
SEMANTICS AND REFINEMENT OF BEHAVIOR STATE
MACHINES

Kevin Lano, David Clark
Department of Computer Science, King’s College London, Strand, London, UK

kevin.lano@kcl.ac.uk, david.j.clark@kcl.ac.uk

Keywords: UML; state machines; refinement; model transformations

Abstract: In this paper we present an axiomatic semantics for UML 2 behavior state machines, and give transformation
rules for establishing refinements of behavior state machines, together with proofs of the semantic validity of
these rules, based on a unified semantics of UML 2.

1 INTRODUCTION

The state machine notation of UML is widely used
and supports dynamic modelling of applications. It is
perhaps the most complex of the UML notations, and
can be used to express most forms of UML activity
diagrams (Chapter 12 of (OMG, 2007)), in addition
to providing a semantic basis for verification of inter-
action diagrams.

In previous papers we have introduced an ax-
iomatic semantics for UML class diagrams, OCL
and flat state machines (Lano, 2008a), and extended
this to structured protocol state machines (Lano and
Clark, 2007) and sequence diagrams (Lano, 2007).

In this paper we complete the semantics of UML
2 state machines by considering structured behavior
state machines, with communication between state
machines. We apply the semantics to prove the va-
lidity of refinement transformations on behavior state
machines.

In Section 2 we define the syntax of UML 2 state
machines, Sections 3 and 4 define their semantics.
Section 5 gives a definition of refinement. Section
6 gives several refinement transformations and proves
these correct using the semantics.

2 UML 2 STATE MACHINES

Figure 1 shows the version of the UML 2 behavior
metamodel which we consider here. State invariants
will be allowed for both protocol and behavior state
machines.

Behavior

Region

Vertex
subvertex*

1 source
1 target

Behavior

(duplicate)

(duplicate)

incoming
*

0..1 effect

state

* region

region1..*

0..1

*
outgoing*

transition

container
1

0..1 stateMachine

0..1

trigger

guard
stateInvariant 0..1

0..1

container

0..1

0..1

specification
method0..1

*

context

0..1
StateMachine

(duplicate) (duplicate)

0..1

Behavioral
Feature

isAbstract: Boolean
concurrency:
 CallConcurrency
 Kind

*

isReentrant: Boolean

Message
EventCallEvent

1 event
*

operation1

0..1 Actor

UseCaseInterface

Protocol
Transition

0..1

postCondition
0..1

0..1

Behaviored
Classifier

Namespace

State

FinalState

Constraint

Operation

Transition

Event

Trigger

classifierBehavior

0..1

0..1

0..10..1

protocol

Class
isActive: Boolean

 ParameterDirectionKind = in
direction:

Parameter
* *

ownedParameter {ordered}
ownedParameter {ordered}

Pseudostate

deepHistory
shallowHistory
join
fork
initial

<<enumeration>>
PseudostateKind

*

owningState
0..1 0..1 0..1

0..1

doActivity
0..1exit

0..1

0..1
entry

NamedElement NamedElement

kind: PseudostateKind

deferrable
Trigger

Classifier

<<enumeration>>
CallConcurrency
Kind

sequential
guarded
concurrent

Figure 1: UML behaviour metamodel.

A basicstate is a state withregion.size= 0, other
states arecompositestates. A composite state with

one region is termed an OR state, and a composite
state with more than one region is termed an AND
state. Each OR state/regionscontains a unique initial
pseudo-state, and a unique transition from this to a
normal state of the OR state/region, termed thedefault
initial state of the OR state or region, and denoted
initial s.

The notations⊑ s′ means thats= s′ or s is a (re-
cursive) substate ofs′.

3 SEMANTICS FOR UML STATE
MACHINES

We give first the semantics for simple state machines
as used in (Lano, 2008a), and then extend this to the
full metamodel of Figure 1. The semantics of pro-
tocol and behavior state machines for a classC are
incorporated into theories representing the semantics
of C. This enables semantic checks of the consistency
of the state machine models compared to the class di-
agram model.

