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Abstract. A methodology is presented for estimation of a probability
density function of cerebral fibre orientations when one or two fibres are
present in a voxel. All data are acquired on a clinical MR scanner, using
widely available acquisition techniques. The method models measure-
ments of water diffusion in a single fibre by a Gaussian density function
and in multiple fibres by a mixture of Gaussian densities. The effects of
noise on complex MR diffusion weighted data are explicitly simluated and
parameterised. This information is used for standard and Monte Carlo
streamline methods. Deterministic and probabilistic maps of anatomical
voxel scale connectivity between brain regions are generated.

1 Introduction

Probabilistic methods for determining the connectivity between brain regions
using information obtained from diffusion MRI have recently been introduced
[3,8,9,10,11,15]. These approaches utilise probability density functions (PDFs)
defined at each point within the brain to describe the local uncertainty in fibre
orientation. Each PDF is intended to interpret the information available from
a diffusion imaging acquisition in terms of the likely underlying fibre structure.
Given an accurate voxelwise PDF it should be possible to define the probability
of anatomical connection, defined at the voxel scale, between any two points
within the brain. This may be achieved using Monte Carlo approaches based on,
for example, streamlines [9,10,11] or Bayesian methods [3,15].

To date, PDFs used in probabilistic connectivity methods have either been
defined in terms of the diffusion tensor model [3,8,9,10,11] or using q-space ap-
proximations acquired from spatially undersampled brain data [15]. The single
tensor model of diffusion assumes that diffusive water molecule displacements are
Gaussian distributed, which is a poor approximation where fibres cross, diverge,
or experience high curvature. This leads to either inaccurate PDFs, which may
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assign unwarranted confidence in fibre orientation, or overly conservative PDFs
that reflect the ambiguous fibre orientation information provided by the tensor
in these regions. The signal to noise ratio (SNR) and sampling requirements of
q-space based approaches such as diffusion spectrum imaging [15] make it im-
practical to perform whole brain imaging at the resolution required for diffusion-
based connectivity mapping. At best, only low resolution imaging or restricted
volume acquisitions are possible, both of which are obstacles to inter-regional
connectivity mapping.

An additional drawback of many suggested PDFs is their somewhat obscure
meaning in terms of the phenomena that they are attempting to describe. Exam-
ples include the PDFs proposed by Parker et al, Lazar & Alexander, and Koch
et al, each of which is a heuristic attempt to interpret tissue microstructural
arrangement from the parameters of the estimated diffusion tensor [8,9,10,11],
without providing much justification. The diffusion spectrum PDFs proposed by
Tuch et al describe the probability of a structural obstruction to diffusion being
oriented along one or more directions [15]. However, even a PDF such as this,
which has a theoretically close relationship with the underlying structure, does
not take into account the influence of data noise on the confidence that may be
assigned to an estimated fibre direction.

A promising approach for identifying voxels containing crossing fibres us-
ing spherical harmonic fits to diffusion orientation profiles has recently been
described [5,2]. These techniques use whole brain multi-directional diffusion en-
coded data originally designed to allow enhanced SNR diffusion tensor imaging
on standard clinical scanners [6]. These data are not suitable for invoking stan-
dard q-space-based methods but can reveal locations in the brain where the
single tensor model is poor, indicating fibre crossings [5,2]. These datasets have
the advantages of being acquired on clinical scanners, thus allowing access to
patient cohorts, and higher spatial resolution and coverage than acquisitions de-
signed for q-space imaging. For this work, we assume that voxels in which the
single tensor fits the data poorly are fibre crossings and we fit a multi-Gaussian
model instead. We simulate the effect of data noise on these fits, allowing us to
generate noise-based PDFs in regions containing crossings. Uncertainty in single
fibre voxels is parameterised in the same way with the aid of a single Gaus-
sian model. This set of methods represents a promising approach for performing
whole-brain, high resolution, probabilistic connectivity mapping to defined seed
points that accounts for crossing fibre tracts.

