
Wireless Networks 10, 711–721, 2004
 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Trust for Ubiquitous, Transparent Collaboration

BRIAN SHAND, NATHAN DIMMOCK ∗ and JEAN BACON
University of Cambridge Computer Laboratory, J.J. Thomson Avenue, Cambridge CB3 0FD, UK

Abstract. In this paper, trust-based recommendations control the exchange of personal information between handheld computers. Combined
with explicit risk analysis, this enables unobtrusive information exchange, while limiting access to confidential information. The same model
can be applied to a wide range of mobile computing tasks, such as managing personal address books and electronic diaries, to automatically
provide an appropriate level of security. Recommendations add structure to the information, by associating categories with data and with
each other, with degrees of trust belief and disbelief. Since categories also in turn confer privileges and restrict actions, they are analogous to
rôles in a Rôle-Based Access Control system, while principals represent their trust policies in recommendations. Participants first compute
their trust in information, by combining their own trust assumptions with others’ policies. Recommendations are thus linked together
to compute a considered, local trust assessment. Actions are then moderated by a risk assessment, which weighs up costs and benefits,
including the cost of the user’s time, before deciding whether to allow or forbid the information exchange, or ask for help. By unifying trust
assessments and access control, participants can take calculated risks to automatically yet safely share their personal information.

Keywords: trust and risk, ad-hoc collaboration, unobtrusive security, ubiquitous computing

1. Introduction

In this paper, we present a trust and risk framework, to fa-
cilitate secure collaboration in ubiquitous and pervasive com-
puter systems, while minimising the need for human interven-
tion.

Ubiquitous computing needs trust between participants in
order to support collaborative activities, such as arranging
meetings, while protecting sensitive information used in the
collaboration. At the same time, security measures must be
proportional to the risk involved to allow the interaction be-
tween devices to be as automated as possible.

For example, consider a business meeting with representa-
tives from two companies. To schedule a follow-up meeting,
the attendees would like to find a time that suits everyone,
with the help of electronic diaries and calendars. However,
depending on the trust between the companies, they might
not want to disclose their detailed movements to each other.

Instead, the members of each company might decide to
find potential meeting times among themselves, then share
only this aggregate information between the companies. This
paper proposes trust and risk models to help automate inter-
actions of this sort, making the computations as unobtrusive
as possible while still respecting participants’ trust beliefs.

2. Trust infrastructure

Mutual trust is crucial for ubiquitous devices, which must
share information and work together to present an unobtru-
sive interface [7] to their users.

Our trust framework uses a homogeneous recommenda-
tion system, to allow users to share and exchange privileged

∗ Corresponding author.
E-mail: nathan.dimmock@cl.cam.ac.uk

information. This information can include conventional data
such as personal contacts and calendar entries, and also trust
beliefs about principals.

For example, Alice might give a telephone number to Bob,
together with recommendations that it is her telephone num-
ber and that it be considered privileged business information.
This is illustrated in figure 1(a). Alice signs i to certify that
she is the origin of the information and also signs her recom-
mendations to allow the recipient to evaluate their relevance
using Alice’s trust-rating. t represents Alice’s trust in her
recommendation, that is, how much confidence she has in it.
Later, Bob forwards Alice’s number to Charlie (figure 1(b)),
along with her recommendation that it is her number (R) and
Bob’s recommendation that it is her “work” number (R′′) in
which he has trust t ′′. He could also forward Alice’s orig-
inal recommendation R′ that it her “business” number if he
wished to, but he has chosen not to in this case as the trans-
mission link is expensive and he thinks Charlie will find his
recommendation more useful.

Existing trust models for pervasive computing typically
represent trust using a security policy which explicitly per-
mits or prohibits actions [6]. These policies are not well
suited to dynamic environments, in which participants have
only partial trustworthiness, and trust assessments must con-
stantly change. To avoid this, Abdul-Rahman and Hailes [2]
have also proposed explicit recommendation systems, but
with only very simple trust values. In our work, we use rec-
ommendations to control the flow of information, as well as
for access control; we are also able to combine our more
complex recommendations consistently, by formally order-
ing recommendations according to information content [5].
This gives us a well-founded approach to trust management
decisions, which is suitable for distributed computing appli-
cations.



712 SHAND, DIMMOCK AND BACON

(a) (b)

Figure 1. Recommendations in action. (a) Alice sends Bob her work phone number. (b) Some time later, Bob forwards Alice’s number to Charlie.

Principals in our framework can also be associated with
categories using the recommendation system, and being a
member of a category may confer certain access control ca-
pabilities. Bob might send a recommendation {Alice, work,
t1}Bob to himself, that recommends Alice as a member of cat-
egory “work” with trust t1.

Principals and information are thus associated with cate-
gories using the recommendation system. Each item might
have more than one recommendation, whether from different
principals or for different categories. The trust model assesses
the importance of an item (with respect to a category) by com-
bining all the pertinent recommendations.

In the example above, the importance of displaying Alice’s
telephone number in Charlie’s work category would depend
on the degree to which Alice recommended the number, Bob
recommended the number as a “work” number and Charlie’s
trust in Bob as a business acquaintance. Furthermore, Bob
would not pass on the number automatically to Charlie; his
PDA only sends the number because it knows Charlie is a
trusted business acquaintance.