The semantics is expressed in terms of temporal
logic theories using the notation of Real-time Logic
(RTL) and Real-time Action Logic (RAL) (Lano,
1998). The reason for using this general framework
is that related notations of UML, such as interactions,
require explicit treatment of the times of events.

Each UML class and model is represented as a
temporal logic theory, which has semantic elements
(attributes and actions) representing structural and be-
havioral features of the class or model, and axioms
defining their properties. A generic instance ofC is
represented as a theoryIC, the class itself by a theory
ΓC, and modelsM by a theoryΓM composed from
the theories of the classes ofM .

Refinement of modelM1 by modelM2 means that
the theoryΓM2 proves each axiom ofM1, under some
interpretation of the elements ofM1 in M2. This cor-
responds to state-based concepts of refinement, such
as the weakening of preconditions and strengthening
of postconditions (Morgan, 1990), and to concepts
based on behavioural compatibility (Simons, 2005).

The following temporal logic notations are used to
define the semantics:

1. The times←(op(p), i), →(op(p), i), ↑(op(p), i),
↓(op(p), i) of sending, request arrival, activa-
tion and termination of an operation execution
(op(p), i). These have values in a set TIME (nor-
mally N) and are enumerated by the indexi : N1
in order of the reception times→(op(p), i).

2. FormulaeP⊚t, denoting that formulaP holds at
time t, and expressionse⊛t denoting the value of

expressione at timet.
From these, other notations such as the RTL event-
occurrence operators♣(ψ := true, i) “the i-th time
that ψ becomes true”, and #active(op(x)), the num-
ber of currently executing occurrences ofop(x), can
also be defined.

To define transition actions and other actions
within a state machine, we use a generic procedural
language with assignment, conditionals, loops, etc.
Composite statements in this notation correspond to
(structured) activities in UML 2.

The semantics of such statements is given by cor-
responding semantic actionsv := e, α; β, etc, in RAL.
Each action has awrite frame, which is the set of at-
tributes it may change.

We can express that one action always calls an-
other when it executes:

α⊃ β ≡
∀ i : N1 · ∃ j : N1 ·
↑(α, i) = ↑(β, j) ∧
↓(α, i) = ↓(β, j)

“α calls β”. This is also used to express thatα is
defined by a (composite) actionβ.

Assignmentt1 := t2 can be defined as the action
αt1:=t2 wheret1 is an attribute symbol, the write frame
of this action is{t1}, and

∀ i : N1 · t1⊛↓(αt1:=t2, i) = t2⊛↑(αt1:=t2, i)

Similarly, sequential composition ; and parallel
composition|| of actions can be expressed as derived
combinators.

The ; and|| composite actions have write frames
the union of the write frames of their component ac-
tions.

Occurrences ofif E then S1 else S2 are either oc-
currences ofS1 if E holds at commencement of this
action, or occurrences ofS2, if ¬ E holds. This action
has write frame the union of those ofS1 andS2.

Occurrences ofwhile E do Sare a sequence of oc-
currences(S, i1), . . . ,(S, in) of S, whereE holds at the
commencement of each of these actions, and whereE
fails to hold at termination of(S, in). Thewhile action
has the same write frame asS.

Some important properties of⊃ are that it is tran-
sitive:

(α ⊃ β) ∧ (β ⊃ γ) ⇒ (α⊃ γ)
and that statement constructs such as ; andif then else
are monotonic with respect to it:

(α1 ⊃ α2) ∧ (β1⊃ β2) ⇒ (α1; β1 ⊃ α2; β2)

and

(α1 ⊃ α2) ∧ (β1⊃ β2) ⇒
if E then α1 elseβ1 ⊃ if E then α2 elseβ2

3.1 Unstructured Behavior State
Machines

The semantics of a flat behavior state machineSCcan
be defined in the instance theoryIC of its associated
class,C, using composite actions (Lano, 2008a).

