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Abstract. Without trust, pervasive devices cannot collaborate effectively, and
without collaboration, the pervasive computing vision cannot be made a reality.
Distributed trust frameworks may support trust and thus foster collaboration in an
hostile pervasive computing environment. Existing frameworks deal with foun-
dational properties of computational trust. We here propose a distributed trust
framework that satisfies a broader range of properties. Our framework: (i) evolves
trust based on a Bayesian formalization, whose trust metric is expressive, yet
tractable; (ii) is lightweight; (iii) protects user anonymity, whilst being resistant
to “Sybil attacks” (and enhancing detection of two collusion attacks); (iv) inte-
grates a risk-aware decision module. We evaluate the framework through four
experiments.

1 Introduction

Significant commercial benefits are predicted from the deployment of new services that
pervasive computing will enable. These benefits are, however, theoretical in the absence
of appropriate security. Fundamental to the creation of security are mechanisms for
assigning trust to different pervasive devices. Also, it is in the nature of such devices
that security mechanisms must be automatic - they must operate without the need for
users to intervene. To make commercial benefits true, distributed trust frameworks may
be employed as they provide security by automatically managing trust among pervasive
devices.

To design a general distributed trust framework, one needs to identify its desir-
able properties first. From literature (e.g., see work by Liu and Issarny [9], and by
Suryanarayana and Taylo [17]), those properties are: (i) be distributed; (ii) protect user
anonymity, whilst providing accountability; (iii) be lightweight in terms of both re-
quired storage and scalability; (iv) minimize bandwidth demand; (v) be robust to com-
mon attacks; (vi) evolve (social) trust as humans do (e.g., trust evolves based on repu-
tation information); (vii) support both types of recommendations (good and bad ones);
(viii) incorporate the three classical dimensions of computational trust: context, subjec-
tiveness, and time; (ix) be integrated with a decision module; (x) have a trust metric that
is expressive, yet tractable.

A common limitation to many existing trust frameworks is that they deal with only a
very narrow subsets of these properties. Abdul-Rahman and Hailes [1] were the first to
propose the use of recommendations. Carboneet al. [5] then integrated more advanced



aspects in a formal trust model. More recently, Liu and Issarny [9] focused on designing
a (reputation-based) trust framework that integrates additional trust aspects, including
robustness to some attacks.

Our contribution lies in designing and evaluating a distributed trust framework with
the above ten properties in mind. Our framework: (i) uses a genericn-level discrete trust
metric that is expressive (more than existing 2-level Bayesian solutions), yet tractable;
(ii) incorporates the trust dimensions of subjectiveness, time and context; (iii) is light-
weight in terms of required storage and bandwidth: as the number of its peering devices
increases, its data structures grow linearly, and the computation and bandwidth demand
remain flat; (iv) supports anonymous authentication, whilst being resistant to “Sybil at-
tacks” [7]; (v) enhances detection of two collusion attacks; (vi) evolves trust embedding
social aspects, in that : trust evolves from both direct experiences and (positive and neg-
ative) recommendations; evaluation of recommendations depends on their originator’s
trustworthiness and ontology view; finally, the trust metric embeds the distinction be-
tween trust levels and trust confidence; (vii) integrates a well-founded decision module.
We have evaluated the framework through four experiments.

We structure the paper as follows. Section 2 introduces existing research and how
our framework enhances it. As our trust evolution process is based on reputation in-
formation, section 3 defines trust and reputation. Section 4 then dwells on describing
the whole trust management framework. Section 5 presents an experimental study. Sec-
tion 6 concludes.

2 Related work

The body of work in distributed computational trust is littered with frameworks that
are often based on social (human) considerations, sometimes attack-resistant, rarely
integrated with well-founded decision modules.

Foundational distributed trust frameworks were already based on social trust con-
siderations, in that they evolved trust based on direct experiences and recommendations,
and they integrated the classical trust dimensions of context, subjectiveness, and (only
later) time. Abdul-Rahman and Hailes first proposed the use of recommendations for
managing context-dependent and subjective trust [1]. Although foundational, the pre-
vious approach suffered from, for example, the lack of a process for trust evolution. To
fill the gap, Muiet al. [10] proposed a Bayesian formalization for a distributed rating
process. However, two issues remained unsolved: they considered only binary ratings
and did not discount them over time. Buchegger and Le Boudec [4] tackled the lat-
ter issue, but not the former: they proposed a Bayesian reputation mechanism in which
each node isolates malicious nodes, ages its reputation data (i.e., weights past reputation
less), but can only evaluate encounters with a binary value (i.e., encounters are either
good or bad). Using a genericn-level discrete trust metric, our Bayesian framework ad-
dresses the issue. Furthermore, it discounts its trust beliefs over time (i.e., it decreases
the confidence level it has in its trust beliefs). This avoids excessive capitalization on
past good behavior and allows discarding old reputation information (contributing to
make the framework lightweight).



