Lecture 9: Exploration and Exploitation

David Silver
Outline

1. Introduction
2. Multi-Armed Bandits
3. Contextual Bandits
4. MDPs
Exploration vs. Exploitation Dilemma

- Online decision-making involves a fundamental choice:
 - **Exploitation**: Make the best decision given current information
 - **Exploration**: Gather more information

- The best long-term strategy may involve short-term sacrifices
- Gather enough information to make the best overall decisions
Examples

- **Restaurant Selection**
 - **Exploitation**: Go to your favourite restaurant
 - **Exploration**: Try a new restaurant

- **Online Banner Advertisements**
 - **Exploitation**: Show the most successful advert
 - **Exploration**: Show a different advert

- **Oil Drilling**
 - **Exploitation**: Drill at the best known location
 - **Exploration**: Drill at a new location

- **Game Playing**
 - **Exploitation**: Play the move you believe is best
 - **Exploration**: Play an experimental move
Principles

- **Naive Exploration**
 - Add noise to greedy policy (e.g. ϵ-greedy)

- **Optimistic Initialisation**
 - Assume the best until proven otherwise

- **Optimism in the Face of Uncertainty**
 - Prefer actions with uncertain values

- **Probability Matching**
 - Select actions according to probability they are best

- **Information State Search**
 - Lookahead search incorporating value of information
The Multi-Armed Bandit

- A multi-armed bandit is a tuple $\langle \mathcal{A}, \mathcal{R} \rangle$
- \mathcal{A} is a known set of m actions (or “arms”)
- $\mathcal{R}^a(r) = \mathbb{P}[r|a]$ is an unknown probability distribution over rewards
- At each step t the agent selects an action $a_t \in \mathcal{A}$
- The environment generates a reward $r_t \sim \mathcal{R}^a_t$
- The goal is to maximise cumulative reward $\sum_{\tau=1}^t r_\tau$
Regret

- The action-value is the mean reward for action a,
 \[Q(a) = \mathbb{E}[r|a] \]

- The optimal value V^* is
 \[V^* = Q(a^*) = \max_{a \in A} Q(a) \]

- The regret is the opportunity loss for one step
 \[l_t = \mathbb{E}[V^* - Q(a_t)] \]

- The total regret is the total opportunity loss
 \[L_t = \mathbb{E} \left[\sum_{\tau=1}^{t} V^* - Q(a_\tau) \right] \]

- Maximise cumulative reward \equiv minimise total regret
Counting Regret

- The *count* $N_t(a)$ is expected number of selections for action a
- The *gap* Δ_a is the difference in value between action a and optimal action a^*, $\Delta_a = V^* - Q(a)$
- Regret is a function of gaps and the counts

$$L_t = \mathbb{E} \left[\sum_{\tau=1}^{t} V^* - Q(a_\tau) \right]$$

$$= \sum_{a \in A} \mathbb{E} [N_t(a)] (V^* - Q(a))$$

$$= \sum_{a \in A} \mathbb{E} [N_t(a)] \Delta_a$$

- A good algorithm ensures small counts for large gaps
- Problem: gaps are not known!
If an algorithm *forever* explores it will have linear total regret
If an algorithm *never* explores it will have linear total regret
Is it possible to achieve sublinear total regret?
Greedy Algorithm

- We consider algorithms that estimate $\hat{Q}_t(a) \approx Q(a)$
- Estimate the value of each action by Monte-Carlo evaluation

$$\hat{Q}_t(a) = \frac{1}{N_t(a)} \sum_{t=1}^{T} r_t \mathbf{1}(a_t = a)$$

- The greedy algorithm selects action with highest value

$$a^*_t = \arg\max_{a \in A} \hat{Q}_t(a)$$

- Greedy can lock onto a suboptimal action forever
- \Rightarrow Greedy has linear total regret
The ϵ-greedy algorithm continues to explore forever
- With probability $1 - \epsilon$ select $a = \arg\max_{a \in A} \hat{Q}(a)$
- With probability ϵ select a random action

