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Summary. This chapter gives an introduction to the principles of diffusion mag-
netic resonance imaging (MRI) with emphasis on the computational aspects. It
introduces the philosophies underlying the technique and shows how to sensitize
MRI measurements to the motion of particles within a sample material. The main
body of the chapter is a technical review of diffusion MRI reconstruction algorithms,
which determine features of the material microstructure from diffusion MRI mea-
surements. The focus is on techniques developed for biomedical diffusion MRI, but
most of the methods discussed are applicable beyond this domain. The review be-
gins by showing how the standard reconstruction algorithms in biomedical diffusion
MRI, diffusion-tensor MRI and diffusion spectrum imaging, arise from the principles
of the measurement process. The discussion highlights the weaknesses of the stan-
dard approaches to motivate the development of a new generation of reconstruction
algorithms and reviews the current state-of-the-art. The chapter concludes with a
brief discussion of diffusion MRI applications, in particular fibre tracking, followed
by a summary and a glimpse into the future of diffusion MRI acquisition and recon-
struction.

1 Introduction

Diffusion magnetic resonance imaging (MRI) provides a unique probe into the
microstructure of materials. The method observes the displacements of par-
ticles that are subject to Brownian motion within a sample material. Specifi-
cally, it measures the probability density function p of particle displacements
x over a fixed time ¢. The microstructure of the material determines the mo-
bility of the particles within and thus determines p. Conversely, features of p
provide information about the material microstructure.

In biomedical diffusion MRI, the particles of interest are usually water
molecules. Water is a major constituent of biological tissue. Water molecules
within tissue undergo random motion due to thermal fluctuations. Currently,
brain imaging is the most common application of biomedical diffusion MRI.
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The brain has a complex architecture of grey-matter areas connected by white-
matter fibres. Diffusion MRI allows non-invasive mapping of the connectivity
of the brain.

Figure 1 shows schematic diagrams of four different microstructures that
appear in brain tissue together with contours of the p that we expect to observe
within each kind of tissue. The diagrams do not aim to reproduce true brain-
tissue microstructure, but merely to show how different shapes of p can arise
from different configurations of barriers to water mobility. Some regions of
the brain, such as the ventricles, contain mostly cerebro-spinal fluid (CSF)
and figure 1(a) depicts such a fluid-filled region. Microstructural barriers to
water mobility are sparse in these regions, although a few membranes may
be present. The function p is isotropic, since displacements are equally likely
in all directions. Figure 1(b) depicts grey-matter microstructure. Grey matter
is dense tissue containing many barriers to water mobility, such as cell walls
and membranes. However, the barriers in grey matter often, as in the picture,
have no preferred orientation and so hinder the water movement equally in
all directions. The function p thus remains isotropic, but is less spread out
than in the CSF region, since the average length of displacements is smaller.
Figure 1(c) depicts the microstructure in a white-matter fibre bundle. White
matter contains bundles of parallel axon fibres that connect different regions
of the brain. The orientations of the cell walls that form barriers to water
mobility have much greater consistency in white matter than in grey matter.
The microstructure hinders movement more in directions perpendicular to
the fibre than along the fibre axis. Displacements along the fibre are larger
on average than displacements across it and p is anisotropic with a ridge in
the direction of the fibre. More complex microstructure also appears in white
matter. Figure 1(d) depicts the microstructure at an orthogonal fibre crossing.
Displacements are largest on average in the fibre directions and p has ridges
in the directions of each fibre. Other configurations of white matter fibres also
occur in the brain.

If we can determine the orientations of the ridges of p, we can infer the
dominant orientations of the microstructural fibres. With fibre-orientation
estimates in each voxel of a three-dimensional MR image volume, we can
follow fibres through the image, using so-called “tractography” algorithms,
see Chapter 7 by Villanova et al, and construct a connectivity map of the
imaged sample.

The following length scales of brain tissue and the measuring process help
appreciation of the discussion in the rest of the chapter:

The voxel volume in biomedical MRI is of order 10~% m?.

The diffusion time, ¢, in biomedical diffusion MRI is of order 10~?s and,
over this time, the root-mean-squared displacement of water molecules is
in the micrometer range.

e The diameters of axon fibres in human white matter can reach 2.50 x
10~%m, but most axon-fibre diameters are less than 10=5m [1, 2, 3].
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Fig. 1. See colour plates. Schematic diagrams four microstructures found in the
brain. The black lines are barriers to the movement of water molecules. The red
contours show the expected shape of p in each tissue. Panel (a) shows a fluid-filled
region. Panel (b) shows isotropic grey matter. Panels (c) and (d) show white matter
with one and two dominant fibre orientations, respectively.

e Coherent white-matter fibre-bundles vary widely in size from several cen-
timetres across down to a few axons.

e The packing density of axon fibres in white matter is of order 10! m~
[1, 2, 3].

