
Risk Aware Decision Framework for Trusted Mobile Interactions

Daniele Quercia and Stephen Hailes
Department of Computer Science, University College London, London, WC1E 6BT, UK.

{D.Quercia, S.Hailes}@cs.ucl.ac.uk

Abstract

Adaptation to context is likely to be a key element in en-
suring that pervasive devices make the most efficient use
of the limited resources available to them. This adaptation
can occur on different timescales: from very rapid adap-
tation to network congestion, through software component
discovery and loading to allow for the addition of new func-
tionality, to longer-term component update and patching.
In the latter two cases, dynamic code loading introduces
security problems, particularly because it may be from un-
trusted sources with whom pervasive devices happen to be
networked at the time of need. As a consequence, we pro-
pose a local decision-making process that aims at produc-
ing better-informed decisions for pervasive devices when
they contemplate whether or not to load software from other
devices. This process has three key elements: (i) explicit
identification of potential risks, given the device’s context
and the type of application; (ii) computation of likelihoods
with which the risks will occur, based on trust mechanisms;
(iii) integration of the risk attitude of the user of the device,
through customisable elementary utility functions.

1 Introduction

Fostering the pervasive computing vision will necessi-
tate the installation of a wide range of software components
on mobile and even wearable devices. Pervasive (or ubiq-
uitous) computing is a term used to describe a computa-
tional environment in which devices that are mobile and
sometimes resource constrained (e.g., sensors, embedded
systems) interact to obtain and provide services anywhere
and anytime. Application developers and vendors will not
be able to pre-load all the required components on those de-
vices, both because they are, by their nature, resource con-
strained (e.g., sensors) and because there is a need to patch
and update software from time-to-time (e.g., PDAs). Hence,
they will have to rely on loading the components dynami-
cally and as necessary from other devices.

Installation of software components requires additional

security mechanisms and a strong degree of assurance that
the components are as they claim to be - for example, that
they are not viral and do not contain trojans. In tradi-
tional systems, this can be handled by digitally signing soft-
ware and by assuming the existence of globally trustworthy
CAs whose public keys are built into browsers and operat-
ing systems. Whilst the number of software providers re-
mains limited, this is a reasonable solution; however, even
in the wired Internet, small software providers often distrib-
ute code using shareware and freeware mechanisms, with
assurances that are at best limited and built around unpo-
liced reputation rating systems on well known shareware
sites. In pervasive environments, scale and dynamicity in-
crease, and full network connectivity to the wider Internet
cannot always be assumed; on the other hand, the need
to load new software components to allow for appropriate
adaptation to prevailing conditions may be urgent if the de-
vice is to continue to operate as the user expects. Conse-
quently, for the purpose of loading software components,
mobile devices cannot assume that they will always be able
to obtain software from trusted sources; on the contrary, to
provide the necessary degree of availability, they may need
to obtain software from other devices in a peer-to-peer fash-
ion. This clearly represents a potential danger and there is
a need for a decision procedure balancing the risks of load-
ing such components against the potential utility that they
would provide. This argument is little different from that
employed by those researching trust in pervasive systems:
that the addition of local decision making mechanisms al-
lows an appropriate balance to be made between uncertainty
and utility.

Computational agents based on the concept of trust have
been extensively researched as security frameworks for
ubiquitous devices. An agent, acting on behalf of a de-
vice’s user, exchanges software components only with other
trusteddevices, whilst minimizing both user intervention
and resource consumption. The agent considers trusted
those devices that, for example, have been found to be re-
liable in past software exchanges – they have always coop-
erated supplying what they were expected to. Trust-based
decisions can be enhanced if they explicitly consider po-



tential risks. In fact, as supporting evidence, we argue that
how much trust is necessary for exchanging software com-
ponents strictly depends on the level of risk involved. Risk
and trust are in an inverse relationship [31]: the riskier
an activity is, the higher is the trust level required to en-
gage in such an activity. For instance, the level of trust re-
quired for devices that provide components is likely to be
higher when loading security or core middleware compo-
nents, than when loading a new electronic game that does
not implement critical security features, has been down-
loaded just-for-fun, and can run within a sandbox.

The body of work that has been published in the field of
the integrated management of trust and risk is rather gen-
eral and, as a consequence, cannot be directly applied to
deal with issues related to mobile software components. In
the few cases of work on specific scenarios, great empha-
sis has been given to issues of access control in pervasive
computing.

Our research goal is to realise the full potentials of
ubiquitousness of mobile software components. Thus, we
present a novel decision framework, that integrates both risk
and trust. This allows mobile devices to reason about ex-
changing software components under uncertainty. It pos-
sesses a range of appropriate properties: (i) explicit model-
ing of decision making in the absence of complete informa-
tion; (ii) integration of the actual risk attitude of the user of
the mobile device, by means of a customizable utility func-
tion; (iii) clear computation of likelihoods of the potential
risks, based on trust mechanisms.

The remainder of the paper will be focused on elucidat-
ing the details of a model for decision-making under uncer-
tainty. Section 2 discusses related work. In section 3 we
introduce a scenario intended to be illustrative of a real-life
usage of the model. In section 4 we describe all elements
modeling the decision problem space. Section 5 discusses
a simple quantitative application of the model. In section 6,
we make a clear distinction between trust and assurance and
we then discuss in depth our solution. Finally, section 7 de-
scribes future work and section 8 presents our conclusions.