Recent frameworks account for advanced social trust aspects. For example, Carbone
et al. [5] have proposed aformal model for trust formation, evolution, and propagation
based on a policy language. They also have thrown light on a previously unexplored
aspect: the distinction between trust levels and trust confidence. We regard such dis-
tinction as fundamental and, thus, preserve it in our Bayesian formalization of trust
evolution.

The design of frameworks resistant to attacks is not a common occurrence in litera-
ture. The most felicitous example we find in Liu and Issarny’s work [9]. They proposed
a model robust to both defamation and collusion attacks. Although foundational, their
work suffers from other attacks, such as privacy breaching (the lack of user anonymity
protection). Of the relatively small body of academic work published in anonymity
protection, Seigneur and Jensen [16] proposed the use of disposable pseudonyms. Such
approach facilitate anonymity, yet hinder cooperation in the absence of a central author-
ity due to “Sybil-attacks” [7] (attacks resulting from users who maliciously use multiple
identities). Our framework enhances the detection of defamation and collusion attacks,
and it tackles “Sybil attacks” (we will name the first two attacks as bad mouthing and
ballot stuffing collusion attacks, respectively).

Trust frameworks’ integration with decision-making mechanisms, though funda-
mental, is rare. Within the SECURE project, a trust model’s output feeds a decision-
making mechanism [6]. More recently, Quercia and Hailes [11, 12] proposed a deci-
sion model for trust-informed interactions that, on input of trust assessments, estimates
the probability of potential risks associated with an action, based on which it decides
whether to carry out the action. Our framework combines trust assessments in a way
that such model is easily integrable.

3 Trust definition, trust properties, and reputation

We now define the concept of trust and highlight some of its properties. We will then
stress trust dependence on reputation. Let us first define trust with a commonly accepted
definition [8]: “ [Trust] (or, symmetrically, distrust) is a particular level of the subjec-
tive probability with which an agent will perform a particular action, both before [we]
can monitor such action (or independently of his capacity of ever be able to monitor it)
and in a context in which it affects [our] own action”.

From this definition, three properties of trust emerge: subjectiveness,
context-dependence, and dynamism. The same behavior may lead to different trust lev-
els in different trusting entities, hencesubjectivenessqualifies trust. As trust (e.g., in
giving good advices) in one context (e.g., academia) does not necessarily transfer to an-
other context (e.g., industry), we addcontext-dependenceto the list of trust properties.
Finally, the fact that trust increases after successful observations, while it decays over
time exemplifies itsdynamism. As a result, trust evolution must embed the notion of
time.

Reputation relates to trust, as the following definition suggests [10]:“Reputation
[is the] perception that an agent creates through past actions about its intentions and
norms”. Actions build up reputation (the perception about intensions and norms). Direct
experiences and recommendations about one entity describe the entity’s past actions,



which, thus, create the entity’s reputation (i.e., the perception about entity’s intentions
and norms).

Reputation is not to be confused with trust: the former only partly affects the latter.
Other factors affect trust, and they include disposition to rely more on personal experi-
ences rather than on recommendations, disposition to forget past experiences, risk, and
motivation.

4 Trust management framework

We now present our distributed trust management framework. We first provide a gen-
eral overview. We discuss authentication support. We then introduce the data structures
containing reputation information. After that, we describe the processes of trust evolu-
tion (i.e., updating the reputation data structures), trust formation (i.e., trustworthiness
assessment), and trust decision (i.e., contemplating whether to carry out an action based
on the trust formation process and on local policies).

4.1 General description of the framework

Here, we describe our framework’s main processes: trust formation and trust evolution.
In so doing, we resort to an abstract situation: atrustor px (trusting peer) interacts with
both atrusteepy (trusted peer) and arecommenderpr. We finally describe our trust
metric.

First,px forms its trust inpy by: (i) assessing the part of trust, also calleddirect trust,
stemming from evaluations of its past direct experiences withpy ; (ii) assessing the part
of trust, also calledrecommended trust, from others’ recommendations aboutpy; (iii)
combining the previous assessments to obtain theoverall trust. We keep separated direct
trust and recommended trust so that two types of collusion attacks can be detected, as
we will describe in this section. Note that whenpx assesses trust (as it does in the first
two steps), it just retrieves reputation data and process it.

