Outline

1. State of the Art
2. Game Theory
3. Minimax Search
4. Self-Play Reinforcement Learning
5. Combining Reinforcement Learning and Minimax Search
6. Reinforcement Learning in Imperfect-Information Games
7. Conclusions
Lecture 10: Classic Games

State of the Art

Why Study Classic Games?

- Simple rules, deep concepts
- Studied for hundreds or thousands of years
- Meaningful IQ test
- *Drosophila* of artificial intelligence
- Microcosms encapsulating real world issues
- Games are fun!
AI in Games: State of the Art

<table>
<thead>
<tr>
<th>Program</th>
<th>Level of Play</th>
<th>Program to Achieve Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checkers</td>
<td>Perfect</td>
<td>Chinook</td>
</tr>
<tr>
<td>Chess</td>
<td>Superhuman</td>
<td>Deep Blue</td>
</tr>
<tr>
<td>Othello</td>
<td>Superhuman</td>
<td>Logistello</td>
</tr>
<tr>
<td>Backgammon</td>
<td>Superhuman</td>
<td>TD-Gammon</td>
</tr>
<tr>
<td>Scrabble</td>
<td>Superhuman</td>
<td>Maven</td>
</tr>
<tr>
<td>Go</td>
<td>Grandmaster</td>
<td>MoGo(^1), Crazy Stone(^2), Zen(^3)</td>
</tr>
<tr>
<td>Poker(^4)</td>
<td>Superhuman</td>
<td>Polaris</td>
</tr>
</tbody>
</table>

\(^1\) 9 × 9
\(^2\) 9 × 9 and 19 × 19
\(^3\) 19 × 19
\(^4\) Heads-up Limit Texas Hold'em
RL in Games: State of the Art

<table>
<thead>
<tr>
<th>Program</th>
<th>Level of Play</th>
<th>RL Program to Achieve Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checkers</td>
<td>Perfect</td>
<td>Chinook</td>
</tr>
<tr>
<td>Chess</td>
<td>International Master</td>
<td>KnightCap / Meep</td>
</tr>
<tr>
<td>Othello</td>
<td>Superhuman</td>
<td>Logistello</td>
</tr>
<tr>
<td>Backgammon</td>
<td>Superhuman</td>
<td>TD-Gammon</td>
</tr>
<tr>
<td>Scrabble</td>
<td>Superhuman</td>
<td>Maven</td>
</tr>
<tr>
<td>Go</td>
<td>Grandmaster</td>
<td>MoGo1, Crazy Stone2, Zen3</td>
</tr>
<tr>
<td>Poker4</td>
<td>Superhuman</td>
<td>SmooCT</td>
</tr>
</tbody>
</table>

1. 9×9
2. 9×9 and 19×19
3. 19×19
4. Heads-up Limit Texas Hold’em
Optimality in Games

- What is the optimal policy π^i for ith player?
- If all other players fix their policies π^{-i}
- Best response $\pi^*_i(\pi^{-i})$ is optimal policy against those policies
- Nash equilibrium is a joint policy for all players

$$\pi^i = \pi^*_i(\pi^{-i})$$

- such that every player’s policy is a best response
- i.e. no player would choose to deviate from Nash
Single-Agent and Self-Play Reinforcement Learning

- Best response is solution to single-agent RL problem
 - Other players become part of the environment
 - Game is reduced to an MDP
 - Best response is optimal policy for this MDP
- Nash equilibrium is fixed-point of self-play RL
 - Experience is generated by playing games between agents
 \[a_1 \sim \pi^1, a_2 \sim \pi^2, \ldots \]
 - Each agent learns best response to other players
 - One player’s policy determines another player’s environment
 - All players are adapting to each other
Two-Player Zero-Sum Games

We will focus on a special class of games:

- A **two-player game** has two (alternating) players
 - We will name player 1 *white* and player 2 *black*
- A **zero sum game** has equal and opposite rewards for black and white

\[R_1 + R_2 = 0 \]

We consider methods for finding Nash equilibria in these games

- Game tree search (i.e. planning)
- Self-play reinforcement learning
A perfect information or Markov game is fully observed:
- Chess
- Checkers
- Othello
- Backgammon
- Go