2

The next section introduces the basic diffusion MRI measurement and its
relationship to the function p. Section 3 reviews diffusion MRI reconstruction
algorithms, which determine features of the microstructure from diffusion MRI
measurements. Section 4 gives a brief review of diffusion MRI applications
that concentrates on fibre-tracking and connectivity-mapping methods. We
conclude in section 5 with a summary of the field and some pointers for future
research in diffusion MRI methods.
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2 Diffusion-weighted MRI

Diffusion-weighted MRI acquires measurements that are sensitive to the mo-
tion of nuclei possessing a net spin (“spins”), most commonly hydrogen nuclei.
We can sensitize the MRI measurement to spin displacements by introducing
magnetic-gradient pulses to the standard spin-echo sequence (or other stan-
dard sequences, such as the stimulated-echo sequence). Figure 2 shows the
pulsed-gradient spin-echo (PGSE) sequence [4], which is the most common
pulse sequence for diffusion-weighted MRI. The scanner maintains a constant
and approximately homogeneous magnetic field Hg over the sample. The spins
align with Hy and have a slightly higher probability of having spin up state
than spin down, which causes a non-zero net magnetization of the material.
The 90° radio-frequency (RF) pulse P90, centred at time 7 = 0, tips the spins
into the “transverse” plane perpendicular to Hy. The spins then precess about
Hj at the Larmor frequency, which is proportional to |Hp|. Immediately after
P90, the spins precess in phase so that the net magnetization rotates about
Hj. Inhomogeneities in Hy cause the spin precessions to dephase gradually so
that the net magnetization decays. The 180° RF pulse P180, centred at time
7 = TE/2 where TE is the “echo time”, negates the phase of each spin. In the
absence of the gradient pulses I’y and I's, the rate of dephasing is the same
before and after P180 so the spins come back into phase at time TE. The
“spin echo” occurs when the spins come back into phase and recover their net
magnetization, which is the MR signal.
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Fig. 2. Shows the pulsed-gradient spin-echo sequence.
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The spatially homogeneous diffusion-weighting gradient offsets the phase
of each spin by a linear function of the spin position. A gradient pulse I" offsets
the phase of a spin at position r by r - q, where

q:'y/ I'(r)dr,
0

I'(7) is the component of the magnetic-field gradient parallel to Hy (i.e.
(VHg) Hy) at time 7 and + is the gyromagnetic ratio of the spins. The gyro-
magnetic ratio for protons in water, which are usually the spins in biomedical
diffusion MRI, is 2.675 x 108s~'T~!. In practice, the pulses are usually ap-
proximately rectangular (with brief rise and fall times) so that I';y and T’y
have constant value g over the pulse duration J and q = vdg. Since P180
negates the phase of each spin, I's cancels the phase offset from I'; for a sta-
tionary spin. However, if a spin moves from position ry to rs between the two
pulses, it retains a residual phase offset of q - (roa —r1) = q - x, where x is the
spin displacement. The magnetic moment of the spin at the spin echo is thus
Mexp(iq - x), where M is the magnitude of the magnetic moment. The MRI
signal A*(q) is the magnetization of all contributing spins. If we sum over all
possible spin displacements, we see that

A*(q) = A*(O)/ p(x) exp(iq - x)dx,
R3

where A*(0) is the signal with no diffusion-weighting gradients. Diffusion MRI

usually assumes that the local advection velocity is zero (no net motion of the

spin population), so that p(x) = p(—x) and A*(q) is real valued in the absence

of noise. Moreover, we use the normalized signal

Ala) = (4707 A7) = | plx)cos(a - x)x, ()

which is the Fourier transform of the function p at wavenumber q. A mea-
surement A(q) thus provides the apparent diffusion coefficient (ADC) d =
—b~1log(A(q)), where b = t|q|? is the diffusion-weighting factor, on the as-
sumption that p is an isotropic zero-mean Gaussian function [4, 5]. Researchers
in the 1980s [6, 7] combined the basic diffusion-weighted NMR, measurement
described above with MRI to obtain image maps of the ADC.

The derivation of equation (1) assumes that the movement of particles
during the gradient pulses is negligible. This assumption is justified if § is small
compared with the pulse separation A, which is then the diffusion time ¢ = A.
In practice however, § and A usually have similar magnitude, as in figure 2.
When § is non-negligible, the phase offset of a spin depends on its trajectory
during I'y and T’y rather than just its displacement, which complicates the
model relating the measurements to p; see discussions in [8, 9, 5]. With some
assumptions, we can model the effects of non-negligible § analytically. For
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example, if p is Gaussian and the gradient pulses are rectangular, then non-
negligible § reduces ¢ to an effective diffusion time of A — §/3, see [4, 5].
The effective diffusion time reduces still further for higher moments of p [10].
Mitra and Halperin [9] show that, if p is the displacement density of the
centres of mass (COM) of particle trajectories over time §, rather than the
displacements of particles themselves, equation (1) holds with ¢ = A even
with non-negligible §. The COM displacement density has similar shape to the
particle displacement density (though somewhat blurred) and, in particular,
indicates fibre directions in the same way. Thus, although non-negligible §
confounds absolute measurements of the particle displacement density, the
features of p of interest in brain imaging are relatively unaffected. Lori et
al [8] and Brihuega-Moreno et al [11] provide some further analysis of the
non-negligible A problem.

The MRI measurement is complex-valued, since the magnetization has
magnitude and phase. Often the phase of the measurements is discarded,
since inhomogeneities in Hy and movement of the sample make 1t unstable.
In practice, it is common to take the modulus of A*(q) as the real-valued MR
signal. An additive Gaussian noise model is common in MRI. With this model,
the real and imaginary parts of the signal are independent and identically
distributed with distribution N (0, ¢?). Noise on the modulus of the signal thus
follows a Rician distribution [12], which tends to a Gaussian distribution as the
signal-to-noise ratio increases. A common measurement of quality of diffusion
MRI data sets is the signal-to-noise ratio S = A*(0)/o of the measurement
with q = 0, where A* is the noise-free signal.