2 Related Work

The need to deal with trust and reputation has long been
realised in the pervasive computing research community,
and many approaches have been proposed. The notion
of trust management has formed a subject of study since
work by Blaze, Feigenbaum, and Lacy with their semi-
nal paper on decentralised trust management [5], which
shows a language for specifying trusted actions and trust
relationships; they also describe a prototype implementa-
tion of a trust management system, called PolicyMaker.
KeyNote [4], a similar credential-based distributed policy
management framework, has then been introduced: it puts

specific emphasis on access control decisions rather than
general trust management (e.g., it does not address trust
evolution issues). In computer science, Marsh was the
first one to introduce a computational model for trust [27].
Abdul-Rahman and Hailes [1] then proposed a distributed
trust management model, with which entities could au-
tonomously reason about trust, without relying on a cen-
tral authority. Mui [29] then investigated a computational
model of trust, in which the concept of reputation was in-
troduced. More recently, Capra [7] proposed a human trust
management model, specifically for mobile systems and ap-
plications. This framework tries to capture the actual human
disposition to trust of the user of the mobile device, through
customizable functions.

As distributed trust management frameworks started to
have a profound impact on the computing research scene,
consideration started to be given to risk analysis aspects
which relate to trust [11]. The SECURE project [6] incor-
porated a formal trust model [8] and an explicit model of
risk [14] for assessing collaborations in ubiquitous comput-
ing environments. The trust management model dynami-
cally builds trust from local trust policies, based on past ob-
servations and recommendations. Within the same project,
Wageallaet al. [34] presented a formal model for the man-
agement of trust life-cycle issues, with consideration of both
trust and risk. Although foundational, the SECURE risk
model [14] has a limitation: it computes utility values on
probabilities of events, whereas risk theory in economics
suggests that utility values should be not estimated on prob-
abilities of events, but rather on certainties of events (i.e.,
only when an event takes place can its utility be evaluated).

More recently, trust-based risk investigation has led to
the integration of the expected utility theory in computa-
tional risk models. Jøsang and Lo Presti [23] analyzed the
relationship between risk and trust and derived a computa-
tional model integrating the two concepts; however, their
model focuses on using risk to deduce trust, whereas we
use the opposite approach: we view trust as driving risk [16]
and, thus, integrate the trust assessment within a global risk-
aware decision framework. Dimmocket al. [15] investi-
gated a model of risk again based on the expected utility
theory. This has been evaluated through a scenario of P2P
collaborative spam detection. This work, however, focuses
on issues of trust-based access control and, consequently,
does not tackle security risks associated with mobile soft-
ware components.

3 Scenario

We assume applications are composed of locally in-
terconnected components. There is considerable re-
search within the mobile middleware community to sup-
port such a model; for example, Beanome [9], Gravity [10],



SATIN [36] and OpenCOM [12]. We also assume that com-
ponents are available together with their dependencies.

Let us consider the following scenario. Whilst in her
office, Alice initiates a video-conference with Bob using
her PDA, which has limited computational power and con-
strained storage space. Now Alice realises she has to go
home, but, at the same time, she does not want to stop the
conversation with Bob. She thus decides to continue con-
ferencing on the move. The architecture running on Al-
ice’s PDA should guarantee secure communication across
all traversed physical spaces, whilst the video-conference
is seamlessly carried out. Alice often uses the video-
conferencing tool in the office, but very rarely outside. Con-
sequently, her PDA keeps the video-conference software
permanently stored but only loads the security components
that support secure outdoor communication when neces-
sary. Thus, the PDA’s architecture loads appropriate soft-
ware components as a result of context changes:

At the office- Alice’s PDA has the videoconferencing tool
stored locally. No security component is needed as the
office is considered physically secure andcollabora-
tive.

From office to home- Alice is now traversing spaces which
are considerednon-collaborative(e.g., public spaces
such as streets and passenger coaches). Alice’s PDA
therefore needs to discover and load two additional
software components: a tool for wireless network ac-
cess control (e.g., PANA [17]) and a software compo-
nent for confidentiality protection (e.g., IPSec [24]).

At home- Alice’s PDA keeps the component for confiden-
tiality protection loaded but marks as removable the
code for wireless network access control because it
is rarely used and a base station now provides net-
work access in Alice’s home1. The PDA still needs to
keep the communication to the base station confiden-
tial, since the traffic can easily be overheard or spoofed
by Alice’s neighbors and passers-by.

The actors in the scenario fall into three classes: Al-
ice’s PDA is acomponent loaderas it discovers and loads
software components, normally those that are rarely used;
component suppliersare the devices that provide the soft-
ware components; andcomponent authorsare the organi-
sations or individuals that authored the components. Thus,
when the component loader needs a software componentC
(e.g., IPSec), it attempts to discover nearby devices (compo-
nent suppliers) that are willing to provide a component with
the requisite semantics and within the timeframe necessary.

1Viewing the PDA as a cache, there is no real need actively to remove
this component, but, to aid the cache replacement algorithm, it should be
marked as being of lower priority than when it was in active use.

Component suppliers reply with details of appropriate com-
ponents, and a service level that denotes how confident they
are in being able to deliver the component within the time-
frame requested. The component loader uses our decision
framework to select which of the component suppliers to
use, based on the likelihoods of potential risks, which in
turn depend on (i) the trust level in the component author
and guarantees about the integrity of the component, (ii)
the claimed service level, and (iii) the trust in the supplier
to provide the components as detailed.

We do not deal with the aspect of component discov-
ery. For this purpose, any appropriate discovery frame-
work available in the literature can be applied; for example,
RUBI [20] is a resource discovery framework for mobile
devices in which discovery is based on devices’ local views
of the network structure.