Second,px evolves its trust inpy upon obtaining new reputation information, which
consists of direct experience’s evaluations and recommendations. After a direct expe-
rience withpy, px evaluates the corresponding outcome, and consequently evolves its
direct trust inpy. After receiving a recommendation aboutpy from pr, px assesses rec-
ommendation reliability, and it consequently evolves its recommended trust inpy.

Finally, consider our trust metric. The random variables of direct trust, direct experi-
ence evaluation, recommendation and recommended trust arediscrete: they can assume
any of the followingn levels{l1, ..., ln}. For example, with four levels (n = 4), we may
have the following semantics for the different levels:l1 means‘very untrustworthy’, l2
means‘untrustworthy’, l3 means‘trustworthy’ , andl4 means‘very trustworthy’. Since
the random variables describing direct trust, recommended trust, and overall trust are
discrete (i.e., they assume one ofn discrete values{l1, . . . , ln}), our framework has
numerous advantages: (i) the random variable distributions emerge as a consequence
of updates and are not fixeda priori, as existing models impose; (ii) a genericn-level
metric is morefine-grainedthan a binary metric (for which an entity is either com-
pletely trustworthy or completely untrustworthy), as existing models impose; (iii) dis-



crete metrics are more computationallytractablethan continuous metrics (e.g., they do
not involve the computation of integrals).

Throughout this section, we will use the following notation.DTx,y is a random
variable expressingpx’s direct trust inpy ((DTx,y = lα) is the event‘px deemspy

deserves a levellα of direct trust’). DEx,y is a random variable expressingpx’s evalu-
ations of direct experiences withpy ((DEx,y = lβ) is the event‘px evaluates the direct
experience withpy at a lβ satisfaction level’). RTx,y is a variable expressingpx’s rec-
ommended trust inpy ((RTx,y = lα) is the event‘px deemspy deserves levellα of
recommended trust’). Finally, SRr,x is a variable expressing the recommendationspr

sentpx ((SRr,x = lβ) is the event‘pr sentpx a recommendation whose level islβ ’ ).

4.2 Authentication support

We consider that peers using our framework authenticate themselves by means of once
in a lifetime anonymous pseudonyms.

To support anonymous authentication resistant to Sybil attacks, we propose the use
of distributed blind threshold signature. Consider the situation in whichpx has to au-
thenticatepy. To protectpy ’s user anonymity, the piece of information used to authenti-
catepy has to be anonymous. Generally, such piece is a public key randomly generated
by py. However, to protect against Sybil attacks,py has to have the limitation of pos-
sessing one and only one valid public key. We enforce such a limitation with public key
certification that is both distributed (to match the distributed nature of our framework)
and blinded (to protect anonymity). We propose a detailed scheme in [14].

4.3 Reputation data structures

The peerpx stores reputation evidences locally:px solely relies on its local data struc-
tures to producesubjectivetrust assessments, thus being suitable for pervasive com-
puting environments, in which peers frequently enter, leave, or simply disconnect from
network domains.px maintains reputation-related evidence in the following sets:

C = (c1, . . . , cq) is the set of contexts known topx.
P = (pa, . . . , pz) is the set of peers thatpx has interacted with.
Direct Trust Set (DTS) stores direct trust levels. It containspx’s direct trust levels in

other peers. For each contextck and peerpy, ann-tupled = (d1, · · · , dn) exists,
wheredj is the probability thatpx has alj direct trust level inpy (i.e.,p(DTx,y) =
lj). The relation DTS is defined asDTS ⊆ C×P×D, whereD = {(d1, · · · , dn)}.

Direct Experience Set (DES)stores data from whichpx assesses one of its direct trust
prior beliefs. From it,px computes the probabilityp(DEx,y = lβ |DTx,y = lα) for
all β = 1, . . . , n andα = (1, . . . , n), as Subsection 4.5 will discuss.DES is de-
fined asDES ⊆ C×P×EC, whereEC = {(EC1, . . . , ECn)}. For each context
ck and peer py, n ordered sets of n−tuple exist:
ECβ = (ec1β , . . . , ecnβ). To see what a single memberecαβ means, considerpx

deciding whether to interact withpy. px has direct trust inpy exclusively at level
lα; it decides to interact; it then evaluates the just completed direct experience with
py at levellβ ; it records such an experience by just increasing one of the member



in EC: as it acted upon alα direct trust level and then experienced a levellβ , px

increases the counterecαβ . Therefore, after each interaction withpy, px does not
store the interaction outcome, but it simply increases one of the counter associ-
ated withpy. For example, ifn = 4, px aggregates into 16 counters all the direct
experiences withpy.