3 Diffusion MRI reconstruction algorithms

This section reviews diffusion MRI reconstruction algorithms. We focus here
on reconstructing fibre orientations, but note that some diffusion MRI tech-
niques aim to estimate other features of the microstructure, such as the ratio
of intracellular to extracellular water [13], by targeting other features of p.
For this discussion, a diffusion MRI reconstruction algorithm inputs a set of
diffusion-weighted MRI measurements from one voxel and outputs, at least,
i) the number n of dominant fibre directions and ii) an estimate of each dom-
inant fibre direction. Most of these algorithms determine a feature of p that
highlights fibre orientations. In addition to fibre-orientation estimates, these
features of p usually provide scalar indices of shape that discriminate differ-
ent kinds of material and can indicate the reliability of the fibre-orientation
estimates.

3.1 Diffusion Tensor MRI

Diffusion-tensor (DT) MRI [14] computes the apparent diffusion tensor on
the assumption that p is a zero-mean trivariate Gaussian distribution:
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p(x) = G(x; D, 1), (2)
where

0. = oy s (07,

D 1s the diffusion tensor and ¢ is the diffusion time. Since the Gaussian function
has a single ridge, DT-MRI assumes n = 1. Substitution of (2) into (1) gives

A(a) = exp(—tq” Dq). (3)

If we take the logarithm of (3), we see that each A(q) provides a linear con-
straint on the elements of D. The Gaussian model has six free parameters,
which are the elements of the symmetric three-by-three matrix D. To fit the
six free parameters, we need a minimum of six A(q) with independent q,
although many more are often acquired. Note that six A(q) requires a mini-
mum of seven A*(q) including one for normalization. Practitioners most often
use the linear least-squares fit of D to the log measurements. However, fitting
directly using equation (3), as in [15], can improve results, since the error dis-
tribution is closer to normal on A(q) than on log(A(q)). When fitting directly
to A(q), we can include constraints on the diffusion tensor, such as positive
definiteness, using the Cholesky decomposition as in [15], or cylindrical sym-
metry, by writing

D = ann” + 3, (4)

where n is the principal direction of the diffusion tensor, | is the identity tensor
and D has eigenvalues o + 3, # and 3.

Diffusion-tensor MRI generalizes the ADC calculation from simple diff-
usion-weighted MRI to three dimensions. It provides two extra insights into
the material microstructure over simple diffusion-weighted MRI. First, it pro-
vides rotationally invariant statistics of the anisotropy of p, which reflect the
anisotropy of the microstructure. Second, it provides an estimate of the dom-
inant orientation of microstructural fibres. The eigenvalues A1 > Ay > A3 of
D determine the shape of p. The Gaussian function has ellipsoidal contours
and the relative lengths of the major axes of the ellipsoids have the same
proportions as the ()\Z-)%. Statistics of anisotropy come from the distribution
of eigenvalues. A common statistic is the fractional anisotropy [16]

R ) )

which is the normalized standard deviation of the eigenvalues. Figure 3(a)
shows v over a coronal slice through a healthy human brain. The highest

W=
Wl

values of v are in regions of dense white matter, such as the corpus callosum,
where the fibres are packed most densely and have consistent orientation.
Other common scalar statistics derived from the diffusion tensor are Tr(D)
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and the skewness p. The trace of the diffusion tensor Tr(D) = Z?zl A; s
proportional to the mean squared displacement of water molecules and thus
indicates the mobility of water molecules within each voxel, which reflects the

density of microstructural barriers. The skewness

g ()

i=1

W=

is close to zero for isotropic diffusion tensors with near spherical contours
(A1 & Az = A3), positive for prolate diffusion tensors with cigar-shaped con-
tours (A1 >> A2 & A3) and negative for oblate diffusion tensors with pancake-
shaped contours (A1 & Ay >> A3). Figures 3(b) and 3(c) show Tr(D) and ,
respectively, over the coronal slice in figure 3(a). The highest values of Tr(D)
are in the ventricles and other regions of cerebro-spinal fluid, where the density
of barriers to water mobility is low. The skewness 1s positive in most white-
matter regions. In some white-matter regions, such as the pons, the skewness
is negative showing oblate diffusion tensors. Oblate diffusion tensors arise in
regions contain orthogonally crossing fibres, as depicted in figure 1(d), where
the best-fit Gaussian model has oblate contours. Many other configurations
of fibres or microstructures can also give rise to oblate diffusion tensors.

The eigenvectors e, e; and ez of D determine the orientation of p. In re-
gions of prolate diffusion tensors, the principal eigenvector e, (that with eigen-
value A1) provides an estimate of the single fibre orientation. At fibre crossings
where the diffusion tensor is oblate, e; and ey span the plane of the crossing
fibres. Pajevic and Pierpaoli [17] use colour for a compact visualization of fibre
orientations. A popular choice is to use RGB vectors proportional to v'/2e;.
Figure 3(d) uses this colour orientation-encoding for the coronal slice in fig-
ure 3(a); red indicates left-right orientation, green indicates anterior-posterior
(front to back of the head) and blue indicates inferior-superior (top to bottom
of the head).

