SEMANTICS AND REFINEMENT OF BEHAVIOR STATE
MACHINES

Kevin Lano, David Clark
Department of Computer Science, King’s College LondomrsirLondon, UK
kevin.lano@kcl.ac.uk, david.j.clark@kcl.ac.uk

Keywords: UML; state machines; refinement; model transformations

Abstract: In this paper we present an axiomatic semantics for UML 2 Wiehatate machines, and give transformation
rules for establishing refinements of behavior state mashitogether with proofs of the semantic validity of
these rules, based on a unified semantics of UML 2.

1 INTRODUCTION 2 UML 2 STATE MACHINES

Figure 1 shows the version of the UML 2 behavior
metamodel which we consider here. State invariants
will be allowed for both protocol and behavior state
The state machine notation of UML is widely used machines.
and supports dynamic modelling of applications. It is
perhaps the most complex of the UML notations, and Sehmiord
can be used to express most forms of UML activity | prem—)
diagrams (Chapter 12 of (OMG, 2007)), in addition | [# &= Swevachine |

to providing a semantic basis for verification of inter- S
action diagrams.
(duplicate) [

JAN

+|transition Protocol

Transition
Transition 0.1
0.1

classifierBehavior

Class

isActive: Boolean
JAN

NamedElement
(duplicate)

Region container

A region

In previous papers we have introduced an ax-
iomatic semantics for UML class diagrams, OCL
and flat state machines (Lano, 2008a), and extendeg T ST 3
this to structured protocol state machines (Lano and | | ===~] :—E B

Clark, 2007) and sequence diagrams (Lano, 2007). A-jouweruane reres L A el M
dgef‘,“?T,r : FinalState gfggr;arb\e ‘, o
In this paper we complete the semantics of UML . I PO et

2 state machines by considering structured behavior T operaren N —

. . . | ostCondition 1y event
state machines, with communication between state : 5 -
| 7 : po—- Message Event initial
machines. We apply the semantics to prove the va- . = %D o

ﬁ

?

0.1

kind:

Pseudostate

<<enumeration>> shallowHistory

lidity of refinement transformations on behavior state cac deeprisioy
machines. s
In Section 2 we define the syntax of UML 2 state Figure 1: UML behaviour metamodel.

machines, Sections 3 and 4 define their semantics.

Section 5 gives a definition of refinement. Section

6 gives several refinement transformations and proves A basicstate is a state witlegion.size= 0, other
these correct using the semantics. states areompositestates. A composite state with

one region is termed an OR state, and a composite

state with more than one region is termed an AND
state. Each OR state/regiscontains a unique initial
pseudo-state, and a unique transition from this to a
normal state of the OR state/region, termeddétault
initial state of the OR state or region, and denoted
initial s.

The notatiors C § means thas =< orsis a (re-
cursive) substate of.

3 SEMANTICS FOR UML STATE
MACHINES

We give first the semantics for simple state machines

expressiore at timet.

From these, other notations such as the RTL event-
occurrence operatork(y = true,i) “the i-th time
thatp becomes true”, andaétive(op(x)), the num-
ber of currently executing occurrencesagf(x), can
also be defined.

To define transition actions and other actions
within a state machine, we use a generic procedural
language with assignment, conditionals, loops, etc.
Composite statements in this notation correspond to
(structured) activities in UML 2.

The semantics of such statements is given by cor-
responding semantic actions=e, a; [3, etc, in RAL.
Each action has arite frame which is the set of at-
tributes it may change.

We can express that one action always calls an-

as used in (Lano, 2008a), and then extend this to the ;iher when it executes:

full metamodel of Figure 1. The semantics of pro-
tocol and behavior state machines for a cl@sare

incorporated into theories representing the semantics
of C. This enables semantic checks of the consistency
of the state machine models compared to the class di-

agram model.

The semantics is expressed in terms of temporal
logic theories using the notation of Real-time Logic
(RTL) and Real-time Action Logic (RAL) (Lano,
1998). The reason for using this general framework
is that related notations of UML, such as interactions,
require explicit treatment of the times of events.