Recommended Trust Set (RTS)stores recommended trust levels. This contains trust
levels solely based on other peers’ recommendations. For each contextck and peer
py, an n-tuple r = (r1, · · · , rn) exists, whererj is the probability thatpx has
lj recommended trust inpy (i.e., p(RTx,y = lj)). RTS ⊆ C × P × R, where
R = {(r1, · · · , rn)}.

Sent Recommendation Set (SRS)stores data from whichpx assesses one of its rec-
ommended trust prior beliefs. From it,px computes the probabilityp(SRr,x =
lβ |RTx,y = lα), as subsection 4.5 on trust evolution will discuss.SRS ⊆ C×P ×
RC , whereRC = {(RC1, . . . , RCn)}. For each contextck and recommender
peerpr, n ordered sets ofn−tuple exist:RCβ = (rc1β , . . . , rcnβ). To clarify the
meaning of a single memberrcαβ , consider thatpx has built up a recommended
trust in py at level lα from all the recommendations received. It then receives an
additional recommendation aboutpy from pr, which recommends a trust levellβ .
px records how farpr ’s recommendation is from other peers’ recommendations by
increasing one member inRC: as it had alα recommended trust level and received
a lβ recommendation level,px increasesrcαβ . Thus, after receiving a recommenda-
tion frompr, px does not store it, but increases one of then counters corresponding
to pr.

The data structure design minimizes the overhead imposed onpx, thus leading to a
lightweight framework. All of these data structures increase linearly with the number
of peers with whichpx has interacted with or with the number of contextspx has expe-
rienced. We thus do not require large amounts of data to be processed as we aggregate
reputation-related information each timepx either carries out a new direct experience
or processes a new recommendation.

Data structure bootstrapping If peer px meetspy for the first time,px’s beliefs
aboutpy distributes uniformly. That is, for the peerpy and the contextck, px has:D =
( 1

n , . . . , 1
n ); R = ( 1

n , . . . , 1
n ); ecαβ = ∆d, for α ∈ [1, n] andβ ∈ [1, n]; andrcαβ =

∆r, for α ∈ [1, n] andβ ∈ [1, n]. In other words, to express maximum uncertainty in
the initialization phase,px’s prior beliefs equal a uniform distribution. The counter of
direct experiences (recommendations) equals a constant∆d (∆r). The choice for the
constant should consider that the greater its value is, the more the bootstrapping phase
persist over time.

4.4 Trust formation

Whenever the trustorpx contemplates whether to interact with a trustee, it has to assess
the trustee’s trustworthiness, i.e., it has to carry out the process oftrust formation. As
our model considers three types of trust,px carries trust formation out in three steps: (i)
direct trust formation; (ii) recommended trust formation; (iii) overall trust formation.



Direct trust formation To determine its direct trust inpy in the contextck, px obtains
the relation(ck, py, d) from DTS. The jth member ofd = (d1, . . . , dn) is the
probability thatpx has alj direct trust level inpy: p(DTx,y = lj) = dj .
The tupled describes the distribution ofpx’s direct trust inpy in contextck. For
example, assuming bothn = 4 and the semantics in subsection 4.1 on trust metric,
a tupled = (0.8, 0.2, 0, 0) suggests thatpx deemspy ‘very untrustworthy’, whereas
with a tupled = (0.1, 0.1, 0.2, 0.6), px places more trust inpy.
As a trustor can only have a partial knowledge about a trustee, trustor’s assessments
contain a level of uncertainty and have, consequently, a confidence level. In partic-
ular, the confidence level thatpx places in its direct trust assessment equalsd’s

variance:dtcx,y =
Pn

j=1(dj−µ)2

n−1 , where the meanµ =
Pn

j=1 dj

n . As
∑n

j=1 dj = 1
(i.e., the probabilities sum up to 1), thenµ = 1

n . The confidence level ranges from
0 to (1− 1

n ). Note that we compute the confidence level (the variance) dividing by
(n − 1) (and not byn) because the variance we are estimating is of an unknown
distribution (and not of a known one) - in general, dividing by(n− 1) provides an
unbiased estimation of the variance of an unknown distribution.
As d’s variance decreases, direct trust levels tend to become equally probable, and
px hence places less and less confidence in its direct trust assessment. For example,
assumingn = 4, the uncertainty ofd = (0.25, 0.25, 0.25, 0.25) is maximum, its
variance zero, and, thus, the associated confidence level has to be minimum.