Diffusion-tensor MRI requires a minimum of seven MRI measurements.
Most diffusion-tensor MRI sequences acquire more than the minimum seven
measurements to reduce the effects of noise. The standard approach [18] is
to acquire M measurements with q = 0 and N measurements with non-
zero wavenumbers q;, i = 1,---, N. The |q;| are all equal and the diffusion
time, ¢, and hence b, is fixed for all the A(q;). The directions q; are unique
and distributed uniformly over the sphere. This kind of scheme gives less
rotational dependence of the fibre-orientation estimates and shape statistics
than schemes that acquire repeated measurements at a smaller number of q;
[19]. The images in figure 3 come from a data set with M = 6, N = 54,
§ = 0.034s, A = 0.040s and |g| = 0.022Tm~!. Thus |q;| = 2.0 x 10°m~!
and b = 1.15 x 10°sm? using t = A — §/3. This scheme is typical for whole-
brain clinical DT-MRI and requires around 20 minutes scan time on standard
hardware. In white-matter regions, the signal to noise ratio at q = 0, S, is
around 16 on average.
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(f)

Fig. 3. See colour plates. Shows various features of p plotted over a coronal slice
through a healthy human brain. Panel (a) shows the fractional anisotropy, v. Panel
(b) shows Tr(D). Panels (c) shows the skewness, p. Panel (d) shows the colour coded
principal direction, e;. Panel (e) shows the output of Alexander’s voxel classification
algorithm (section 3.2); black is background, blue is order 0, white is order 2 and
pink is order 4. Panel (f) shows the spherical-harmonic anisotropy (section 3.2). In
each panel, the upper region of interest contains some grey matter (top), part of the
corpus callosum (middle) and some CSF (bottom). The lower region contains the
fibre crossing in the pons.
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Diffusion-tensor MRI is the most popular diffusion MRI reconstruction al-
gorithm by far. It is the simplest technique that provides anisotropy statistics
and fibre-orientation estimates. The computational and data requirements of
the technique are modest. Modern scanners come with built-in acquisition se-
quences for DT-MRI and the post-processing is simple to implement and fast
to run on modern desktop computers. However, a major drawback of DT-MRI
is that the Gaussian model is often a poor fit to the data. Diffusion-tensor MRI
provides only one fibre-orientation estimate in each voxel. In regions where
fibres cross within one voxel, p has multiple ridges, as figure 1(d) depicts. The
Gaussian model of p in figure 1(d) has oblate ellipsoidal contours. When the
Gaussian model is poor the two major selling-points of DT-MRI fail. First, in-
dices of anisotropy derived from the diffusion tensor, such as v, underestimate
the true directional variability of p. The Gaussian model for p in figure 1(d)
smoothes out the ridges in the plane of the page. Second, fibre-orientation
estimates are incorrect. For a perfectly oblate Gaussian distribution, D has
no unique principal eigenvector. In regions with the microstructure depicted
in figure 1(d), measurement noise will ensure that e; is randomly oriented in
the plane of the crossing fibres. Non-orthogonally intersecting fibres are po-
tentially more dangerous. The single fibre-orientation estimate from DT-MRI
then lies consistently between the two true fibre directions; see [20] for an
example.

3.2 Modelling the “ADC profile”

Equation (3) shows that, with no noise, log(A) is quadratic in q when p is
Gaussian. Several authors model log(A) with higher-order polynomials both
to detect departures from the Gaussian model and to obtain more reliable
indices of anisotropy.

Frank [21] and Alexander et al [22] both fit the spherical-harmonic series
to log(A) at a fixed |q|. In the literature, the term “ADC profile” refers to
—b~1log(A) as a function of x with fixed |q|. The spherical harmonics Y},
l=0,---,00,m=—I,---,1, form a basis for complex-valued functions on the
unit sphere in three dimensions §2. Thus we can write any complex-valued
function f of the sphere as

[} l
f:Z Z alm}/lrrr

=0 m=-1

Each spherical-harmonic series containing only terms up to order [ = L is
the restriction to 8% of an order L polynomial, and vice versa. Series with
only even-order terms are symmetric, so that f(x) = f(—x), and constraining
both ITm(a;g) = 0 and aj, = (—1)maf(_m) for all [ and m ensures that f
is real-valued [22]. Reference [22] shows how to compute the least-squares-fit
symmetric real-valued spherical-harmonic series to log(A(q;)), i =1,---, N,
robustly via a single matrix multiplication.
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If log(A) is quadratic, its spherical-harmonic series contains only terms up
to order 2. If the fitted spherical-harmonic series contains significant higher-
order terms, the Gaussian model for p is poor. Frank [21] observes signif-
icant fourth-order terms in the spherical-harmonic series in various white-
matter regions in the human brain. Alexander [22] uses the analysis of vari-
ance (ANOVA) test for deletion of variables, the “F-test” [23], to choose the
lowest-order series that fits the data. This simple voxel-classification algorithm
classifies each voxel as isotropic (order 0), anisotropic Gaussian (order 2), or
non-Gaussian (order 4 or above). Results show clusters of order 4 voxels in
several fibre-crossing regions in human-brain data similar to that used for fig-
ure 3. Figure 3(e) shows Alexander’s voxel classification over the coronal slice
in figure 3(a). Order 4 voxels appear consistently in the pons and other fibre
crossings showing failure of the Gaussian model.

Spherical-harmonic models of log(A) provide anisotropy indices that are
robust to departures from the Gaussian model. The moments of a spherical
function f are

wnlf] = (4m) 1 / £ (x)dx.