In order for a PDA to make these decisions automatically
on behalf of its owner, it must understand the dynamics of
how the owner themselves would make the decision – usually
by assessing the trust and risk in the current context. In [4] we
describe a more general framework for trust and risk driven
decision-making; here we shall concentrate on a prototype
addressbook application for a PDA.

The use of categories to assign access privileges is dis-
cussed in more detail in section 3. First, the following sec-
tion extends the example to show how recommendations give
structure to data.

2.1. Phone book example

A phone book exchange service illustrates the need for and
advantages of trust-based information exchange for ubiqui-
tous computing. Users of handheld computers currently ex-
change contact details laboriously on a one-to-one basis. Fur-
thermore, there is no associated trust information, so users
cannot recommend to whom the information should be re-
distributed – for example, private and business numbers are
usually redistributed together.

In this section, we show how our trust and risk framework
can make this service more transparent for users and increase
automation while preserving the privacy of personal informa-
tion.

The phone book database consists of many items, each
with associated recommendations. These may be signed to
prove their authenticity, using a public key infrastructure.

Accessing and displaying information
Each information item has a unique identity, depending on the
author and a secure hash of the contents; any reference to an
item uses this identity. As a result, recommendations about
an item will cease to apply if the contents are changed. In
the case of a phone book, these contents might be a name, a
phone number or an address.

Figure 2 illustrates how Charlie uses the trust model to dis-
play Alice’s phone book information in the example above.
When Charlie searches his phone book for “Alice”, he finds
the entry for Alice’s name, ranked according to the strength of
its recommendations. If he views that entry, he is presented
with the linked information too, again weighted by impor-
tance. Very unimportant entries might not be displayed at all,
according to a threshold set by Charlie.

In contrast, consider David, Charlie’s colleague who is al-
lowed to view business information in Charlie’s phone book,
but nothing personal. If David views Alice’s information
there, he is presented with the restricted view shown in fig-
ure 3. Furthermore, the importance of links might be differ-
ent, if David had other knowledge of Alice, such as an old
work number that is now out of date, as illustrated here.

2.2. User privacy

When Alice gives her phone number to Bob, she trusts him
not to redistribute it to people she would not want to know her
telephone number. However, Bob must then realise that Alice
has given him her direct line number instead of the switch-
board and not pass it on indiscriminately. In our example in
figure 1, Alice’s recommendation R states that she recom-
mends that Bob treat this as business information and not a
public number.

We believe that many security systems fail because of their
high administrative overhead – passwords on post-it notes at-



TRUST FOR UBIQUITOUS, TRANSPARENT COLLABORATION 713

Figure 2. Each piece of information is stored separately and links between them are determined by the trust model.

Figure 3. David receives a different view on Charlie’s information about Alice, plus additional information from his own database (shown as dashed lines).

tached to monitors, for example, because proper user-account
administration is considered to be too much work. We aim to
create a security mechanism suitable for use in the pervasive
computing environment where human intervention is a valu-
able resource [7], yet due to the nature of the data involved,
security remains important.

The following section shows how rôles and categories can
be structured to preserve the meaning of recommendations.
This ensures that user privacy is better protected in automated
information transfers, by unifying trust assessments with ac-
cess control.

3. Categories and rôles

Information exchange is restricted with the help of categories,
arranged in a partial order. These categories restrict the dis-
tribution of information, and the actions of principals, and are
analogous to rôles in a Rôle-Based Access Control system [3].

We extend traditional RBAC rôles by associating a trust
assessment with each category assignment. Users of the sys-
tem can then combine a risk assessment, together with their
trust in the information, to decide whether or not it should
be used or displayed. For example, the risk of displaying
an incorrect telephone number might depend on the cost of
the user’s time when attempting to use it. Conversely, if the
number is not displayed (or is shown as less important), the
risk is that the user might not find it even though it is cor-
rect.

Each category has a list of privileges associated with it;
these are action and category pairs which can be used by prin-
cipals associated with the category. The overall trust assess-
ment of an entity is thus a mapping from action and category
pairs to primitive trust values. These trust assessments and
the contribution of other recommendations are formally ex-
pressed as a local policy function [5], defined in section 4.3,
analogously to Weeks’ proposal for formalising access con-
trol system policies [11].



714 SHAND, DIMMOCK AND BACON

Categories are arranged in a natural privilege hierarchy:
when category c0 extends the privileges of another c1, we
write c0 ⊃ c1. Figure 4 illustrates a typical hierarchy,
where the top category � contains the owner of the PDA,
cn represent user defined categories such as immediate family,
business colleagues, business contacts, friends and relatives.
A are acquaintances, people known to the owner, but not cat-
egorised, and S are strangers.

The diagram also shows another important feature of our
framework, from a human interaction perspective. We have
divided the categories into bands (see table 1); these bands
dictate the extra privileges granted to categories within them.
This makes it far more convenient for users to manage their
trust policies, simply by moving categories within their trust
lattice. For example, categories in the “Group” band can con-
ventionally recommend that members may write data to their
own categories and those below them, and read data below
them.

The banding of categories allows user privileges to be eas-
ily and intuitively assigned. However, if necessary the band-
ing may be overridden, by explicitly associating extra permis-
sions with categories or users.

Formally, these bands are a partition of the privileges of
the system. For example, if p(c) represents the privileges of
category or band c, then p(Group) = (p(c2)∪p(c3)∪p(c4))\
p(S), the marginal privileges accrued by categories within the
band.