Recommended trust formation To determine its recommended trust inpy in context
ck, px first obtains the relation(ck, py, r) from RTS. The jth member ofr =
(r1, . . . , rn) represents the probabilitypx has alj recommended trust level inpy:
p(RTx,y = lj) = dj .
For instance, assuming bothn = 4 and the semantics in subsection 4.1 on trust
metric,r = (0, 0, 0, 1) suggests that the recommenders (thatpx considered so far)
deempy totally trustworthy.
Similarly to direct trust,px associates a confidence level with its recommended

trust: rtcx,y =
Pn

j=1(rj−µ)2

n−1 , where the meanµ = 1
n and the confidence level

ranges from 0 to(1− 1
n ).

Overall trust formation The overall trust combines direct trust and recommended trust.
For example, the probabilitypx totals its overall trust inpy at a levellj is the
weighted sum of the probabilities thatpx values both its direct trust and recom-
mended trust inpy at a levellj .
Hence, to determine its overall trust inpy in contextck, px obtains both the re-
lation (ck, py, d) from DTS and the relation(ck, py, r) from RTS, whered =
(d1, . . . , dn) andr = (r1, . . . , rn). It then computes∀j ∈ [1, n] : p(Tx,y = lj) =
σ · dj + (1− σ) · rj , where the weighting factorσ holds the importancepx places
on direct experiences over others’ recommendations. This increases as two factors
increase: (i) the confidence leveldtcx,y overrtcx,y; (ii) px’s subjective reliance on
its own personal experiences rather than on on others’ recommendations.
Similarly to direct and recommended trust, the confidence levelpx associates with

its overall trust is:tclx,y =
Pn

j=1(p(Tx,y=lj)−µ)2

n−1 , whereµ = 1
n and the confidence

level ranges from 0 to(1− 1
n ).



4.5 Trust evolution

The process of trust evolution updates both direct trust and recommended trust. In so
doing, it incorporates social aspects of trust. Recommended trust evolves based on both
good and bad recommendations that are weighted according to recommenders’ trust-
worthiness and recommenders’ subjective opinion - to account for honest and dishonest
recommenders and to resolve the different ontological views of the world honestly held
by different peers. Both direct and recommended trust evolutions: (i) incorporate the
time dimension both to prevent peers from capitalizing excessively on good past be-
havior and to discard old reputation from data structures; (ii) and are based on Bayes’
theorem which has “far-reaching ... implications about scientific inference and how
people process information” [2].

Trust evolution through direct experience evaluation Consider px contemplating
whether to have a direct experience withpy in contextck. Beforethe direct ex-
perience,px has the following prior beliefs (probabilities):
1. px has a direct trust belief inpy. For contextck and peerpy, px finds the

relation(ck, py, d) from DTS, whered = (d1, . . . , dn) expressespx’s direct
trust belief distribution;

2. px has a belief that a direct experience will show a certain level of satisfaction.
More formally, for contextck and peerpy, px finds the relation(ck, py, EC)
from DES, whereEC = (EC1, . . . , ECn).
FromECβ = (ec1β , . . . , ecαβ , . . . , ecnβ), px computes, for allβ = 1, . . . , n,
the probability which the first row of figure 1 shows.

After interacting,px evaluates the direct experience with a, say,lβ satisfaction level.
Based on that:
1. px updates its Direct Experience Set (DES). It updatesECβ (i.e., the experi-

ence counter of alβ direct experience level) as follows:∀α ∈ [1, n] : ecαβ =
ecαβ + dα;

2. px evolves its direct trust according to Bayes’ Theorem as the second row of
figure 1 shows.

Trust evolution through recommendation evaluation Consider now thatpx gets a
recommendation frompr about a peerpy in contextck and that the recommen-
dation level islβ . Beforereceiving the recommendation,px has the following prior
beliefs (probabilities):
1. px has a recommended trust belief inpy. For contextck and peerpy, px finds

the relation(ck, py, r) from RTS, wherer = (r1, . . . , rn) and expressespx’s
recommended trust belief distribution;

2. px has beliefs thatpr will send certain recommendation levels. More formally,
for contextck and recommender peerpr, px finds the relation(c, pr, RC) from
SRS, whereRC = (RC1, . . . , RCn).
FromRCβ = (rc1β , . . . , rcαβ , . . . , rcnβ), px computes, for allβ = (1, . . . , n),
the probability which the third row of figure 1 shows.