Constant ϵ ensures minimum regret

$$l_t \geq \frac{\epsilon}{\mathcal{A}} \sum_{a \in \mathcal{A}} \Delta_a$$

\Rightarrow ϵ-greedy has linear total regret
Optimistic Initialisation

- Simple and practical idea: initialise $Q(a)$ to high value
- Update action value by incremental Monte-Carlo evaluation
- Starting with $N(a) > 0$

$$\hat{Q}_t(a_t) = \hat{Q}_{t-1} + \frac{1}{N_t(a_t)}(r_t - \hat{Q}_{t-1})$$

- Encourages systematic exploration early on
- But can still lock onto suboptimal action
- \Rightarrow greedy + optimistic initialisation has linear total regret
- \Rightarrow ϵ-greedy + optimistic initialisation has linear total regret
Decaying ϵ_t-Greedy Algorithm

- Pick a decay schedule for $\epsilon_1, \epsilon_2, \ldots$
- Consider the following schedule

$$c > 0$$

$$d = \min_{a\mid \Delta_a > 0} \Delta_i$$

$$\epsilon_t = \min \left\{ 1, \frac{c|A|}{d^2 t} \right\}$$

- Decaying ϵ_t-greedy has logarithmic asymptotic total regret!
- Unfortunately, schedule requires advance knowledge of gaps
- Goal: find an algorithm with sublinear regret for any multi-armed bandit (without knowledge of \mathcal{R})
Lower Bound

- The performance of any algorithm is determined by similarity between optimal arm and other arms.
- Hard problems have similar-looking arms with different means.
- This is described formally by the gap Δ_a and the similarity in distributions $KL(R^a || R^{a*})$.

Theorem (Lai and Robbins)

Asymptotic total regret is at least logarithmic in number of steps

$$
\lim_{t \to \infty} L_t \geq \log t \sum_{a | \Delta_a > 0} \frac{\Delta_a}{KL(R^a || R^{a*})}
$$
Which action should we pick?
- The more uncertain we are about an action-value
- The more important it is to explore that action
- It could turn out to be the best action
After picking blue action
- We are less uncertain about the value
- And more likely to pick another action
- Until we home in on best action
Upper Confidence Bound

- Estimate an upper confidence $\hat{U}_t(a)$ for each action value
- Such that $Q(a) \leq \hat{Q}_t(a) + \hat{U}_t(a)$ with high probability
- This depends on the number of times $N(a)$ has been selected
 - Small $N_t(a) \Rightarrow$ large $\hat{U}_t(a)$ (estimated value is uncertain)
 - Large $N_t(a) \Rightarrow$ small $\hat{U}_t(a)$ (estimated value is accurate)
- Select action maximising Upper Confidence Bound (UCB)

$$a_t = \arg\max_{a \in A} \hat{Q}_t(a) + \hat{U}_t(a)$$
Hoeffding’s Inequality

Theorem (Hoeffding’s Inequality)

Let $X_1, ..., X_t$ be i.i.d. random variables in $[0,1]$, and let $\bar{X}_t = \frac{1}{t} \sum_{\tau=1}^{t} X_\tau$ be the sample mean. Then

$$\mathbb{P} \left[\mathbb{E}[X] > \bar{X}_t + u \right] \leq e^{-2tu^2}$$

- We will apply Hoeffding’s Inequality to rewards of the bandit conditioned on selecting action a

$$\mathbb{P} \left[Q(a) > \hat{Q}_t(a) + U_t(a) \right] \leq e^{-2N_t(a)U_t(a)^2}$$
Calculating Upper Confidence Bounds

- Pick a probability p that true value exceeds UCB
- Now solve for $U_t(a)$

$$e^{-2N_t(a)U_t(a)^2} = p$$

$$U_t(a) = \sqrt{-\log p \over 2N_t(a)}$$

- Reduce p as we observe more rewards, e.g. $p = t^{-4}$
- Ensures we select optimal action as $t \to \infty$

$$U_t(a) = \sqrt{2 \log t \over N_t(a)}$$
This leads to the UCB1 algorithm

$$a_t = \arg\max_{a \in A} Q(a) + \sqrt{\frac{2 \log t}{N_t(a)}}$$

Theorem

The UCB algorithm achieves logarithmic asymptotic total regret

$$\lim_{t \to \infty} L_t \leq 8 \log t \sum_{a | \Delta_a > 0} \Delta_a$$
Example: UCB vs. ϵ-Greedy On 10-armed Bandit

Figure 8. Comparison on distribution 3 (2 machines with parameters 0.55, 0.45).