The transitions of such state machines have an ac-
tion which executes when the transition is taken, in-
stead of a postcondition. The transition actionsacts
are sequences

obj1.op1(e1); ...; objn.opn(en)

of operation calls on supplier objects, sets of supplier
objects, or on theself object. Such statements have
a direct interpretation as composite actionsacts′ in
RAL:

obj′1.op1(e′1); ...; obj′n.opn(e′n)

where theobj′i ande′j are the interpretations of these
expressions in RAL.

In addition to state invariants, there may be entry
and exit actions of states,entrys, exits, and do activ-
ities dos of states. Entry actions of a state should
establish the state invariant, and do actions preserve
the invariant.

The axiomatic representation of a flat behavior
state machine is then:

1. The set of states is represented as a new enumer-
ated typeStateSC.

2. A new attributec stateof this type is added toIC,
together with the initialisationc state:= initial SC
of this attribute to the initial state ofSC. An entry
actionentry initial SC executes prior to this update,
if present. Local attributes of the state machine
are represented as attributes ofIC.

3. If the transitions triggered by an operationop(x)
of C in SCaretr i , i : 1..k, from statessrci to states
trg i, with guardGi and actionsactsi , then the be-
havior of op(x) is defined as a composite action
Codeop:

α(x) ⊃
if (c state= src1 ∧ G′1)
then exit′src1

; acts′1; entry′trg1
;

c state:= trg1

else if....
else if(c state= srck ∧ G′k)
then exit′srck

; acts′k ; entry′trgk
;

c state:= trg k

whereα representsop.
Entry actions of a state must complete before the
state machine is considered to properly enter the

state (“before commencing a run-to-completion
step, a state machine is in a stable state configura-
tion with all entry ... activities completed”, page
561 of (OMG, 2007)). An entry action will often
be used to ensure that the state invariant holds.
If there is already an existing procedural definition
Dop of op in the classC, the complete definition
of op is D′op; Codeop (page 436 of (OMG, 2007);
we assume that an existing pre/post specification
should however always refer to the entire span of
execution ofop).
We also need to define the effect of do-actions.
These can only execute while their state is occu-
pied:

#active(do′s) > 0 ⇒ c state= s

and they initiate execution at the point where their
state is entered (Page 548 of (OMG, 2007)):

∀ i : N1 · ↑(do′s, i) =♣((c state= s) := true, i)

4. The axioms(StateInv) :

c state= s ⇒ Inv ′s

The semantics defined here corresponds to the usual
‘run to completion’ semantics of UML state ma-
chines: a transition only completes execution when
all of its generated actions do so (page 546 of (OMG,
2007)).

A flat behavior state machineSC attached to an
operationop defines an explicit algorithm forop.
It can be formalised as a while loop action (Lano,
2008a).

4 SEMANTICS FOR
STRUCTURED STATE
MACHINES

We extend the semantics of flat state machines to state
machines with OR and AND composite states, com-
pound transitions and history and final states.

For each OR states in the state machine, we define
a state attributes state : States whereStates repre-
sents the set of normal states (including final states)
directly contained ins. Regions of an AND state
are also represented by a type and an attribute in the
same manner (and so must be named). Each such OR
state/region has a default initial stateinitial s and each
s state is initialised to this value. If a final state is
present, it is denoted byfinals.

The top level states of a state machineSCare also
represented by an attributeSC state: State.

For each states in the state machine diagram, a
predicateϕs can be defined, which expresses thats
is part of the current state configuration of the state
machine (Table 1).

Table 1: State predicate.

State/regions State predicateϕs

Top-level state SC state= s
Region of AND statep ϕp
Immediate substate of
OR state/regionr ϕr ∧ r state= s

A predicateInitialStates similarly expresses that
the (recursive) initial state ofs is occupied.