In the next section, we will discuss our scheme which
represents a decision framework for component loaders. If
a component loader decides to accept a piece of code, it im-
plicitly accepts some risks. For example, the chosen compo-
nent supplier may be malicious and may consequently de-
liver code out-of-time or may ship malicious software (e.g.,
a component may carry a virus). To mitigate potential risks,
the component loader should be able to take informed de-
cisions based on component suppliers’ trustworthiness: it
decides whether the component supplier is believed to gen-
erate more benefits (e.g., the component that does what it is
supposed to) than risks (e.g., it is an unreliable component).

4 Risk-aware Decision Framework

In economics, decision theory under uncertainty is of-
ten realised in terms of expected utility (EU) theory.
Bernoulli [3] first suggested that people maximise not the
expected monetaryvalue of an outcome, but itsexpected
utility. This can be represented as

EU =
∑

i

πi · u(oi),

whereEU is the expected utility,πi is the probability that
theith outcome will occur andu(oi) is the utility of theith

outcome. Furthermore, Bernoulli argued that the psycho-
logical value of money diminishes as its quantity increases.
He thus represented the utility function, which shapes the
functional relation between elementary utility and value of
outcomes, with a logarithmic form. After that, Von Neu-
mann and Mongestern [30] showed that the maximization
of expected utility is a rational behaviour, given the valid-
ity of 6 axioms describing the rational behaviour of deci-
sion makers. This theory assumes that the decision-making
process is supported by theobjectiveprobability that an out-
come occurs. Amongst others, Savage [32] developed a ver-
sion of EU theory in which probabilities are subjective.



Our decision framework is based on EU theory and has
the following properties: (i) outcome probabilities are not
objective, but are considered to be subjective, as they de-
pend, as we will see, on subjective evaluations such as trust
values; (ii) utility functions are not elicited by means of
conventional methods used in economics (e.g., lottery tech-
nique [21]), but are customised according to the risk attitude
of the user of the component loader device.

The remainder of this section will focus on elucidating
our framework’s building blocks. First, the elements of de-
cision under uncertainty are introduced. Second, the overall
utility assessment for a single action is shown. Third, the
elementary utility function for an outcome is presented. Fi-
nally, the functional relation between likelihood of outcome
states and trust levels is illustrated.

4.1 Elements of Decision Under Uncertainty

The component loader bases its decision whether to take
the componentC from any component supplier on the fol-
lowing elements [21]:

1. a set ofactions(a1, . . . , ax, . . . , aA) that can be car-
ried out by the component loader. For example, pos-
sible component loader’s actions include‘accept com-
ponent’,‘do not accept component’and ‘ask the user
for further guidance’;

2. a set ofstates(s1, . . . , sy, . . . , sS) of the world that
model the uncertainty experienced by the component
loader when interacting with any component suppli-
ers. This set of states completely defines the set of
occurrences that are represented within the model. For
example, states might include‘component supplier de-
livers within an acceptable time range’, ‘component
supplier delivers a malicious component’, ‘component
supplier delivers a component from a highly trustwor-
thy author’ and ‘component supplier does not deliver
any component’;

3. anoutcomefunctiono(ax, sy) that returns the outcome
if the component loader carries out actionax and the
world’s state issy. For example, the combination of
the action‘no component accepted’and any possible
states of the world would result in the outcome‘give
up the current activity’, if the component in ques-
tion is absolutely necessary and confidentiality is a
prime requirement (e.g., the confidentiality of a video-
conference can be only assured with a piece of code
that performs a robust encryption algorithm; if such
piece of software is neither locally stored nor remotely
available, the video-conference must be stopped);

4. aprobability functionπ(sy) that expresses component
loader’s belief that statesy will occur. For exam-

ple, if the component loader believes that the compo-
nent supplier is very trustworthy, it may intuitively as-
sign a very low probability to the occurrence of the
state‘component supplier delivers a malicious com-
ponent’, whereas the state‘component supplier suc-
cessfully delivers the component’will be believed to be
more likely. Similar considerations apply to the trust
level of the component author: if the integrity of the
software component is guaranteed and the component-
loader highly trusts the component author, then the
likelihood of the state‘component supplier delivers a
malicious component’is close to the minimum value;

5. anelementary-utilityfunctionu(value(oz)) that mea-
sures the desirability of the any given outcome value
value(oz) to the component loader. Within this sec-
tion, we will show the construction of such function.

4.2 Decision Rule

The component loader applies the expected-utility rule
to decide upon the most advantageous action. Given a set
of possible actions such as‘carry on the video-conference’
or ‘give up the video-conference’, the component loader de-
rives an ordering of such actions, by means of computing
the utility for each of them. It does so for each device will-
ing to be a component supplier. If we consider a given com-
ponent supplierh, the component loader’s utility for the ac-
tion a is

Uh
a =

∑

i∈[1,S]

πh(si) · u(v(o(a, si))),

whereπh(si) is the probability that statesi will occur, given
thath is the component supplier; ifsi occurs, the value of
such outcome attached by the component loader is denoted
by v(o(a, si)). For a given action, the component loader
maximiseUh

a over all the devices willing to be component
suppliers. Thus, it obtains the preferred supplier for each
possible action. It then chooses the action with the highest
utility value.

We now introduce the two composing elements of the
utility assessment for an action: first, the elementary utility
function; second, the probability function.

4.3 Elementary Utility Function

In general, elementary utility functions describe both ab-
solute and relative preferences of users of experiencing a
given outcome.Preference elicitationis the process of ex-
tracting preference (utility) information from a user and still
represents an open research issue for one main reason: peo-
ple find it difficult to attach utilities to outcomes. For in-
stance, one may prefer one pub over another, buthow much
a particular pub is preferred is often difficult to express.