A general index of anisotropy of f is (w1[f])~ (wz2[f] — (w1[f])?)"/%. For a
real-valued symmetric spherical-harmonic series, w1[f] = 4mago and ws[f] =

432, Z%:—Ql la(20)m|?. Figure 3(f) shows the spherical-harmonic aniso-
tropy from series including terms up to order 4. Differences between the
spherical-harmonic anisotropy and v are more noticeable at higher b. Other
moments may also provide useful shape indices.

Ozarslan et al [24] use a higher-order tensor model of log(A) so that
log(A(a)) = ~tq¥/D®q’, (7)

where the term on the right contains the contraction of the order 2j ten-
sor D7) by q'7), which is the outer product of q(") = q and qV~1. The
tensors D*”) are real valued and have symmetry ensuring that log(A(q)) =
log(A(—q)). Tt is straightforward to demonstrate that the unique elements of
the tensor model in (7) with order 2j are a linear transformation of the real and
imaginary parts of the coefficients of the real symmetric spherical-harmonic
model including terms up to order 2j. In this sense, the two methods equiv-
alent, both theoretically and computationally. Liu et al [10] model log(A(q))
by a sequence of higher-order tensors, which includes both odd and even-
order tensors. The inclusion of odd-order tensors allows the model to capture
non-symmetric spin displacements.

Neither the spherical-harmonic nor the higher-order-tensor models provide
fibre-orientation estimates. Both model log(A) rather than p and the peaks of
log(A) at a fixed radius are not in the directions of the ridges of p in general.
The scalar anisotropy of log(A) correlates with that of p, so we can compute
anisotropy indices from log(A). Also when p is Gaussian, A is Gaussian, so
we can infer departures from the Gaussian model of p from departures of the
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A(q;) from the best-fit Gaussian. To estimate fibre orientations, however, we
must invert the Fourier transform in (1) and reconstruct directional features
of p.

3.3 Multi-compartment models

A simple generalization of DT-MRI replaces the Gaussian model for p with a
mixture of Gaussian densities:

n
p(x) =Y a;G(x;D;, 1), (8)
i=1

where each a; € [0,1] and ), a; = 1. Particle displacements in media contain-
ing n distinct compartments, between which no exchange of particles occurs,
follow the distribution in equation (8) if the displacement density in the i-th
compartment, which has volume fraction a;, is G(x; D;, ).

We take the Fourier transform of (8) and substitute into (1) to relate the
measurement values to the model parameters (D; and a;,i=1,---,n):

n
Alq) = Z a; exp(—tq’ D;q).
i=1

The constraint on the model parameters from each measurement i1s non-linear
so we must fit the model to the data by non-linear optimization using, for
example, a Levenberg—Marquardt algorithm [25]. The principal eigenvector of
each D; provides a fibre-orientation estimate. The multi-compartment model
assumes n is fixed. Practical considerations, such as the number of MRI mea-
surements and the measurement noise level, limit the number of orientations
the method can resolve reliably. Most work to date uses a maximum n of 2.

Two problems accompany the use of multi-compartment models. First, the
choice of n presents a model-selection problem. Second, the non-linear fitting
procedure is unstable and starting-point dependent, because of local minima
in the objective function. Parker and Alexander [26] and Blyth et al [27] use
Alexander’s voxel classification algorithm [22] to solve the model-selection
problem. They use n = 2 in order 4 voxels, where DT-MRI fails, and n = 1
elsewhere. This method does not extend naturally above n = 2, however. Al-
though a fourth-order polynomial is a good approximation to log(A) from a
mixture of two Gaussian densities [21], a mixture of three Gaussians does not
necessarily require a sixth-order polynomial. Tuch [28] thresholds the corre-
lation of the measurements with their predictions from a single-component
model to decide whether to use one or two components. Constraints on the
diffusion tensors in the multi-compartment model can help stabilize the fitting
procedure. For example, we can enforce positive definiteness on the D;, using
the Cholesky decomposition [29], or cylindrical symmetry on D; using equa-
tion (4), or specific eigenvalues as in [28]. Spatial regularization techniques
also help overcome the fitting problem by ensuring voxel to voxel coherence,
see [29] and Chapter 9 by Pasternak et al.
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3.4 Fibre models

A similar model-based approach [30] assumes that particles belong to one
of two populations: a restricted population within or around microstructural
fibres and a free population that are unaffected by microstructural barriers.
With negligible exchange between the populations, p = aps + (1 — a)p,, where
ps is the spin-displacement density for the free population, p, that for the
restricted population, and a is the fraction of particles in the free population.
Behrens et al [30] use an isotropic Gaussian model for p;. They use a Gaussian
model for p, in which the diffusion tensor has only one non-zero eigenvalue
so that particle displacement is restricted to a line. Assaf et al [31] describe a
similar approach. They model p, with Neuman’s model for restricted diffusion
in a cylinder [32]. The fitted p, provides the fibre-orientation estimate. For py,
which they call the “hindered compartment”, they use an anisotropic Gaussian
model.

Both approaches extend naturally to the multiple-fibre case by including
multiple restricted populations in the model, which gives a more physically-
based mixture model than the multi-compartment models in section 3.3. In the
multiple-fibre case, fibre-model approaches have the same model-selection and
fitting problems as multi-compartment models. Assaf et al [31] show promising
results in the two-fibre case in simulation.