2 Methods

2.1 Data Acquisition

Single-shot echo planar diffusion weighted brain data were acquired using a GE
Signa 1.5 tesla scanner with a standard quadrature head coil. Sequence pa-
rameters: cardiac gating (TR = 20 RR ≈ 20 s); 60 axial slices; TE = 95 ms;
54 non-collinear diffusion-weighting directions at b = 1156 smm−2 (calculated
according to [13]); 6 acquisitions with a b ∼ 0 smm−2; diffusion sensitisation



686 G.J.M. Parker and D.C. Alexander

gradient duration δ = 34 ms; interval between gradients ∆ = 40 ms; gradient
strength G = 22 mTm−1; 96 × 96 acquisition matrix, interpolated during re-
construction to 128 × 128; 220 mm field of view, generating 2.30 × 2.30 × 2.30
mm3 voxels as acquired, which are reconstructed to 1.72 × 1.72 × 2.30 mm3 [6,
16]. The total acquisition time was approximately 20 minutes. Eddy current in-
duced image distortions in the diffusion sensitised images were removed using
affine multiscale two-dimensional registration [14]. The brain was extracted on
the b = 0 images to provide a brain mask using the brain extraction tool (BET)
available in the FSL software package (http://www.fmrib.ox.ac.uk).

All subjects were scanned with ethical committee approval and gave in-
formed, written consent. The SNR of the data was defined as the mean b = 0
signal divided by the mean standard deviation of signal in a range of uniform
tissue regions. For the data used in this study a SNR value of 16 was obtained.

2.2 Voxel Classification

We use the algorithm of Alexander et al [2] to identify voxels in which the single
tensor model is poor. In these voxels we fit a mixture of two Gaussian densi-
ties; otherwise we use the single tensor model. The principal diffusion directions
(PDDs) of the two diffusion tensors in the mixture model provide estimates of
the orientations of the crossing fibres.

We define
d(k̂) = b−1

(
logS(k̂, b) − logS(k̂, 0)

)
, (1)

where S(k̂, b) is the MRI measurement with diffusion weighting gradient direc-
tion k̂ and diffusion weighting factor b. For the single tensor model

d(k̂) = k̂
T
Dk̂ . (2)

This model provides a suitable description of diffusion in tissues where a single
fibre bundle direction is present in an image voxel. In voxels containing n different
fibre directions a multi-Gaussian model [1,5] can be more appropriate:

S(k̂, b) = S(0)
n∑

i=1

ai exp
[
−bk̂T

Dik̂
]
. (3)

As described in [2], we use a spherical harmonic model of d(k̂) to identify
voxels in which the single tensor model is poor. Thus

d(k̂) =
∞∑

l=0

l∑
m=−l

clmYlm(k̂) , (4)

where Ylm is the spherical harmonic of order l and index m. Since d(k̂) is real
and d(k̂) = d(−k̂), clm = 0 when l is odd and clm = (−1)mc∗l−m. We truncate the
series at order 0, 2 or 4 using the analysis of variance test for deletion of variables
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to select the best model. When the series is truncated at order 0, diffusion is
isotropic. When it is truncated at order 2, the single tensor model is a good
approximation and Eqs. 2 and 4 are equivalent. When fourth-order terms are
included in the series, the single tensor fit is poor and we fit the multi-Gaussian
model with n = 2. We assume that we cannot resolve the directions of more than
two fibres with the number (54) of diffusion-weighted measurements acquired.

To fit the multi-Gaussian model, we use a Levenberg–Marquardt algorithm
on data resampled from the spherical harmonic model of d(k̂). Figure 1 shows a
region of the brain demonstrating crossing fibre content. This region, where the
motor tract (a superior-inferior tract) crosses the superior longitudinal fasciculus
(an anterior-posterior tract at this position) and fibres from the corpus callosum
are passing left-right, demonstrates the widespread presence of fibre crossings
and their potential impact on the directional information present within the
brain. Figure 1 also demonstrates the ease with which regions containing crossing
fibres may be overlooked in conventional diffusion tensor imaging.

