Efficiency and Pseudo-Randomness

of a Variant of Zémor-Tillich Hash
Function

Christophe Petit, Nicolas Veyrat-Charvillon, Jean-Jacques Quisquater
Université catholique de Louvain
UCL Crypto Group
Batiment Mawell, Place du Levant 3
Louvain-la-Neuve, Belgium
christophe.petit,nicolas.veyrat, jjq@uclouvain.be

Abstract

Recent breakthroughs concerning the current standard SHA-1 prompted NIST
to launch a competition for a new secure hash algorithm [1,13]. Provably secure
hash functions (in the sense that their security relates to the hardness of some
mathematical problems [5,7,9,12]) are particularly interesting from a theoretical
point of view but are often much slower than heuristic functions like SHA.

In this paper, we consider a variant of ZT hash, a provably secure hash func-
tion designed by Zémor and Tillich proposed in 1994 [12]. Despite some attack
proposals, its security has not been fundamentally challenged to this day. Our
function is twice as fast as ZT hash and has enhanced security properties. We
propose optimized parameters and algorithms to increase the speed of both hash
functions. This makes our function one of the most efficient “provably secure”
hash functions to this day. Finally, we show that our hash function successfully
passes most pseudo-randomness tests in the Dieharder suite [2].

1 Introduction

Hash functions are widely used in cryptographic applications such as commitment
schemes, digital signature schemes, key derivation, message authentication codes or
password encryption. Typical properties required for a hash function are:

e nearly uniform output distribution;

e preimage resistance : it must be computationally hard to find a preimage to a
given hash value;

e collision resistance : it must be computationally hard to find two messages hash-
ing to the same hash value.

Additionally, a hash function is often required to behave indistinguishably from a
random function.

The SHA family has spread since its publication in 1993 as a cryptographic hash
standard [3]. However, recently discovered vulnerabilities in SHA-1 [13] prompted
NIST to launch a competition for a New Cryptographic Hash Algorithm [1].

NIST competition is stimulating research on hash functions in the cryptographic
community and a lot of new schemes have recently been designed and put forward.
Particularly interesting from a theoretical point of view, some of these schemes are
provably secure, in the sense that their security relies on the hardness of some mathe-
matical problems [5,7,9,12]. A good reduction to a simply formulated mathematical

challenge facilitates the evaluation process and increases the confidence once the func-
tion has resisted first cryptanalytic attempts. However, it also gives the cryptanalyst a
lead on how to break the scheme, especially when the mathematical problem involved
has not been studied for years or even decades. Indeed, the LPS hash presented in [5]
is now completely broken [10, 14].

In this paper, we consider a variant of ZT hash, a provably secure hash function
proposed by Zémor and Tillich at CRYPTO’94 [12]. Since 1994, a few attacks have been
presented against ZT hash [4,6,8,11]. Although these attacks are either unpractical
or targeting particular weak parameters, they still lead to a lack of confidence in the
function. The ZT hash has been forgotten for more than ten years, until it recently
regained interest due to the LPS hash proposal [5].

Indeed, the design principles of ZT and LPS hashes are very similar. The input
messages are decomposed into bits or k-its, and a walk is performed in some regular
(Cayley) graph according to the k-its, the hash value being the last vertex reached by
the walk. The security of both functions can be expressed both in algebraic form and in
terms of some properties of the corresponding graphs. LPS and ZT hashes only differ
in the graphs that are used, but as the attacks discovered in [10,14] exploit structural
properties specific to LPS graphs, they do not seem to generalize to ZT hashes. Today,
14 years after its publication, the collision and preimage resistance of the Zémor-Tillich
hash function has not been significantly broken.

Besides its positive security properties, ZT hash has two major weaknesses com-
pared to classical hash functions like SHA: first, it is inherently malleable, 7.e. the hash
values of related messages are also related, and second, it is actually not preimage re-
sistant when the images of short messages are considered. The variant we propose is
aimed to solve these problems and to be twice as fast.