3.5 Diffusion spectrum imaging

Diffusion spectrum imaging [33], unlike the approaches discussed earlier in
this section, does not use a parametric model for p. Instead, DSI reconstructs
a discrete representation of p directly from measurements on a regular grid of
wavenumbers via a fast Fourier transform. The reconstruction gives values of
p on a grid of displacements.

The orientation distribution function (ODF)

B(3) = / " p(ax)da, (9)

where x is a unit vector in the direction of x, is the radial projection of p onto
the unit sphere. The ODF has peaks in the directions in which p has most
mass and thus has peaks in the directions of the ridges of p. In DSI, therefore,
the peaks of ¢ provide the fibre-orientation estimates. The function ¢ can have
multiple pairs of equal and opposite peaks. Each pair provides a separate fibre-
orientation estimate, which enables DSI to resolve the orientations of fibres
that cross within a single voxel. The ODF also provides anisotropy indices.
For example, we can use the standard deviation (ws[¢] — 47)*/? of ¢ as an
analogue of the fractional anisotropy, v.

Qualitative results from DST in [33, 34] and subsequent publications show
ODF peaks in the expected fibre directions at known crossings in human and
animal brain data. However, the results also show ODFs with multiple peaks
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in grey-matter regions and it is unclear whether these peaks show genuine
anatomic structure or simply arise from measurement noise. Diffusion spec-
trum imaging has clear advantages over DT-MRI and multi-compartment
modelling, since it can resolve multiple fibre orientations, it does not require
non-linear fitting and it does not involve a model-selection problem. Despite
its advantages, DSI is not used as widely as DT-MRI. The main drawback
of the technique is that acquisition times are long, since it requires an or-
der of magnitude more measurements than DT-MRI to get sufficient detail
in the reconstructed p. Wedeen and Tuch and coworkers [33, 34] use around
500 measurements for DSI. They acquire images with 64 x 1072m? voxels,
compared with 10 x 1079 m? voxels typical in DT-MRI, to keep the acquisi-
tion time manageable. Furthermore, DST ignores the effects of non-negligible
¢ discussed at the end of section 2.

3.6 A new generation of multiple-fibre reconstructions

The main drawback of DSI is the long acquisition time. However, in many
applications, DSI wastes much of the information in the measurements. The
projection of p onto the sphere to obtain the ODF, ¢, discards the radial com-
ponent of p to which much of the information in the measurements contributes.
In some applications, the radial component of p may be useful. However,
the primary interest is often in the angular structure, which provides fibre-
orientation estimates and anisotropy indices. An emerging new generation of
diffusion MRI reconstruction algorithm reconstructs the angular structure of
p directly from the measurements. Rather than acquiring measurements on a
grid of wavenumbers, as in DSI, the new methods use sets of wavenumbers
chosen to contribute mostly to the angular structure of p. Specifically, meth-
ods to date use the spherical acquisition schemes popular in DT-MRI (see
section 3.1).

Approximations to the ODF

Several methods approximate the ODF from measurements acquired using a
spherical acquisition scheme. Tuch’s g-ball imaging method [34, 35] approxi-
mates the ODF by the Funk transform [36] of the measurements. (For brevity
in the remainder of the chapter, we shall refer to Tuch’s method simply as
“q-ball”.) The Funk transform is a mapping between functions of the sphere.
The value of the Funk transform of a function f at a point x is the inte-
gral of f over the great circle perpendicular to x. In [34], Tuch shows that,
in the absence of noise, the approximation becomes closer as |q| increases.
Qualitative results in [34, 35] show good agreement between g-ball and full
DSI in a fibre-crossing region in the human brain. Tuch uses high-quality test
data with N = 492 and with |q] = 3.6 x 10°m~! (b = 4.0 x 10°sm~?) and
lq] = 5.4 x 10°m~! (b = 12.0 x 10°s m~2). Lin et al [37] propose a similar
algorithm independently. They test their algorithm on data acquired from a
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phantom containing water-filled capillaries in two orientations, which simu-
lates crossing white-matter fibres. The algorithm recovers the orientation of
the capillaries consistently.

In Chapter 10 and [38], Ozarslan et al fit higher-order tensor models (see
section 3.2) to measurements from a spherical acquisition scheme. They as-
sume that A(q) decays exponentially with increasing |q| and fixed q. This
assumption allows them to estimate the measurements on a regular grid of
wavenumbers, which they use as input to DSI. The method finds the ridge
directions of simple test functions and qualitative results on rat-brain data,
with N =81 and b = 1.5 x 10° s m?, are promising.

Deconvolution techniques

Deconvolution methods generalize the fibre-model methods by assuming a
distribution of fibre orientations. The diffusion MRI signal is the convolution
of the fibre orientation distribution (FOD) with the response from a single
fibre [30, 39, 40]. Any fibre model can provide the response for a single fi-
bre. References [30, 39] use Gaussian fibre models. Tournier [40] derives a
fibre model directly from the data by taking an average signal from the most
anisotropic voxels. Deconvolution is linear using a linear set of basis func-
tions, such as the spherical harmonics, for the FOD [39, 40]. The peaks of the
FOD provide fibre-orientation estimates. Like the ODF, the FOD can have
any number of pairs of equal and opposite peaks and each pair provides a
separate fibre-orientation estimate. Thus, deconvolution methods avoid the
model-selection problems associated with multi-compartment and fibre mod-
els.