After receiving a recommendation whose level islβ :
1. px updates its Sent Recommendation Set (SRS). It updatesRCβ (i.e., the rec-

ommendation counter associated with a recommendation level equal tolβ) as
follows: ∀α ∈ [1, n] : rcαβ = rcαβ + rα;



p(DEx,y = lβ |DTx,y = lα) =
#eventsDEx,y = lβ givenDTx,y = lα took place

#eventsDTx,y = lα
=

ecαβPn
γ=1 ecαγ

dt
α =

d
(t−1)
α · p(DEx,y = lβ |DTx,y = lα)Pn

γ=1 d
(t−1)
γ · p(DEx,y = lβ |DTx,y = lγ)

p(SRr,x = lβ |RTx,y = lα) =
#eventsSRr,x = lβ givenRTx,y = lα took place

#eventsRTx,y = lα
=

rcαβPn
γ=1 rcαγ

rt
α =

r
(t−1)
α · p(SRr,x = lβ |RTx,y = lα)Pn

γ=1 r
(t−1)
γ · p(SRr,x = lβ |RTx,y = lγ)

Fig. 1. Formulae that evolve prior and posterior beliefs about both direct trust and recommended
trust.

2. px evolves its recommended trust according to Bayes’ Theorem as the forth
row of figure 1 shows.

In the forth row, the portionp(SRr,x = lβ |RTx,y = lγ) weightspr ’s recommenda-
tions according to eitherpr ’s reliability as recommender orpr ’s ontological view.

Trust evolution over time As time goes by, direct trust’ and recommended trust’ con-
fidence levels decrease.
Let us first see how direct trust evolves over time. As we said, the tupled =
(d1, . . . , dn) showspx’s direct trust inpy. Let t be the time elapsed from the last
d’s update. Ift → ∞ (i.e., a very long time goes by before a new update),d con-
verges to a uniform distribution (i.e., to its bootstrapping values). To age its direct
trust values,px decreases some ofd’s members while it increases others over time,
so that all members sum to 1. In particular, it increases the members below1

n (d’s
mean when uniformly distributed), whilst increasing the members above. More for-
mally, letI be the indicator function,nd = I(dα > µ) be the number of members
px decreases, andni = I(dα < µ) be the number of memberspx increases. If
dα < µ, dα = (dα + δ). If dα > µ, dα = dα − (nd·δ

ni
).

Same considerations apply for recommended trust. The tupler = (r1, . . . , rn)
representspx’s recommended trust inpy. To age its information,px increases some
of r’s members (those below1n ), while decreasing others (those above1

n ).
If some tuples, as a consequence of evolution over time, converge to the bootstrap-
ping value, then we delete them. This saves storage space without any reputation
information loss.

Trust evolution and attack detection We here expose how our framework protects
against two types of collusion in certain cases, whilst enhancing their detection
in the rest of the cases.
Let us first describe the two types of collusion. The first is thebad mouthing collu-
sionattack. A collection of attackers colludes in that each of them spreads negative
recommendations about the same benevolent entity. After evaluating those unani-
mous recommendations, recipients build a negative trust in the benevolent entity.



Hence, the attackers lower the benevolent entity’s reputation without harming their
own. For example, some peers decide to team up against peerpy: they start spread-
ing negative recommendations aboutpy (e.g.,py is a bad packet forwarder) so
to damage its reputation. The second type of attack is theballot stuffing collu-
sionattack. Here we have a collection of colluding attackers: some offer services
and others increase the remaining attackers’ reputations as recommenders. The last
subset of attackers (the good recommenders) send positive recommendations about
those in the subset of service providers. Based on the positive opinions, a victim
selects the providers. They then offer a low quality of service. The victim lowers its
trust level in the abusing service providers only, whereas it still deems trustworthy
the remaining attackers. To clarify, consider a peerpy boosting its own reputation
by means of colluding with three other peerspc1, pc2, andpc3. pc1 sends positive
recommendations aboutpc2’s andpc3’s trustworthiness as recommenders.pc2 and
pc3 then send positive recommendations aboutpy. Based on those, the victim (px)
chooses as packet forwarderpy, which drops all the packets.
The rule for re-evaluating trust assessments based on recommendations protects
against both collusion types. To clarify, let us see howpx evolves its recommended
trust in py from a set of recommendations.px uses a Bayesian evolution rule
that weights similar recommendations more, whilst filtering out extreme ones. If
the number of false recommendations (i.e., those received from any of the collu-
sions above) are less than honest recommendations, then the evolution rule protects
against those collusion attacks.
However, ifpx receives recommendations mainly from colluding sources, the evo-
lution rule is no more collusion-resistant.
In such cases, separating direct trust from recommended trust helps detecting both
collusion attacks. In the presence of either collusion,px’s direct trust inpy signif-
icantly differs from its recommended trust inpy. In particular, direct trust depicts
a more trustworthypy than does recommended trust in case of bad-mouthing (py

