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Abstract. The Hidden Field Equation cryptosystem (HFE) is a public key encryption scheme whose
security relies on the hardness of solving a system of polynomial equations over the finite field F2.
This scheme and its generalizations have attracted a lot of attention by the cryptographic community.
It is known that HFE polynomial systems are much easier to solve than generic systems, and in fact
the parameters proposed in the original HFE cryptosystem can be broken in practice using Gröbner
basis algorithms. Several theoretical explanations have been provided for this property, but all of them
have so far relied on some plausible conjectures or heuristic assumptions. In this paper, we provide
a rigourous bound on the complexity of solving a general class of polynomial systems including HFE
systems. Our proof connects the polynomials constructed by Gröbner basis algorithms to the partial
computation results of the Successive Resultants Algorithm (SRA), a recently introduced algorithm
for finding roots of polynomials over finite fields. Besides, we provide a variant of SRA that may be of
independent interest. We believe that our approach could have further applications on similar systems
that were recently introduced in connection to the elliptic curve discrete logarithm problem over small
characteristic fields.

1 Introduction

The Hidden Field Equation (HFE) cryptosystem is a public key encryption scheme introduced by
Patarin at Eurocrypt’96 [19]. The security of HFE relies on the (supposed) hardness of solving
some systems of polynomial equations over the finite field F2, a problem that is known to be hard
for generic systems. Although the original HFE scheme has now been practically broken, several
of its generalizations and signature versions are still considered as secure today [6].The theoretical
study of HFE therefore remains of considerable interest, both from a theoretical point of view and
as a first step towards understanding the security of its generalizations.

Besides, recent works have unveiled important similarities between the polynomial systems
appearing in HFE cryptanalysis and the more general class of polynomial systems arising from a
Weil descent, appearing in index calculus attacks against the elliptic discrete logarithm problem
(ECDLP) over small characteristic fields or the discrete logarithm problem over small charac-
teristic fields, and in an algorithm to solve the factorization problem in the non-Abelian group
SL(2, 2n) [21,13,14]. Any new insight on HFE polynomial systems is likely to have an impact on
these important problems as well.

One of the most succesful cryptanalysis techniques against HFE cryptosystem has been the use
of generic Gröbner basis algorithms. It has been experimentally observed that these algorithms
perform much better on HFE systems than on generic systems [12]. More precisely, the degree of
regularity (a key parameter to estimate the complexity of Gröbner basis algorithms) appeared to be
much smaller for HFE systems than for generic systems with the same number of variables and the
same degrees. This experimental observation has been explained in several ways [15,8,7,1,21], but
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so far all the explanations have relied on some heuristic assumption or unproven conjecture. These
experimental results on HFE and some of these heuristic analyses have also been extended to the
more general class of polynomial systems arising from a Weil descent, covering all the applications
mentioned above [21].

1.1 Our Contributions

In this paper, we prove an upper bound d(p− 1)(logp deg f + 1)e+ 1 for the degree of regularity of
any system arising from the Weil descent of a monovariate polynomial f over Fpn . This proves a
conjecture of Petit and Quisquater [21] in the monovariate case and it implies a similar upper bound
for the degree of regularity of HFE systems. All our upper bounds on the degrees of regularity
imply upper bounds on the complexity of solving the corresponding systems.

Our proofs do not involve any heuristic assumption or unproven conjecture. Starting from a
polynomial system arising from a Weil descent, we first modify this system to obtain another system
of the form implicitely solved by the Successive Resultants Algorithm (SRA), a recently introduced
algorithm to compute the roots of a polynomial over Fpn [20]. We then study the behaviour of
Gröbner basis algorithms on the new system. We prove that the degree of regularity of the new
system is smaller or equal to the degree of regularity of the original system, and we relate the
polynomials that can be computed by Gröbner basis algorithms at degree d(p−1)(logp deg f+1)e+1
on the new system to the polynomials that are computed by SRA. Quite naturally, the proof
crucially relies on the way these particular systems are generated.