Other methods

Jansons and Alexander’s PASMRI algorithm [41] computes another feature
of p called the persistent angular structure (PAS). The PAS is the function p
of the sphere that, when embedded in three-dimensional space on a sphere of
radius r, has Fourier transform that best fits the measurements. Thus

3 (Alas) - A(qi;ﬁ))zl ,

i=1

p = argmin
P

where

Alq;;p) = /]3(5() cos(rq; - x)dx. (10)

Jansons and Alexander use a maximum-entropy parametrization of p. They
fit the N 4+ 1 parameters of p using a Levenberg—Marquardt algorithm and
numerical approximations of the integrals in (10). The function p can have
any number of pairs of equal and opposite peaks and each pair provides a
fibre-orientation estimate. The parameter r controls the smoothness of p.
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The iterative optimization required to compute p makes PASMRI a much
slower algorithm than the other algorithms discussed in this section. How-
ever, Alexander [42] shows that PASMRI reconstructs fibre directions more
consistently than g-ball. On the human-brain data used for figure 3, the q-
ball algorithm fails to resolve the orientations at known fibre-crossings, where
PASMRI succeeds. Simulations show that PASMRI is more sensitive than
g-ball to anisotropy in test functions and recovers ridge directions more reli-
ably, particularly at low b and S. Figures 4 and 5 show the PAS, computed
by PASMRI, and ODF, approximated by q-ball, respectively, in the coronal
brain slice in figure 3. The PAS has sharper peaks than the ODF and resolves
the crossing fibres in the pons more consistently.

Fig. 4. See colour plates. Shows the PAS (in red) in brain voxels of the coronal
slice in figure 3 superimposed on the fractional anisotropy map.

Liu et al [10] outline a general inversion of their higher-order-tensor series
model (see section 3.2) of log(A) to obtain p. They simulate random walks of
molecules through restricted media to obtain synthetic MRI measurements. In
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Fig. 5. See colour plates. Shows the ODF (in red) approximated using g-ball in
brain voxels of the coronal slice in figure 3 superimposed on the fractional anisotropy
map.

simulation, the reconstructed p reflects the geometry of several simple media.
Liu et al use the phase of the MRI measurements and include odd-order
tensors in their model, which allows them to determine net motion of particles
(advection) as well as symmetric motion.

4 Applications

Diffusion-tensor MRI is now a routine clinical technique. Scalar statistics de-
rived from the apparent diffusion tensor, such as Tr(D) and the fractional
anisotropy [16], are used to study a broad range of conditions including stroke,
epilepsy, multiple sclerosis, dementia and many other white-matter diseases;
see [43] for a recent review. Diffusion MRI is also used to probe the mi-
crostructure of a variety of other materials including muscle tissue, e.g. in the
heart [44], cartilage [45], plant tissue [46] and porous rock [47].
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A major application area of diffusion MRI is fibre-tracking or “tractog-
raphy”. References [48, 49] contain reviews of tractography techniques with
qualitative and quantitative performance comparisons. Chapter 7 by Villanova
et al also discusses tractography techniques. Simple “streamline” tractogra-
phy algorithms trace fibre trajectories by following fibre-orientation estimates
from point to point through an image volume. Probabilistic tractography al-
gorithms use a probability density function to model the uncertainty in the
fibre-orientation estimate in each voxel. The algorithms run repeated stream-
line tractography processes with fibre-orientation estimates drawn from the
model in each voxel. The fraction of streamlines that pass through a voxel
provides an index of the connectivity of that voxel to the starting point. The
distributions on the fibre-orientation estimates generally come from modelling
the distribution of estimates from repeated trials of adding synthetic noise to
the measurements. Some implementations [20, 50] use shape indices, such as
the fractional anisotropy, to predict the parameters of the distribution.

Most tractography in the literature uses DT-MRI for fibre-orientation es-
timates. Several authors [20, 26, 27, 34, 51] use multiple-fibre reconstructions
in tractography applications. Tractography algorithms based on multiple-fibre
reconstruction use fibre-orientation estimates from multi-compartment mod-
els [20, 26, 27] or the peaks of the ODF [34] or PAS [51] together with un-
certainty models obtained from simulations. Blyth et al [27] provide direct
evidence that multiple-fibre reconstruction improves tractography results over
DT-MRI. One might be tempted to use the PAS, the ODF or the FOD as a
direct estimate of the distribution of fibre orientations for probabilistic trac-
tography. However, the physical basis of these functions is a gross simplifica-
tion of the complex distribution of barriers to diffusion within material such
as brain tissue. Any supposed relationship between these features of p and the
true distribution of fibre orientations would require a great deal of validation
and verification.