For the purpose of this paper, preference elicitation is
done by means of a policy refinement process: from high-
level user policy specifications the component loader de-
vice extracts the appropriate parameters (denoted bywi) to
attach a number (value(o)) to each single outcomeo (Ta-
ble 1 shows a list of possible outcomes). In so doing, the
risk attitude of the user of the component loader device is
considered. The elementary utility function then statically
maps this value into itsutility.

We first describe the construction of the elementary util-
ity function u : value(o) → u(value(o)). We then ex-
plore how the component loader quantitatively estimates
value(o) for any outcomeo. The elementary utility func-
tion converts the user-defined value of an outcome under
certainty to a level of satisfaction (utility). We consider the
shape of the elementary utility function logarithmic: that is,
as shown by Bernoulli, user’s attitudes are predominately
risk-averse. The elementary utility function has then the
following form:

q(x) = log(1 + x), (1)

wherex is the value of the outcome under consideration. To
enhance computational tractability on mobile devices, the
above elementary utility function can be simplified with a
mean-variance analysis, a method currently used for risk as-
sessment on financial portfolios. Levy and Markowitz [26]
showed that a simpler mean-variance approximation yields
a level of utility almost equal to that obtained by the log-
arithmic utility function. Put simply, widely used utility
functions, including expression (1), can be approximated
as second degree Taylor polynomials, whilst ensuring com-
patibility with the expected utility theory. The second de-
gree Taylor Polynomial of a utility functionv(x) at x0 can
be written as

v(x) = v(x0) + v′(x0)(x− x0) +
v′′(x0)

2
(x− x0)2 (2)

If function v has been chosen such thatv(x0) = 0 and
v′(x0) = 1, we then have

v(x) = (x− x0) +
v′′(x0)

2
(x− x0)2 (3)

Forx0 = 0 (small losses), expression (1) satisfies the con-
ditionsq(x0) = 0 andq′(x0) = 1. It can be thus written in
a form similar to expression (3):

q(x) ≈ (x− 0) +
q′′(0)

2
(x− x0)2 = x− 1

2
x2 = u(x) (4)

Our decision framework will use functionu as elemen-
tary utility function, within range [0,1]. This range assures
the validity of Taylor approximation, as it is close to point
x0 = 0.

There now remains one thread to unwind: that of how
the component loader quantitatively estimatesvalue(o) for
any outcomeo. In order to attempt this, we need to define
some new concepts.

Any application is characterised by particular quality of
service parameters, the importance of which changes as the
context of operation changes. For example, aspects asso-
ciated with a video-conference application might include
assurances about confidentiality or authenticity, and resis-
tance to disruption or termination of the conference. We
call these aspectsapplication dimensions.

For each application dimension, we need to understand
the importance that the component loader associates with
it. Thus, for example, confidentiality generally has medium
importance, and disruption or termination of the conference
usually represent a prime concern. In the following, we use
wi to represent the value that the component loader attaches
to the ith application dimension. This is intended to re-
flect the preferences of the component loader’s user. User
preferences are stored as high-level policy on the compo-
nent loader device, which then performs a policy refinement
process: it extracts from high-level policy specification each
wi factor. For example, the user specifies by means of a
GUI how much he cares about disruptions, and the compo-
nent loader device extracts a value forwAD, which repre-
sents the preference of the user in always having absence of
disruptions (AD).

In addition to this, we should be able to estimate the de-
gree to which each application dimension is important when
both a specific type of application and a particular outcome
are considered. Thus, in the video conferencing scenario,
this function might include the following elements:

1. absence of disruptions(DAD(o)) – For outcomes al-
lowing the video-conference to be carried on seam-
lessly, the value approaches the maximum of 1,
whereas in case of outcomes leading to permanent in-
terruption, it falls to minimum 0. The outcome‘carry
on with limited disruptions’would be an intermediate
value closer to the maximum than the minimum - say
a value of around0.8;

2. spared user time(DSUT (o)) – Outcomes causing mas-
sive user intervention bring this value down to the min-
imum 0, whereas maximum value1 is only experi-
enced when user interventions have not been required;

3. inverse security gap (DISG(o)) – To clarify the mean-
ing of this dimension, let us imagine the following sit-
uation. A device wishes to load a component to reach
a desired security level, denoted bySecA. After load-
ing a component, it reaches security levelSecB . The
value of this dimension is close to maximum value 1, if
security gap between the needed level of security and



the one that is effectively reached has been completely
filled (best case). Otherwise, it decreases as the secu-
rity gap increases. This dimension can be expressed
as

DISG(o) =
{

1
SecA−SecB

, if SecA − SecB > 0;
1, otherwise.

Note that the dimension refers to general security;
however, it would be more appropriate to have one di-
mension for each specific security aspect, such as con-
fidentiality, integrity and authentication.

Finally, we can build the value of outcomeo under cer-
tainty, which always falls in the range[0, 1], as

value(o) =

∑
i∈[1,n] wi ·Di(o)∑

i∈[1,n] wi
,

wherewi is the component loader’s value attached to the
ith application dimension andDi(o) is the value of theith

application dimension in case outcomeo occurs. The value
of outcomeo is then used as input for the elementary utility
functionu.

4.4 Probability Function

The probability functionexpresses component loader’s
belief that a certain state will occur when interacting with
a specific component supplier. For example, Alice’s PDA
acting as component loader computes the likelihood of state
‘component supplier delivers the component on time’when
interacting with a specific component supplier, say Bob’s
PDA.