Each UML class and model is represented as a
temporal logic theory, which has semantic elements

aDB =
Vi ZNl-Eij :Np-
T(oL) =T(B,j) A
Woi) = L(B.J)

“a calls f”. This is also used to express thatis
defined by a (composite) actidh

Assignment := to can be defined as the action
0Ot,:—t, Wheret, is an attribute symbol, the write frame
of this action is{t1}, and

ViiNp-t1® | (0gyi=ty, 1) = 12®7T(Oy:=t,,1)

Similarly, sequential composition ; and parallel
composition|| of actions can be expressed as derived

(attributes and actions) representing structural and be-combinators.

havioral features of the class or model, and axioms
defining their properties. A generic instance®is
represented as a theory, the class itself by a theory
I'c, and modeldM by a theoryl'yy composed from
the theories of the classesMf.

Refinement of modé¥ 1 by modeM 2 means that
the theory 2 proves each axiom d&fl 1, under some
interpretation of the elements bf1 in M2. This cor-

The ; and|| composite actions have write frames
the union of the write frames of their component ac-
tions.

Occurrences of E then S; else $ are either oc-
currences of5; if E holds at commencement of this
action, or occurrences &, if — E holds. This action
has write frame the union of those f andS;.

Occurrences ofvhile E do Sare a sequence of oc-

responds to state-based concepts of refinement, suclfurrencesS,ii), ..., (S,in) of S, whereE holds at the
as the weakening of preconditions and strengtheningommencement of each of these actions, and wiere

based on behavioural compatibility (Simons, 2005).
The following temporal logic notations are used to
define the semantics:

1. The times—(op(p),i), —(op(p).i), T(op(p),i),
l(op(p),i) of sending, request arrival, activa-
tion and termination of an operation execution
(op(p),i). These have values in a set TIME (nor-
mally N) and are enumerated by the indexN;
in order of the reception times-(op(p),i).

. FormulaePot, denoting that formuld holds at
timet, and expressions®t denoting the value of

has the same write frame 8s

Some important properties of are that it is tran-
sitive:

(@DB)ABDY) = (aDy)
and that statement constructs such as ;itthén else
are monotonic with respect to it:

(a1 Da2) A(B1DB2) = (ag; B D az; B2)
and

(a1 D> az) A (P12 B2) =
if E then a1 elsef; D if E then a5 elsef;

3.1 Unstructured Behavior State
Machines

The semantics of a flat behavior state macld@ean
be defined in the instance theory of its associated
class,C, using composite actions (Lano, 2008a).

The transitions of such state machines have an ac-
tion which executes when the transition is taken, in-
stead of a postcondition. The transition acti@mtss
are sequences

obji.opi(e1); ...; objn.opn(en)

of operation calls on supplier objects, sets of supplier
objects, or on theelf object. Such statements have
a direct interpretation as composite acti@wts in
RAL:

obj}.op.(€)); ...; obj,,.opn(€,)

where theobj; andeJ(are the interpretations of these
expressions in RAL.

In addition to state invariants, there may be entry
and exit actions of stateentrys, exits, and do activ-
ities dos of states. Entry actions of a state should

state (“before commencing a run-to-completion
step, a state machine is in a stable state configura-
tion with all entry ... activities completed”, page
561 of (OMG, 2007)). An entry action will often

be used to ensure that the state invariant holds.

If there is already an existing procedural definition
Dop of op in the classC, the complete definition

of opis Dg,; Codeyp (page 436 of (OMG, 2007);
we assume that an existing pre/post specification
should however always refer to the entire span of
execution ofop).

We also need to define the effect of do-actions.
These can only execute while their state is occu-
pied:

#active(dog) > 0 = c_state=s

and they initiate execution at the point where their
state is entered (Page 548 of (OMG, 2007)):

Vi 1Ny -1(doL,i)

= &((c_state= s) :=true,i)

4. The axiomgStatelnv) :

cstate=s = Inv§

establish the state invariant, and do actions preserve

the invariant.
The axiomatic representation of a flat behavior
state machine is then:

1. The set of states is represented as a new enumer.
ated typeStatesc.

2. Anew attributec_stateof this type is added tac,
together with the initialisation_state:= initial sc
of this attribute to the initial state &C. An entry
actionentryiniial o €X€cCUtes prior to this update,
if present. Local attributes of the state machine
are represented as attributes/gf