The category bands also have a second function: they fa-
cilitate information exchange, by providing a common frame-
work for expressing category meaning between devices, even
devices with otherwise different categories.

Figure 4. Example of a category hierarchy.

Table 1
Privileges are conferred on a category by membership of a Privilege Band.

Band

Super-User As Privileged, but may also delete information.
↑

Privileged As Group, but can also read own category.
↑

Group As Public, but can also write to own category and those below.
↑

Public Read: Categories lower in graph. Write: None.

This allows recommendations between devices to be made
in terms of category bands. As long as users attribute similar
meanings to these bands – encouraged by band privileges –
then information transferred between devices will automati-
cally be restricted to the appropriate band, unless there is an
explicit user override. This is particularly useful in avoid-
ing sensitive information being leaked by different collabo-
rating users assigning different meaning to categories of the
same name or placing them in different bands. For exam-
ple, suppose Alice has two categories, business and business
contacts, the former in the Privileged band and the latter in
Group and she gives her business number to colleague Bob,
who’s business category is in Group. However, if Alice sends
an additional recommendation that the number is Privileged
then Bob’s addressbook should respect this when calculating
access rights.

3.1. Categories in calendars

The same framework can also be used for calendar informa-
tion. In the phone book we had read and write capabilities for
viewing, inserting and updating phone numbers. When a prin-
cipal attempts to read a particular time-slot, the information
returned will depend on their location in the hierarchy of cat-
egories in relation to the category of the appointment. All ap-
pointments have a projection into categories lower in the hier-
archy, although not into ⊥. This has the effect that a principal
who does not have read permission for an appointment sees
the lower category projection that the time is busy, tentative
or free but not the details of any appointments. Because ap-
pointments are not projected into ⊥, principals in sufficiently
low categories (such as S in figure 4) do not see anything at
all and can learn no information about the owner’s schedule.

Write permission to a category is the ability to make an
appointment in that category, and categories could be used
to determine the default response to an appointment made in
a free slot (for example: “automatically accept all appoint-
ments made by principals who are members of category PhD-
Supervisor”).

4. Trust computation

Participants compute their trust in information, by combining
their own trust assumptions with others’ recommendations.
This section outlines the structure of these recommendations,
and the formulae which compose them together.

Although we present our framework for a particular ubiq-
uitous computing application, we believe that its use extends
to all recommendation-based systems, particularly those op-
erating in mobile environments, where communication is lim-
ited and unreliable.

4.1. Recommendations

Recommendations associate one permission with another in
our trust framework. By treating the identities of actors, cat-



TRUST FOR UBIQUITOUS, TRANSPARENT COLLABORATION 715

egories and data entries as permissions, we can use a homo-
geneous recommendation structure for privilege assignment
and for restricting the flow of information. In practice, these
permissions are associated with the public and private keys of
each actor and category.

The permissions P linked by recommendations are the fol-
lowing:

Actor permissions A are used to identify people (and their
aliases), such as “Alice” or “asa21”.

Category permissions C represent membership of a cate-
gory such as “business”.

Data entry permissions D refer to address book entries, in-
cluding telephone numbers and names in our first applica-
tion.

Action permissions PA ={Read, Write} ×C allow the holder
to read or write data in a particular category.

Link permissions PL ={Link} × (A ∪ C) are used when data
is written, to recommend that it be associated with a cate-
gory or an actor.

We limit which permissions may be linked, allowing only
the combinations shown in table 2. Recommendations are
then combined transitively to determine effective trust values,
discounted according to the permissions the recommenders
hold.

Taking the example shown in figure 5, suppose that Al-
ice recommends that Bob should be a member of category
“business” with trust t1, that is {Rec(Bob, business, t1)}Alice.
If the PDA’s owner trusts Alice as a member of “business”,
then Bob will be considered a member too. Furthermore,
if the owner also recommends that “business” acquaintances
can read data from category “strangers”, then the trust will be
transferred and Bob will be allowed to read data associated
with strangers too.

Each recommendation thus links one permission to an-
other, with a certain degree of trust according to the recom-
mender. Next, we present the structure of these trust values,
before showing how they are combined to make decisions.

Table 2
Acceptable recommendations.

From\To A C D PA PL

A � � �
C �
D �
PA

PL

Figure 5. Recommendations in action – the dashed lines represent the derived
beliefs of the PDA owner.

4.2. Trust values

In our framework, each trust value consists of a (belief ,
disbelief ) pair, representing the weight of evidence for and
against a particular trust assignment, with belief + disbelief
� 1. This can be compared to Jøsang’s logic of uncertain
probabilities, based on the Dempster–Shafer theory of evi-
dence [8].

No information is represented by (0, 0), while (1, 0) and
(0, 1) represent certain belief and disbelief, respectively. We
order these trust values according to trustworthiness by defin-
ing (b1, d1) � (b2, d2) iff b1 � b2 and d2 � d1, which forms
a lattice on our trust domain Tb.

However, there is also a second natural ordering, according
to information, where (b1, d1) 	 (b2, d2) iff b1 � b2 and
d1 � d2, which we will use in combining recommendations
below [5].

4.3. Policy functions

Users must combine their own recommendations with others’
to assess trust. This is achieved by forming a policy function
for each principal’s recommendations; these policy functions
are then combined to reach the appropriate trust conclusions.

