability risks in a form
that allows requirements analysts to explore system-
atically during requirements elaboration the range of
alternative ways to deal with such risks.

Table 3 provides an overview of the scalability obstacle
resolution tactics. The first and second columns show the
general obstacle resolution categories and descriptions,
as defined by Lamsweerde and Letier [20]. The third
column shows the specialized tactics and sub-tactics for
resolving scalability obstacles.

A complete, formal description of these tactics can be
found in Duboc [33]. This section presents the main idea
of each tactic. For each of the general obstacle resolution
strategies, we briefly discuss its relevance to resolving
scalability obstacles and, where appropriate, define new
model transformation tactics that are specific to the res-
olution of scalability obstacles. The Do-Nothing strategy
consists simply of leaving the obstacle unresolved and
will not be considered further. This tactic should be



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X,NO. DAY, MONTH 2012 10

TABLE 3
Scalability Obstacle Resolution Tactics

Strategy Short Description Scalability Obstacle Resolution Tactic
Goal Substitution Resolve the obstacle by finding alternative Can be applied without specialization

goals in which the obstructed goal is no
longer needed

Agent Substitution Resolve the obstacle by changing the • Transfer goal to non-overloaded agent
responsibility assignment for the ◦ Automate responsibility of overloaded human agent
obstructed goal • Split goal load among multiple agents

◦ Split goal load into subtasks
◦ Split goal load by case

Obstacle Prevention Introduce new goals and assumptions • Introduce scaling assumption
to prevent the obstacle from occurring • Introduce scalability obstacle prevention goal

◦ Set agent capacity according to load
- Set agent capacity upfront to worst-case load
- Adapt agent capacity at runtime according to load

- Increase number of agent instances
- Increase the capacity of the agent instance

◦ Limit goal load according to agent capacity
- Limit goal load according to fixed agent capacity

- Distribute goal load over time
- Limit goal load according to varying agent capacity

Obstacle Reduction Introduce new goals to reduce the obstacle’s • Influence goal load distribution
likelihood

Goal Weakening Change the definition of an obstructed goal • Weaken goal definition with scaling assumption
to make it more liberal so that • Weaken goal definition by strengthening scaling assumption
the obstruction disappears • Weaken goal objective function

◦ Relax real-time requirement
◦ Relax required level of satisfaction

Goal Restoration Introduce a new goal to restore the Can be applied without specialization
satisfaction of the obstructed goal when
violated

Obstacle Mitigation Introduce a new goal to mitigate the Can be applied without specialization
consequences of an obstacle when it occurs

Do-Nothing Leave the obstacle unresolved No specialization needed

applied only when the likelihood and criticality of the
obstacle are considered low.

4.3.1 Goal Substitution
A first effective way to resolve an obstacle to some
goal is to eliminate the obstacle completely by finding
an alternative to the obstructed goal. For scalability
obstacles, the principle is to try to find an alternative
way to satisfy the system’s higher-level goals in which
the scalability risk no longer exists.

Example. Consider the scalability obstacle Batch Size
Exceeds Alert Generator’s Processing Speed obstructing the goal
Achieve [Batch Processed Overnight]. An application of the goal
substitution strategy in this case is to design a system in
which transactions are processed continuously, 24 hours
per day, rather than in overnight batches. This is in fact

a strategy that has been developed for a later version of
the IEF, which now supports both modes of operation.

4.3.2 Agent Substitution
This tactic consists of eliminating the possibility for
an obstacle to occur by assigning the responsibility for
the obstructed goal to another agent. The following
specializations of this tactic are useful for resolving
scalability obstacles.

• Transfer goal to non-overloaded agent: This tactic
consists of transferring responsibility for one or more
of the goals Gi assigned to an overloaded agent Ag
to an alternative agent Ag′ with bigger capacity or
smaller load. Possible choices for the alternative agent
can be explored systematically by considering all agents



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X,NO. DAY, MONTH 2012 11

already present in the model. This tactic may lead also
to the introduction of a new agent role. A particular case
is the commonly used tactic automate responsibility of
overloaded human agent.

• Split goal load among multiple agents: This tactic
consists of refining a goal G assigned to an overloaded
agent Ag into subgoals Gi with smaller loads such that
each subgoal can be assigned to a different agent with
enough capacity to satisfy it. An application of this
tactic may lead to the introduction of new agent roles
taking responsibilities for the subgoals Gi. Two variants
are the specialized tactics split goal load into subtasks
and split goal load by case that consist in generating
the subgoals for G using a milestone-driven or a
case-driven formal refinement pattern, respectively [34].
In the first case, a goal of the form Achieve [Target Condition
From Current Condition] is refined into two subgoals Achieve
[Milestone From Current Condition] and Achieve [Target Condition
From Milestone], each being assigned to separate agents
with sufficient capacity to perform the tasks required
for the satisfaction of each subgoal. In the second case, a
goal G is refined into subgoals of the form G When Casei,
where the set of conditions Casei cover an exhaustive
set of cases in which G must be satisfied. Each subgoal
is then assigned to a separate agent with sufficient
capacity to support it.

Example. To illustrate these tactics, consider the goal
Achieve [Alerts Investigated and Acted Upon Quickly] assigned to
the class of agent Fraud Investigator, and the scalability
obstacle Number of generated alerts exceeds fraud investigators’
capacity. The tactic split goal load into subtasks suggests
identifying subgoals corresponding to subtasks that can
be assigned to different agents in the system, such as re-
fining the goal Achieve [Alerts Investigated and Acted Upon Quickly]
into two separate goals Achieve [Alerts Investigated Quickly] and
Achieve [Fraudulent Transaction Acted Upon Quickly], each assigned
to a different agent with a specialized role. The former
goal is assigned to the agent Fraud Investigator, while the
latter is assigned to the agent Collector. This division is,
in fact, adopted by some of Searchspace’s customers. The
tactic split goal load by case suggests identifying a set
of alternative cases of alert investigation that could be
assigned to fraud investigators who specialize in such
cases and are therefore more efficient to deal with them
(e.g., based on the type of alert and account holder).

4.3.3 Obstacle Prevention

Obstacle prevention consists in introducing to the model
a new assertion ¬O that prevents the obstacle from
occurring. Alternative obstacle prevention tactics make
this new assertion either a domain assumption to be
satisfied by some agent in the environment, or a goal
whose satisfaction involves the software-to-be [20].

For a scalability obstacle of the form Goal Load Exceeds
Agent Capacity, the following obstacle prevention tactic

can be used:

• Introduce scaling assumption: This model
transformation tactic has been defined already in
Section 3.2. It prevents a scalability obstacle from
obstructing a goal G by (1) introducing a scaling
assumption SA such that its definition implies the
negation of the obstacle, and (2) using this scaling
assumption SA to refine the obstructed goal G into G
When SA.

• Introduce scalability obstacle prevention goal: This
tactic consists in preventing the scalability obstacle from
occurring by generating a new goal of the form:

Goal Avoid [Goal Load Exceeds Agent Capacity]
Formal Spec �¬ (LoadG > CapacityAg)

Alternative refinements for this goal can then be
generated using the refinement tactics described below.
These tactics differ according to whether the obstacle
prevention goal is achieved through constraining the
agent capacity or the goal load. In both cases, one can
consider a static tactic or a dynamic one.