As observed by Zémor and Tillich in their paper [12], the arithmetic of the ZT hash
function operates in a field of characteristic 2, hence it is efficient in both software and
hardware. However and to the best of our knowledge, no running times for an actual
implementation of ZT hash has been given so far. Here, we present computational opti-
mizations for our variant, including a careful choice of the parameters and appropriate
data paths, and give running time results. These optimizations allow us to reduce the
computation time to less than 25 times the one for SHA-256. We point out that our
optimizations are fully applicable to the original ZT hash that will however be twice
as slow.

Cryptographic hash functions have been used for key derivation: assuming it be-
haves indistinguishably from a random function, a hash function is used to derive many
uncorrelated subkeys from a single seed key. Using a malleable hash function like the
Z'T hash in this application might create serious security threats. In order to certify
the use of our variant for this application, we tested its pseudo-randomness using the
Dieharder battery of tests [2]. Our variant passes these tests.

This paper is organized as follows. In Sections 2 and 3, we remind Zémor and Tillich
hash function and present our variant. In Section 4, we describe an implementation
of our construction and the algorithmic tricks we use to improve its efficiency. Section
5 discusses the pseudo-randomness of our construction and Section 6 concludes and
discusses work in progress and future improvements of our work.

2 The Zémor-Tillich hash function

We now describe the Zémor-Tillich hash function, following [12]. Let m = myma...my
be the bit string representation of the message to be hashed. Let P,(X) be an ir-

reducible polynomial of degree n and let Fyn = Fy/(P,(X)). Let Ay and A; be the

following matrices
X 1 X X+1
AO—(1 0) Al—(1 1)

Define the following mapping
VI {0, 1} — {Ao, Al}
0 — A(]
1 — Al.

The hashcode of m is just the matrix product
hzr(m) = w(mq)m(ms)...w(my)

where the arithmetic is made modulo P, (X)), that is in the field Fon. For a message
m of length k, computing hzr(m) seems to require k& matrix-by-matrix multiplications
but multiplying by Ag or A; can actually be done with only a few SHIFT and XOR
operations.

The security of ZT hash can be related to both algebraic and graph-theoretical
problems that we will not detail here [5,12]. Existing attacks against the ZT hash
function are either unpractical, giving long messages at the price of discrete logarithm
computations in Fo2. (8], or targeting particular weak parameters [6,11]. The largest
binary field where discrete logarithms have been computed is Fqeor, but as the colli-

sions produced in [8] have expected length 2% +2 we will not consider this attack as
practical even for n ~ 128. In particular in the rest of the paper we will consider
n = 127,251,509, 1021 and 2039 that are safe with respect to the attacks developed
in [6,11].

Although fundamentally unbroken in the sense of preimage and collision resistance,
the Zémor-Tillich hash function has two main security problems: it is malleable in
a sense we will explain below, and it is invertible when short messages are hashed.
The malleability property directly results from the design strategy of dealing with the
message bits one after the other. Given the hash h(m) of an unknown message m, the
hash value of any message x1||m||zs can easily be computed.

The invertibility for short messages was observed in [11]. When the message size k
is smaller than n, no polynomial reduction is performed. The hash value has the form

(2% 58 o (248 215

depending on whether the last message bit is 0 or 1 (the subscript indices are the degrees
of the polynomials). Consequently, an adversary can easily recover the message bits
one by one.

For particular polynomials with very sparse coefficients (like the polynomials in
Figure 1), the polynomial reductions change very few bits. For such polynomials we
observed that the hash values of large messages (up to a few times n-length) with long
sequences of bits 0 also have long sequences of bits 0, an artifact that can be seen both
as an additional malleability or as invertibility of larger message sets.