Each policy function denotes the trust each principal
places in others’ trust information; Polx(T , y, z) is the degree
to which principal x believes y should hold permission z, if
everyone else’s trust assignments are given in T .

This combines x’s own recommendations with recommen-
dations by others x trusts. Let dx(y, z) summarise x’s recom-
mendations, with dx(y, z) = t if there is a recommendation
{Rec(y, z, t)}x , and (0, 0), otherwise. (Newer recommenda-
tions are assumed to supersede older ones.)

Two sorts of recommendations are transitively combined,
generalising those in figure 5:

• those where x associates y with p, and p with z, and

• those where x gives p permission z, and p recommends y

for z.

This is summed up in the policy function

Polx(T , y, z) =
⊕{

dx(y, z) ∪
⋃
p∈P

T (x, y, p) ⊗ T (x, p, z)

∪
⋃
p∈P

T (x, p, z) ⊗ T (p, y, z)

}
, (1)

where

Polx :
(
P → (

P → (P → Tb)
)) → (

P → (P → Tb)
)
, (2)

(b, d) ⊗ (e, f ) =




(0, 0) if b � d,(
e

k
,
f

k

)
otherwise,

with k = max

(
e

b − d
,

f

b − d
, 1

)
. (3)

We also define
⊕

Xi to combine a number of recommenda-
tions monotonically, by averaging their belief and disbelief



716 SHAND, DIMMOCK AND BACON

components, respectively. For example, given three recom-
mendations (0.2, 0), (0.25, 0.5) and (0.36, 0.4) as shown in
figure 6, the compound recommendation deduced by ⊕ is
(0.27, 0.3).

Informally speaking, this considers the influence of the
original recommendations d , together with the recommenda-
tion chains shown above. These are then combined to deduce
an updated trust value. By repeating this process, the trust
values converge to a final trust assessment.

To guarantee this convergence, each policy function Polx
must be monotone with respect to T , as shown in equation (4).
If we then combine all the individual policy functions into a
single function Pol(T ), this will also then be monotone, and
have a least fixed point Tf = Pol(Tf ), which will be our
considered trust assessment [5].

T ′ � T ⇒ Polx(T ′, y, z) � Polx(T , y, z), ∀x, y, z ∈ P,

(4)

Pol(T )(x, y, z) = Polx(T , y, z), ∀x, y, z ∈ P, (5)

Pol :
(
P →(

P →(P → Tb)
))→(

P →(
P →(P → Tb)

))
.

(6)

The policy function Pol given above always converges for
non-cyclical recommendation sets, such as those used in our
address book application. However, it is not always monotone
as it stands – we need to augment it to ensure monotonicity,
and hence convergence under recommendation cycles.

Therefore, in computing the trust policy, we augment each
trust value Tb with a list of “parent” recommendations that
contributed to it. As the trust policy calculation iterates, the
parent lists increase in terms of an extended information order
	, whose bottom element ⊥ = (0, 0, []) represents no recom-
mendations at all. The least fixed point will then correspond
to the least specific trust assignments justified by the available
recommendations.

We also extend the ⊗ and ⊕ operators to propagate par-
ent lists on to the deduced recommendations, and to ignore
any cyclical contributions from recommendations whose par-
ents include the recommendation currently being computed.
This ensures theoretical monotonicity, while still producing
the same deduced trust values as before in the absence of cy-
cles.

We have presented policy functions as a well-founded
mechanism for deducing trust values by combining recom-
mendations. Recommendations are combined transitively,

Figure 6. Combination of recommendations.

which allows certain permissions to entail others, and trusted
acquaintances can delegate their permissions to others.

The resulting trust values guide decision making in our ap-
plication, with the help of the risk assessments outlined in
section 6. First, however, we consider implementation issues
in resource-poor and vulnerably connected devices in ubiqui-
tous computing environments.

5. Implementation issues

Trust management through recommendations is well suited to
mobile and distributed applications, since recommendations
conveniently factorise and encapsulate trust policy.

This is particularly important for vulnerably connected
nodes such as PDAs, which must store the relevant compo-
nents of others’ policy locally, for use when disconnected.
Transferring only a few recommendations from a trust policy
is justified in our application, since extra recommendations
correspond to additional trust information in our partial order.
Therefore using a subset of a policy corresponds to weaker
policy assertions, and the resulting trust decision will also be
weaker.

However, locally-cached policies must be kept up to date
in order to be used appropriately. We therefore propose to
assign time stamps and validity periods to recommendations
which are then refreshed automatically each time devices in-
teract, to remove any burden on the owner to ensure their local
cache is not about to expire before embarking on a period of
extended disconnection. If a recommendation does expire,
using out of date policy may be preferable to no knowledge
at all and so we scale-down the weight of expired recommen-
dations rather than discarding them. However, the principal
danger of outdated information is that a person may no longer
deserve the privileges that they once had, for example, some-
one who has been fired from the company. Therefore old trust
policy that says something negative about a principal cannot
cause our security to be compromised and so this scaling is
only applied to expired positive recommendations.