We believe that our decision framework is best consid-
ered as integrated with a distributed trust model which re-
turns component suppliers’ and component authors’ trust-
worthiness, that then contributes to the computation of state
probabilities. Thus, for example, the likelihood of a state,
say ‘component supplier delivers a malicious component’,
depends on both component supplier’s and component au-
thor’s trustworthiness as well as the guarantees that accom-
pany the agent about the integrity and authenticity of the
component. The component loader utilises the past to illu-
minate the present: from past interactions, received recom-
mendations, and reputation information it estimates trust-
worthiness [14]. Based on trustworthiness, the component
loader estimates the probability of each state: as the trust
level in component author increases, the probability, for ex-
ample, of obtaining a malicious component decreases.

Part of section 5 discusses the relationship between trust
and state probability in a specific situation.

5 Our Decision Framework in Action: a De-
tailed Example

For the purpose of simplicity, we restrict our discussion
to risks that relate to the ability of the component supplier
device to deliver a software component within a set period
of time. In other words, we do not examine the potential
risks that may occur from the way a software component
actually operates once delivered, although such considera-
tions are a logical extension of this simple example. This
situation might arise if the software component is signed
with the author’s key, thus guaranteeing the software in-
tegrity, and the component-loader highly trusts the author:
in this case, the component-supplier is entirely irrelevant to
the maliciousness or not of the software and the component-
loader only cares that the software will be supplied on time.

Returning to our example, Alice’s PDA needs a software
component and must decide whether or not to accept it from
a nearby device, say Bob’s PDA. Let us assume that the lat-
ter device, the component supplier, has declared providing
delaydp and confidence levelCL that the component will
be transmitted on time. For example, Bob’s PDA declares
to be able to provide the software component with delay
dp = 10 seconds and with confidence level80%. The delay
that Alice’s PDA actually experiences is denoted byde.

5.1 Elements of Decisions in our Scenario

As in section 4.1, the decision problem space of Alice’s
PDA is modeled by the following elements:

1. a set of actions (a1, . . . , ax, . . . , aA), as listed in the
first column of Table 1;

2. a set of states (s1, . . . , sy, . . . , sS). One state could
be that the actual delay experienced by Alice’s PDA
in receiving the component from Bob’s PDA falls in
a range that allows the video-conference to continue
seamlessly. For the purpose of the scenario, we define
three possible ranges of delaydp: the seamless range
(R1), the limited disruptions range (R2) and the risky
range (R3). The first row of Table 1 lists this set of
states;

3. an outcome functiono(ax, sy), which is the set of out-
comes depending on both Alice PDA’s actionax and
state of the worldsy. Table 1 is the outcome matrix
and shows the outcomes corresponding to all combi-
nations of action and state;

4. a probability functionπ(sy) which expresses Alice
PDA’s belief that statesy occurs. For instance,
π(de ∈ R1) is the probability that Bob’s PDA delivers
the component with a delayde that falls in the seam-
less range, denoted byR1. The probability of a state



depends on the declared delay, on the confidence level
and on the trust that Alice’s PDA has in Bob’s PDA in
providing the software component within the specified
time. Further aspects associated with the probability
function are discussed in subsection 5.2.

5. an elementary utility functionu(oz), which measures
the desirability of the different outcomes to Alice’s
PDA. Subsection 4.3 discusses in depth the function
used and the factors affecting it.

STATES
ACTIONS CS de-

livers C
within R1

CS de-
livers C
within R2

CS de-
livers C
within R3

Accept
component

Carry on
seam-
lessly

Carry
on with
limited
disruption

Give up

Do not
accept
component

Give up Give up Give up

Ask User Alice
interacts
with GUI

Alice
interacts
with GUI

Alice
interacts
with GUI

Table 1. Matrix of outcomes of three alternative ac-
tions and three possible states: the component sup-
plier (CS) delivers the componentC with delayde,
which can be in the seamless rangeR1 (first state), or
in the limited disruptions rangeR2 (second state), or
in the risky rangeR3 (third state).

5.2 Probability Function

Given a specific state (e.g., one amongst the states listed
in the first row of Table 1, such as ‘de ∈ R1’), this function
returns the probability of its occurrence. Letf(x) be the
density function for the delayde (assumed to be random),
which is the delay that Alice’s PDA will actually experience
if Bob’s PDA delivers the component. The probability that
de falls in, say, the seamless rangeR1 is the integral off on
that range; in other words:

π(de ∈ R1) =
∫

R1

f(x)dx. (5)

The probabilities for the remaining ranges can be simi-
larly computed. For the purpose of this paper, we suppose
that X is a normal distribution. The choice of the normal
distribution is intended to be illustrative rather than pre-
scriptive and, as a consequence, the decision scheme can

support other types of probability distribution, which will,
naturally, affect the calculations below. As we will see, the
computation of the probability of each state does not re-
quire the computation of the integral above, but simple table
lookups will do.