(a) (b) (c)

Fig. 1. Comparison of single tensor (top) and biGaussian modelling (bottom). Top:
Greyscale linearly proportional to tensor fractional anisotropy (FA) [12]. Bottom: Vox-
els containing single, isotropic tensors (dark grey), single anisotropic tensors (mid-grey),
and two tensors (white). Region shown is in the vicinity of the right corona radiata.
Black needles represent PDDs. Note that low FA values outside grey matter in the
single tensor parameterisation (top) often correspond to regions of crossing fibres (bot-
tom). However, even relatively high anisotropy regions may demonstrate crossing fibres.
(a) axial; (b) coronal; (c) sagittal views
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2.3 Noise-Based Uncertainty in Principal Diffusion Direction

The effect of noise on the single or two tensor fitting process is modelled using
a simulated complex MR measurement. We add zero-mean random Gaussian-
distributed noise with SNR = 16 repeatedly to estimate the PDF describing the
effects of noise on apparent fibre direction.

Noise model. We define a PDF in the PDD by simulating the addition of noise
to complex MR data. The mean brain b = 0 signal (S0), δ, ∆, the data noise
level, and the b-matrix are used as simulation inputs. We fit the spherical har-
monic series to the simulated noisy data followed by the multi-Gaussian model.
For a given δ, ∆, and S0, the degree of deviation of the PDD about its expected
direction is dependent upon the noise level, and the relative and absolute mag-
nitudes of the tensor eigenvalues, λ1, λ2, λ3 (table 1). Within the simulation we
constrain the range of λ1, λ2, λ3 by using the fact that the trace of the diffusion
tensor varies little in brain tissue. We reduce the simulation set by assuming
that λ2 = λ3 (i.e. that we only encounter axially symmetric tensors). In voxels
exhibiting partial volume effects (for example in the presence of crossing fibres)
non-axially symmetric tensors may be expected; however as we are explicitly
detecting and modelling these cases it is likely to be a good assumption that
all remaining single tensors are indeed axially symmetric. By extension we also
assume that cases with two non-axially symmetric tensors do not occur.

Table 1. Eigenvalues and fractional anisotropy, FA [12], used in the noise simulation.
A constant value of trace = 2100 × 10−6mm2s−1 was used for all experiments

FA 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
λ1

(×10−6mm2s−1)
781 864 950 1042 1143 1256 1390 1554 1773

λ2, λ3

(×10−6mm2s−1)
660 618 575 529 479 422 355 273 164

Single fibre case. For the single axially-symmetric tensor model, the addi-
tion of Gaussian noise generates PDD distributions as shown in Fig. 2. If we
align the z axis along the original PDD, the PDF is independent of longitudinal
angle, φ, and has approximately normally distributed dependence on angle of
deflection, θ, with a mean coincident with the original PDD (θ ∈ [−π/2, π/2),
φ ∈ [−π/2, π/2)). Figure 3 shows the standard deviation in θ as a function of
FA. This is in line with the results of [7], but clarifies the dependence of the
PDD on noise in the axially symmetric limit. The deviations of the fitted lines
in Fig. 3 from the data points may be due to the choice of a normal model of
θ. It is possible that the use of a dedicated spherical distribution such as a von
Mises - Fisher distribution may improve the parameterisation at low FA.
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(a) (b) (c) (d)

Fig. 2. Simulated distribution of PDD due to random Gaussian distributed noise as a
function of FA. Noiseless orientation of PDD along vertical (z) axis. Axial symmetry
of tensor assumed. (a) FA = 0.1; (b) FA = 0.3; (c) FA = 0.5; (d) FA = 0.7

0.0 0.2 0.4 0.6 0.8 1.0
FA

0.0

0.2
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Fig. 3. Standard deviation (σθ) in θ, due to the addition of Gaussian noise at SNR = 16
as a function of FA. The relationship between σθ and tensor FA is well described by a
biexponential function, allowing uncertainty in θ to be estimated from the anisotropy of
the fitted tensor. Closed circles: σθ of PDD of single tensor (no crossing fibres present).
Open circles: σθ of PDD of one of two tensors when crossing fibres are present

Two fibre case. For the mixture model two PDDs exist, representing the axes
of two crossing fibres. Examples of the distribution of these directions under the
addition of Gaussian noise to the simulated complex MR data are shown in Fig.
4. The mean orientation of each fibre is not greatly affected by the presence of
the neighbouring fibre. Furthermore, the spread in orientation of each is affected
little by the relative orientation or spread of the other. With this observation
we assume that the distributions of fitted PDDs for each fibre may be treated
independently. As in the single fibre case, we use a Gaussian model for the
distribution of the angle of deflection, the parameters of which are a function of
FA for each tensor. As can be seen in Fig. 3, the uncertainty associated with
the PDD of a tensor when crossing fibres are present is larger than that in the
single fibre case, due to the larger set of fitted parameters.