◦ Set agent capacity according to load: This tactic
consists of refining the above goal into a scaling as-
sumption defining a bound X on the goal load (i.e.,
� (LoadG ≤ X)), and a goal requiring the agent capacity
to have a value above X (i.e., � (CapacityAg > X). It has
the following static and dynamic specializations:
− Set agent capacity upfront to worst-case load: For
this specialization, X defines a fixed worst-case bound
on the goal load, that is, � (LoadG ≤ WorstCaseLoad),
and the goal requires the agent capacity to have a
constant value above this worst-case load, that is,
� (CapacityAg > WorstCaseLoad).
− Adapt agent capacity at runtime according to
load: This tactic is the dynamic counterpart of the
previous one. In this tactic, X defines a time-varying
variable representing the predicted future value of the
goal load at runtime (i.e., � (LoadG ≤ ExpectedLoad),
and the goal dynamically extends the agent capacities
based on the predicted load (i.e., � (CapacityAg >
ExpectedLoad).
Two typical tactics to satisfy the subgoal in both cases

are to increase the number of agent instances so that
their increased capacity is greater than X, or increase
the capacity of the agent instances so that it becomes
greater than X. In the IEF, for example, this could be done
by increasing the number of Fraud Investigators processing
alerts or by providing training to investigators so that
alerts can be processed more quickly.
◦ Limit goal load according to agent capacity:

This tactic consists of refining the obstacle prevention
goal into a requirement or expectation of the form
� (CapacityAg ≥ K) requiring the agent capacity to be
greater than some value K, and a subgoal of the form



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X,NO. DAY, MONTH 2012 12

� (LoadG ≤ K) limiting the goal load value at any given
time below K. This tactic also has two specializations:
− Limit goal load according to fixed agent capacity:
For this tactic, K is a constant value representing a
fixed agent capacity. One typical tactic to satisfy this
subgoal is to distribute the goal load over time;
for example, for a student enrollment system, differ-
ent registration dates can be set for different student
groups.
− Limit goal load according to varying agent
capacity: This tactic is the dynamic counterpart of
the previous one, where K is a time-varying variable.
The principle here is to monitor or predict variations
in the agent capacity at runtime and dynamically
change the limit on the maximal goal load based on
these variations.

Example. To illustrate the use of these tactics for the
exploration of alternative system designs, consider again
the obstacle Batch Size Exceeds Alert Generator Processing Speed
and its prevention through the goal Avoid [Batch Size Exceeds
Alert Generator Processing Speed]. We consider each of the
above goal refinement tactics in turn.

1) The tactic set agent capacity upfront to worst-case
load refines the goal into a scaling assumption Batch
Size Below Max (where Max is a constant value) and
a subgoal Maintain [Alert Generator Processing Speed Above
Max], such that the alert generator would have a
fixed capacity designed to deal with the largest
possible batch size.

2) The tactic adapt agent capacity at runtime ac-
cording to load refines this goal into the subgoals
Maintain [Accurate Batch Size Prediction] and Maintain [Alert
Generator Processing Speed above Predicted Batch Size]. Sat-
isfaction of these adaptation goals can be assigned
as the responsibility of human agents who have
to manually upgrade the system, but they also
could be partly automated by developing a self-
managed system that would monitor and predict
batch sizes and automatically allocate more re-
sources as needed.

3) The tactic limit goal load according to fixed agent
capacity refines the goal into a requirement Main-
tain [Alert Generator Processing Speed Above K] (where K
is a constant value)—this can be translated to a
hardware requirement on machines running the
IEF—and a subgoal Maintain [Submitted Batch Size Below
K] requiring the size of the submitted batch to
remain within the alert generator capacity. There
are in turn different ways in which this goal could
be satisfied. It could, for example, be assigned as
the responsibility of the Bank System, or we could
introduce an additional agent between the Bank
System and Alert Generator responsible for truncating
batches of transactions that are too large, and for
rescheduling the remaining transactions to a later
time or redirecting them to another system.

4) The tactic limit goal load according to varying

agent capacity is the dynamic counterpart of the
above refinement, in which the limit on the batch
size submitted to the Alert Generator would vary
at runtime based on observations of the actual
processing speed of the Alert Generator (as opposed
to a fixed processing speed that was estimated and
defined once when the system was deployed).

These alternative refinements would be modeled as OR-
refinement links in the goal graph structure. Each alter-
native would have to be evaluated in terms of cost, risks,
and its contribution to high-level goals. Such evaluation
would be used then to decide which alternative or
combination of alternatives to select for implementation.

4.3.4 Obstacle Reduction
Obstacle reduction consists in introducing a new goal
aiming at reducing the likelihood of the obstacle oc-
curring. Typically, this technique plays on factors that
encourage or dissuade human agents to behave in cer-
tain ways. For scalability obstacles, one common obstacle
reduction tactic is to influence the distribution of goal
load. Consider, for example, an e-commerce website
wishing to announce a sale. It can send notification e-
mails to registered customers on different dates rather
than all on the same date, assuming that customers are
more likely to shop as soon as they receive the e-mail.
Another typical example is the tactic used in some large
office buildings to reduce morning congestion in their
elevators by spreading out employees’ start times on
different floors.

4.3.5 Goal Weakening
Sometimes a goal is found to be obstructed by an obsta-
cle simply because the initial goal definition is too strong.
In this case, one way to resolve the obstruction is to
deidealize the goal, that is, to change the goal definition to
make it more liberal so that the obstruction is no longer
present. This process is supported by a set of formal
and informal goal transformation tactics [20]. We have
defined the following new transformation tactics for
resolving scalability obstacles through goal weakening:
• Weaken goal definition with scaling assumption:

This tactic transforms an obstructed goal into a more
liberal goal, requiring the original goal to be satisfied
only when its load does not exceed the agent capacity.
It should be applied when a goal G that does not refer
to any scaling assumption is obstructed by a scalability
obstacle Goal Load Exceeds Agent Capacity. In this tactic, the
original goal is transformed into the goal named G
When Goal Load Does Not Exceed Agent Capacity, where the
name corresponds to a scaling assumption. The for-
mal transformation pattern associated with this tactic
is given by the first row in Table 4. It states that a
goal of the form �P obstructed by a scalability obstacle
♦ (LoadG > CapacityAg) is transformed into a goal of the
form � (LoadG ≤ CapacityAg → P ).

Note that the definition of the resulting goal is
the same as the definition of the subgoal that would



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X,NO. DAY, MONTH 2012 13

TABLE 4
Goal Deidealization Patterns for Scalability Obstacles

Goal Scalability Obstacle Deidealized Goal
G : �P ♦ (LoadG > CapacityAg) � (LoadG ≤ CapacityAg → P )

G : � (SA→ P ) ♦ (SA ∧ LoadG > CapacityAg) � (SA ∧ LoadG ≤ CapacityAg → P )

be obtained by applying the tactic introduce scaling
assumption. The difference is in terms of how the
weakening is propagated, as we illustrate on the
example below.

• Weaken goal definition by strengthening the
scaling assumption: This tactic has the same objective
as the one above, but it should be applied when the
obstructed goal already refers to a scaling assumption—
that is, when a scalability goal G When SA referring to a
scaling assumption SA is obstructed by an additional
scalability obstacle. Applying this tactic transforms the
original goal into the goal G When Goal Load Is Within SA and
Does Not Exceed Agent Capacity. The formal transformation
pattern associated with this tactic is given by the second
row in Table 4.

Once a goal definition has been weakened with
one of the two tactics above, the change needs to
be propagated along the refinement links in the goal
graph following the general procedure described by
Lamsweerde and Letier [20]. In the case of these tactics,
the propagation typically is performed by weakening
the definitions of parent goals using the same patterns
in Table 4.

•Weaken goal objective function: This tactic involves
weakening the goal’s objective function or required
levels of satisfaction so that it requires less agent
capacity for its satisfaction. For Achieve goals of the form
�(C → ♦≤dT ), a specialized tactic for goal weakening
is to relax real-time requirement by increasing the time
d for achieving the condition T . The relax required
level of satisfaction specialization involves relaxing
the minimum value to be achieved in order for the
goal objective function to be maximized (i.e. the target
values of the goal’s objective function).

Example. Applying the tactic weaken goal definition
with scaling assumption to the goal Achieve [Batch Pro-
cessed Overnight] generates the weaker goal Achieve [Batch
Processed Overnight When Batch Size Does Not Exceed Alert Gener-
ator’s Speed]. This change would be propagated upward
in the goal model of Figure 1 to yield the goal Achieve
[Alert Generated When Batch Size Does Not Exceed Alert Generator’s
Speed]. The purpose of considering such a tactic is to
explore systematically the space of possible resolutions.
In this example, it is likely that such resolutions will not
be acceptable to system stakeholders. Consider also the

goal Achieve [Batch Processed Overnight Under Expected Batch Size
Evolution] (specified in Section 3.2). This goal is specified
with the following fixed objective function:

Objective Functions At least 9 out of 10 batches should be pro-
cessed within 8 hours, and all batches should be processed within
9.6 hours.