None of these weaknesses contradicts the preimage nor the collision resistance prop-
erty, because the formal definition of preimage resistance only requires the function to
be computationally non-invertible on randomly chosen inputs. However, ZT hash can
certainly not be used for some important applications of hash functions that require a
good random function. The variant of ZT hash that we present now solves the security
problems of the original function.

3 A variant of Zémor-Tillich

We propose to use the following hash function:
H(m) := hzp(mllo(hzz(m)))

where h(m) is the concatenation of the entries (1,1) and (1,2) of hzp(m) with

the same parameters n and P,(X), and o : {0,...2*" — 1} — {0,..22" — 1} : z —
x @ c. The parameter ¢ is some fixed constant whose bits “look like random”; in our
implementations c is the binary representation of pi.

The function hY5(m) corresponds to the first row of hzr(m). It can be com-
puted one bit at a time like hzp(m), and each matrix-by-matrix multiplication is
now replaced by a vector-by-matrix multiplication that is twice as fast. The func-

tion o is of course very efficient. The second instance of A%}, namely computing

weim||o(hys(m))) = hii(m)hzr(o(hYs(m))), only requires 2n additional vector-
by-matrices multiplications for the bits of o(h%s(m)). It is thus negligible for long

messages.

Like the original ZT hash, our variant can be related to both algebraic and graph-
theoretical problems, which are very close and partially equivalent to the original prob-
lems. We now argue on its non-malleability and its preimage resistance even for short
messages.

In the Zémor-Tillich hash function, the preimage problem is easy for messages of
length & < n because in that case no polynomial reduction is done, an effect amplified
for particular polynomials like those of Figure 1. However, the preimage problem for
7T hash is still believed to be hard if the input space is not restricted to some particular
message sets. Thanks to the function o, the bit string that is the input of the second
instance of hY%; does not belong to a weak preimage set. Consequently, it cannot be
inverted and neither can the whole function.

Now, consider a simple malleability issue present in both hzp and h%7, that is a

relation between the hash values of m and m’ = m||0:
if h%eze(m) = thhQ then h%efw(m') = (th + hg)”hl

Consider H(m) = hi5s(ml|lo(hys(m))). Although they are strongly correlated, the
hash values h(m) and hi(m') will differ in many bits in general, so o(hY5(m))
and o(hYs(m’)) will differ in many bits and H(m) and H(m’) will be completely
uncorrelated. Of course some particular values (m, m’) such that h%5(m) and h%5(m')
are very close, for example differ by only the last bit, but finding such a pair without
inverting h%5: already seems a hard problem. Moreover, any such m and m' will differ
in many bits, so again H(m) and H(m’) will be completely uncorrelated.

Considering more elaborated malleability relations involving for example the hash
values of more than one message, leads to the same conclusion: the hash function H

does not suffer from apparent malleability properties.

4 Efficiency of our hash function

We now show how to efficiently compute our function. We point out that all the

optimized parameters and algorithms we give are also applicable to the original ZT
hash.
The computational time of our hash function can be characterized as follows

t(m) = to * ko(m) + t1 * ky(m)

n Polynomial

127 X2+ X +1

251 XPl 4 X"+ X4+ X241

509 X509 - X® 4 X7+ X341

1021 X102 L X5 4 X2+ X 41

2039 | X209 £ X104 X9 4+ X8+ X"+ XP + X4+ X241

Figure 1: Irreducible polynomials that allow cheap modular reductions

where ¢; is the time needed to multiply by A; and k;(m) is the number of bits i in
mllo(hs(m)). Clearly t; >ty : we have

(avb)AO = (CLX + bu CL),
(a,0)A; = (aX +b,aX +a+Db),

so multiplying by Ag requires one multiplication by X and one addition in the field
Fon while multiplying by A; requires one addition more.

The arithmetic is in a field of characteristic 2 and is thus very efficient. In our
C implementation on a 32-bit processor, we represent an element a = a,_1 X" ! +
an—2X"? + a1 X + ag as an array A of L := [&] integers (L := [Z&] in 64-bit
architectures). An addition requires only L XORs, and a multiplication a by X requires
L SHIFTs and a polynomial modular reduction. The operations a X + b and a X + a
can be performed with L SXORs and a modular reduction.