Figure 9. Comparison on distribution 11 (10 machines with parameters 0.9, 0.6, \ldots, 0.6).

Figure 10. Comparison on distribution 12 (10 machines with parameters 0.9, 0.8, 0.8, 0.8, 0.7, 0.7, 0.7, 0.6, 0.6, 0.6).
So far we have made no assumptions about the reward distribution \mathcal{R}
- Except bounds on rewards
- **Bayesian bandits** exploit prior knowledge of rewards, $p[\mathcal{R}]$
- They compute posterior distribution of rewards $p[\mathcal{R} \mid h_t]$
 - where $h_t = a_1, r_1, ..., a_{t-1}, r_{t-1}$ is the history
- Use posterior to guide exploration
 - Upper confidence bounds (Bayesian UCB)
 - Probability matching (Thompson sampling)
- Better performance if prior knowledge is accurate
Bayesian UCB Example: Independent Gaussians

- Assume reward distribution is Gaussian, $R_a(r) = \mathcal{N}(r; \mu_a, \sigma_a^2)$

- Compute Gaussian posterior over μ_a and σ_a^2 (by Bayes law)
 $$p[\mu_a, \sigma_a^2 | h_t] \propto p[\mu_a, \sigma_a^2] \prod_{t \mid a_t=a} \mathcal{N}(r_t; \mu_a, \sigma_a^2)$$

- Pick action that maximises standard deviation of $Q(a)$
 $$a_t = \arg\max_a \mu_a + c\sigma_a / \sqrt{N(a)}$$
Probability Matching

- **Probability matching** selects action a according to probability that a is the optimal action

\[\pi(a \mid h_t) = \mathbb{P} \left[Q(a) > Q(a'), \forall a' \neq a \mid h_t \right] \]

- Probability matching is optimistic in the face of uncertainty
 - Uncertain actions have higher probability of being max

- Can be difficult to compute analytically from posterior
Thompson Sampling

- **Thompson sampling** implements probability matching

\[
\pi(a \mid h_t) = \mathbb{P}[Q(a) > Q(a'), \forall a' \neq a \mid h_t]
\]
\[
= \mathbb{E}_{\mathcal{R} \mid h_t} \left[\mathbf{1}(a = \arg\max_{a \in \mathcal{A}} Q(a)) \right]
\]

- Use Bayes law to compute posterior distribution \(p[\mathcal{R} \mid h_t] \)
- **Sample** a reward distribution \(\mathcal{R} \) from posterior
- Compute action-value function \(Q(a) = \mathbb{E}[\mathcal{R}_a] \)
- Select action maximising value on sample, \(a_t = \arg\max_{a \in \mathcal{A}} Q(a) \)
- Thompson sampling achieves Lai and Robbins lower bound!
Exploration is useful because it gains information.

Can we quantify the value of information?

- How much reward a decision-maker would be prepared to pay in order to have that information, prior to making a decision.
- Long-term reward after getting information - immediate reward.

Information gain is higher in uncertain situations.

Therefore, it makes sense to explore uncertain situations more.

If we know the value of information, we can trade-off exploration and exploitation optimally.
We have viewed bandits as *one-step* decision-making problems

Can also view as *sequential* decision-making problems

At each step there is an *information state* \tilde{s}

- \tilde{s} is a statistic of the history, $\tilde{s}_t = f(h_t)$
- summarising all information accumulated so far

Each action a causes a transition to a new information state \tilde{s}' (by adding information), with probability $\tilde{P}_{\tilde{s},\tilde{s}'}^a$

This defines MDP \tilde{M} in augmented information state space

$$\tilde{M} = \langle \tilde{S}, A, \tilde{P}, R, \gamma \rangle$$
Consider a Bernoulli bandit, such that $\mathcal{R}^a = \mathcal{B}(\mu_a)$

e.g. Win or lose a game with probability μ_a

Want to find which arm has the highest μ_a

The information state is $\tilde{s} = \langle \alpha, \beta \rangle$

- α_a counts the pulls of arm a where reward was 0
- β_a counts the pulls of arm a where reward was 1
We now have an infinite MDP over information states.