Name Definition Target

% of Batches Pro- Pr(processingTime ≤ 90%

cessed in 8 hours 8h | ExpectedBatch-

SizeEvolution)

% of Batches Pro- Pr(processingTime ≤ 100%

cessed in 9.6 hours 9.6h | ExpectedBatch-

SizeEvolution)

Assume that the scalability obstacle Expected Batch Size
Evolution Exceeds Alert Generator Processing Speed obstructing
this goal is considered likely to occur. In order to re-
solve the obstacle, the tactic relax real-time requirement
would weaken the goal by increasing the expected pro-
cessing time from 8 to 10 hours. Alternatively, the tactic
relax required level of satisfaction would weaken the
goal by allowing for less than 90% of the batches to be
processed in 8 hours.

4.3.6 Goal Restoration and Obstacle Mitigation
In some cases, it may be impossible or too costly to
guarantee that all scalability obstacles will be avoided.
One should therefore consider how to tolerate a scalabil-
ity obstacle or mitigate its consequences when it occurs.
Two general tactics here are goal restoration and obstacle
mitigation.

In goal restoration, a new goal of the form � (¬P →
♦P ) is added to the model to eventually restore the con-
dition P of the obstructed goal. In obstacle mitigation, a
new goal is added to attenuate the consequences of an
obstacle occurrence. This typically involves ensuring the
satisfaction of a weaker version of the obstructed goal
or of an ancestor of the obstructed goal. Consider, for
example, a call center with the goal Achieve [Calls Answered
Quickly] stating that calls should be answered in less than
3 minutes. If in a given day, the call center receives an
unusually high number of calls, this goal is obstructed
by the scalability obstacle Number of Calls Exceeds Customer
Service Team Capacity. A tactic to mitigate this obstacle
might be to create a new goal Achieve [Return Call] which
ensures a weaker version of the obstructed goal stating
that a call must be taken in less than 3 minutes or else
the details of the customer should be recorded and the
call returned in less than half an hour.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X,NO. DAY, MONTH 2012 14

5 CASE STUDY

We have applied the scalability obstacle analysis tech-
niques described in the previous section to the elabora-
tion of the scalability requirements of a major redesign
of the IEF system. One of the main objectives of this
redesign was to extend the existing batch-based system
with functionality to process transactions in a continuous
stream.

This case study follows a previous case study reported
by Duboc et al. [5] in which we elaborated a KAOS goal
model for the batch-based version of IEF. The first case
study occurred before our development of the scalability
obstacle analysis techniques. The elaboration of the goal
model for the new system and its subsequent scalability
obstacle analysis were performed by the first author by
invitation of the IEF project manager after the success of
the first case study. Having worked at Searchspace for
three and a half years, she had good knowledge of the
application domain and previous system versions.

Unlike a retrospective study of a fully implemented
system with well understood requirements, this study
involved a system under development, with all the
complexities normally present during the initial elab-
oration of a system’s requirements. Stakeholders were
busy with their own daily tasks and had limited time
for requirements elicitation and validation; knowledge
about the system was spread across individuals; many
assumptions originated from experience with previous
projects that may not have been valid for the new
system; documents were contradictory and incomplete;
and many requirements had no clear rationale other than
being present in older versions of the IEF.

Our case study lasted for a period of approximately
30 working days, including interviews, brainstorming
sessions, modeling, data characterization, and document
writing and reviewing. During the first two days, the
analyst built an initial high-level model based on her
own domain knowledge to serve as a starting point for
discussions. The next 25 days were spent elaborating
the initial, idealized goal model and applying the scal-
ability obstacle identification and assessment activities
described in the previous sections. The last five days
were spent exploring obstacle resolutions and producing
the final documentation.

The initial goal model was elaborated from a number
of sources: the goal model for the previous batch-based
system, a business requirements specification that al-
ready had been written for the new system, and informa-
tion gathered from interviews with project stakeholders
during the goal model elaboration. The initial business
requirements specification document contained mostly
functional requirements specified through use cases, and
a single unjustified estimation of the number of trans-
actions the system should be able to process per day.
The IEF developers judged this document insufficient to
inform the software design adequately.

The full goal model that we elaborated cannot be

shown here due to its size and the sensitivity of the in-
formation it contains. Sanitized extracts from the model
can be found in Duboc [33]. A portion of the goal model
on which we illustrate the scalability obstacle analysis
techniques is shown in Figures 5 to 7 in Appendix A.

5.1 Identifying Scalability Obstacles
We followed the process defined in Section 4.1 to identify
scalability obstacles systematically from goals assigned
to agents. Table 5 illustrates the result of this process by
showing the scalability obstacles generated from some
of the responsibility assignments included in the goal
model of Appendix A.

In this table, the Alert Generator agent is shown to be re-
sponsible for three goals: Achieve [Batch Processed Overnight],
Achieve [Real-time Transactions Processed Instantaneously] and
Achieve [Fraud Patterns Tested on Past Transactions]. The first goal
is similar to the one defined in Section 2.2, the second
goal bounds the processing time for transactions that
require immediate clearing, and the third goal requires
that every new fraud detection rule should be tested
against past transactions.

For these three goals, we have defined the measure
of the goal load to be the number of transaction checks
(txn check), where a transaction check corresponds to the
application of a single fraud detection rule to a single
transaction. The load imposed by these goals on the
Alert Generator is therefore proportional to the number of
transactions to be checked and the number of fraud
detection rules to be applied on each transaction. We
thereby obtained the scalability obstacle Number of Txn
Checks Exceeds Alert Generator Processing Speed obstructing
these three goals. In defining this scalability obstacle,
we further took into consideration the fact that not all
fraud detection rules take the same time to compute. For
example, fraud detection rules that consider historical
information about a set of related accounts take much
longer to process than simple comparisons of transac-
tions against blacklisted account numbers.

Other domain characteristics, such as the percentage
of new accounts in a daily batch or stream, also in-
fluence the goal load and therefore were included in
the definition of this scalability obstacle. Thus, unlike
our simple illustrative example in Section 4.1 where the
load of the goal Achieve [Batch Processed Overnight] was a
simple scalar value (the number of transactions), in our
full model, this load is defined as a vector composed
of several domain characteristics. Significant knowledge
about the application domain and fraud detection rules
was necessary to identify such additional characteristics.

As shown in Table 5, the obstacle identification process
also led us to identify scalability obstacles to agents
other than the Alert Generator. In particular, the number of
generated alerts and the time needed to handle an alert
are important factors whose variations could prevent
Fraud Investigators from satisfying their goals.

In our model, the Data Storage agent is separate from the
Alert Generator because it correspond to a given domain



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X,NO. DAY, MONTH 2012 15

TABLE 5
Scalability Obstacles to IEF Goals

Agent Goal Scalability Obstacle

Alert Generator

Achieve [Batch Processed Overnight]
Number of Txn Checks Exceeds Alert Generator
Processing SpeedAchieve [Real-time Transactions Processed Instantaneously]

Achieve [Fraud Patterns Tested on Past Transactions]

Data Store

Achieve [Incoming Transactions Stored]

Amount of Data Exceeds Data Storage SpaceAchieve [Alerts Stored]

Achieve [Fraud Detection Rules Stored]

Fraud Investigator Achieve [Alerts Investigated and and Acted Upon Quickly] Number of Alerts Exceeds Fraud Investigator
Speed

component the Alert Generator must interact with. From
the goals shown in Table 5, we generated the scalability
obstacle Amount of Data Exceeds Data Storage Space whose
definition refers to domain quantities such as the number
and size of transactions and generated alerts.