In general a polynomial reduction would cost one TEST and L XORs, but for the
well-chosen parameters of Figure 1 we reduce this cost to a TEST instruction and two
XORs. For example, reducing by X102 + X5+ X2 4 X +1 amounts to testing whether
A[31] A 200000004 is equal to 0, and if not to compute A[31] = A[31] ® 20000000/ and
A[0] = A[0] @ 27h. For long messages, the TEST instruction will return 1 half of the
times. According to this analysis,

to = Ltsxor +txor +tresr + Co

Ltsxor

ti1 = L(txor+tsxor)+txor +tresr + Ci
L(txor + tsxor)

Q

Q

where Cy and (' are constant times needed to call the functions.

We obtain additional speedup by grouping the computation of consecutive message
bits. Indeed,

(a,0)AgAy = (aX*+bX +a,aX +b),

(a,b)AgA; = (aX?+bX +a,aX?*+aX +bX +a+b),
(a,b)A; Ag (aX? +aX +bX +a+b,aX +b),
(a,b)A1 A, = (aX?+aX +bX +a+b,aX?+bX +a).

The last product can be computed by computing first aX + b, then (aX +)X 4+ a =
aX? + bX + a and finally (aX? + bX + a) + (aX + b). The cost of this sequence of
instructions is at most

tn = L(txor+ 2tsxor) + 2txor + 2tresr + Ci
~ L(txor+ 2tsxor)

n No 2-bit 4-bit
grouping | grouping | grouping
127 122 114 121
251 159 153 156
209 251 244 238
1021 386 368 388
2039 699 655 686

Figure 2: Running time (seconds) of different algorithms for H with different parame-
ters

SHA Time
SHA-1 2.5
SHA-256 | 5.0
SHA-512 | 23.7

Figure 3: Running time (seconds) for the SHA family

which is about 25% smaller than 2t;. We generalized this approach to more matrix
groupings with the help of a computer program. More specifically, we wrote a Maple
program that

e Computes the vector-by-matrices product;

e Looks for the best data paths with respect to the operations a — aX, (a,b) —
aX + b and (a,b) — a+ b;

e Selects the very best data path according to an optimization function includ-
ing the computation times of individual operations and the number of registers
needed in a C implementation;

e Writes a C code computing the products.

The running time results for our function and SHA are shown at Figure 2 and 3.
All tests were performed on an 32-bit intel Q6600 quad processor running at 2.4 GHz,
with 2Go DDR2 Ram. The OS is Ubuntu running kernel 2.6.24. Test vectors for
performance evaluation were 500Mo random files generated using /dev/urandom.

The performances of our function should be further improved by using the multime-
dia sets of instructions available on processors. The computation time is linear in the
word size in the processor, so it should be roughly halved on a 64-bit word computer
(SHA-512 should also run faster).

5 Pseudorandomness

We now show that our hash function can be used to generate good sequences of pseudo-
random numbers. More specifically, we consider the bitstring sequences

si(H) = RO)HMIH2)].. 7 (9999)
sa(H) = H(0)[[H(H(0)[[H® (0)]].. HI**)(0)

for H = h%}, H = H, and give them as inputs to the Dieharder battery of tests of
pseudo-randomness [2].

Results for hf exhibit a high correlation in the outputs, with a Chi square distri-
bution exceeded only 0.01% of the time by a random value, for all the polynomials of
Figure 1.

gH seems to behave undistinguishibly from a random stream, as it passes successfully
all tests in the Dieharder suite, and exhibits good Chi square distribution results, with
values exceeded between 25 and 90% of the time.