In general, the normal distribution is described by two
terms, the meanµ and its standard deviationσ. X’s mean
depends on the trust levelT (subjective belief) that Alice’s
PDA has that Bob’s PDA delivers the software on time. For
the maximum level of trust, we set the mean equal todp. As
the trust level decreases, the mean increases up to a worst
case delay value, experienced whenT reaches the minimum
level (complete distrust). Sinceµ has now been computed,
to calculate expression (5) we needX ’s standard deviation,
which represents how fastX decreases as we move away
from the mean. The degree of deviation from the mean (i.e.,
variance of X) decreases, as the uncertainty diminishes; this
happens when the following factors arise: (i) trust levelT
in Bob’s PDA to deliver on time; (ii) confidence levelCL
on the declared delaydp. As such, we can state that:

P (de ∈ U+(µ)) = αT + βCL, (6)

whereα andβ are positive constants, such thatα + β = 1.
In other words, the probability that the delay experienced
falls in a range close to the mean, denoted by the right
neighborhoodU+(µ) of meanµ, solely depends on both
trust levelT and confidence levelCL. To define the right
neighborhood ofµ, we choose a small positive real num-
ber δ so thatU+(µ) = {x ∈ R|0 < x − µ < δ}. We
are not interested in the left neighborhood because we only
consider the events in which the delivery time is worse than
the declared one.

As the quantityαT + βCL increases, the concentration
of values ofX that fall within right neighborhoodU+(µ)
increases. This is because the uncertainty (i.e., X’s vari-
ance) decreases and consequently more values populate the
area close to the mean.

SinceX is a normal distribution with meanµ and vari-
anceσ2, we can defineZ = X−µ

σ , which is thestandard
normal distribution, that is, a normal distribution with mean
equal to 0 and unitary standard deviation. We can then
write:

P (de ∈ U+(µ)) = P (µ < X < µ + δ) =

= P (0 < Z <
δ

σ
) =

= φZ(
δ

σ
)− φZ(0) =

= φZ(
δ

σ
)− 1

2
, (7)

whereφZ is the cumulative distribution function of standard
normal distributionZ.



We then combine equation (6) and equation (7) to obtain
the functional dependency of X’s standard deviationσ on
the trust level and on the confidence level:

σ =
δ

φ−1
Z (αT + βCL + 1

2 )
. (8)

Given trust levelT and confidence levelCL, the prob-
ability of each state can be computed. Equation (8) gives
standard deviation ofX, which has a known mean: it de-
pends ondp, the providing delay declared by Bob’s PDA.
Having X’s mean and X’s standard deviation, equation (7),
which computes the probability of a given state, is easily
evaluated. In fact, havingµ andσ, X can be converted into
the standard normal distributionZ, which has been exten-
sively tabulated and, thus, the computation of the integral
(5) can be done with simple table lookups.

6 Discussion

Social uncertainty produces risks and is reduced mainly
by means of assurance and trust. Mehr and Cammack [28]
argued that risk is ‘uncertainty about loss’. Similarly,
Greene [19] defined risk as ‘uncertainty as to the occurrence
of an economic loss’. Knight [25] defined risk as ‘measur-
able uncertainty’. Clearly, most of the definitions quoted
above have one thing in common: they all equate risk with
uncertainty. Yamagishi and Yamagishi [35] discussed two
ways in which social uncertainty is reduced:assurance
and trust. They argued that Japanese citizens have often
lower level of trust compared with their American counter-
parts. Japanese society is characterised not by generalised
trust, but rather by mutual assurance. This mutual assur-
ance is based on close, stable, long-term social relations.
Social uncertainty is reduced because of this sense of sta-
bility. In contrast, American society does not provide that
high-degree of perceived stability and social uncertainty is
thus reduced relying on trust-related aspects, such as per-
sonalised knowledge and reputation information about oth-
ers.

It appears very unlikely that roaming, pervasive devices
can rely on a sense of stability: they need to be able to
cope with an enormous number of interactions, mostly with
unknown devices, within network boundaries which possi-
bly have never been previously experienced; these interac-
tions may lead to unpredictable outcomes. Hence the need
in pervasive computing to reduce uncertainty and, conse-
quently, associated risks mainly by means of trust-related
technologies, though assurance-based mechanisms can be
still available in some cases. So, for example, devices con-
trolling actuators that are embedded in luxury cars would
need to rely on afull level of assuranceand, thus, they
only download software components provably authored by

the car manufacturer. In contrast, some PDA users cur-
rently install shareware and freeware with little assurance
that the software performs as expected, since a trusted third
party is not always available or even defined. Between
these two extremes, there remains room for systems that
model autonomous decision-making processes in less-than-
certain environments. Our model represents an advance-
ment towards such systems, in terms of providing a rigorous
decision-framework to select the best component supplier
device in the absence of full assurance. There are, however,
some aspects in the decision framework which increase the
level of assurance: (i) frequently used software is down-
loaded from fully accredited systems and is then kept stored
on the device; (ii) trust mechanisms, such as personal expe-
riences and reputation information about component suppli-
ers, are integrated in the decision-making process.

One of the main issue that distributed trust models
should address is the ability to bind trust information to
identities, in support of the formation and evolution of rep-
utation and trust profiles. For the purpose of this paper, we
assume that each mobile device has a public key, which rep-
resents its identity (or pseudonym). This, however, raises
two concerns. The first is to balance privacy with the ability
to identify devices. Each single mobile device can create
multiple public keys, thus being able to assume different
identities (pseudonyms). The ease of creating and delet-
ing pseudonyms can somewhat alleviate privacy concerns
in ubiquitous environments [33], but it is also a nice tool
for malicious devices to repeatedly misbehave without be-
ing identified [18]. This issue should partially affect the
way in which trust in newcomers is bootstrapped. How-
ever, there would still be a tension between the preserva-
tion of privacy through partial anonymity and identification
that is necessary both in order to detect malicious behaviors
and to provide foundation for trustworthiness assessments.
Statistical traceability [2] can act as a basis for reaching a
proper balance. The second concern stems from enabling
identification of resource constrained devices (e.g., sensors,
embedded systems), which cannot support public key cryp-
tography. As a consequence, their pseudonyms cannot be
public keys. In this case, we envision that the base station,
a central device gathering data from its sensors, is identified
by a public key and shares symmetric keys with its sensor
nodes.