3. If the transitions triggered by an operatiop(x)
of CinSCaretrj,i: 1..k, from statesrc; to states
trg;, with guardG; and actionscts, then the be-
havior of op(x) is defined as a composite action
Codeyp:

a(x) D

if (c_state=src; A G)

then exity,,; acts;; entryg, ;
c_state:=trg1

elseif...

else if (c_state=srcy A Gy)

then exity, ; acts; entryyy, ;
c_state:=trgk

wherea representsp.

Entry actions of a state must complete before the
state machine is considered to properly enter the

The semantics defined here corresponds to the usual
‘run to completion’ semantics of UML state ma-
chines: a transition only completes execution when
all of its generated actions do so (page 546 of (OMG,
2007)).

A flat behavior state machin®C attached to an
operationop defines an explicit algorithm foop.
It can be formalised as a while loop action (Lano,
2008a).

4 SEMANTICS FOR
STRUCTURED STATE
MACHINES

We extend the semantics of flat state machines to state
machines with OR and AND composite states, com-
pound transitions and history and final states.

For each OR statgin the state machine, we define
a state attributes state: State; where State; repre-
sents the set of normal states (including final states)
directly contained ins. Regions of an AND state
are also represented by a type and an attribute in the
same manner (and so must be named). Each such OR
state/region has a default initial statétial s and each
s state is initialised to this value. If a final state is
present, it is denoted Hinals.

The top level states of a state mach8@are also
represented by an attribugC _state: State

For each stats in the state machine diagram, a of history and final states, for each AND composite
predicateds can be defined, which expresses that statex, if transitiontr causex to be entered, then all
is part of the current state configuration of the state the regions ok which do not contain an explicit tar-

machine (Table 1). get oftr must be reinitialised. This additional effect
(which may apply to several AND compositions) is
Table 1: State predicate. expressed by a predica®eInity .

The complete postconditiofiy of tr is the con-

State/regiors | State predicatgs junction of its explicit postcondition, its target state
Top-level state SC_state=s predicate(s), anRelnity .

Region of AND statg | ¢p
Immediate substate of
OR state/region dr Ar_state=s

4.1 Structured Behavior State Machines

The semantics for structured behavioral state ma-
chines defines the sequence of actions caused by the
firing of a transition, in addition to the target state
predicate. In general these actions are all the actions
caused by exiting the source state(s), followed by the
explicit actions on the transition, followed by the ac-

A predicatelnitialState s similarly expresses that
the (recursive) initial state afis occupied.

Using these predicates, the state-changing be-
haviour of transitions can be expressed as pre and
post conditions. Thenabling conditiorenqtr,s) of

atransitiortr tions caused by entering the target state.
S—op[G]/Postt A transitiontr causes a statgeto be (explicitly)
. , - , , entered iftr hass as an explicit target, or it has a tar-
from a statesis ¢s A G', conjoined with- (¢ss/\ G1') get contained irs, and some source not contained in
for each different transition or equal tos. It causes a region of an AND state

p to be implicitly entered (at its initial state) g or

SS— tt
op(G1)/Postl another region op is explicitly entered because tf

triggered byop on a statess ss# s, SSC s. _ and there is no explicit target af in r.

~ This expresses that is only enabled ors if Internal transitions of a state do not cause any state
higher-priority transitions for the same trigger oper- entry or exit.
ation/event are not enabled. Table 2 shows the definition of the complete action

~ The complete enabling condition fis the con- executed when a statss enteredinit s is the action
junction of the enabling conditions from each explicit

source oftr (tr may be a compound transition with

multiple source statesourcegtr)): Table 2: Entry actions.