Recommendation systems often suffer from issues of long
trust chains, because the meaning of “trust” changes with
depth in the chain – in PKI a principal who is trusted to rec-
ommend other good recommenders must also be trusted to be
a good signer [1]. This is not a major problem in this applica-
tion scenario as, in general, we believe people categorise the
people they know according to the type of trust they place in
them: close friends are clearly highly trusted; “business col-
leagues” do not try to sabotage each other’s list of contacts
but would not usually have access to personal numbers; and
so on. People within a single category may have different
levels of trust placed in them, but partial belief in category
membership caters for this. When necessary, we also allow
exceptions to be made; the owner of the PDA can fine tune
their policies, via the recommendation system, to customize
individual users’ permissions. We believe that it is this mod-
elling of human intuitions of trust (including the overloading
of the meaning of the term) that makes our system so power-



TRUST FOR UBIQUITOUS, TRANSPARENT COLLABORATION 717

ful while still being easy to use, although we observe that it is
not true in the general case.

6. Risk assessment and decision making

As stated in the introduction, we believe security measures
must be proportional and appropriate for the risk involved:
a user may happily distribute a business card to strangers to
advertise their business, but may be quite careful as to whom
they give their mobile phone number.

In the same way that a principal’s position in the category
hierarchy (figure 4) assigns it a permission, the position of
a piece of data implicitly gives it a value that can be used
to assess the risk of an operation involving it: the higher in
the hierarchy, the greater the value. We define the risk of
an operation as being the sum of the risks of all the possible
outcomes of that operation, where the risk of an outcome is a
function of the likelihood and impact of that outcome. This
is in line with existing literature on risk management, such as
[10] and we take the view that the impact of an outcome is the
worst-case cost to the user should that outcome occur. This
cost will be a combination of two factors: the seriousness of
the outcome itself and the value of the data involved.

In the address book scenario, two users may interact in two
different ways as shown in figure 7. Either Bob may request a
number from Alice, or she may try to send Bob information,
unsolicited. Before either side takes part in an interaction,
there is a decision to be made (shown as the numbers 1–4 in
figure 7). Those decisions are as follows.

1. Request. Bob wishes to ask Alice’s PDA for a telephone
number. As far as Bob is concerned, the possible outcomes
from interacting with Alice are (in increasing order of im-
pact):

• he obtains the number he wanted and it is correct;

• he obtains the number he wanted but it is incorrect (e.g.
out of date);

• he does not obtain the number he wanted.

2. Response. Alice receives Bob’s request and must decide
what access to her address book she is prepared to give
him. From Alice’s point of view, the possible outcomes of
giving Bob access to an entry in her address book are:

• Bob obtains the number he wanted;

• Bob obtains the number, but misinterprets or ignores
the attached recommendations and redistributes it indis-
criminately.

Figure 7. Possible interactions between two PDA users.

3. Push-number. Alice wishes to automatically send her
number to certain PDAs she comes into contact with. For
example she may have recently changed her home tele-
phone number and wishes to inform all the friends she
meets, but not business colleagues. Her PDA must decide
whether to automatically send the number to Bob; the pos-
sible outcomes for Alice are (again in increasing order of
impact):

• Bob stores the number and respects Alice’s accompany-
ing recommendations on redistribution;

• Bob discards the number;

• Bob stores the number but ignores the accompanying
recommendations on redistribution.

4. Receive-number. Alice wishes to send Bob some informa-
tion. Bob must decide what to do with the received in-
formation. The possible outcomes from his point of view
are:

• Bob finds it useful;

• Bob finds the information unhelpful or incorrect;

• Alice attempts a denial of service attack against Bob’s
PDA by sending many numbers, aiming to fill its storage
space or saturate its connectivity.

As stated above, the risk of an outcome is a function of
the worst case cost in the event of the outcome occurring, and
the probability that the outcome will occur, which is solely
dependent on the principal(s) involved. Using the idea that
trust is a measure of how well an actor is known, it is possible
to assign a probability to each outcome.

We will now consider one trust-decision, Response, in
more detail.

6.1. Deciding whether to participate

When Bob asks Alice for a number from her address book,
in access control terms, she must decide whether to grant him
read permission on that number or not. The aim of our model
is to make this decision as automatic as possible, but in situa-
tions where the correct response is unclear the PDA may then
attract Alice’s attention and ask for her guidance. However,
the cost of Alice’s time to give that guidance must also be
factored into the decision, so our cost-benefit analysis must
take into account the benefit from helping someone by giv-
ing them a number, the worst-case cost of giving a number to
an inappropriate person and the cost of asking the owner for
guidance.

We now derive formulae for calculating the benefit of each
of the three possible courses of action. Since principals and
data may be filed under multiple categories in an addressbook,
for example colleagues who are also considered friends, we
must consider all pairs of categories, (cp, cd), which is the
principal’s category and the category of the data item they
wish to read respectively, where there is a recommendation
(or recommendations) with b > d , that permit cp to read cd .



718 SHAND, DIMMOCK AND BACON

There is clearly a benefit to not giving out a number if we
have no trust in that person’s right to that number, that is, if
we do not believe them to be a member of cp. We define:

Benefitno(b − d, valcp ) = −valcp .(b − d)

where (b, d) is Alice’s belief and disbelief in Bob’s member-
ship of cp and valcp is the value Alice has associated with
category cp – the more valuable the category and the greater
Alice’s distrust in Bob’s membership, the greater the benefit
of saying, “no”.