offers good direct experiences and is just subject to bad mouthing), whereas the
reverse is true in case of ballot stuffing (py offers bad experiences, even though
colluding recommenders assurespx to the contrary).

4.6 Trust decision

To take better-informed decisions, a peer has to be able to integrate a well-founded
decision module with its distributed trust framework. The trust framework produces
trust assessments.px then uses such assessments to decide the best action to be carried
out (e.g., to decide whether to forward a packet). We thus integrate our framework with
a decision module that Quercia and Hailes recently proposed [12]. Such a model, local
to a peerpx, selects an action that maximizespx’s utility. User-specified local policies
influencepx’s utility.

For integration purposes, any trust framework has to adapt its output to what the
decision module takes on input. Quercia and Hailes’s module takes on input a single
trust value and the value’s confidence. On the other hand, the trust framework produces
a single confidence value, but not a single trust value: it produces a distribution of trust
levels (represented with the random variableT ). We thus extract one single value from



the distribution by means of a weighted sum of the values of each trust levels. Weighting
factors increase as the corresponding trust levels increase. The condensed trust value
tx,y (thatpx has inpy) hence takes the form:tx,y = (

∑
j∈[1,n] p(Tx,y = lj) · j

n ). For

example, withn = 4, the weighting factor for levell1 (very untrustworthy) is14 , while
the factor for levell4 (very trustworthy) is 1.

5 Experiments

We here describe the experimental setup and the four experiments we have conducted.

Goal: The objective of this set of experiments is to determine the impact of our trust
management framework on successful packet delivery in a network configuration
where part of the peers act maliciously. Such a configuration refers to a scenario in
which a set of peers pool their resources so to share their Internet connectivity [13].
Benevolent peers share their connectivity, whereas malevolent ones exploit others’
connectivity without actually sharing their own.

Simulated configuration: As we are interested in analyzing the local impact of our
framework at a peer level, we simulate a configuration consisting of a peerpx and
a set of corresponding next-hops. These are connected directly to Internet. We con-
siderpx forwarding packets to its next-hops, which make available their connectiv-
ity. px selects a next-hop either randomly or through two types of trust-informed
decisions (discussed later). The next-hop acts according to the behavioral model to
which it belongs.

Next-hop behavioral models: A next-hop belongs to one of the following four be-
havioral models: fully malicious, malicious, benevolent, and fully benevolent. De-
pending on its behavioral model, a next-hop offers the following packet loss ratios
if it was selected for the whole simulation duration: 100% for a fully malicious
next-hop, 70% for a malicious one, 30% for a benevolent one, and 15% for a fully
benevolent one. Both fully malicious and malicious next-hops drop packets ran-
domly, whereas both benevolent and fully benevolent do it according to aGilbert
model[3]. To understand why, consider that the next-hops are connected directly
to Internet. As a consequence, packet losses through (fully) benevolent next-hops
depend on Internet congestion, which is bursty. A Gilbert model reproduces such
burstiness. We have thus implemented the model whose parameters varied accord-
ing to packet loss ratios it simulated (either 30% or 15%).

Next-hop selection methods:A peerpx chooses its next-hops in three different ways.
The first israndomselection, i.e., it selects each of its next-hops with equal prob-
ability. The second ispure trust-informedselection, i.e., it selects the most trust-
worthy next-hop. The third isprobabilistic trust-informedselection, i.e.,px selects
its next-hoppy with a probabilityPy that is directly proportional topx’s trust in
py: Py = tx,yP

j tx,j
, wherej represents each ofpx’s next-hops. As we will see, we

introduce the latter selection method as a better load balancing alternative to the
pure trust-informed method.

Simulation execution: A simulation consists of several executions of an experiment.
An experiment duration is of 100 time units. At each time unit,px selects one of



its next-hops and sends it a stream whose size is 10 packets. Based on the number
of packet losses,px computes its satisfaction and consequently evolves its trust.
We collect the overall number of packet losses at each time unit. We run each
experiment 10 times and the results of all runs are averaged.