Our systematic identification of scalability obstacles
led us to uncover 13 important domain characteristics
that have an impact on the system’s scalability. All
these characteristics except one had been overlooked
in the initial business requirements specification, and
their impact on scalability never had been made fully
explicit to the main system stakeholders. The benefit of
exposing these scaling characteristics became apparent
when eliciting scaling assumptions on these variables
and discovering that stakeholders had diverging views
about the ranges of values such variables may take, and
therefore about the software scalability requirements that
depend on these assumptions.

Two important observations can be made from our
experience in identifying scalability obstacles for the IEF
system:

1) The completeness of the generated scalability obstacles is
relative to the completeness of the goal model. An im-
portant concern when identifying scalability obsta-
cles is to try to identify all domain quantities whose
variations have an impact on the system’s ability to
satisfy its goals. The systematic process in which
scalability obstacles are generated for each agent
and every goal assigned to it ensures completeness
of the identified obstacles with respect to specified
software requirements and domain expectations.
By completeness here, we mean that a scalability
obstacle of the form Goal Load Exceeds Agent Capacity
has been considered for all leaf goals and agent re-
sources that have been identified in the model. This
completeness is of course relative to the quality of
the initial goal model—if some important agents,
requirements or domain expectations are missing,
it is likely that their scalability obstacles will be
overlooked as well.

2) Detailed domain knowledge is needed to define fine-
grained scalability obstacles. Defining what consti-
tutes the load of a particular goal was not always

straightforward and could not be derived simply
from the goal definition alone. It often required a
good knowledge of the application domain and of
the factors affecting the computational complexities
of the functions to be performed for satisfying
the goals. This was illustrated above for the goals
assigned to the Alert Generator. In our example, it
required good knowledge of the complexities of
the different alert generation rules used in fraud
detection systems. When this knowledge is not
available, scalability obstacles still can be identi-
fied from the goal definition, but the scalability
obstacles as defined remain much more coarse-
grained. For example, without expert knowledge,
our scalability obstacles to the Alert Generator’s goals
would have been defined in terms of numbers of
transactions only, as was done in Section 4.1. Simi-
larly, the scalability obstacles we have identified for
the goals assigned to the Fraud Investigator agents re-
main quite coarse-grained, because during our case
study we lacked access to the knowledge of what
domain characteristics affect the speed at which
alerts are investigated. A benefit of our scalability
obstacle identification process is that it structures
the elicitation activities that need to be performed
for identifying detailed scalability obstacles.

5.2 Assessing Scalability Obstacles and Eliciting
Scaling Assumptions
Once identified, scalability obstacles need to be assessed
in terms of their likelihood and criticality, so that de-
cisions can be made about which obstacles need to be
resolved. Since obstacle analysis is an iterative process,
scalability obstacles need to be reassessed after their res-
olutions. During this reassessment, obstacle likelihoods
and criticality are used also to guide the selection among
alternative resolutions.

In a first assessment, we considered all identified scal-
ability obstacles equally likely to happen. Since we had
no information about the potential scaling characteristics
of the various domain quantities, we pessimistically
assumed that they all could rise to levels that would
lead to violations of idealized goals.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X,NO. DAY, MONTH 2012 16

TABLE 6
Criticality of Scalability Obstacles

Scalability Obstacle Likelihood Criticality
Number of Txn Checks Exceeds Alert Generator Processing Speed High High

Amount of Data Exceeds Data Storage Space High High

Number of Alerts Exceeds Fraud Investigator Speed High Moderate

The criticality of the identified scalability obstacles was
estimated by the first author and project manager by
identifying which higher-level goals would be violated
if the obstacles were to occur. Table 5.2 shows this
qualitative assessment for three obstacles.

After this first assessment, we started eliciting scaling
assumptions for all domain quantities involved in the
scalability obstacles and updated the goal model by
applying the tactic introduce scaling assumption to the
obstructed goals. This tactic generated new obstacles that
had to be assessed as well. We did not yet consider other
scalability obstacle resolution tactics, because we felt that
we needed first to understand the scaling assumptions
of the variables involved before investigating other res-
olution tactics.

For example, the goal Achieve [Batch Processed Overnight]
was refined into the scaling assumption and scalability
requirement shown in Figure 4. The figure also shows

Fig. 4. Obstacles to a Scaling Assumption and a Scala-
bility Requirement.

new obstacles to the scaling assumption and the scal-
ability requirement. Assessing the likelihoods of these
two obstacles consists of (1) asking how likely it is that
the number of transaction checks in a batch will exceed
the assumed maximum value, and (2) how likely it is
that the batch will not be processed in time despite the
fact that the number of transaction checks is below the
assumed maximum value, respectively.

We also asked developers to estimate how feasible
it would be to develop a system that would meet the
scalability requirements given these scaling assumptions.
When there was a perceived risk that the scalability re-
quirements may not be achievable, this signaled the need
to investigate additional resolutions for the scalability

obstacles to these requirements. The exploration of these
resolutions will be discussed in the next section.

From our experience in assessing scalability obstacles,
we can make the following observations.

1) Assessing scalability obstacle likelihoods and eliciting
scaling assumptions are strongly related activities. The
standard identify-assess-resolve loop of obstacle
analysis assumes that obstacle likelihoods can be
assessed before deciding on their resolution. This
proved to be impossible for the first assessment of
scalability obstacles, because assessing how likely a
scalability obstacle is to occur requires knowledge
of the scaling characteristics of the domain quan-
tities concerned by the obstacles. For this reason,
we deviated from the standard obstacle analysis
process, and combined the tasks of assessing scal-
ability obstacles and eliciting scaling assumptions
as described above.

2) Another difficulty we faced was that the capacity of
some agents is still unknown when the obstacle like-
lihood needs to be assessed. Indeed, one of the pur-
poses of the requirements engineering process is
to decide what the required capacities for these
agents should be. Such analysis should take into
consideration the varying likelihood of scalability
obstacles to different envisioned agents capacities.
For example, the scalability obstacle Batch NOT Pro-
cessed In Time When Nbr Txn Checks Below Assumed Max in
Figure 4 required asking IEF developers to assess
the likelihood of this obstacle occuring for feasible
Alert Generator capacities (i.e., its processing speed).
However, we feel that a technique for more thor-
ough analysis of the variation of obstacle likelihood
with respect to the variation of feasible agent ca-
pacities is needed, and this is a subject of future
research.

3) Eliciting and reaching agreements on the projected val-
ues for domain quantities in the scaling assumptions
proved to be the most difficult and time consuming tasks
of our case study. This was due to the uncertainties
and divergence of opinions among stakeholders
about future values for some of the domain char-
acteristics, and to large variations in the customer
base that led people to make different (often im-
plicit) assumptions. There was also a lack of aware-
ness by non-software engineers of the impact that
some of the projected values would have on the
software design, leading sometimes to infeasible



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X,NO. DAY, MONTH 2012 17

or extremely costly requirements due to unrealis-
tically high scaling characteristics. To help resolve
these divergences, we created a simple quantitative
goal model [23] relating projected values for the
domain quantities involved in scaling assumptions
(e.g., the expected growth rate in the number of
accounts and number of transactions per account)
to scalability requirements for the software system
(e.g., in terms of throughput and storage). This
model was used during stakeholder meetings to
help reach agreement on the scaling assumptions.

4) The qualitative assessment of the scalability obstacles’
criticality was straightforward and aided by the goal
model structure. This simply consisted of follow-
ing goal-refinement links bottom-up from the ob-
structed goal to higher-level business goals.

5) Qualitative vs. quantitative assessment of scalability
obstacles. Our assessment of scalability obstacles re-
mained entirely qualitative. A finer-grained quan-
titative assessment of the likelihood of violations
of scaling assumptions was felt to be too uncertain
to be of value. Accurate quantitative assessments
of the likelihood of meeting the scalability require-
ments are also difficult to obtain. These potentially
could be obtained by analyzing models of the
intended software architecture or by testing system
prototypes, but such analyses were not performed.
A qualitative assessment of scalability obstacles
was sufficient for our purposes of identifying what
the important scalability obstacles are and how
these can be resolved through the introduction of
new goals and requirements. We note that similar
observations about the limitation of quantitative
assessments and benefits of qualitative assessments
has been made about the use of fault tress for safety
critical systems [11]. However, our case study did
not involve detailed comparisons of alternative
system designs for which a more precise, quanti-
tative assessment of scalability obstacles might be
needed. This is an area where further research is
required.