For calculating Benefityes , in addition to considering how
strongly Bob is associated with cp and the expected benefit
of that association (valcp × (b − d)) we must also consider
the relative importance of Bob himself (inferred from the
value of the category of which he is a member) compared to
the importance of the data he is trying to read, which encodes
the potential cost of Bob ignoring Alice’s recommendations
and redistributing the number indiscriminately. Our function
must represent the fact that there is benefit in helping someone
who is potentially a close friend to read a low-value number,
while we may require greater assurance to allow access to a
more valuable number.

It is also necessary to allow the user to configure their dis-
position to trust [9], and it may be useful to take any available
contextual information (such as location or the status of the
owner) into account. For this purpose, we introduce valread,
the importance of generally being a helpful source of infor-
mation which leads us to define:

Benefityes(b − d, valcp , valcd )

= valcp .(b − d) − max(valcd − valread, 0).

This definition balances the expected benefit of assisting
Bob, valcp .(b−d)+valread, against the value of the data being
read, valcd . The maximum function prevents the benefit of
giving out information from being greater than the expected
benefit of interacting with Bob, even if the value of valread

is greater than the value of the data involved. Section 6.2
discusses the valread variable further.

If a positive trust-relationship between Bob and the re-
quested data does exist, but it is sufficiently tenuous that there
is no clear benefit to granting the request, then it may be worth
asking Alice for guidance on the decision. To represent the
cost of Alice’s time in having to focus on her PDA and input
the correct decision, we introduce a second user-configurable,
context-dependent variable, valtime.

Benefitask(b − d, valcp ) = valcp .(b − d) − valtime + valread.

This equation simply compares the expected benefit of
helping Bob (and also the potential cost if we make an er-
roneous negative decision) to the cost of Alice’s time that is
taken up making the decision. valtime is discussed further in
section 6.2.

It follows that Alice’s response to Bob’s request can now
be determined by:

Answer = if Benefitno � 0 then “No”

else if Benefityes > 0 then “Yes”

else if Benefitask > 0 then “Ask”

else “No”.

Through these formulations we have effectively asked
whether there exists cp of which Bob is a sufficiently strong
member to be able to read cd . For simplicity, we use b − d

as a measure of the strength of a principal’s membership of a
category, and since there are three possible responses to the
request, Yes, No and Ask owner for guidance, we may see the
range of b − d , the interval [−1, 1], divided into three corre-
sponding regions, as illustrated in figure 8.

The positions of x and y may be determined by setting
Benefityes and Benefitask to the threshold at which we decide
there is sufficient benefit to take that course of action, that is
> 0, and re-arranging to find the corresponding value of b−d .
This gives:

y = max

(
valcd − valread

valcp

, 0

)
, (7)

x = min

(
valtime − valread

valcp

, y

)
. (8)

The region, [0, x) is when Bob is a member of cp, but there
is insufficient benefit in saying “yes” or asking the owner to
grant the request, so the answer must be negative. The region
[−1, 0) is also logically a negative response as there is no trust
at all in Bob’s membership of cp.

6.2. Fine-tuning policy

The variables valread and valtime used in the benefit equa-
tions can be tuned by the user to give them fine-grained con-
trol over their policy and take any available contextual infor-
mation into account. For example, the owner may be able
to place the PDA into a “Do-Not-Disturb” mode that would
scale the value of valtime to infinity. The significance of the
values of these variables on the decision making process can
be seen by considering the effect they have on the thresholds,
x and y.

Figure 9 shows how the values of cp and cd effect the
threshold y, for constant valread. It demonstrates that our
Benefityes equation has the desired property that as valcd in-
creases for constant valcp a greater amount of trust in mem-
bership of cp is required to grant the request, and as the
right-hand back corner of the graph shows, not even a “fully”
trusted principal may read a number which is of greater value
than themselves. Conversely, a principal of much greater
value than valcd needs a much smaller amount of trust to read
the number, and if valread > valcd then only the most tenu-
ous connection with a category is required to be granted the
privilege. This leads us to the conclusion that a good choice

Figure 8. Number line showing how partitions of b − d in membership of a
category lead to a decision.



TRUST FOR UBIQUITOUS, TRANSPARENT COLLABORATION 719

Figure 9. Plot showing how the amount of trust required, y, varies with the values of valcp and valcd − valread .

of value for valread is the value of the category for which a
principal should only need the smallest amount of belief in
membership in order to be able to read it.

The Benefitask equation shows that the choice of valtime

is dependent on the choice of valread as if valtime � valread

then the possible benefit of being helpful always outweighs
the cost of the time involved. The result is that the PDA will
always ask the user if b � d , unless the answer is obviously
“Yes”.

From equation (8) it can be seen that if valtime − valread

is a constant, the amount of trust required in the membership
of category cp is inversely proportional to the value of the
category. Accordingly, the lower the potential value of the
other principal, the greater the trust required for it to be worth
bothering the PDA owner. In practical terms, this indicates
a good choice of value for valtime is the value of the lowest
category with which the user wishes to be consulted when a
principal with strong membership (high value of b−d) of that
category attempts to read a number of equal value.

6.3. Other trusting-decisions

We now consider the cost-benefit analysis of the other trust-
decisions shown in figure 7.

6.3.1. Request
The PDA owner enters the name of the person about whom
they require information and the category under which they
intend to file the data. The addressbook application now com-
putes the expected benefit of asking each person within com-
munication range and then polls each one in turn until one
returns an answer. If the PDA is unable to obtain the num-

ber then it can store the request and ask other PDAs that it
encounters in the future.