This MDP can be solved by reinforcement learning.

Model-free reinforcement learning
- e.g. Q-learning (Duff, 1994)

Bayesian model-based reinforcement learning
- e.g. Gittins indices (Gittins, 1979)
- This approach is known as *Bayes-adaptive* RL
- Finds Bayes-optimal exploration/exploitation trade-off with respect to prior distribution.
Bayes-Adaptive Bernoulli Bandits

- Start with $\text{Beta}(\alpha_a, \beta_a)$ prior over reward function \mathcal{R}^a
- Each time a is selected, update posterior for \mathcal{R}^a
 - $\text{Beta}(\alpha_a + 1, \beta_a)$ if $r = 0$
 - $\text{Beta}(\alpha_a, \beta_a + 1)$ if $r = 1$
- This defines transition function \tilde{P} for the Bayes-adaptive MDP
- Information state $\langle \alpha, \beta \rangle$ corresponds to reward model $\text{Beta}(\alpha, \beta)$
- Each state transition corresponds to a Bayesian model update
Bayes-Adaptive MDP for Bernoulli Bandits

\[s_t^+ = 1 : \begin{bmatrix} \alpha_1^1 \beta_1^1 & \alpha_2^2 \beta_2^2 \\ \alpha_1^1 \beta_1^1 & \alpha_2^2 \beta_2^2 \end{bmatrix} \]

\[s_{t+1}^+ = 1 : \begin{bmatrix} \alpha_1^1 \beta_1^1 \alpha_2^2 \beta_2^2 \\ \alpha_1^1 \beta_1^1 \alpha_2^2 \beta_2^2 \end{bmatrix} \]

\[s_{t+1}^+ = 2 : \begin{bmatrix} \alpha_1^2 \beta_1^1 \alpha_2^2 \beta_2^2 \\ \alpha_1^2 \beta_1^1 \alpha_2^2 \beta_2^2 \end{bmatrix} \]

\[s_{t+1}^+ = 1 : \begin{bmatrix} \alpha_1^1 \beta_1^1 \alpha_2^2 \beta_2^2 \\ \alpha_1^1 \beta_1^1 \alpha_2^2 \beta_2^2 \end{bmatrix} \]

\[s_{t+1}^+ = 2 : \begin{bmatrix} \alpha_1^2 \beta_1^1 \alpha_2^2 \beta_2^2 \\ \alpha_1^2 \beta_1^1 \alpha_2^2 \beta_2^2 \end{bmatrix} \]

\[s_{t+1}^+ = 1 : \begin{bmatrix} \alpha_1^1 \beta_1^1 \alpha_2^2 \beta_2^2 \\ \alpha_1^1 \beta_1^1 \alpha_2^2 \beta_2^2 \end{bmatrix} \]

\[s_{t+1}^+ = 2 : \begin{bmatrix} \alpha_1^2 \beta_1^1 \alpha_2^2 \beta_2^2 \\ \alpha_1^2 \beta_1^1 \alpha_2^2 \beta_2^2 \end{bmatrix} \]

\[s_{t+1}^+ = 1 : \begin{bmatrix} \alpha_1^1 \beta_1^1 \alpha_2^2 \beta_2^2 \\ \alpha_1^1 \beta_1^1 \alpha_2^2 \beta_2^2 \end{bmatrix} \]

\[s_{t+1}^+ = 2 : \begin{bmatrix} \alpha_1^2 \beta_1^1 \alpha_2^2 \beta_2^2 \\ \alpha_1^2 \beta_1^1 \alpha_2^2 \beta_2^2 \end{bmatrix} \]

\[\vdots \]
Gittins Indices for Bernoulli Bandits

- Bayes-adaptive MDP can be solved by dynamic programming
- The solution is known as the *Gittins index*
- Exact solution to Bayes-adaptive MDP is typically intractable
 - Information state space is too large
- Recent idea: apply simulation-based search (Guez et al. 2012)
 - Forward search in information state space
 - Using simulations from current information state
A contextual bandit is a tuple $\langle A, S, R \rangle$