Using these predicates, the state-changing be-
haviour of transitions can be expressed as pre and
post conditions. Theenabling conditionenc(tr ,s) of
a transitiontr

s→op[G]/Post t

from a states is ϕs∧G′, conjoined with¬ (ϕss∧G1′)
for each different transition

ss→op[G1]/Post1 tt

triggered byop on a statess, ss 6= s, ss⊑ s.
This expresses thattr is only enabled ons if

higher-priority transitions for the same trigger oper-
ation/event are not enabled.

The complete enabling condition oftr is the con-
junction of the enabling conditions from each explicit
source oftr (tr may be a compound transition with
multiple source statessources(tr)):

enc(tr) = ∧s∈sources(tr) enc(tr ,s)

The precondition derived from a transitiontr trig-
gered byop is thenenc(tr).

The enabling condition is a critical semantic as-
pect which can be defined in different ways to produce
different semantic profiles for state machines. We
could use instead an alternative definitionencs(tr),
which is the conjunction ofenc(tr ,s) for eachexplicit
and implicitsources of tr . Implicit sources are those
AND state regions which contain no explicit source
of tr but will be exited when it takes place.

For the postcondition, there are several cases. A
predicateTargettr expresses what state(s) are directly
entered because of the transitiontr (Lano and Clark,
2007).

For transitions with multiple targets, the conjunc-
tion of theTarget predicate for each target is taken.

In addition to the postcondition describing the di-
rect target, the transition may also cause other states
to be reinitialised. After taking account of the effect

of history and final states, for each AND composite
statex, if transitiontr causesx to be entered, then all
the regions ofx which do not contain an explicit tar-
get of tr must be reinitialised. This additional effect
(which may apply to several AND compositions) is
expressed by a predicateReInit tr .

The complete postconditionΠtr of tr is the con-
junction of its explicit postcondition, its target state
predicate(s), andReInit tr .

4.1 Structured Behavior State Machines

The semantics for structured behavioral state ma-
chines defines the sequence of actions caused by the
firing of a transition, in addition to the target state
predicate. In general these actions are all the actions
caused by exiting the source state(s), followed by the
explicit actions on the transition, followed by the ac-
tions caused by entering the target state.

A transition tr causes a states to be (explicitly)
entered iftr hass as an explicit target, or it has a tar-
get contained ins, and some source not contained in
or equal tos. It causes a regionr of an AND state
p to be implicitly entered (at its initial state) ifp or
another region ofp is explicitly entered because oftr
and there is no explicit target oftr in r .

Internal transitions of a state do not cause any state
entry or exit.

Table 2 shows the definition of the complete action
executed when a states is entered.init s is the action

Table 2: Entry actions.

States Entry actionsEntry s

basic state entrys
OR state/region,
one direct substatetrg
is explicitly entered entrys; Entry trg
OR state/region
implicitly entered entrys; init s; Entry initial s

or explicit target
AND state entrys; (Entry r1 || ... || Entry rn)
with regions
r1, ...,rn

on the default initial transition ofs, in the 3rd case
(cf., page 551 of (OMG, 2007)).

The parallel combinator|| is used in this defini-
tion because UML 2 does not prescribe any relative
ordering of the combined actions (page 551 of (OMG,
2007)).

A transitiontr causes a states to be (explicitly) ex-
ited if tr hass or a substate ofs as an explicit source,
and some target which is not contained ins. It causes
a regionr of an AND statep to be implicitly exited

(at its current state) ifp or another region ofp is ex-
plicitly exited because oftr and there is no explicit
source oftr in r . If an OR statep is exited because of
tr , the currently occupied substate ofp will be exited.

Table 3 shows the definition of the complete action
executed when a states is exited.

Table 3: Exit actions.