5.3 Resolving Scalability Obstacles

For resolving scalability obstacles, we have used the cata-
log of scalability obstacle resolution tactics in Section 4.3
to explore systematically some potential resolutions of
a few key scalability obstacles that were judged to be
critical. Some of the resolutions we identified correspond
to design decisions that had been taken independently
of our study by Searchspace for the new system version.
Other resolutions correspond to alternative and addi-
tional requirements that had not been considered or had
been considered but not retained. For the case study, we
focussed on generating a wide range of resolutions for
the identified scalability obstacles. We did not perform
detailed evaluations of the generated alternatives in
order to guide the selection of the preferred ones.

The process of generating resolutions to scalability
obstacles consists of systematically considering the po-
tential application of each resolution tactic in Table 3 to
each obstacle. To illustrate this process, Tables 7 and 8
illustrate the set of model transformations that can be
applied to resolve the obstacles listed in Table 5. Some
of the goal specifications and goal graphs obtained by
these model transformations can be found in Duboc [33].
The identify-assess-resolve loop of obstacle analysis is
iterative. Once a resolution tactic has been selected, one
needs to identify its obstacles and explore new obstacle
resolution tactics. In Tables 7 and 8, we only discuss
resolutions for the original obstacles.

A few observations can be made from our experience
in resolving scalability obstacles for the IEF system:

1) We felt that the biggest benefit of the catalog of obsta-
cle resolution tactics was in encouraging a systematic
exploration of a wide range of alternative options for
resolving a scalability obstacle. Although we did not
do this during this case study, we believe that
such a catalog can be used during meetings with
stakeholders, domain experts, and system design-
ers to facilitate the exploration of creative design
solutions to envisioned scalability risks. Further
studies, such as those explored by Maiden and
Robertson [35], would be needed to investigate the
effectiveness of scalability resolution tactics in this
setting.

2) A question we faced was at which level of detail to
specify the models generated by the application of the
resolution tactics. In practice, when exploring alter-
native resolutions, we did not specify all alternative
models explicitly, as the enunciation of the applied
resolution tactic is in most cases enough to under-
stand what the model would be. We felt it would
be sufficient to specify the actual requirements and
domain assumption only once an alternative was
selected. We did not specify detailed formal specifi-
cations for the resulting new goals because this was
not felt to be of benefit to the project. However, the
formal descriptions of the model transformations
were helpful to clarify and disambiguate what each
resolution tactic could achieve.

5.4 Summary

Our case study produced valuable results to
Searchspace. Project managers easily understood
and accepted the basic concepts of our approach and
were particularly impressed by the ability of the model
to reveal the impact of distinct projected scaling bounds
on leaf goals and to expose conflicting requirements.
The goal model provided a rationale for low-level
requirements and, in particular, it allowed a more
precise and justifiable characterization of scaling ranges
and objective functions. Some scaling bounds happened
to be more flexible than originally stated, while others
were found to be more rigid. One of the tools that



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X,NO. DAY, MONTH 2012 18

TABLE 7
Resolving the Scalability Obstacle Nbr of Txn Checks Exceeds Alert Generator Processing Speed

Resolution Strategy Model Transformations
Goal Substitution • none, because the obstructed goals are essential and have no alternatives

Agent Substitution • Transfer goal to non-overloaded agent: Responsibility for the goal Achieve [Fraud
Patterns Tested on Past Transactions] can be transferred from the Alert Generator to a
Sandbox agent providing a separate environment for testing new fraud detection rules.
• Split goal load among multiple agents: none; we could identify no subtasks or
sub-cases for the obstructed goals that could be offloaded to other agents.

Obstacle Prevention • Introduce scaling assumption: This tactic generates a series of scaling
assumptions—on the numbers of transactions in a batch, distinct business entities in
a batch, transactions per second in the transactions stream, distinct business entities
per second in the transactions stream, transactions in testing data, distinct business
entities in testing data, fraudulent patterns, fraudulent patterns added in the last
day—together with the subgoals obtained by application of the refinement pattern.
• Introduce scalability obstacle prevention goal: This tactic generates the new
goal Avoid [Nbr of Txn Checks Exceeds Alert Generator Processing Speed]. Alternative
refinements for this goal are as follows:
◦ Set agent capacity according to load: The tactic set agent capacity upfront to
worst-case load refines the goal into the assumption Assumed Worst-Case Nbr of Txn
Checks and goal Maintain [Alert Generator’s Speed above Worst-Case Nbr of Txn Checks],
while the tactic adapt agent capacity at runtime according to load refines it into
the subgoals Maintain [Accurate Prediction on Max Nbr of Txn Checks] and Maintain [Alert
Generator’s Speed above Predicted Max Nbr of Txn Checks].
◦ Limit goal load according to agent capacity: Applying the tactic limit goal
load according to fixed agent capacity imposes fixed limits on the number of
transactions that a bank can provide in its daily batches and continuous stream,
while the tactic limit goal load according to varying agent capacity imposes
similar limits but with bounds that can vary over time based on the capacities
of the Alert Generator. Alternative ways of implementing these tactics have been
described in Section 4.3.3.

Obstacle Reduction • Influence goal load distribution: Pricing incentives can be introduced to influence
the goal load (for example, by setting up tariffs that will influence the time at which
transactions are submitted).

Goal Weakening • Weaken goal definition with scaling assumption and weaken goal definition
by strengthening scaling assumption consist in revisiting the scaling assumptions
elicited during the scalability obstacles assessment step (see Section 5.2) so as to
weaken the requirements on the Alert Generator.
• Weaken goal objective function: This tactic consists in modifying the Alert
Generator’s requirements by relaxing its real-time requirement, relaxing its required
levels of satisfaction, or both, as illustrated in Section 4.3.5.

Goal Restoration and
Obstacle Mitigation

• These tactics led us to specify goals to be satisfied when the Alert Generator fails
to satisfy the obstructed goals. These include the requirements to make generated
alerts available to a Fraud Investigator even if a batch has not been processed entirely,
and to finish processing an uncompleted batch as soon as possible. For the real-time
transaction processing, it includes defining how to clear real-time transactions if the
Alert Generator fails and how eventually to check for frauds in transactions that have
been cleared during the Alert Generator’s failure if it were to happen.

enabled us to elaborate goals and estimate bounds
more precisely was to get an explicit statement of all
underlying assumptions about the application domain.
The final model contains a number of goals that had
been overlooked in Searchspace’s initial requirements
specification and replaces others that were idealized in
that specification. The approach also helped to document
and resolve numerous stakeholder disagreements. The
goal-obstacle analysis process allowed us to expose
a whole range of potential system failures, not only
scalability-related ones. Searchspace has used the goal
model to support the development of the new version

of the IEF. Furthermore, the model can be used by
them to aid a number of other activities, such as the
derivation of test cases, and the derivation of hardware
requirements for their different clients based on their
expected scaling characteristics.

6 RELATED WORK

Scalability is commonly discussed in the context of
specific technologies. Virtualization, for example, has
been used for years, and, a number of studies have
reported on the scalability of systems running in virtual



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X,NO. DAY, MONTH 2012 19

TABLE 8
Resolving the Scalability Obstacle Amount of Data Exceeds Data Storage Space

Resolution Strategy Model Transformations
Goal Substitution • none, although some of the goals obtained though goal weakening (see below) were

first identified when looking for goal substitutions

Agent Substitution • Transfer goal to non-overloaded agent: Responsibilities for storing the transactions
and alert data can be transferred to an external data store.
• Split goal load among multiple agents: This tactic consists in splitting the Data Store
agent into multiple components, each of which can be responsible for storing part of
the data. However, deciding how to organize the Data Store into multiple components
is a design decision rather than a requirements one. The scalability requirements
define the constraints that the Data Store must satisfy without prescribing what its
architecture should be.