The expected benefit of asking Alice for a number depends
on the relationship between Alice and the number. If the
owner is looking for Alice’s number then she is clearly the
best person to ask, but if Bob knows Alice as a friend and he
is looking for the number of a colleague then she is unlikely to
be able to help. In access control terms this is represented as
the ability of Alice to write to the category under which we in-
tend to file the number and to link numbers with the principal
that Bob is looking for. This is an analogous decision to the
one made in section 6.1 when the PDA must make a decision
based on the read permissions held by the other principal.

Therefore, assuming that Bob is looking for the number
belonging to someone other than Alice, the expected benefit
of asking Alice for a number is:

Benefityes(b − d, valcp , valcd )

= valcp .(b − d) − max(valcd − valwrite, 0).

cp is a category which has write permission on the target
category cd supplied by the owner of the PDA and of which
Alice is a member. valcp and valcd are the values of cp and cd ,
respectively, and hence this equation is analogous to the ben-
efit equations used to determine whether a principal may read
a number in a category cd . valwrite, like valread, is a tunable
parameter which represents how aggressively the PDA should
search for a number. This parameter is much more dynamic
than valread – it can be influenced by the user when initiating
a search via an “urgency” rating on the search screen, but it
also takes environmental factors into account such as remain-
ing battery power versus the cost of communication.



720 SHAND, DIMMOCK AND BACON

Figure 10. Part of a category hierarchy. Category values are shown in paren-
theses.

However, this equation does not take into account that Al-
ice may be associated with multiple categories cp, that have
write permission on cd and, since membership of one cate-
gory may imply membership of another, summing the bene-
fits for all cp that can read cd would lead to an inflated result.
Using the category structure shown in figure 10 as an exam-
ple, suppose Alice is a member of ca with trust, (0.7, 0.1) and
Charlie is a member of c′

ch with trust (0.8, 0.2). Since the
strength of membership (b − d) of their respective categories
is equal and the value of c′

ch is greater than that of ca (12 com-
pared to 10) there should be greater benefit in asking Charlie
than Alice. However, by default all members of ca inherit the
permissions of c′

a so the naïve solution would give the ben-
efit of asking Alice as 15. Simply using the category with
the greatest value would also lead to errors: if some weaker
recommendations also place Charlie in category cch with trust
(0.2, 0.1), asking Alice would again be assigned a higher ben-
efit than asking Charlie, despite the greater value of cch.

The solution we employ is for a particular traversal of the
lattice, to consider only the category which maximises the
principal’s expected benefit (that is, valc × (b − d)). Since a
principal may appear in multiple paths through the category
lattice (the previously mentioned example of colleagues who
are also friends), we define a set, C, of these categories. The
benefit of asking Alice for the required number is therefore:∑

cp∈C

valcp .(b − d) − max(valcd − valwrite, 0).

Suppose Bob is searching for Charlie’s number. If Char-
lie is within communication range, his PDA will ask Char-
lie’s first but if Charlie is unwilling to give his number to
Bob (perhaps their PDAs have yet to be “introduced”) or if
Charlie is not contactable then Bob’s PDA contacts the other
available PDAs in decreasing order of the expected benefit of
asking them for the number, until the number is successfully
obtained.

6.3.2. Push-number
It is likely that Bob wishes to distribute his details to those
people who would normally be able to read it if they were to
request it so it should only be pushed to those users who have

read permission on the category in which it belongs. There-
fore, for each of the principals within communication range
we evaluate the Benefityes function described in section 6.1,
and if it is positive, the number is sent to that principal. The
valread variable may be used to determine how aggressively
the PDA pushes its number to potential receivers.

6.3.3. Receive-number
To avoid wasting resources, the decision as to whether to re-
ceive a number from another PDA should be taken as early as
possible in the interaction. Unfortunately our current proto-
type implementation does not have access to the lower levels
of the network stack and can only make a decision whether to
accept a piece of data once it has been received so we have
taken the approach that we will accept all recommendations
and compute their usefulness upon demand. This also means
that should we later obtain further recommendations that ren-
der the received recommendations more useful they will be
treated as such, instead of possibly being discarded when they
are first received. The main problem with this approach is
storage constraints, a topic that, as mentioned in section 5 is
still under investigation.

6.4. Deciding what to display

There is one other operation where the trust-model is invoked,
and that is choosing what to display to the owner of the PDA
when he or she wishes to view some information. Suppose
Alice wishes to view Bob’s number. She searches for his
name and the PDA finds ten telephone numbers that are linked
to him with varying degrees of strength. Since ten numbers
will not fit onto the PDA display at one time, they are dis-
played in an order given by the product of the strength of the
trust-model’s belief they belong in a category (b−d), and the
value of that category – the expected benefit of that number.
The interface is designed to allow the user to give feedback on
which number they were looking for and how successful they
were at using it. This means that if Alice tries to use a number
which is, for example, out of date, she can click a button next
to it and the system takes this to be a recommendation from
her (which is implicitly highly trusted) that this number is not
Bob’s and updates its trust values accordingly.

Alternatively, Alice might browse entries by address book
category. These could be ordered either conventionally (al-
phabetically), or by the degree of category membership.
Again, the interface allows feedback for incorrect entries, in
the form of extra recommendations.

