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ABSTRACT 
 

Summary 

The CRC-64 (64-bit Cyclic Redundancy Check) algorithm employed in the SWISS-

PROT and TrEMBL data banks is shown to have a flaw which greatly increases the 

likelihood of duplicate key values being generated for pairs of sequences differing in 

only 2, 3 or 4 positions. A new CRC function has been implemented which behaves 

with better statistical properties when applied to a large set of similar but distinct 

protein sequences. 

 

Availability 

 

C source code for the improved CRC function can be downloaded from 

http://bioinf.cs.ucl.ac.uk/downloads/crc64 
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With the ever increasing growth of sequence data banks, and the lack of any unified 

scheme for allocating reliable identifiers to sequences, some means is needed for 

tracking individual sequences and also to detect undocumented changes to sequences 

resulting from either deliberate corrections or from human or computer error. Early 

sequence analysis tools made use of simple checksums to ensure the validity of 

sequence entries, but of course such a simple error detection scheme is not only easy 

to fool, but also does not provide a useful probably-unique identifier for a given 

sequence. More recently, the SWISS-PROT and TrEMBL data banks (Bairoch & 

Apweiler, 1996) have included a 64-bit Cyclic Redundancy Check (CRC) value 

alongside each sequence to act as both an error detecting device and also as a means 

of tagging the sequence data itself. The use of CRCs to provide a probably-unique 

hash key value is commonplace in computing applications, though many other 

hashing functions have been proposed, particularly for cryptographic applications. 

Where keys are destined to be used in a single database, it is possible to formulate an 

algorithm which guarantees uniqueness, though at the expense of large computational 

cost. However, absolute guarantees of uniqueness are not possible when the key is 

smaller than the hashed data element and where there is no available record of 

previously generated keys. 

 

There are of course many different ways one might assess the “quality” of a hashing 

function, but in this particular case it is stipulated as a minimum requirement, that a 

good hashing function should not produce an identical key for a sequence and any 

closely related but distinct sequences more often than one would expect for keys 

generated purely at random. This is a reasonable requirement in that one of the main 

aims of placing a hashing or checksum value in a sequence data bank is to track minor 

changes in sequences (deliberately made or otherwise). 

 

A Cyclic Redundancy Check or CRC value of length M bits is designed with error 

detection in serial communications in mind (Tanenbaum, 1996). The mathematical 

properties of a CRC with M bits are such that errors in M or fewer consecutive bits are 

guaranteed to be detected. This is a useful property for serial communications, as 

noise in a communication system frequently occurs in bursts e.g. from electrical 

interference. Two issues come to mind here for biological sequences. Firstly, when 

represented as an ASCII string, biological sequences cannot be considered to be a 

random bit string. Secondly, the requirement for guaranteed detection of errors in M 

consecutive bits may or may not be relevant for biological sequences. 

 

An M-bit CRC function can be described as division of polynomials of degree M over 

the integers modulo 2. A binary message such as 10101 can be represented as a 

polynomial with coefficients 0 or 1 as follows: 
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CRC functions make use of a generator polynomial which is primitive i.e. cannot be 

factorised into simpler polynomials (modulo 2). For example, a common 16-bit CRC 

polynomial is as follows: 
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For an M-bit CRC, the binary message is left shifted M times and then divided by the 

generator polynomial (without carries) giving a remainder, which is the final CRC 

value. 

 

To guarantee the consecutive bit property of a CRC, the polynomial used must be 

primitive. Furthermore, any primitive polynomial of similar order is guaranteed to 

produce a CRC with this property. So for the problem of detecting consecutive errors 

in serial communications, all primitive polynomials are born equal. However, the 

choice of primitive polynomial can affect other properties of the CRC function, and if 

the function is destined to be used for other purposes, such as generating hash keys, 

the choice of generator polynomial can be critical, depending on any patterns evident 

in the data to be hashed. 

 

In the current SWISS-PROT and TrEMBL data banks, the following CRC polynomial 

is implemented: 
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This polynomial is actually the smallest primitive polynomial of order 64, and is not 

necessarily a good choice for hashing. Applying this function to the current NCBI NR 

data bank (September 24
th

 2002 release), comprising 1,169,485 sequences, reveals 

two pairs of different sequences with identical SP-TrEMBL CRC-64 values. Given 

that for a uniformly distributed random 64-bit key, the probability of finding a 

duplicate in a data bank of this size should be ~10
-8

, finding two unrelated duplicates 

is either a case of extreme bad luck or an indication of bias in the key generator. 

 

As a more stringent test of hashing similar sequences, 1000 simulated mutant 

sequences were generated for every entry in SWISS-PROT Release 40. Six sequence 

sets were created in all, covering the range from 1 to 6 mutations per duplicated 

sequence. Duplicate keys were only sought within each set of mutants i.e. to check if 

any of the artificially generated mutants produced identical hash keys to their parent 

sequence.  Table 1 shows the results of applying the standard SP-TrEMBL CRC 

function to these artificial sequence variants compared to this much denser generating 

polynomial: 
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Table 1 shows clearly that the current CRC algorithm employed in SWISS-PROT and 

TrEMBL behaves poorly for pairs of sequences differing in just 2, 3 or 4 positions. 

Looking at the generating polynomial being used (x
64

 + x
4
 + x

3
 + x + 1) it is plain that 

it is extremely sparse, with bits 6-64 all set to zero. This evidently creates a subtle 

“blind spot” for certain characters at positions i and i+8. Both of the sequence pairs in 

the NR data bank which hash to identical keys differ in two locations with a sequence 

separation of 8, and so this flaw is already apparent with real sequences. There is no 

single pattern evident for the 8 collisions involving 3 mutations, but these are not as 

might be expected limited to positions i, i+8 and  i+16. However, as shown in Table 

1, none of the sequence pairs with multiple mutations produced key collisions with 

the new polynomial as would be expected. 
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Table 1 

 

Numbers of hash key collisions found for the proposed CRC function compared to the 

current SP-TrEMBL CRC function for 111,052,000 sequence pairs with 1-6 differing 

amino acids. Note that the expected number of matches in each case for a 64-bit key 

is ~ 6 x 10
-12

. 

 

 Number of Simulated Mutations 

 1 2 3 4 5 6 

CRC-64 

(SP-TrEMBL) 

0 967 8 1 0 0 

CRC-64  

(Improved) 

0 0 0 0 0 0 

 
 

 