Obstacle Prevention • Introduce scaling assumption: This tactic introduces scaling assumptions on the
number and size of transactions, generated alerts, and stored fraud patterns, together
with the corresponding scalability subgoals.
• Introduce scalability obstacle prevention goal: This tactic generates the new goal
Avoid [Amount of Data Exceeds Data Storage Space] for which we generate the following
alternative refinements:
◦ Set agent capacity according to load: The tactic set agent capacity upfront
to worst-case load is not applicable because the worst-case load in this case is
infinite if we assume no end to the system’s lifetime. The tactic adapt agent
capacity at runtime according to load suggests that we plan for a gradual
increase of the storage space during the system’s lifetime.
◦ Limit goal load according to agent capacity: This tactic suggests increasing
the alerting threshold so as to limit the number of generated alerts when storage
space is insufficient.

Obstacle Reduction • Influence goal load distribution: Influencing the number of bank transactions is
out of scope and reducing this number would be against the company’s interest.
The number of false alerts could be reduced by influencing the behaviors of account
holders (e.g., by allowing and encouraging them to provide information to the bank
to reduce the risk of false alerts.)

Goal Weakening • Weaken goal definition with scaling assumption and weaken goal definition by
strengthening scaling assumption consist in revising the scaling assumptions and
have not been considered.
• Weaken goal objective function: The data storage goal can be weakened by
limiting the amount of time during which transactions and alerts need to remain
stored. This is one of the tactics implemented in the system. Many factors influence
when transactions and alert data can be removed, notably legal requirements on the
minimum time during which transactions and alert data must remain accessible.

Goal Restoration and
Obstacle Mitigation

• If the obstacle cannot be completely avoided, back up plans may consist of having
reserved storage space always on stand-by, erasing older data to allow for new data
to be stored, or stopping all processing until the obstacle is resolved.

environments [36], [37], [38]. Earlier, the advent of grid
computing was driven by the need to share resources,
and sometimes to achieve high-performance, in collab-
orative problem-solving strategies which emerged in
industry, science, and engineering [39]. Currently, cloud
computing mechanisms, such as cloudbursting, allow
companies to maintain their private cloud and leverage a
public cloud to handle spikes in the processing require-
ments [40]. In fact, the idea of using shared resources
as needed has been around for a decades [41] and, yet
the software engineering community struggle to develop
scalable software. Such technologies may make it easier
to implement software systems that satisfy scalability
goals, but do not offer any intrinsic help in identifying,
communicating and analyzing these goals. Our approach

elaborates scalability goals independently of the technol-
ogy being used to fulfil them.

Works on scalability analysis recognize the need for
precise scalability requirements. However, the great ma-
jority of them take the elicitation and specification of
these requirements for granted [3], [4], [42], [43], [44].
Our method can be used to elaborate the models these
techniques need as input.

The few works in this area that attempt to give some
guidance on elaborating scalability requirements take
an oversimplified view of the requirements engineering
process. In particular, they tend to be limited to specify-
ing the information that scalability requirements should
contain [6], [7], or to provide only vague guidelines
on the kinds of scenarios such requirements should



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X,NO. DAY, MONTH 2012 20

cover [45], [46], [47]. Our approach provides a systematic
approach for elaborating scaling assumptions, scalability
goals and scalability requirements from an initial, ideal-
ized goal model using scalability obstacle analysis.

Our definition of scalability [4] differs from other
definitions. For example, Weinstock and Goodenough
distinguish two main uses of the term scalability: (1) the
ability to handle increased workload without adding
resources to a system; and (2) the ability to handle in-
creased workload by repeatedly applying a cost-effective
strategy for extending a system’s capacity [31]. These
definitions allude to alternative strategies for satisfy-
ing (stated or unstated) scalability goals, and the costs
involved in doing so, rather than ways in which the
scalability goals are identified and specified initially. In
contrast, our framework distinguishes scalability goals
(goals whose specification is related to one or more
scaling assumptions) from the tactics for achieving these
goals (specified as goal refinements and obstacle res-
olutions). Our resolution tactics cover both notions of
scalability discussed by Weinstock and Goodenough.

Cost is an important quality that has strong interac-
tions with scalability goals, as well as with all other goals
of a system. In our goal-oriented framework, cost is a
separate criterion that is used to select among alternative
scalability obstacle resolution tactics, but it is not part of
the definition of the scalability goals themselves. A view
similar to ours is taken by Bahsoon and Emmerich, who
relate costs and scalability in order to value the ranges in
which a given software architecture can scale to support
likely changes in load [3]. A different approach is taken
by Jogalekar and Woodside, who define a scalability
metric for distributed systems that takes into account
throughput, stakeholder’s value and running cost [48].
In future work, we intend to investigate how metrics,
such as this, can be used to select among alternative
scalability strategies.

Existing goal-oriented requirements engineering meth-
ods provide no specific support for eliciting, modelling
and reasoning about scalability requirements [8], [18]. As
we summarize in the next section, the work described in
this paper rectifies this gap.

7 CONCLUSION

Accurate scalability goals should be identified in the
earliest stages of system development. Not only can
this help system designers to take proper advantage
of current technologies and to avoid costly mistakes,
but it also can give them greater freedom to explore
alternative system designs and system evolution paths
for achieving scalability than if such concerns were left
to later stages. However, identifying scalability goals in
those early stages is not trivial, and to date little research
has been done on how to elicit, model and reason about
them in a precise and systematic way. This is surprising
given the importance of scalability for many software-
intensive systems, and it contrasts with the extensive

treatment received by other critical quality requirements
such as performance, safety and security.

To address this problem, we have presented precise
definitions for the concepts of scalability goals and scal-
ing assumptions in the context of the KAOS goal mod-
eling framework. These definitions provide templates
that requirements engineers can use to write precise
and testable specifications of scalability goals. These
specifications are testable in the sense that they are fal-
sifiable by a counter-example, and the counter-example
is reproducible [49]. This corresponds to the notion of
testability in requirements engineering [50] and to our
view of scalability analysis as a form of experimental
analysis [4], [51].

In addition to being precise and testable, scalability
goals also should be complete and accurate, in the sense
that they correspond to what is truly needed for the
system. In order to help achieve this objective, we have
developed a systematic method to assist requirements
engineers in elaborating scalability goals from an initial
goal model that has been elaborated without concern for
scalability issues. The method consists of systematically
identifying and resolving scalability obstacles to the
initial goals assigned to each system agent. The result
of this is a consolidated requirements model in which
the initial goal model has been extended with precise
scaling assumptions, scalability goals and additional re-
quirements to help avoid, reduce or mitigate scalability
obstacles. Our method generates a set of alternative
design options for resolving scalability obstacles that
need to be evaluated in terms of costs and benefits so
that the most appropriate options can be selected for
implementation.

Our method thus contributes to addressing several of
the key issues identified at the start of the paper:
• By extending the KAOS modeling framework with

the concepts of scalability goals and scaling assump-
tion, we facilitate the precise specification of testable
scalability requirements.

• Our scalability obstacle analysis method provides
eight new obstacle resolution tactics with 14 vari-
ants for managing scalability-related risks early in
the development process; for identifying scalability
obstacles induced by domain quantities whose ex-
pected operational ranges could prevent the system
from satisfying its goals; and for exploring a wide
range of alternative designs to prevent, reduce or
mitigate those scalability obstacles. Scalability obsta-
cles have not been considered explicitly in previous
techniques, such as Lamsweerde and Letier [20].
Furthermore, an important and distinguishing fea-
ture of our method is that we generate each scalabil-
ity obstacle from all goals involving the same agent,
in contrast to previous patterns and heuristics that
generate obstacles one goal at a time.

• The elaboration of scaling assumptions required by
our method helps requirements analysts begin to
uncover uncertainties and disagreements about ex-



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X,NO. DAY, MONTH 2012 21

pected operational ranges for the domain quantities,
as well as the impact that such quantities may have
on the system’s goals; exposing uncertainties and
disagreements that would otherwise remain implicit
is a first step towards resolving these issues.