- A is a known set of actions (or “arms”)
- $S = \mathbb{P} [s]$ is an unknown distribution over states (or “contexts”)
- $R^a_s(r) = \mathbb{P} [r | s, a]$ is an unknown probability distribution over rewards

At each step t

- Environment generates state $s_t \sim S$
- Agent selects action $a_t \in A$
- Environment generates reward $r_t \sim R^a_{s_t}$

Goal is to maximise cumulative reward $\sum_{\tau=1}^t r_\tau$
Linear Regression

- Action-value function is expected reward for state \(s \) and action \(a \)

\[
Q(s, a) = \mathbb{E}[r|s, a]
\]

- Estimate value function with a linear function approximator

\[
Q_\theta(s, a) = \phi(s, a)^\top \theta \approx Q(s, a)
\]

- Estimate parameters by least squares regression

\[
A_t = \sum_{\tau=1}^{t} \phi(s_\tau, a_\tau) \phi(s_\tau, a_\tau)^\top \\
b_t = \sum_{\tau=1}^{t} \phi(s_\tau, a_\tau) r_\tau \\
\theta_t = A_t^{-1} b_t
\]
Least squares regression estimates the mean action-value $Q_\theta(s, a)$.

But it can also estimate the variance of the action-value $\sigma^2_\theta(s, a)$, i.e. the uncertainty due to parameter estimation error.

Add on a bonus for uncertainty, $U_\theta(s, a) = c \sigma$.

i.e. define UCB to be c standard deviations above the mean.
Define confidence ellipsoid \mathcal{E}_t around parameters θ_t
Such that \mathcal{E}_t includes true parameters θ^* with high probability
Use this ellipsoid to estimate the uncertainty of action values
Pick parameters within ellipsoid that maximise action value

$$\arg\max_{\theta \in \mathcal{E}} Q_\theta(s, a)$$
Calculating Linear Upper Confidence Bounds

- For least squares regression, parameter covariance is A^{-1}
- Action-value is linear in features, $Q_\theta(s, a) = \phi(s, a) ^\top \theta$
- So action-value variance is quadratic,
 $\sigma^2_\theta(s, a) = \phi(s, a) ^\top A^{-1} \phi(s, a)$
- Upper confidence bound is $Q_\theta(s, a) + c \sqrt{\phi(s, a) ^\top A^{-1} \phi(s, a)}$
- Select action maximising upper confidence bound

$$a_t = \arg\max_{a \in A} Q_\theta(s_t, a) + c \sqrt{\phi(s_t, a) ^\top A_t^{-1} \phi(s_t, a)}$$
Example: Linear UCB for Selecting Front Page News

![Graphs](image-url)

- **Figure 1:** A comparison of three generalized linear models with 50% subsamples of data. The plots contain nCTR for the learning bucket (left column) and the deployment bucket (right column) using ϵ-greedy (top row) and UCB (bottom row) combined. Numbers are averaged over 5 runs on random subsamples.

Second, all three models demonstrated nontrivial performance, suggesting appropriateness of generalized linear models in capturing CTR in Web applications. In contrast, the traditional, non-contextual ϵ-greedy and UCB algorithms do not consider user features. On the same data set, they can, at the best, achieve nCTR of 1.509 and 1.584 in the learning and deployment buckets, respectively. The results were consistent with our previous work (Li et al., 2010) although a different set of features were used.