7. Conclusions

We have outlined a framework for an unobtrusive and mostly
automated security model for ubiquitous devices, using a sys-
tem of trust-evaluated recommendations combined with an
explicit risk analysis. This model is useful for a wide range
of pervasive and ubiquitous computing applications, in which
the user’s time is a valuable resource and transparent interac-
tion is needed wherever possible. We have tested the model



TRUST FOR UBIQUITOUS, TRANSPARENT COLLABORATION 721

by applying it to our prototypical examples, a phone book
and an appointment diary, and we believe it is applicable to
all recommendation-based systems, especially ones in mobile
environments. Ongoing work includes optimising our algo-
rithms for mobile devices and a detailed user acceptance and
evaluation study of our assumptions regarding the reuse of the
natural organisation of a user’s address book to assign access
permissions. Initial investigations in this area suggest that this
is very useful from a user interface perspective, although it is
not clear whether paradoxical recommendation chains can au-
tomatically be resolved consistently with human intuition.

Further work includes the detection of untrustworthy prin-
cipals by examining the source(s) of information found in
other people’s PDAs and a general trust-based access control
model for personal devices. In this way, many applications
could share a common recommendations, allowing automatic
and intuitive collaboration for mobile applications.

Acknowledgements

This work has been inspired and supported by the EU-funded
SECURE project (IST-2001-32486), part of the EU Global
Computing initiative. The authors would like to acknowledge
the very helpful interaction we have had with all the members
of the project consortium, and especially BRICS, at Århus,
Denmark, for helping to formally ground our trust model.

References

[1] A. Abdul-Rahman, Problems with trusting recommenders to recom-
mend arbitrarily deep chains (March 1998), available at http://
www.cs.ucl.ac.uk/staff/F.AbdulRahman/docs/
levnprob.html

[2] A. Abdul-Rahman and S. Hailes, Supporting trust in virtual communi-
ties. in: Proceedings of the 33th Hawaii International Conference on
System Sciences (IEEE, 2000) pp. 1769–1777.

[3] J. Bacon, K. Moody and W. Yao, Access control and trust in the use
of widely distributed services, in: Proceedings of Middleware 2001,
Lecture Notes in Computer Science, Vol. 2218 (Springer, 2001) pp.
295–310.

[4] V. Cahill, B. Shand, E. Gray, C. Bryce, N. Dimmock, A. Twigg,
J. Bacon, C. English, W. Wagealla, S. Terzis, P. Nicon, G. di Marzo
Serugendo, J.-M. Seigneur, M. Carbone, K. Krukow, C. Jensen,
Y. Chen and M. Nielsen, Using trust for secure collaboration in un-
certain environments, IEEE Pervasive Computing 2(3) (2003) 52–61.

[5] M. Carbone, M. Nielsen and V. Sassone, A formal model for trust in
dynamic networks, Research Series RS-03-04, BRICS, Department of
Computer Science, University of Aarhus, EU Project SECURE IST-
2001-32486 Deliverable 1.1 (January 2003).

[6] T. Finin, A. Joshi, L. Kagal, O. Ratsimor, V. Korolev and H. Chen,
Information agents for mobile and embedded devices, Lecture Notes in
Computer Science, Vol. 2182 (Springer, 2001) pp. 264–286.

[7] D. Garlan, D. Siewiorek, A. Smailagic and P. Steenkiste, Project Aura:
Towards distraction-free pervasive computing, IEEE Pervasive Com-
puting 1(2) (2002) 22–31.

[8] A. Jøsang, A logic for uncertain probabilities, International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems 9(3) (2001)
279–311.

[9] D.H. McKnight and N.L. Chervany, Conceptualizing trust: a typol-
ogy and e-commerce customer relationships model, in: Proceedings of
the 34th Hawaii International Conference on System Sciences, Vol. 7
(IEEE, January 2001) p. 7022.

[10] G. Stoneburner, A. Goguen and A. Feringa, Risk management guide for
IT systems, Technical Report SP800-30, National Institute for Science
and Technology (January 2002).

[11] S. Weeks, Understanding trust management systems, in: IEEE Sympo-
sium on Security and Privacy (2001) pp. 94–105.

Brian Shand is a Ph.D. student at the University
of Cambridge Computer Laboratory. His research
currently focuses on trust-based middleware for dis-
tributed computational services. Before this, he in-
vestigated distributed objects for image processing
applications, for an M.Sc. at the University of Cape
Town. He lives with his wife, Olivia, in Cambridge,
England, but sadly they have no cats.
E-mail: Brian.Shand@cl.cam.ac.uk

Nathan Dimmock is a Ph.D. student at the Univer-
sity of Cambridge Computer Laboratory. His re-
search interests include trust-management systems,
security and privacy in ubiquitous computing and
middleware. He received his Bachelors degree in
Computer Science from the University of Cambridge
and is a member of the IEEE and British Computer
Societies.
E-mail: nathan.dimmock@cl.cam.ac.uk

Jean Bacon is a Reader in Distributed Systems at
the University of Cambridge Computer Laboratory.
She is a Senior Member of the IEEE and has acted as
Editor in Chief of IEEE Distributed Systems Online
since its start in 2000. She is a member of the Board
of Governors of the IEEE Computer Society.
E-mail: jean.bacon@cl.cam.ac.uk