• The result of our elaboration method is a goal-
oriented requirements model in which software scal-
ability requirements are related to scalability ob-
stacles, domain scaling assumptions and high-level
business goals; such a model helps stakeholders
understand the rationale and costs of specific re-
quirements.

• The models resulting from our elaboration method
also can be used as input for other techniques to
evaluate alternative system designs and to make
tradeoffs among competing goals, including those
related to cost and time-to-market [3], [4], [23], [43],
[44], [52].

We have validated our method by applying it to the ma-
jor redesign of a state-of-the-art financial fraud detection
system currently in use in many financial institutions
throughout the world. Other smaller examples of the
application of scalability obstacle analysis, notably on a
previous model of the London Ambulance Service, have
been presented by Duboc [33].

For future work, we intend to develop additional
support for our technique to address some of the issues
that have not been addressed fully in this paper. This
includes the quantitative assessment of scalability goals
and obstacles. For this purpose, we envision extending
techniques for simulating and optimizing quantitative
goal models [53] to handle time-varying domain as-
sumptions, obstacle likelihoods, and levels of goal sat-
isfaction needed to reason about scalability. In addition,
we plan to undertake further investigation of scalability
modeling and analysis in the context of cloud comput-
ing. We are collaborating currently with researchers at
the University of Birmingham to model the scalability
goals of an infrastructure for automatically composing
service-based systems in a cloud environment [54] and
to use goal modelling to systematically guide an orga-
nization in evaluating the choice and risks of adopting
a cloud-based solution [55] and evaluating the trade-
off between scalability and consistency for replication
techniques in clouds [56]. We also are beginning to
explore new techniques for testing that a system satisfies
its scalability requirements.

ACKNOWLEDGMENTS
This work was partially supported by the European
IST FET programme in project SENSORIA (IST-2005-
016004), a UCL studentship to Letcia Duboc, the EP-
SRC grant EP/H011447/1 and a Wolfson Research Merit
Award from the Royal Society to David Rosenblum. The
authors thank Capacitas and NICE Actimize (formerly
Searchspace) for discussions that led to many of the
scalability tactics presented in this paper, and the anony-
mous referees for their constructive comments.

REFERENCES

[1] R. P. Gabriel, L. Northrop, D. C. Schmidt, and K. Sullivan, “Ultra-
large-scale systems,” in Proc. 21st ACM SIGPLAN Symposium on
Object-Oriented Programming Systems, Languages and Applications.
New York, NY, USA: ACM, 2006, pp. 632–634.

[2] D. S. Rosenblum and A. L. Wolf, “A design framework for
Internet-scale even observation and notification,” in Proc. 6th Eu-
ropean Software Engineering Conference Held Jointly with the 5th ACM
SIGSOFT Symposium on the Foundations of Software Engineering,
1997, pp. 334–360.

[3] R. Bahsoon and W. Emmerich, “An economics-driven approach
for valuing scalability in distributed architectures,” in Proc. 7th
Working IEEE/IFIP Conference on Software Architecture. Washing-
ton, DC, USA: IEEE Computer Society, 2008, pp. 9–18.

[4] L. Duboc, D. Rosenblum, and T. Wicks, “A framework for char-
acterization and analysis of software system scalability,” in Proc.
6th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering. New York, NY, USA: ACM, 2007, pp. 375–384.

[5] L. Duboc, E. Letier, D. Rosenblum, and T. Wicks, “A case study in
eliciting scalability requirements,” in Proc. 16th IEEE International
Symposium on Requirements Engineering, Barcelona, Spain, 2008.

[6] Actuate Corporation, “Meeting scalability requirements
for enterprise reporting solutions,” 2004, accessed from
http://www.onixnet.com/actuate/scalability.pdf on 01 July
2009.

[7] Microsoft TechNet Library, “Quantifying availability and scalabil-
ity requirements,” 2005, accessed from http://www. on 01 July
2009.

[8] A. van Lamsweerde, Systematic Requirements Engineering: From
System Goals to UML Models to Software Specifications. John Wiley
& Sons, 2008.

[9] E. S. K. Yu, “Towards modeling and reasoning support for early-
phase requirements engineering,” in Proc. 3rd IEEE International
Symposium on Requirements Engineering. Washington, DC, USA:
IEEE Computer Society, 1997, p. 226.

[10] M. Jackson, Problem Frames: Analyzing and Structuring Software De-
velopment Problems. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 2001.

[11] N. G. Leveson, Safeware: System Safety and Computer. New York,
NY, USA: ACM, 1995.

[12] R. R. Lutz, “Software engineering for safety: A roadmap,” in Proc.
The Future of Software Engineering 2000. New York, NY, USA:
ACM, 2000, pp. 213–226.

[13] R. J. Anderson, Security Engineering: A Guide to Building Dependable
Disributed Systems. New York, NY, USA: John Wiley & Sons, Inc.,
2001.

[14] A. van Lamsweerde, “Elaborating security requirements by con-
struction of intentional anti-models,” in Proc. 26nd International
Conference on Software Engineering. ACM-IEEE, 2004, pp. 148–
157.

[15] C. B. Haley, R. C. Laney, J. D. Moffett, and B. Nuseibeh, “Security
requirements engineering: A framework for representation and
analysis,” IEEE Transactions on Software Engineering, vol. 34, no. 1,
pp. 133–153, 2008.

[16] ISO 9126, “Software Product Evaluation: Quality Characteristics
and Guidelines for Their Use,” 1991.

[17] B. W. Boehm, J. R. Brown, and M. Lipow, “Quantitative evalua-
tion of software quality,” in Proc. 2nd International Conference on
Software Engineering. Los Alamitos, CA, USA: IEEE Computer
Society Press, 1976, pp. 592–605.

[18] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-Functional
Requirements in Software Engineering. Kluwer Academic Publish-
ers, 2000.

[19] P. Kruchten, The Rational Unified Process: An Introduction. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2003.

[20] A. van Lamsweerde and E. Letier, “Handling obstacles in goal-
oriented requirements engineering,” IEEE Transactions on Software
Engineering, vol. 26, no. 10, pp. 978–1005, 2000.

[21] E. Letier and A. van Lamsweerde, “Agent-based tactics for goal-
oriented requirements elaboration,” in Proc. 24th International
Conference on Software Engineering. New York, NY, USA: ACM,
2002, pp. 83–93.

[22] R. Koymans, Specifying Message Passing and Time-Critical Systems
with Temporal Logic. Secaucus, NJ, USA: Springer-Verlag New
York, Inc., 1992.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X,NO. DAY, MONTH 2012 22

[23] E. Letier and A. van Lamsweerde, “Reasoning about partial goal
satisfaction for requirements and design engineering,” in Proc.
12th International Symposium on Foundations of Software Engineering.
New York, NY, USA: ACM, 2004, pp. 53–62.

[24] C. Potts, “Using schematic scenarios to understand user needs,”
in Proc. 1st Conference on Designing Interactive Systems. New York,
NY, USA: ACM, 1995, pp. 247–256.

[25] Y. Akao, Quality Function Deployment QFD: Integrating Customer
Requirements into Product Design. Productivity Press, 1990.

[26] W. N. Robinson, “Negotiation behavior during requirements
specification,” in Proc. 12th International Conference on Software
Engineering. Los Alamitos, CA, USA: IEEE Computer Society
Press, 1990, pp. 268–276.

[27] J. Yen and W. A. Tiao, “A systematic tradeoff analysis for con-
flicting imprecise requirements,” in Proc. 3rd IEEE International
Symposium on Requirements Engineering. Washington, DC, USA:
IEEE Computer Society, 1997, p. 87.

[28] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani, “Rea-
soning with goal models,” in Proc. 21st International Conference on
Conceptual Modeling. London, UK: Springer-Verlag, 2002, pp. 167–
181.

[29] M. Feather, S. Cornford, J. Dunphy, and K. Hicks, “A quantitative
risk model for early lifecycle decision making,” in Proc. Conference
on Integrated Design and Process Technology, 2002.