Third, the logistic and probit models clearly outperform linear models, which is expected as their likelihood models better capture the binary reward signals. Since binary rewards are common in Web-based applications (like clicks, conversions, etc.), we anticipate the logistic and probit model to be more effective in general than linear models. That being said, with a large amount of data,
The same principles for exploration/exploitation apply to MDPs

- Naive Exploration
- Optimistic Initialisation
- Optimism in the Face of Uncertainty
- Probability Matching
- Information State Search
Optimistic Initialisation: Model-Free RL

- Initialise action-value function $Q(s, a)$ to $\frac{r_{\text{max}}}{1 - \gamma}$
- Run favourite model-free RL algorithm
 - Monte-Carlo control
 - Sarsa
 - Q-learning
 - ...
- Encourages systematic exploration of states and actions
Construct an optimistic model of the MDP
Initialise transitions to go to heaven
 (i.e. transition to terminal state with r_{max} reward)
Solve optimistic MDP by favourite planning algorithm
 policy iteration
 value iteration
 tree search
 ...
Encourages systematic exploration of states and actions
e.g. RMax algorithm (Brafman and Tennenholtz)
Upper Confidence Bounds: Model-Free RL

- Maximise UCB on action-value function $Q^\pi(s, a)$

$$a_t = \arg\max_{a \in A} Q(s_t, a) + U(s_t, a)$$

- Estimate uncertainty in policy evaluation (easy)
- Ignores uncertainty from policy improvement

- Maximise UCB on optimal action-value function $Q^*(s, a)$

$$a_t = \arg\max_{a \in A} Q(s_t, a) + U_1(s_t, a) + U_2(s_t, a)$$

- Estimate uncertainty in policy evaluation (easy)
- plus uncertainty from policy improvement (hard)
Bayesian Model-Based RL

- Maintain posterior distribution over MDP models
- Estimate both transitions and rewards, $p[\mathcal{P}, \mathcal{R} | h_t]$
 - where $h_t = s_1, a_1, r_2, ..., s_t$ is the history
- Use posterior to guide exploration
 - Upper confidence bounds (Bayesian UCB)
 - Probability matching (Thompson sampling)
Thompson Sampling: Model-Based RL

- Thompson sampling implements probability matching

\[
\pi(s, a \mid h_t) = \mathbb{P} \left[Q^*(s, a) > Q^*(s, a'), \forall a' \neq a \mid h_t \right]
\]

\[
= \mathbb{E}_{\mathcal{P}, \mathcal{R} | h_t} \left[1(a = \arg\max_{a \in \mathcal{A}} Q^*(s, a)) \right]
\]

- Use Bayes law to compute posterior distribution \(p[\mathcal{P}, \mathcal{R} \mid h_t] \)
- **Sample** an MDP \(\mathcal{P}, \mathcal{R} \) from posterior
- Solve MDP using favourite planning algorithm to get \(Q^*(s, a) \)
- Select optimal action for sample MDP, \(a_t = \arg\max_{a \in \mathcal{A}} Q^*(s_t, a) \)
MDPs can be augmented to include information state

Now the augmented state is \(\langle s, \tilde{s} \rangle \)
- where \(s \) is original state within MDP
- and \(\tilde{s} \) is a statistic of the history (accumulated information)

Each action \(a \) causes a transition
- to a new state \(s' \) with probability \(P^{a}_{s,s'} \)
- to a new information state \(\tilde{s}' \)

Defines MDP \(\tilde{M} \) in augmented information state space

\[
\tilde{M} = \langle \tilde{S}, A, \tilde{P}, R, \gamma \rangle
\]
Bayes Adaptive MDPs

- Posterior distribution over MDP model is an information state

\[\tilde{s}_t = P[\mathcal{P}, \mathcal{R}|h_t] \]

- Augmented MDP over \(\langle s, \tilde{s} \rangle \) is called Bayes-adaptive MDP

- Solve this MDP to find optimal exploration/exploitation trade-off (with respect to prior)

- However, Bayes-adaptive MDP is typically enormous

- Simulation-based search has proven effective (Guez et al.)
Conclusion

- Have covered several principles for exploration/exploitation
 - Naive methods such as ϵ-greedy
 - Optimistic initialisation
 - Upper confidence bounds
 - Probability matching
 - Information state search
- Each principle was developed in bandit setting
- But same principles also apply to MDP setting