Experiment metrics: We consider two metrics. The first ispx’s average fraction of
successfully sent packets. The second is the load distribution amongpx’s next-hops.

We now describe four different experiments. For each, we describe goal, setup, and
results.

Experiment A

Goal: To understand whether a more-fine grained trust metric gives a greater average
fraction of successfully sent packets.

Setup: We simulatepx with four next-hops, one for each next-hop behavioral model.
px first uses a framework whose trust metric is binary (n = 2). It then uses a
more fine-grained metric, i.e.,n = 4. The next-hop selection method is pure trust-
informed.

Results: Switching from the binary trust metric (n = 2) to one that is more fine-
grained (n = 4), px improves its average fraction of successfully sent packets from
67% to 83%. Figure 2 shows that the more fine-grained trust metric outperforms
the binomial one.
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Fig. 2. Experiment A. Fraction of successfully sent packets in the case ofpx using a framework
based on pure trust-informed selection with a binomial trust metricn = 2 (continuous line) and
with a more fine-grained onen = 4 (dashed line).

Experiment B

Goal: To understand whether pure trust-informed selection gives a greater average
fraction of successfully sent packets than random selection.



Setup: We simulate a peerpx with four next-hops, one for each next-hop behavioral
model. We first considerpx using random next-hop selection. We then considerpx

using pure trust-informed selection. For both cases,n = 4.
Results: When using pure trust-informed selection,px successfully sent 84% of the

packets on average, in contrast to 42% when using random selection.

Experiment C

Goal: To understand whether probabilistic trust-informed selection gives a better load
distribution than pure trust-informed selection, whilst showing a greater fraction of
successfully sent packets than random selection.

Setup: We simulate a peerpx with five next-hops, one for each next-hop behavioral
model plus an additional benevolent next-hop. The additional next-hop may lead
to more interesting results for the discussion about load balancing. With a constant
n = 4, px applies in turn the three next-hop selection methods.

Results: From figure 3, we note that (i) pure trust-informed selection shows an unbal-
anced load share: the fully benevolent next-hop (fb) has a96% of such a share; (ii)
probabilistic trust-informed selection shows a better load share, whilst penalizing
malicious next-hops: the fully malicious (fm) one has received9% of the traffic in
contrast to29% of a fully benevolent (fb). However, probabilistic selection leads
to an average fraction of successfully sent packets of 60%, that is worse than pure
trust-informed selection (83%), but better than random selection (47%).

Fig. 3.Experiment C. Load share amongpx’s next-hops, which include: one fully malicious (fm),
one malicious (m), two benevolents (b), and one fully benevolent (fb).px uses both pure trust-
informed (filled bars) and probabilistic trust-informed (empty bars) selections.

Experiment D

Goal: To understand which factors have an effect on the average fraction of success-
fully sent packets. We consider two factors, each with two extreme levels. The first
factor isn whose levels are 2 and 4. The second factor is the next-hop selection
methodpx uses: its levels are probabilistic and pure trust-informed.



Fig. 4. Experiment D. The impact on the average fraction of successfully sent packets of: (i) the
change of trust metric (factor A); (ii) whether the trust framework is used (factor B); (iii) the
combination of both (factor AB).

Setup: We simulate a peerpx with four next-hops, one for each next-hop behavioral
model. We setn = 2. We first considerpx using random selection. We then con-
siderpx using pure trust-informed selection. We then setn = 4 and repeat what we
did before after settingn = 2.

Results: Figure 4 shows that the change of trust metric (from n=2 to n=4) has a positive
impact (16%) on the average fraction of successfully sent packets. It also confirms
the intuition that the use of the trust framework has the most significant impact
(68%).

6 Conclusion

We have presented a distributed framework that produces trust assessments based on di-
rect experience evaluations and on (both good and bad) recommendations. All of this is
based on a Bayesian formalization, whose genericn-level trust metric improves on ex-
isting Bayesian solutions (which use binary metrics). The framework is lightweight and
integrates a well-founded decision module. Furthermore, it supports user anonymity by
means of pseudonyms, whilst being robust to “Sybil attacks”. It also enhances detection
of two types of collusion attacks. Finally, we have conducted four experiments which
shows that the use of our framework and a more fine-grained trust metric have a con-
siderable positive impact on packet delivery in a network where part of the peers act
maliciously.

As part of future work, we plan to design mechanisms for trust bootstrapping (i.e.,
how to set the initial trust in an unknown entity).
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