6 Conclusion and Further Work

In this paper, we present a new provable cryptographic hash function that is twice
as fast as Zémor and Tillich hash function and has enhanced security properties. We
proposed optimal parameters and algorithms for both ZT hash and our construction,
and analyzed the pseudo-randomness properties of our function. A careful implemen-
tation of the hash function allows for performances within a factor 23 of SHA-256 for
an equivalent level of security (127 bit polynomial), and only 6.5 for SHA-512 (251
bit polynomial). Our hashing scheme H passes all tests in the ent and Dieharder test
suites without exhibiting any particular behavior.

Our function is very efficient (for a “provably secure” hash function) because it uses
the arithmetic of a binary field, but it is still slow for large parameters as intermediary
results have to be stored in large integer arrays. In a future work, we will investigate
how MMX instructions can partially solve this problem in software. We will also
implement the function on an FPGA, for which we expect a throughput of 800Mb/s
for 1024-bit parameters, only one half of the very best SHA-2 implementation. Finally,
the provable security aspects of our construction will be presented in an oncoming

paper.

Acknowledgment

Part of this work is supported by Belgian Interuniversity Attraction Pole P6/26 BCRYPT.
Christophe Petit is a research fellow F.R.S.-F.N.R.S. at UCL Crypto group, Univer-
sité catholique de Louvain. Nicolas Veyrat-Charvillon is a post-doctoral fellow at UCL
Crypto group, Université catholique de Louvain, supported by the Translogistic project
from the Walloon region.

References

[1] http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf.
[2] Dieharder. http://www.phy.duke.edu/ rgb/General/dieharder.php.

[3] FIPS 180-2 secure hash standard.

[4]

4] K. S. Abdukhalikov and C. Kim. On the security of the hashing scheme based on
SL2. In FSE ’98: Proceedings of the 5th International Workshop on Fast Software
Encryption, pages 93-102, London, UK, 1998. Springer-Verlag.

[5] D. X. Charles, E. Z. Goren, and K. E. Lauter. Cryptographic hash functions from
expander graphs. To appear in Journal of Cryptology.

[6] C. Charnes and J. Pieprzyk. Attacking the SL2 hashing scheme. In ASTACRYPT
'9/: Proceedings of the jth International Conference on the Theory and Applica-
tions of Cryptology, pages 322-330, London, UK, 1995. Springer-Verlag.

[7]

8]
[9]
[10]

[11]

[12]

[13]

[14]

S. Contini, A. K. Lenstra, and R. Steinfeld. VSH, an efficient and provable
collision-resistant hash function. In S. Vaudenay, editor, EUROCRYPT, volume
4004 of Lecture Notes in Computer Science, pages 165-182. Springer, 2006.

W. Geiselmann. A note on the hash function of Tillich and Zémor. In Fast Software
Encryption, pages 51-52, 1996.

V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen. Provably secure FF'T
hashing. In NIST 2nd Cryptogaphic Hash Workshop, 2006.

C. Petit, K. E. Lauter, and J.-J. Quisquater. Full cryptanalysis of LPS and Mor-
genstern hash functions. Preprint, 2008.

R. Steinwandt, M. Grassl, W. Geiselmann, and T. Beth. Weaknesses in the
SLy(Fan) hashing scheme. In Proceedings of Advances in Cryptology - CRYPTO
2000: 20th Annual International Cryptology Conference, 2000.

J.-P. Tillich and G. Zémor. Hashing with SLs. In Y. Desmedt, editor, CRYPTO,
volume 839 of Lecture Notes in Computer Science, pages 40-49. Springer, 1994.

X. Wang, Y. L. Yin, and H. Yu. Finding collisions in the full SHA-1. In V. Shoup,
editor, CRYPTO, volume 3621 of Lecture Notes in Computer Science, pages 17-36.
Springer, 2005.

G. Zémor and J.-P. Tillich. Collisions for the LPS expander graph hash function.
To appear in the proceedings of Advances in Cryptology - EUROCRYPT 2008,
2008.