States | Entry actionsEntry s

endtr) = Agcsourcestr) €N, S) basic state entrys

The precondition derived from a transitiantrig- OOnF;sdt&ti/trzgﬁs%wg
gered byop is thenenc(tr). is explicitly entered | entrys; Entry ug

The enabling condition is a critical semantic as- ~OR state/region
pect which can be defined in different ways to produce implicitly entered entrys; inits; Entry initial
different semantic profiles for state machines. We _or explicit target
could use instead an alternative definitiencstr), AND state entrys; (Entryra[| ... [Entrym)
which is the conjunction aéndtr ,s) for eachexplicit \erlth rer%lons

and implicitsources of tr. Implicit sources are those

AND state regions which contain no explicit source

of tr but will be exited when it takes place. on the default initial transition o$, in the 3rd case
For the postcondition, there are several cases. A(cf., page 551 of (OMG, 2007)).

predicateTarget;, expresses what state(s) are directly The parallel combinatojf is used in this defini-

entered because of the transition(Lano and Clark, tion because UML 2 does not prescribe any relative

2007). ordering of the combined actions (page 551 of (OMG,
For transitions with multiple targets, the conjunc- 2007)).
tion of theTarget predicate for each target is taken. A transitiontr causes a statto be (explicitly) ex-

In addition to the postcondition describing the di- ited if tr hass or a substate o as an explicit source,
rect target, the transition may also cause other statesand some target which is not containedint causes
to be reinitialised. After taking account of the effect a regionr of an AND statep to be implicitly exited

(at its current state) ip or another region op is ex-
plicitly exited because ofr and there is no explicit
source oftr inr. If an OR state is exited because of
tr, the currently occupied substatepwill be exited.

Table 3 shows the definition of the complete action
executed when a stasds exited.

Table 3: Exit actions.

States | Exit actionsExits
basic state exitg

OR state/region,

one direct substaterc

is explicitly exited ExXitgrc; exits

OR state/region
implicitly exited
or explicit source
AND state

with regions
rl,...,m

Exits state; €Xits

(Exitrq || ... || Exitn); exits

The following axiom, axiom 3, defines the be-
haviour of an operation resulting from all the transi-
tions for it.

If the transitions triggered bgp(x) aretr;, i : 1.k,
with actionsacts, then the behavior abp(x) is de-
fined as a composite actid@ode,p:

|i:1.k (if enc(trj) then Exitj; actg; Entry;)

where eactExit; are the exit actions caused
(Table 3), andEntry; the entry actions (Table 2).

Axiom 4 holds in the form
ds = Invg

for each stats.

The semantics of behavior state machines attached
to operations is generalised to structured state ma-
chines in the same way.

The above semantics can be used to give a mean-
ing to models which extend the UML 2 standard, eg,
where there are transitions which cross from one re-
gion of an AND state to another (page 572 of (OMG,
2007)).

5 REFINEMENT OF STATE
MACHINES

Refinements of state machines are relationships be-
tween state machine models which establish that one
state machine (the refined model) correctly imple-
ments all the behaviour of the other, abstract, model.

Often the relationship between a refined state ma-
chineC of a classCC, and an abstract state machine
A of a classAC can be expressed by a morphi$m
from C to A, with the properties ofefinemenandad-
equacy(Lano et al., 2000; Lano et al., 2002; Simons,
2005).

The condition for a modeD to refine a modeC

This definition chooses a maximal set of enabled is that the theory ob should prove each axiom of the
transitions to execute at each step (page 563 of (OMG, theory of C, possibly under some interpretatiorof
2007)). If no transition is enabled, a skip is performed the symbols ofC in terms of those ob:

(in accordance with the UML semantics of behavior
state machines, page 561 of (OMG, 2007)).

If we know that theend(trj) are mutually exclu-
sive, this can be simplified to:

if enc(tr)

then Exit}; acts;; Entry)
elsei...

else if enctrg)

then Exity; acts; Entry |

becaus€if E; then Cy) || (if E2 then Cy) is equiv-
alent to

ifE1 AEzthenCy || C2
else if B then C;
else if & then Cy

For each transitionr triggered by an operation
op(x), the pre-post behaviour duetiis:

Vi:Ni-endtr)®T(op(x),i) = My®](op(x),i)

The axiom for do-actions holds withy in place of
c_state=s.