States Exit actionsExits

basic state exits
OR state/region,
one direct substatesrc
is explicitly exited Exitsrc; exits
OR state/region
implicitly exited Exits state; exits
or explicit source
AND state (Exit r1 || ... || Exit rn); exits
with regions
r1, ...,rn

The following axiom, axiom 3, defines the be-
haviour of an operation resulting from all the transi-
tions for it.

If the transitions triggered byop(x) aretr i , i : 1..k,
with actionsactsi , then the behavior ofop(x) is de-
fined as a composite actionCodeop:

||j :1..k (if enc(tr j) then Exit′j ; acts′j ; Entry ′j)

where eachExit j are the exit actions caused bytr j
(Table 3), andEntry j the entry actions (Table 2).

This definition chooses a maximal set of enabled
transitions to execute at each step (page 563 of (OMG,
2007)). If no transition is enabled, a skip is performed
(in accordance with the UML semantics of behavior
state machines, page 561 of (OMG, 2007)).

If we know that theenc(tr j) are mutually exclu-
sive, this can be simplified to:

if enc(tr 1)
then Exit′1; acts′1; Entry ′1
else if....
else if enc(tr k)
then Exit′k ; acts′k ; Entry ′k

because(if E1 then C1) || (if E2 then C2) is equiv-
alent to

if E1 ∧ E2 then C1 || C2

else if E1 then C1

else if E2 then C2

For each transitiontr triggered by an operation
op(x), the pre-post behaviour due totr is:

∀ i : N1 ·enc(tr)⊚↑(op(x), i) ⇒ Πtr ⊚↓(op(x), i)

The axiom for do-actions holds withϕs in place of
c state= s.

Axiom 4 holds in the form

ϕs ⇒ Inv ′s

for each states.
The semantics of behavior state machines attached

to operations is generalised to structured state ma-
chines in the same way.

The above semantics can be used to give a mean-
ing to models which extend the UML 2 standard, eg,
where there are transitions which cross from one re-
gion of an AND state to another (page 572 of (OMG,
2007)).

5 REFINEMENT OF STATE
MACHINES

Refinements of state machines are relationships be-
tween state machine models which establish that one
state machine (the refined model) correctly imple-
ments all the behaviour of the other, abstract, model.

Often the relationship between a refined state ma-
chineC of a classCC, and an abstract state machine
A of a classAC can be expressed by a morphismf
from C to A, with the properties ofrefinementandad-
equacy(Lano et al., 2000; Lano et al., 2002; Simons,
2005).

The condition for a modelD to refine a modelC
is that the theory ofD should prove each axiom of the
theory ofC, possibly under some interpretationσ of
the symbols ofC in terms of those ofD:

ΓD ⊢ σ(ψ)

for each axiomψ of ΓC. Typically σ is defined in
terms of some abstraction morphismf.

6 REFINEMENT
TRANSFORMATIONS

Using the above definition of refinement, we can ver-
ify that many refinement transformations on state ma-
chines are semantically correct:

1. A protocol statemachine can be refined into a be-
havior statemachine by replacing transition post-
conditions by actions which establish the postcon-
dition. This is termedprotocol conformancein
(OMG, 2007).

2. Exit and entry and transition actions can be ex-
tended to invoke operations on new orthogonal re-
gions/OR states (page 550 of (OMG, 2007)).

3. A supplier state machine can be refined, this will
produce a refinement of the complete model, if
the calling relationship between state machine
regions/OR-states is non-cyclic.

4. A do-action of a state can be refined into a com-
posite activity.

Other transformations, such as moving entry and exit
actions from states onto transitions, can also be di-
rectly verified using our semantics.

Once a transformation has been proved correct, it
can be used as required to produce or verify correct
refinements, without requiring repetition of the proof.

6.1 Refinement of Supplier State
Machines

This transformation involves the refinement of one
composite state/region within a state machine, whilst
leaving unchanged other states/regions.