An imperfect information game is partially observed:
- Scrabble
- Poker

We focus first on perfect information games.
A value function defines the expected total reward given joint policies $\pi = \langle \pi^1, \pi^2 \rangle$

$$v_\pi(s) = \mathbb{E}_\pi \left[G_t \mid S_t = s \right]$$

A minimax value function maximizes white’s expected return while minimizing black’s expected return

$$v_*(s) = \max_{\pi^1} \min_{\pi^2} v_{\pi^1}(s)$$

A minimax policy is a joint policy $\pi = \langle \pi^1, \pi^2 \rangle$ that achieves the minimax values

There is a unique minimax value function

A minimax policy is a Nash equilibrium
Minimax values can be found by depth-first game-tree search

Introduced by Claude Shannon: *Programming a Computer for Playing Chess*

Ran on paper!
Minimax Search Example

max

min

max

min
Minimax Search Example

```
max
min
max
min
a_1 a_2
b_1 b_2 b_1 b_2
a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2
```

Diagram:

```
+7  +3  -4  -2
+7  +3  -4  -2
```

```
-2  -4
-2  -4
```

```
+9  +9  -6  -4
+9  +9  -6  -4
```

```
-4  -4
-4  -4
```
Minimax Search Example

\[
\begin{array}{c}
\text{max} \\
\text{min} \\
\text{max} \\
\text{min}
\end{array}
\]
Minimax Search Example

Max

Min

Max

Min
Value Function in Minimax Search

- Search tree grows exponentially
- Impractical to search to the end of the game
- Instead use value function approximator $v(s, w) \approx v_*(s)$
 - aka evaluation function, heuristic function
- Use value function to estimate minimax value at leaf nodes
- Minimax search run to fixed depth with respect to leaf values
Binary-Linear Value Function

- Binary feature vector $\mathbf{x}(s)$: e.g. one feature per piece
- Weight vector \mathbf{w}: e.g. value of each piece
- Position is evaluated by summing weights of active features

$$v(s, \mathbf{w}) = \mathbf{x}(s) \cdot \mathbf{w} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ \vdots \end{bmatrix} \cdot \begin{bmatrix} +5 \\ +3 \\ +1 \\ -5 \\ -3 \\ -1 \end{bmatrix} = 5 + 3 - 5 = 3$$
Deep Blue

- **Knowledge**
 - 8000 handcrafted chess features
 - Binary-linear value function
 - Weights largely hand-tuned by human experts

- **Search**
 - High performance parallel alpha-beta search
 - 480 special-purpose VLSI chess processors
 - Searched 200 million positions/second
 - Looked ahead 16-40 ply

- **Results**
 - Defeated human champion Garry Kasparov 4-2 (1997)
 - Most watched event in internet history
Chinook

- **Knowledge**
 - Binary-linear value function
 - 21 knowledge-based features (position, mobility, ...)
 - x4 phases of the game

- **Search**
 - High performance alpha-beta search
 - Retrograde analysis
 - Search backward from won positions
 - Store all winning positions in lookup tables
 - Plays perfectly from last n checkers

- **Results**
 - Defeated Marion Tinsley in world championship 1994
 - won 2 games but Tinsley withdrew for health reasons
 - Chinook *solved* Checkers in 2007
 - perfect play against God
Apply value-based RL algorithms to games of self-play

MC: update value function towards the return G_t

$$\Delta w = \alpha(G_t - \nu(S_t, w))\nabla_w \nu(S_t, w)$$

TD(0): update value function towards successor value $\nu(S_{t+1})$

$$\Delta w = \alpha(\nu(S_{t+1}, w) - \nu(S_t, w))\nabla_w \nu(S_t, w)$$

TD(λ): update value function towards the λ-return G_t^λ

$$\Delta w = \alpha(G_t^\lambda - \nu(S_t, w))\nabla_w \nu(S_t, w)$$
Policy Improvement with Afterstates

- For deterministic games it is sufficient to estimate $v_\star(s)$
- This is because we can efficiently evaluate the afterstate

$$q_\star(s, a) = v_\star(succ(s, a))$$

- Rules of the game define the successor state $succ(s, a)$
- Actions are selected e.g. by min/maximising afterstate value

$$A_t = \arg\max_a v_\star(succ(S_t, a)) \quad \text{for white}$$

$$A_t = \arg\min_a v_\star(succ(S_t, a)) \quad \text{for black}$$

- This improves joint policy for both players
Self-Play TD in Othello: *Logistello*

- Logistello created its own features
- Start with raw input features, e.g. “black stone at C1?”
- Construct new features by conjunction/disjunction
- Created 1.5 million features in different configurations
- Binary-linear value function using these features
Reinforcement Learning in Logistello