We do not deal with another issue which relates to trust
management, that of trust dissemination: how recommen-
dations and other types of trust-related information (e.g.,
credentials) are disseminated. Despite the inadequacies
of our proposal for addressing trust dissemination, we do
strike a resonant chord on the importance of minimizing the
amount of disseminated trust information. To find partial
solution to the problem, we may turn to [7], which proposes
a protocol for the dissemination of minimum information



upon which mobile devices can assess trustworthiness of
other devices.

7 Future Work

Dickson and Giglierano [13] considered entrepreneurial
risk as either the potential to act too quickly on an unsus-
tainable opportunity, thus ‘sinking the boat’, or the poten-
tial to wait too long before acting, thus ‘missing the boat’.
To adapt Dickson and Guglielmo’s nautical analogy to our
scenario, component loader devices may either incorrectly
weigh up decisions, load software from malicious devices
and expose themselves to security threats, or rely on de-
vices that provide desired software too late to be useful. In
section 5, we considered only part of the equation, that of
‘missing the boat’. We propose to extend our short exposi-
tion here to apply the risk-aware decision framework to sit-
uations that allow both reasoning about risks of out-of-time
delivery and security threats that relate to mobile software
components [22], thus avoiding ‘sinking the boat’.

It would be also interesting to understand how our frame-
work will be affected if new factors come into play. For ex-
ample, it is very well to argue that the decision of whether a
software component will be locally stored or whether it will
be mobile (i.e., loaded only when needed) depends on the
level of security for the application and the sensitivity of the
software component’s task [22]. Another research direction
would be to look at how the sensitivity of the software com-
ponent’s task can be integrated in the computation of the
elementary utility function.

Since it is uncertain whether user preferences could be
modeled with risk-averse logarithmic functions, we plan to
use a risk-neutral function and then separately affect the
utility computation with a factor modeling user risk atti-
tudes.

Another assumption can be relaxed: that of the normal
distribution for the density probability function. Baeysian
statistics would be an effective tool for modeling state prob-
ability functions with few prior assumptions about their
density distributions.

8 Conclusion

We have presented a conceptual model of decision-
making for pervasive devices, which load software compo-
nents from other devices when needed. The model is able
to make decisions on whether to load software in the ab-
sence of complete information, by means of mechanisms
which integrates trust within a general risk-based frame-
work. Moreover, the actual risk attitude of the user of the
mobile device is considered in the decision process, through
customisable elementary utility functions.

9 Acknowledgements

The authors wish to thank Licia Capra for her useful
comments and gratefully acknowledge the support of the
European Commission through the SEINIT and RUNES
projects.

References

[1] A. Abdul-Rahman and S. Hailes. Supporting Trust in Virtual
Communities. InProceedings of the33rd Hawaii Interna-
tional Conference on System Sciences, volume 6, page 6007,
Washington DC, USA, 2000. IEEE Computer Society.

[2] M. Ahmed, D. Quercia, and S. Hailes. Statistical Matching
Approach to Privacy Disclosure for Ubiquitous Computing
Environment. InProceedings of the1st International Work-
shop on Trust, Security and Privacy for Ubiquitous Comput-
ing, Taormina, Italy, June 2005. IEEE.

[3] D. Bernoulli. Exposition of a new theory on the measure-
ment of risk.Econometrica, 22:22–36, January 1954.

[4] M. Blaze, J. Feigenbaum, and A. D. Keromytis. KeyNote:
Trust Management for Public-Key Infrastructures. InPro-
ceedings of the6th International Workshop on Security Pro-
tocols, volume 1550 ofLecture Notes in Computer Science,
pages 59–63, Cambridge, UK, April 1998. Springer-Verlag.

[5] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized Trust
Management. InProceedings of IEEE Symposium on Secu-
rity and Privacy, pages 164–173, Oakland, CA, May 1996.

[6] V. Cahill, E. Gray, J.-M. Seigneur, C. Jensen, Y. Chen,
B. Shand, N. Dimmock, A. Twigg, J. Bacon, C. English,
W. Wagealla, S. Terzis, P. Nixon, G. Serugendo, C. Bryce,
M. Carbone, K. Krukow, and M. Nielsen. Using Trust
for Secure Collaboration in Uncertain Environments.IEEE
Pervasive Computing Mobile and Ubiquitous Computing,
2(3):52–61, August 2003.

[7] L. Capra. Engineering human trust in mobile system collab-
orations. InProceedings of the12th International Sympo-
sium on Foundations of Software Engineering, pages 107–
116, Newport Beach, CA, USA, November 2004. ACM
Press.

[8] M. Carbone, M. Nielsen, and V. Sassone. A Formal Model
for Trust in Dynamic Networks. InProceedings of the1st

International Conference on Software Engineering and For-
mal Methods, pages 54–63, Brisbane, Australia, September
2003. IEEE.

[9] H. Cervantes and R. S. Hall. Beanome: A Component
Model for the OSGi Framework. InProceedings of the
Workshop on Software Infrastructures for Component-Based
Applications on Consumer Devices, Lausanne, Switzerland,
September 2000.

[10] H. Cervantes and R. S. Hall. Autonomous Adaptation to
Dynamic Availability Using a Service-Oriented Component
Model. In Proceedings of the26th International Confer-
ence on Software Engineering, pages 614–623, Edinburgh,
United Kingdom, May 2004. IEEE Computer Society.