Figure 2 shows an example of this transformation.

s1

s2

op()/m()op()/m()

s1

s2

op()/m()op()/m()

ss1

ss2

m()

m()

ss1

m()

m()[att <= 0]

ss4

m()

ss3

m()[att > 0]

sm1 sm2

sm1 sm3

Figure 2: Refining a supplier state machine.

The axioms of the original model are:

op()⊃ if sm1 state= s1 then m() else
if sm1 state= s2 then m()

∀ i : N1 · (sm1 state= s1)⊚↑(op, i)⇒
(sm1 state= s2)⊚↓(op, i)

∀ i : N1 · (sm1 state= s2)⊚↑(op, i)⇒
(sm1 state= s1)⊚↓(op, i)

∀ i : N1 · (sm2 state= ss1)⊚↑(m, i)⇒
(sm2 state= ss2)⊚↓(m, i)

∀ i : N1 · (sm2 state= ss2)⊚↑(m, i)⇒
(sm2 state= finalsm2)⊚↓(m, i)

Whensm2 is replaced by its refinementsm3, the ax-
ioms ofsm2 are replaced by:

∀ i : N1 · (sm3 state= ss1∧ att > 0)⊚↑(m, i)⇒
(sm3 state= ss3)⊚↓(m, i)

∀ i : N1 · (sm3 state= ss1∧ att ≤ 0)⊚↑(m, i)⇒
(sm3 state= ss4)⊚↓(m, i)

∀ i : N1 · (sm3 state= ss3)⊚↑(m, i)⇒
(sm3 state= finalsm3)⊚↓(m, i)

∀ i : N1 · (sm3 state= ss4)⊚↑(m, i)⇒
(sm3 state= finalsm3)⊚↓(m, i)

to form the semantics of the complete refined model.
But these axioms establish the axioms of the origi-
nal model, under the interpretationσ of sm2 stateas
f(sm3 state), wheref is the abstraction mapping:

ss1 7−→ ss1
ss4 7−→ ss2
ss3 7−→ ss2
finalsm3 7−→ finalsm2

Therefore the new model is a refinement of the orig-
inal model. The same reasoning can be used in other
cases of this transformation. If the state of the re-
gion which is being refined is referred to in the re-
gion which invokes its operations, then these refer-
ences must be replaced by the equivalent expressions
in terms of the refined state. Eg, a guardin ss2 for a
transition ofsm1 must be replaced byin ss3 or in ss4
in the refined model, in the above example.

6.2 Adding New Regions and
Concurrent generations

A new region can be added to an existing AND state,
provided this region does not invoke operations of
other states (it is a leaf module of the calling hier-
archy). The actions of existing transitions can be ex-
tended to invoke operations of the new module, in par-
allel with their existing actions. Likewise, the entry
and exit actions of existing states can be extended in
this way.

This transformation yields a refinement since

α || β ⊃ α

so that axiom 3 in the new system implies axiom 3 of
the unrefined system, due to the monotonicity of the
action constructions wrt⊃.

6.3 Refining do-actions into Composite
Activities

This transformation replaces a do-actionα of a state
by an activity expressed as an internal state machine
of the state.

Figure 3 shows an example of the transformation.

s1
s2

s1

s2

do/ search

s3

 then found := true
entry/ if sq[i]=x

[found=true]

[found=false & i = sq.size]

[found=false &
 i < sq.size]/

 i := i+1

SearchState
/i := 1; found := false

SearchState

Figure 3: Refining a do-action.

In this transformation the original do actionα is
interpreted by the new composite actionAct. Any
axiom

op(x) ⊃ Ac

defining the behavior of an operationop in terms of a
composite actionAc derived from the original model
is still valid in the new model, because in interpreted
form it is

op(x) ⊃ Ac[Act/α]

which is the corresponding axiom of the new model.
Likewise for the other axioms of do actions.