[30] P. Zave and M. Jackson, “Four dark corners of requirements en-
gineering,” ACM Transactions on Software Engineering and Method-
ology, vol. 6, no. 1, pp. 1–30, 1997.

[31] C. B. Weinstock and J. B. Goodenough, “On systems
scalability,” Software Engineering Institute, Technical
Note CMU/SEI-2006-TN-012, March 2006, accessed from
http://www.sei.cmu.edu/publications/documents/06.reports/
06tn012.html on 30 July 2008.

[32] E. Letier, “Reasoning about agents in goal-oriented requirements
engineering,” 2001, PhD Thesis, Université Catholique de Lou-
vain, Dépt. Ingénierie Informatique, Louvain-la-Neuve, Belgium.

[33] L. Duboc, “A framework for characterization and analysis of soft-
ware systems scalability,” 2010, PhD Thesis. University College
London, Department of Computer Science, London, UK.

[34] R. Darimont and A. van Lamsweerde, “Formal refinement pat-
terns for goal-driven requirements elaboration,” in Proc. 4th ACM
SIGSOFT Symposium on Foundations of Software Engineering. New
York, NY, USA: ACM, 1996, pp. 179–190.

[35] N. Maiden and S. Robertson, “Integrating creativity into require-
ments processes: Experiences with an air traffic management
system,” Proc. 13th IEEE International Conference on Requirements
Engineering, pp. 105 – 114, aug. 2005.

[36] V. Chaudhary, M. Cha, J. Walters, S. Guercio, and S. Gallo, “A
comparison of virtualization technologies for HPC,” in Proceed-
ings of the 22nd International Conference on Advanced Information
Networking and Applications, 2008. AINA 2008, March 2008, pp.
861 –868.

[37] J. Wiegert, G. Regnier, and J. Jackson, “Challenges for scalable
networking in a virtualized server,” in Proceedings of 16th Interna-
tional Conference on Computer Communications and Networks, 2007,
August 2007, pp. 179 –184.

[38] Z. Yanzhou, L. Chaoling, L. Lixin, and L. Wenjun, “Improving
the scalability of PrivacyCAs,” in Second International Workshop on
Computer Science and Engineering, 2009., vol. 2, October 2009, pp.
111 –116.

[39] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the
grid: Enabling scalable virtual organizations,” Int. J. High Perform.
Comput. Appl., vol. 15, no. 3, pp. 200–222, 2001.

[40] D. Linthicum, “The case for the hybrid cloud,” Infoworld Cloud
Computing, March 2010.

[41] R. M. Fano, “The mac system: the computer utility approach,”
Spectrum, IEEE, vol. 2, no. 1, pp. 56 –64, jan. 1965.

[42] S. Masticola, A. B. Bondi, and M. Hettish, “Model-based scalabil-
ity estimation in inception-phase software architecture.” in Proc.
8th International Conference on Model Driven Engineering Languages
and Systems, 2005, pp. 355–366.

[43] G. Brataas and P. Hughes, “Exploring architectural scalability,” in
Proc. 4th International Workshop on Software and Performance. ACM
Press, 2004, pp. 125–129.

[44] E. Weyuker and A. Avritzer, “A metric to predict software scala-
bility,” Proc. 8th IEEE Symposium on Software Metrics, pp. 152–158,
2002.

[45] L. G. Williams and C. U. Smith, “QSEM: Quantitative Scalability
Evaluation Method,” in Proc. International Computer Measurement
Group, 2005, pp. 341–352.

[46] C. U. Smith and L. G. Williams, Performance Solutions: A Practical
Guide to Creating Responsive, Scalable Software. Addison-Wesley
Publishing Company, September 2001.

[47] M. van Steen, S. van der Zijden, and H. J. Sips, “Software
engineering for scalable distributed applications.” in Proc. 22nd
Int’l Computer Software and Applications Conference, 1998, pp. 285–
293.

[48] P. Jogalekar and M. Woodside, “Evaluating the scalability of
distributed systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 11, no. 6, pp. 589–603, 2000.

[49] K. R. Popper, The Logic of Scientific Discovery. Routledge, 1959.
[50] S. Robertson and J. Robertson, Mastering the Requirements Process

(2nd Edition). Addison-Wesley Professional, 2006.
[51] J. R. Ruthruff, S. Elbaum, and G. Rothermel, “Experimental

program analysis: a new program analysis paradigm,” in Proc.
International Symposium on Software Testing and Analysis. New
York, USA: ACM Press, 2006, pp. 49–60.

[52] R. Kazman, J. Asundi, and M. Klein, “Quantifying the costs
and benefits of architectural decisions,” in Proc. 23rd International
Conference on Software Engineering. Washington, DC, USA: IEEE
Computer Society, 2001, pp. 297–306.

[53] W. Heaven and E. Letier, “Simulating and optimizing design
decisions in quantitative goal models,” in 19th IEEE Requirements
Engineering Conference, Sept. 2011.

[54] V. Nallur and R. Bahsoon, “Design of a market-based mechanism
for quality attribute tradeoff of services in the cloud,” in Proceed-
ings of the 2010 ACM Symposium on Applied Computing. New York,
NY, USA: ACM, 2010, pp. 367–371.

[55] S. Zardari and R. Bahsoon, “Cloud adoption: a goal-oriented
requirements engineering approach,” in Proceedings of the 2nd
International Workshop on Software Engineering for Cloud Computing.
New York, NY, USA: ACM, 2011, pp. 29–35.

[56] T. Chen and R. Bahsoon, “Scalable service oriented replication in
the cloud,” in IEEE International Conference on Cloud Computing,
2011, July 2011, pp. 766 –767.

Leticia Duboc is a Lecturer at the Department
of Computer Science at the State University of
Rio de Janeiro (UERJ) . She also holds an Hon-
orary Research Fellowship with the Software
Engineering Research Group at University of
Birmingham. Leticia has received her PhD in the
Department of Computer Science at University
College London in March 2010. Prior to her PhD,
she worked as a Researcher at Fortent (formerly
Searchspace) and as a Research Fellow at Uni-
versity College London. Her research interests

include scalability of software systems, requirements engineering and
early analysis of software qualities.

Emmanuel Letier is a Lecturer in the Depart-
ment of Computer Science at University College
London. His research interests are in require-
ments engineering and system design. He?s
particularly interested in the development of
practical formal methods to assist engineers in
elaborating, analysing, and evolving large-scale
models of complex systems. He received his
PhD in Software Engineering from the University
of Louvain in Belgium.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X,NO. DAY, MONTH 2012 23

David S. Rosenblum is a Professor in the De-
partment of Computer Science of the School of
Computing at the National University of Singa-
pore (NUS). He received his PhD from Stanford
University in 1988. Before joining NUS, he was
a research scientist at AT&T Bell Laboratories in
Murray Hill, New Jersey, from 1988 to 1996; an
Associate Professor at the University of Califor-
nia, Irvine, from 1996 to 2002; the Chief Technol-
ogy Officer and Principal Architect of PreCache,
Inc., from 2001 to 2003; and Professor of Soft-

ware Systems at University College London from 2004 to 2011. His
research interests include scalability of large-scale software systems,
probabilistic modeling and analysis, and the design and validation of
mobile, context-aware ubiquitous computing systems. He is the recipient
of the 2002 ICSE Most Influential Paper Award for his ICSE 1992
paper on assertion checking, and the first ACM SIGSOFT Impact Paper
Award in 2008 for his ESEC/FSE 1997 paper on Internet-scale event
observation and notification (co-authored with Alexander L. Wolf). He is
a Fellow of the ACM and IEEE.

APPENDIX A
PARTIAL IEF GOAL MODEL

Fig. 5. Refinement of the IEF Top-level Goals.

Fig. 6. Refinement of the Goal Maintain [Adequate Fraud
Detection Rules].

Fig. 7. Refinement of the Goal Achieve [Alerts Generated For
Transactions Matching Fraud Detection Rules].