Logistello used generalised policy iteration

- Generate batch of self-play games from current policy
- Evaluate policies using Monte-Carlo (regress to outcomes)
- Greedy policy improvement to generate new players

Results

- Defeated World Champion Takeshi Murukami 6-0
TD Gammon: Non-Linear Value Function Approximation
Self-Play TD in Backgammon: TD-Gammon

- initialised with random weights
- trained by games of self-play
- using non-linear temporal-difference learning

\[\delta_t = v(S_{t+1}, w) - v(S_t, w) \]
\[\Delta w = \alpha \delta_t \nabla_w v(S_t, w) \]

- greedy policy improvement (no exploration)
- algorithm always converged in practice
- not true for other games
TD Gammon: Results

- Zero expert knowledge \Rightarrow strong intermediate play
- Hand-crafted features \Rightarrow advanced level of play (1991)
- 2-ply search \Rightarrow strong master play (1993)
- 3-ply search \Rightarrow superhuman play (1998)
- Defeated world champion Luigi Villa 7-1 (1992)
New TD-Gammon Results

Performance of TD nets with no expert knowledge

- 10 hidden units
- 20 hidden units
- 40 hidden units
- 80 hidden units

expected points per game vs. cubeval

number of self-play training games
Simple TD

- **TD**: update value towards successor value

- Value function approximator $v(s, w)$ with parameters w
- Value function backed up from raw value at next state

$$v(S_t, w) \leftarrow v(S_{t+1}, w)$$

- First learn value function by TD learning
- Then use value function in minimax search (no learning)

$$v_+(S_t, w) = \min_{s \in \text{leaves}(S_t)} v(s, w)$$
Simple TD: Results

- Othello: superhuman performance in *Logistello*
- Backgammon: superhuman performance in *TD-Gammon*
- Chess: poor performance
- Checkers: poor performance
- In chess tactics seem necessary to find signal in position
- e.g. hard to find checkmates without search
- Can we learn directly from minimax search values?
TD Root

- **TD root**: update value towards successor search value

- Search value is computed at root position S_t
 \[v_+(S_t, w) = \min_{s \in \text{leaves}(S_t)} \max v(s, w) \]

- Value function backed up from *search value* at next state
 \[v(S_t, w) \leftarrow v_+(S_{t+1}, w) = v(l_+(S_{t+1}), w) \]

- Where $l_+(s)$ is the leaf node achieving minimax value from s
TD Root in Checkers: Samuel’s Player

- First ever TD learning algorithm (Samuel 1959)
- Applied to a Checkers program that learned by self-play
- Defeated an amateur human player
- Also used other ideas we might now consider strange
TD Leaf

- **TD leaf**: update search value towards successor search value

- Search value computed at current and next step
 \[v_+(S_t, w) = \min_{s \in \text{leaves}(S_t)} v(s, w), \quad v_+(S_{t+1}, w) = \min_{s \in \text{leaves}(S_{t+1})} v(s, w) \]

- Search value at step \(t \) backed up from *search value* at \(t + 1 \)
 \[v_+(S_t, w) \leftarrow v_+(S_{t+1}, w) \]
 \[\Rightarrow v(l_+(S_t), w) \leftarrow v(l_+(S_{t+1}), w) \]
TD leaf in Chess: *Knightcap*

- **Learning**
 - *Knightcap* trained against expert opponent
 - Starting from standard piece values only
 - Learnt weights using TD leaf

- **Search**
 - Alpha-beta search with standard enhancements

- **Results**
 - Achieved master level play after a small number of games
 - Was not effective in self-play
 - Was not effective without starting from good weights
Original Chinook used hand-tuned weights
Later version was trained by self-play
Using TD leaf to adjust weights
 - Except material weights which were kept fixed
Self-play weights performed \geq hand-tuned weights
i.e. learning to play at superhuman level
TreeStrap

- **TreeStrap**: update search values towards deeper search values

- Minimax search value computed at *all* nodes $s \in \text{nodes}(S_t)$
- Value backed up from search value, at same step, for all nodes

\[
\nu(s, w) \leftarrow \nu_+(s, w) \\
\implies \nu(s, w) \leftarrow \nu(l_+(s), w)
\]
Treestrap in Chess: *Meep*

- Binary linear value function with 2000 features
- Starting from random initial weights (no prior knowledge)
- Weights adjusted by TreeStrap
- Won 13/15 vs. international masters
- Effective in self-play
- Effective from random initial weights
Simulation-Based Search