Tractography algorithms have undergone intensive development since the
introduction of DT-MRI and exciting applications are now beginning to
emerge. By mapping fibre pathways in abnormal brains [52, 53], we can
monitor disease progression and assist neurosurgical planning. Probabilistic
tractography has lead to profound insights in human neuroanatomy [26, 54]
and highlights region-connectivity differences between normal and patient gr-
oups [55]. Behrens et al [54] use probabilistic tractography to segment the
human thalamus into regions that connect to different cortical regions. The
segmentation they produce is consistent among individuals and similar to a
connectivity-based segmentation of the monkey thalamus performed by his-
tology. Barrick et al [56] use a similar idea to segment the whole human brain
into connected regions. Behrens et al [57] also propose a method for automatic
segmentation based on connectivity information. For the future, tractography
and connectivity-mapping hold great promise for studies of brain develop-

ment [58, 59].
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5 Discussion

We have reviewed the principles of diffusion MRI measurements and recon-
struction. We have seen how the standard diffusion MRI reconstruction al-
gorithms, in particular DT-MRI and DSI, arise from a simple model relating
the measurements to the spin-displacement density function p. We have high-
lighted the drawbacks of these basic approaches: DT-MRI provides only a
single fibre-orientation estimate in each voxel and fails at fibre crossings; DSI
requires too many measurements for routine use on current hardware. We
have reviewed a new generation of multiple-fibre reconstruction algorithms,
including multi-compartment and fibre models and all the methods in sec-
tion 3.6, that can resolve the orientations of crossing fibres from sparse sets
of measurements, similar to those acquired routinely in DT-MRI.

The new generation of reconstruction algorithms is still in its infancy and
requires refinement and validation before routine application in clinical stud-
ies. As yet, no single algorithm has emerged as a comprehensive replacement
for DT-MRI. The most tested new algorithms, which are multi-compartment
models, PASMRI and g-ball, all have problems. Multi-compartment models
have problems with model selection and model fitting. The g-ball algorithm
does not resolve crossing fibres reliably on current standard data sets, but
does produce acceptable results with a moderate increase in data quality [42].
The PASMRI algorithm works well on current data, but is too computation-
ally heavy in practice. The great interest in fibre tractography continues to
expand. Such are the problems caused by fibre crossings that development of
the new algorithms will be rapid and we can expect to see them in routine
use within the next few years.

We shall conclude with some specific questions for the further development
of diffusion MRI reconstruction algorithms:

What new shape indices can we derive from multiple-fibre re-

constructions?
Multiple-fibre reconstructions produce a range of new features of p that can
provide new scalar indices of shape beyond the common anisotropy and skew-
ness statistics. We can compute higher-order moments of these functions,
which may highlight previously unseen tissue-type boundaries. The number of
peaks and relative peak strength of the PAS, ODF or FOD may also provide
useful stains for analysis and diagnosis.

How reliable are fibre-orientation estimates and shape indices?
We can determine the accuracy of fibre-orientation estimates in simulation
from test functions, as in [41], and also with bootstrap methods from re-
peated scanner acquisitions, as in [60]. Such experiments on multiple-fibre
reconstructions will provide performance comparisons for selecting the best
algorithms and uncertainty estimates for probabilistic tractography. We can
assess the reliability of shape indices in the same ways. The reliability de-
termines the diagnostic power of shape indices as well as their potential as
indicators of fibre-orientation-estimate accuracy in probabilistic tractography.



20 Daniel C Alexander

These performance estimates will depend on the imaging parameters, such as
lal, t, N, M and S. We must optimize the trade-off between imaging time
and data quality to maximize performance.

Can we detect and reject spurious structure in isotropic areas?
A major concern with multiple-fibre reconstructions is that they often show
spurious structure in isotropic regions. Jansons and Alexander [41] and Alex-
ander [61] illustrate this problem on synthetic data for PASMRI and g-ball. On
scanner data, these methods invariably produce functions with strong peaks
in grey-matter and CSF regions. However, the fibre orientation estimates have
little or no voxel-to-voxel coherence, which suggests that the peaks come from
measurement noise rather than genuine anatomy. The success of the new gen-
eration of algorithms will require methods for distinguishing spurious from
genuine structure. Voxel classification algorithms, such as Alexander’s [22],
may help solve the problem, as may methods that analyze voxel-to-voxel con-
sistency.

Can we do better than spherical acquisition schemes?

In the literature, multi-compartment models and fibre models, ODF approxi-
mations, PASMRI and deconvolution methods mostly use data acquired with
a spherical acquisition scheme. However, these methods can work with data
acquired with any set of q;. Other distributions of sample points surely exist
that will improve the methods, but the diffusion MRI community is yet to
investigate methods for choosing and optimizing these distributions.

What is the best model for p in brain tissue?

The literature contains a variety of parametric models for p in white-ma-
tter fibres; see for example [30, 31, 39, 40]. Multi-compartment, fibre-model
and deconvolution methods can use any such model. Quantitative compar-
isons of these models, again using simulations and bootstrap techniques, will
determine which models best fit the data and produce the most reliable fibre-
orientation estimates and shape statistics.

Can we estimate the fibre-orientation distribution reliably?
Diffusion-weighted MRI [4, 5, 6, 7] and one-dimensional g-space imaging [5]
were the first generation of diffusion MRI algorithms. The second genera-
tion, diffusion-tensor MRI and DSI, generalizes the first to three-dimensions.
The third generation consists of the multiple-fibre reconstructions from data
designed to emphasize the angular structure of p. Despite the names of the
features of p that these algorithms compute (“orientation-distribution func-
tion” and “fibre-orientation distribution”), only the peaks of these functions
are generally considered reliable as fibre-orientation estimates. Perhaps gen-
eration four will provide reliable estimates of the true distribution of fibre
orientations within each voxel of an image and help distinguish crossing, kiss-
ing and diverging patterns of fibres.

The questions above are the tip of an iceberg. The remaining chapters
of this book will reveal many other questions that demand answers in this
exciting, expanding and fast-moving area of research.
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