Mo koY)

for each axiomy of 'c. Typically o is defined in
terms of some abstraction morphi$m

6 REFINEMENT
TRANSFORMATIONS

Using the above definition of refinement, we can ver-
ify that many refinement transformations on state ma-
chines are semantically correct:

1. A protocol statemachine can be refined into a be-
havior statemachine by replacing transition post-
conditions by actions which establish the postcon-
dition. This is termedorotocol conformancén
(OMG, 2007).

2. Exit and entry and transition actions can be ex-
tended to invoke operations on new orthogonal re-
gions/OR states (page 550 of (OMG, 2007)).

3. A supplier state machine can be refined, this will
produce a refinement of the complete model, if
the calling relationship between state machine
regions/OR-states is non-cyclic.

4. A do-action of a state can be refined into a com-
posite activity.

Other transformations, such as moving entry and exit
actions from states onto transitions, can also be di-
rectly verified using our semantics.

The axioms of the original model are:

op() O if smlstate= sl then m() else
if sm1_state= s2 then m()

-(sml.state=sl)®1(op,i) =
(sml state=s2)®|(op,i)

- (sml.state=s2)e©1(op,i) =
(sml state=sl)®|(op,i)

- (sm2_state=ssl)®T(m,i) =
(sm2_state=s)® | (m,i)

- (sm2_state=s)e1(m,i) =
(sm2_state= finalsm)®@ | (M, i)

ViZNl
ViZNl
ViZNl

ViZNl

Once a transformation has been proved correct, it Whensm2 is replaced by its.refinemeems, the ax-
can be used as required to produce or verify correct 0mSs ofsm2 are replaced by:

refinements, without requiring repetition of the proof.

6.1 Refinement of Supplier State
Machines

This transformation involves the refinement of one
composite state/region within a state machine, whilst
leaving unchanged other states/regions.

Figure 2 shows an example of this transformation.

op()/m(

sm3

op()/m(

w

Figure 2: Refining a supplier state machine.

Vi:Njp-(sm3_state=ssl A att > 0)®T(m,i) =
(sm3_state=sB)®| (M, i)
Vi:Njp-(sm3_state=ssl A att <0)©T(m,i) =
(sm3_state=sg4)®@ | (m,i)

Vi:Njp- (sm3_state=s3)©T(m,i) =
(sm3_state= finalgmz) @] (M, i)

Vi:Njp- (sm3_state=sst)©T(m,i) =
(sm3_state= finalgyz)© | (M, i)

to form the semantics of the complete refined model.
But these axioms establish the axioms of the origi-
nal model, under the interpretationof sm2_stateas
f(sm3_state), wheref is the abstraction mapping:

ssl —— ssl
S —— S
SB+—— s
finalgnz — finalsmp

Therefore the new model is a refinement of the orig-
inal model. The same reasoning can be used in other
cases of this transformation. If the state of the re-
gion which is being refined is referred to in the re-
gion which invokes its operations, then these refer-
ences must be replaced by the equivalent expressions
in terms of the refined state. Eg, a guana<2 for a
transition ofsml must be replaced iy ss3 or in s4

in the refined model, in the above example.

6.2 Adding New Regions and
Concurrent generations

A new region can be added to an existing AND state,
provided this region does not invoke operations of
other states (it is a leaf module of the calling hier-
archy). The actions of existing transitions can be ex-
tended to invoke operations of the new module, in par-
allel with their existing actions. Likewise, the entry
and exit actions of existing states can be extended in
this way.

This transformation yields a refinement since
allBDa

so that axiom 3 in the new system implies axiom 3 of
the unrefined system, due to the monotonicity of the
action constructions wrb.

6.3 Refining do-actions into Composite
Activities

This transformation replaces a do-actmrmof a state
by an activity expressed as an internal state machine
of the state.

Figure 3 shows an example of the transformation.

fi=1:f d = folearcnalale

(7 1 iound = laise found=false &
s3 i< sq.size)/

entry/ if sq[i]=x =i+l

then found := true

[found=true]

[found=false & i = sq.size]

Figure 3: Refining a do-action.

In this transformation the original do acti@nis
interpreted by the new composite actigit. Any
axiom

op(x) O Ac

defining the behavior of an operatiop in terms of a
composite actioc derived from the original model
is still valid in the new model, because in interpreted
formitis

op(x) D Ac[Act/a]

which is the corresponding axiom of the new model.
Likewise for the other axioms of do actions.