2.4 Streamline Propagation in the Multi-tensor Field

A step in the streamline propagation process is defined:

X(l + 1) = X(l) + w(l)δt , (5)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Simulated distribution of fitted PDDs due to random Gaussian distributed
noise for a range of crossing fibre cases. Axial symmetry of both tensors is assumed
and fibres are present in equal proportions. Noiseless fibre orientation: (a,b,e,f) y, z;
(c,d,g,h) xy, y. FA values for each tensor: (a) 0.9, 0.9; (b) 0.3, 0.9; (c) 0.9, 0.9; (d) 0.3,
0.9; (e) 0.7, 0.7; (f) 0.5, 0.7; (g) 0.7 0.7; (h) 0.5, 0.7

where X(l) is the position in �3 of the streamline at point l on its length, w(l) is
the propagation direction at this point (l �→ X), and δt is the step size. With a
single tensor model of diffusion, w(l) is defined as the interpolated PDD at that
point. We achieve this by trilinear interpolation of surrounding tensor elements
to provide an interpolated tensor, from which the local PDD is determined. In
the case where one or more of the image voxels involved in the interpolation is
described by more than one tensor we employ selection rules to ensure the most
appropriate tensor is included in the interpolation. If Di(p) is one of n tensors
present at image location p, a location to be included in the interpolation, then
the selected tensor is that which satisfies

max
i

(|Γ (Di(p)) · w(l − 1)|) , (6)

where Γ (Di(p)) is the PDD of the ith tensor at p. This formulation ensures that
when fibre crossing is detected, the tensor representing the fibre with an orien-
tation closest to that of the current streamline propagation direction is chosen
to influence further propagation. Figure 5(a) demonstrates the propagation of
streamlines through a region of crossing fibres.

2.5 Monte Carlo Methods and Maps of Connection Probability

The PICo framework is used to enable probabilistic fibre tracking [10,11], al-
lowing maps of connection probability to be generated. The method utilises a
Monte Carlo streamline approach, sampling the orientation PDFs within each
voxel on each iteration. Fig. 5(b) illustrates the deviation of streamlines due to
the cumulative effects of PDFs within each imaging voxel.
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(a) (b)

Fig. 5. (a) Streamline propagation through a region of crossing fibres in the vicinity
of the example in Fig. 1. Streamlines(black continuous lines) initiated in the corpus
callosum propagate left-right through the regions, whilst initiation in the corticospinal
tract leads to inferior-superior propagation. (b)Illustration of streamline randomisation
process in the corpus callosum

The number of occasions, µ (p, N), over N repetitions at which each voxel,
p, is crossed by a streamline is used to define a map of the probability, ψ, of
connection to the start point, in a similar fashion to [8]:

ψ(p) = lim
N→∞

µ(p, N)
N

≈ µ (p, N)
N

. (7)

3 Probabilistic Fibre Tracking Examples

A number of examples from a single subject are presented. Figure 6 shows maps
of connection probability to a single voxel in the middle of the splenium of
the corpus callosum. Branching of the extracted pathway may be observed at
various points, with a branch of relatively high probability in the left hemisphere.
However, the main route of connection is tightly localised between the seed point
and the posterior cortical regions. This is due to the generally high anisotropy
observed in this region, leading to low uncertainty in in fibre direction.

Figure 7 shows patterns of connection to a region placed in the left supe-
rior longitudinal fasciculus. The end points of the measured tract terminate in
Broca’s area and Wernicke’s area. However, it is also evident that probability
of connection is assigned to pathways that approach motor regions. Non-zero
probability is also assigned to a region in the parietal lobe. These connections
are unlikely to be present in the underlying anatomy.