- Self-play reinforcement learning can replace search
- Simulate games of self-play from root state S_t
- Apply RL to simulated experience
 - Monte-Carlo Control \implies Monte-Carlo Tree Search
 - Most effective variant is UCT algorithm
 - Balance exploration/exploitation in each node using UCB
- Self-play UCT converges on minimax values
- Perfect information, zero-sum, 2-player games
- Imperfect information: see next section
Performance of MCTS in Games

- MCTS is best performing method in many challenging games
 - Go (last lecture)
 - Hex
 - Lines of Action
 - Amazons
- In many games simple Monte-Carlo search is enough
 - Scrabble
 - Backgammon
Simple Monte-Carlo Search in Maven

■ Learning
 ■ Maven evaluates moves by $score + v(rack)$
 ■ Binary-linear value function of rack
 ■ Using one, two and three letter features
 ■ Q???????, QU??????, III?????
 ■ Learnt by Monte-Carlo policy iteration (cf. Logistello)

■ Search
 ■ Roll-out moves by imagining n steps of self-play
 ■ Evaluate resulting position by $score + v(rack)$
 ■ Score move by average evaluation in rollouts
 ■ Select and play highest scoring move
 ■ Specialised endgame search using B*
Maven: Results

- Maven beat world champion Adam Logan 9-5
- Here Maven predicted endgame to finish with MOUTHPART
- Analysis showed Maven had error rate of 3 points per game
Players have different information states and therefore separate search trees.

There is one node for each information state:
- summarising what a player knows
- e.g. the cards they have seen

Many real states may share the same information state.

May also aggregate states e.g. with similar value.
Information-state game tree may be solved by:

- Iterative forward-search methods
 - e.g. Counterfactual regret minimization
 - “Perfect” play in Poker (heads-up limit Hold’em)
- Self-play reinforcement learning
- e.g. Smooth UCT
 - 3 silver medals in two- and three-player Poker (limit Hold’em)
 - Outperformed massive-scale forward-search agents
Smooth UCT Search

- Apply MCTS to information-state game tree
- Variant of UCT, inspired by game-theoretic Fictitious Play
 - Agents learn against and respond to opponents’ average behaviour
- Extract average strategy from nodes’ action counts,
 \[\pi_{\text{avg}}(a|s) = \frac{N(s,a)}{N(s)} \].
- At each node, pick actions according to
 \[A \sim \begin{cases} \text{UCT}(S), & \text{with probability } \eta \\ \pi_{\text{avg}}(\cdot|S), & \text{with probability } 1 - \eta \end{cases} \]
- Empirically, in variants of Poker:
 - Naive MCTS diverged
 - Smooth UCT converged to Nash equilibrium
RL in Games: A Successful Recipe

<table>
<thead>
<tr>
<th>Program</th>
<th>Input features</th>
<th>Value Fn</th>
<th>RL</th>
<th>Training</th>
<th>Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chess</td>
<td>Pieces, pawns, ...</td>
<td>Linear</td>
<td>TreeStrap</td>
<td>Self-Play / Expert</td>
<td>αβ</td>
</tr>
<tr>
<td>Meep</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Checkers</td>
<td>Binary</td>
<td>Linear</td>
<td>TD leaf</td>
<td>Self-Play</td>
<td>αβ</td>
</tr>
<tr>
<td>Chinook</td>
<td>Pieces, ...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Othello</td>
<td>Binary</td>
<td>Linear</td>
<td>MC</td>
<td>Self-Play</td>
<td>αβ</td>
</tr>
<tr>
<td>Logistello</td>
<td>Disc configs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backgammon</td>
<td>Binary</td>
<td>Neural</td>
<td>TD(λ)</td>
<td>Self-Play</td>
<td>αβ / MC</td>
</tr>
<tr>
<td>TD Gammon</td>
<td>Num checkers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Go</td>
<td>Binary</td>
<td>Linear</td>
<td>TD</td>
<td>Self-Play</td>
<td>MCTS</td>
</tr>
<tr>
<td>MoGo</td>
<td>Stone patterns</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scrabble</td>
<td>Binary</td>
<td>Linear</td>
<td>MC</td>
<td>Self-Play</td>
<td>MC search</td>
</tr>
<tr>
<td>Maven</td>
<td>Letters on rack</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limit Hold’em</td>
<td>Binary</td>
<td>Linear</td>
<td>MCTS</td>
<td>Self-Play</td>
<td>-</td>
</tr>
<tr>
<td>SmooCT</td>
<td>Card abstraction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>