7 CONCLUSION

We have defined an axiomatic semantics for a large
part of UML 2 state machine notation, using the infor-

mal OMG superstructure definition of the semantics
as the basis. Our semantics supports verification of

internal consistency of state machines, of refinement
between state machines, and verification of the con-
sistency of sequence diagrams with state machines.

Other elements of UML 2 state machine notation,
such as deferred states, can also be given a semantics
in this formalism (Lano and Clark, 2007).

The axiomatic semantics approach has the advan-
tage of expressing UML semantics in a high-level
manner, in a formalism which is similar to, but in-
dependent of, UML. The semantics presented here is
used as the basis for the code generation process of
the UML-RSDS tools (Lano, 2008b), so ensuring the
correctness of the generated code with respect to the
specification.

In contrast to the approach of (Damm et al., 2005;
Merseguer et al., 2002), we do not flatten UML
state machines, but retain the structure of the ma-
chines. This enables analysis results and generated
code structure to be directly related to the specifica-
tions.

As far as possible, our semantics represents the
meaning of state machines in notations which are
close to UML class diagram and OCL notations.
The semantics may therefore be more accessible to
UML users than semantics which use external for-
malisms such as Petri Nets (Merseguer et al., 2002)
or term algebras (Lilius and Paltor, 1999). An ax-
iomatic semantics is also well-suited for use with
logic-based semantic analysis tools such as B. Com-
pared to (Lilius and Paltor, 1999) we do not represent
sync states, however we can express the semantics of
time-triggered transitions using the RAL formalism
(Lano, 2008a), extending (Lilius and Paltor, 1999).

The approach of (Le et al., 2006) is close to ours,
but translates directly into B from statecharts, instead
of utilising an underlying axiomatic semantics. Ele-
ments of UML state machine notation such as time
triggers, which require a temporal logic semantics,
are not handled by this approach.

Although this paper has been concerned with the
semantic problems of UML, the fact that a relatively
simple and coherent semantics can be assigned to
UML state machines does show that the notation is
suitable for developments where semantic correctness
is important.

REFERENCES

Damm, W., Josko, B., Pnueli, A., and Votintseva, A. (2005).
A discrete-time UML semantics for concurrency and
communication in safety-critical applicatiorscience
of Computer Programming5:81-115.

Lano, K. (1998). Logical specification of reactive and real-

time systems. Journal of Logic and Computation
8(5):679-711.

Lano, K. (2007). Formal specification using interaction di-
agrams. Ir'SEFM '07.

Lano, K. (2008a). A compositional semantics of UML-
RSDS.SoSyM

Lano, K. (2008b). Constraint-driven developmemtfor-
mation and Software Technolagy

Lano, K. and Clark, D. (2007). Direct semantics of ex-
tended state machinedournal of Object Technology

Lano, K., Clark, D., and Androutsopolous, K. (2002). From
implicit specifications to explicit designs in reactive
system development. IifM '02.

Lano, K., Clark, D., Androutsopolous, K., and Kan, P.
(2000). Invariant-based synthesis of fault-tolerant sys-
tems. INFTRTFT. Springer-Verlag.

Le, D., Sekerinski, E., and West, S. (2006). Statechart veri
fication with istate. IF=M 06.

Lilius, J. and Paltor, I. (1999). The semantics of UML state
machines. Turku Centre for Computer Science, TUCS
technical report 273.

Merseguer, J., Campos, J., Bernardi, S., and Donatelli, S.
(2002). A compositional semantics for UML state ma-
chines aimed at performance evaluation. In Silva, M.,
Giua, A., and Colom, J., editors, Int. Workshop on
Discrete Event Systems (WODES 2002)

Morgan, C. (1990)Programming from Specifications: The
Refinement Calculusrentice Hall.

OMG (2007). UML superstructure, version 2.1.1. OMG
document formal/2007-02-03.

Simons, A. (2005). A theory of regression testing for be-
haviourally compatible object types. [Brd Conf.
UK Software Testing Research (5-6 Septemiyes
103-121.