Figure 8 demonstrates probabilities of connection to a single point in the left
pyramidal body. The coritcospinal tract connected to this point is well-defined
throughout, indicating low uncertainty in fibre direction along its length.
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(a) (b)

(c) (d) (e)

Fig. 6. Maps of connection probability to a seed point placed in the centre of the sple-
nium of the corpus callosum. (a)–(d) adjacent slices of increasingly superior anatomical
location. Radiological viewing convention used. Greyscale windowed to show full range
of connection probability. (e) surface rendering showing thresholded probability values
in corpus callosum. Note branching of identified connected regions in left hemisphere
but an otherwise tightly localised pattern of connection

4 Discussion

We have identified voxels within the brain that include more than one fibre ori-
entation and, by modelling the effects of noise, obtained PDFs on the PDDs
for both the single and dual fibre cases. These PDFs are characterised as in-
dependent normal distributions in the angle of deflection away from the initial
estimate of the PDD. The standard deviation of these distributions is shown to
be related simply to the anisotropy of the tensors used in the model.

Using the crossing fibre information and the orientation PDFs we have shown
that it is possible to generate probabilistic representations of diffusion-based
voxel-scale connectivity from user-defined start points. This mapping benefits
from the increased information content provided by the multi-tensor decom-
position, which allows more accurate definition of the routes and termini of
connections. It is also possible to use these data for deterministic fibre tracking
(for example streamline methods (Fig. 5(a))), which again benefits from the im-
proved information content. We have presented results in a single brain; results
from a group of 10 further brains showed compatible results (not shown).

Validation of the method is to date limited to cross-referencing the results
with know anatomy. This is undesirable, as knowledge of anatomy may be in-
complete, and quantification of errors is difficult. Improved validation may be
achieved with the use of data simulations and via the use of animal models.
Also, the repeatability of the method could be assessed by repeated data ac-
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(a) (b)

Fig. 7. Views of thresholded probability map in the left superior longitudinal fasciculus
with rendered brain surface. Probability of connection to seed region in superior lon-
gitudinal fasciculus shows evidence of connection to Broca’s area (A), Wernicke’s area
(B), motor areas (C, D), and an unidentifies parietal/occipital region (E). (a) frontal
view; (b) view from left

quisitions in a single subject. Notwithstanding the limitations on validation, the
connections identified may be categorised as likely true positive and false posi-
tive in terms of the likely underlying anatomy. For example, the linkage between
Broca’s area and Wernicke’s area demonstrated in Fig. 7 is as expected from
known functional neuroanatomy. However, the connections, from the same start
point, to motor regions in Fig. 7 are not expected. The fact that it is not pos-
sible to distinguish these two sets of connections as more or less likely from the
data alone identifies a fundamental limitation of diffusion imaging-based fibre
tracking. The uncertainties that we are able to define in one or more underly-
ing fibre bundles reflect the fact that diffusion imaging gives us an imprecise
indication of these orientations, which does not allow us to define connections
unambiguously. Given the data, these regions are roughly equally likely to be
connected to our start point; given known anatomy some of these are unlikely.
In light of such observations it seems that relating diffusion imaging based find-
ings to anatomy will always require significant expert knowledge, interpretation,
and guidance (for example via the use of constraining volumes of interest [4]).
Possible relaxation on these restrictions could be achieved by a reduction in data
noise or a reduction in the sensitivity of the parameterisation process to noise,
leading to a decrease in the variance seen in Figs 2 and 4. This would reduce the
amount of dispersion in the connection probability maps and possibly reduce
the occurrence of erroneous connections.

Another possibility for reducing ’false positive’ connections is the introduc-
tion of constraints on the tracking process, such as curvature penalties, or regu-
larisation of the diffusion data. However, curvature restrictions penalise genuine
pathways demonstrating high curvature (for example the optic radiation), and
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(a) (b)

Fig. 8. Views of thresholded probability map of connections to the left pyramidal body
with rendered brain surface. (a) frontal view; (b) view from left

regularisation methodologies may destroy potentially useful information and of-
ten also require curvature penalties. It may also be possible to extend the design
of the PDFs to allow fibre orientation information from the local neighbourhood
to be included, thus improving the focus of the PDF. However, without such
advances in data interpretation and/or improvements in data quality, care must
be employed when interpreting the results of diffusion connectivity studies.
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