7 CONCLUSION

We have defined an axiomatic semantics for a large
part of UML 2 state machine notation, using the infor-
mal OMG superstructure definition of the semantics
as the basis. Our semantics supports verification of

internal consistency of state machines, of refinement
between state machines, and verification of the con-
sistency of sequence diagrams with state machines.

Other elements of UML 2 state machine notation,
such as deferred states, can also be given a semantics
in this formalism (Lano and Clark, 2007).

The axiomatic semantics approach has the advan-
tage of expressing UML semantics in a high-level
manner, in a formalism which is similar to, but in-
dependent of, UML. The semantics presented here is
used as the basis for the code generation process of
the UML-RSDS tools (Lano, 2008b), so ensuring the
correctness of the generated code with respect to the
specification.

In contrast to the approach of (Damm et al., 2005;
Merseguer et al., 2002), we do not flatten UML
state machines, but retain the structure of the ma-
chines. This enables analysis results and generated
code structure to be directly related to the specifica-
tions.

As far as possible, our semantics represents the
meaning of state machines in notations which are
close to UML class diagram and OCL notations.
The semantics may therefore be more accessible to
UML users than semantics which use external for-
malisms such as Petri Nets (Merseguer et al., 2002)
or term algebras (Lilius and Paltor, 1999). An ax-
iomatic semantics is also well-suited for use with
logic-based semantic analysis tools such as B. Com-
pared to (Lilius and Paltor, 1999) we do not represent
sync states, however we can express the semantics of
time-triggered transitions using the RAL formalism
(Lano, 2008a), extending (Lilius and Paltor, 1999).

The approach of (Le et al., 2006) is close to ours,
but translates directly into B from statecharts, instead
of utilising an underlying axiomatic semantics. Ele-
ments of UML state machine notation such as time
triggers, which require a temporal logic semantics,
are not handled by this approach.

Although this paper has been concerned with the
semantic problems of UML, the fact that a relatively
simple and coherent semantics can be assigned to
UML state machines does show that the notation is
suitable for developments where semantic correctness
is important.

REFERENCES

Damm, W., Josko, B., Pnueli, A., and Votintseva, A. (2005).
A discrete-time UML semantics for concurrency and
communication in safety-critical applications.Science
of Computer Programming, 55:81–115.

Lano, K. (1998). Logical specification of reactive and real-

time systems. Journal of Logic and Computation,
8(5):679–711.

Lano, K. (2007). Formal specification using interaction di-
agrams. InSEFM ’07.

Lano, K. (2008a). A compositional semantics of UML-
RSDS.SoSyM.

Lano, K. (2008b). Constraint-driven development.Infor-
mation and Software Technology.

Lano, K. and Clark, D. (2007). Direct semantics of ex-
tended state machines.Journal of Object Technology.

Lano, K., Clark, D., and Androutsopolous, K. (2002). From
implicit specifications to explicit designs in reactive
system development. InIFM ’02.

Lano, K., Clark, D., Androutsopolous, K., and Kan, P.
(2000). Invariant-based synthesis of fault-tolerant sys-
tems. InFTRTFT. Springer-Verlag.

Le, D., Sekerinski, E., and West, S. (2006). Statechart veri-
fication with istate. InFM 06.

Lilius, J. and Paltor, I. (1999). The semantics of UML state
machines. Turku Centre for Computer Science, TUCS
technical report 273.

Merseguer, J., Campos, J., Bernardi, S., and Donatelli, S.
(2002). A compositional semantics for UML state ma-
chines aimed at performance evaluation. In Silva, M.,
Giua, A., and Colom, J., editors,6 Int. Workshop on
Discrete Event Systems (WODES 2002).

Morgan, C. (1990).Programming from Specifications: The
Refinement Calculus. Prentice Hall.

OMG (2007). UML superstructure, version 2.1.1. OMG
document formal/2007-02-03.

Simons, A. (2005). A theory of regression testing for be-
haviourally compatible object types. In3rd Conf.
UK Software Testing Research (5-6 September), pages
103–121.