[11] Y. Chen, C. D. Jensen, E. Gray, and J. Seigneur. Risk Prob-
ability Estimating Based on Clustering. InProceedings of



the4th IEEE Anual Information Assurance Workshop, pages
229–233, United States Military Academy, West Point, New
York, USA, June 2003. IEEE Systems, Man and Cybernetics
Society.

[12] M. Clarke, G. S. Blair, G. Coulson, and N. Parlavantzas. An
Efficient Component Model for the Construction of Adap-
tive Middleware. InProceedings of the IFIP/ACM Interna-
tional Conference on Distributed Systems Platforms, volume
2218 ofLecture Notes in Computer Science, pages 160–178,
London, UK, 2001. Springer-Verlag.

[13] P. Dickson and J. Giglierano. Missing the boat and sink-
ing the boat: a conceptual model of entrepreneurial risk.J.
Mark, 50(7):58–70, 1986.

[14] N. Dimmock. How much is ’enough’? Risk in Trust-based
Access Control. InProceedings of the12th International
Workshop on Enabling Technologies, page 281, Washington,
DC, USA, June 2003. IEEE Computer Society.

[15] N. Dimmock, J. Bacon, D. Ingram, and K. Moody. Risk
models for trust-based access control. InProceedings of
the 3rd Annual Conference on Trust Management, volume
3477 ofLecture Notes in Computer Science, pages 364–371.
Springer-Verlag, May 2005.

[16] C. English, S. Terzis, and W. Wagealla. Engineering Trust
Based Collaborations in a Global Computing Environment.
In Proceedings of the2nd International Conference on
Trust Management, volume 2995 ofLecture Notes in Com-
puter Science, pages 120–134, Oxford, UK, March 2004.
Springer.

[17] D. Forsberg, Y. Ohba, B. Patil, H. Tschofenig, and A. Yegin.
Protocol for carrying authentication for network access
(PANA). Internet Draft (work in progress), Internet Engi-
neering Task Force, July 2003.

[18] E. Friedman and P. Resnick. The social cost of cheap
pseudonyms.Journal of Economics and Management Strat-
egy, 10(2):173–199, 2001.

[19] M. R. Greene and J. S. Trieschmann.Risk and Insurance.
South-Western Publishing, Cincinnati, Ohio, 1962.

[20] R. Harbird, S. Hailes, and C. Mascolo. Adaptive resource
discovery for ubiquitous computing. InProceedings of the
2nd Workshop on Middleware for pervasive and ad-hoc
computing, pages 155–160, Toronto, Ontario, Canada, Oc-
tober 2004. ACM Press.

[21] J. Hirshleifer and J. G. Riley.The Analytics of Uncertainty
and Information. Cambridge University Press, September
1992.

[22] W. Jansen and T. Karygiannis. Mobile Agent Security. NIST
special publication 800-19. Technical report, National Insti-
tute of Standards and Technology, 1999.

[23] A. Jøsang and S. L. Presti. Analysing the Relationship be-
tween Risk and Trust. InProceedings of the2nd Interna-
tional Conference on Trust Management, volume 2995 of
Lecture Notes in Computer Science, pages 135–145, Oxford,
UK, March 2004. Springer-Verlag.

[24] S. Kent and R. Atkinson. Security Architecture for the In-
ternet Protocol. RFC 2401, The Internet Engineering Task
Force, November 1998.

[25] F. Knight. Risk, Uncertainty and Profit. Beard Books,
Boston, 2002.

[26] H. Levy and H. M. Markowtiz. Approximating Expected
Utility by a Function of Mean and Variance.American Eco-
nomic Review, 69(3):308–17, 1979.

[27] S. Marsh. Formalising Trust as a Computational Concept.
Ph.D. Thesis. Department of Mathematics and Computer
Science, University of Stirling, 1994.

[28] R. I. Mehr and E. Cammack. Principles of Insurance.
Richard D. Irwin, 1961.

[29] L. Mui, M. Mohtsahemi, and A. Halberstadt. A Computa-
tional Model of Trust and Reputation. InProceedings of the
35th Hawaii International Conference on System Sciences,
page 188, Big Island, HI, USA, January 2002. IEEE Com-
puter Society.

[30] J. V. Neumann and O. Morgenstern.Theory of games and
economic behavior. J. Wiley, New York, 1964.

[31] A. Patrick. Building trustworthy software agents.IEEE In-
ternet Computing, 6(6):46–53, 2002.

[32] L. Savage.Foundations of Statistics. John Wiley & Sons,
New York, 1954.

[33] J.-M. Seigneur and C. D. Jensen. Trading Privacy for Trust.
In Proceedings of the2nd International Conference on Trust
Management, Lecture Notes in Computer Science, pages
93–107, Oxford, UK, March 2004. Springer-Verlag.

[34] W. Wagealla, M. Carbone, C. English, S.Terzis, and
P. Nixon. A Formal Model of Trust Lifecycle Management.
In Proceedings of the1st Workshop on Formal Aspects of
Security and Trust, September 2003.

[35] T. Yamagishi and M. Yamagishi. Trust and Commitment
in the United States and Japan.Motivation and Emotion,
18(2):129–166, 1994.

[36] S. Zachariadis, C. Mascolo, and W. Emmerich. SATIN: A
Component Model for Mobile Self-Organisation. InPro-
ceedings of the International Symposium on Distributed Ob-
jects and Applications, volume 3291 ofLecture Notes in
Computer Science, pages 1303–1321, Agia Napa, Cyprus,
October 2004. Springer-Verlag.