Besides closing a 10-year old conjecture on HFE [12], our proof brings new insights on poly-
nomial systems arising from a Weil descent in general, which could eventually lead to theoretical
or practical progress on other applications such as the elliptic curve discrete logarithm problem
in small characteristic fields. The variant of SRA that we introduce computes the squarefree split
part of a polynomial over Fpn , and may be of independent interest.

1.2 Outline

This paper is organized as follows. In Section 2, we recall background results on Gröbner basis
algorithms (Section 2.1), polynomial systems arising from a Weil descent (Section 2.2) and the
Successive Resultants Algorithm (Section 2.3). We then prove our main results in Section 3 (an
outline of the proof is provided at the beginning of that section). We conclude the paper in
Section 4.

2 Preliminaries

2.1 Gröbner basis algorithms

Let K be a field and let R := K[x1, . . . , xn] be a polynomial ring over K. For any g ∈ K, we
write LM(g,>) for the leading monomial of g with respect to the monomial ordering >, or simply
LM(g) when > is clear from the context. For any g1, . . . , g` ∈ R, we write I(g1, . . . , g`) for the
ideal generated g1, . . . , g`. We recall that a Gröbner basis [2,5] of an ideal I(g1, . . . g`) ⊂ R with
respect to an ordering > is a basis {g′1, . . . g′`′} of this ideal such that for any g ∈ I(g1, . . . g`), there
exists i ∈ {1, . . . , `′} such that LM(g′i)|LM(g).

Let gi ⊂ R, i = 1, . . . ,m and let S be the corresponding system of polynomial equations
g1(x1, . . . , xn) = g2(x1, . . . , xn) = . . . = gn(x1, . . . , xn) = 0. By solving S, we mean finding values
xi ∈ K such that all equations are satisfied. One of the main tools to solve polynomial systems
of equations are Gröbner basis algorithms. Indeed for a lexicographic ordering, a Gröbner basis is



made of a “triangular” set of equations {h1, . . . , hm′}, such that hi only depends on the variables
Xi ⊆ {x1, . . . , xn} and Xm′ ⊂ Xm′−1 ⊂ . . . ⊂ X1. The system can then be solved one variable at
the time, starting from xn.

In practice, it is usually more efficient to first compute a Gröbner basis for a degree reverse
lexicographic ordering, and then to convert this basis into a Gröbner basis for the lexicographic
ordering using an algorithm such as FGLM [11]. When the number of solutions is small, the
comparative cost of the second step is negligible. We focus on the first step in this paper, namely
the computation of a degree reverse lexicographic ordering Gröbner basis.

The key idea behind all Gröbner basis algorithms is linearization. These algorithms systemat-
ically construct new polynomials

hij := migj

where mi is a monomial in R and the degree of hij is bounded by some d. The coefficients of the
polynomials hij are then encoded into a Macaulay matrix, one row per polynomial and one column
per monomial term. Finally, linear algebra is performed on the rows of the matrix, with the goal
of obtaining new polynomials (by construction, algebraic combinations of the original ones) with
lower degrees. If d is large enough, this process will finish and produce a set of equations containing
a Gröbner basis.

If K is a finite field Fq for some “small” q, the whole approach is applied to an augmented
system including the field equations xqi − xi = 0.

Fast Gröbner basis algorithms such as F4 or F5 [9,10] progressively increase the degree d.
After generating all polynomials up to a certain degree d (except for obvious linear dependencies),
they perform a partial linear algebra step at this degree. If new polynomials of lower degrees are
obtained, these polynomials are in turn multiplied by monomials to obtain new polynomials at
degre d, etc. If this process finishes at degree d without providing a system from which a Gröbner
basis can be extracted, the degree is increased by one. New polynomials are then added to the
system, etc.

A simple Gröbner basis algorithm following these lines is described in Algorithm 1. In compar-
ison, better algorithms such as F4, F5 and XL2 [9,10,4] may include strategies to avoid repetitions
and trivial linear combinations. We point out that some Gröbner basis algorithms do not create any
new polynomials from the small degree polynomials found during the computation [18,3]. These
linearization algorithms à la Lazard are conceptually simpler but also less efficient. In this paper,
a Gröbner basis algorithm will always refer to an algorithm such as Algorithm 1 that does take
advantage of low degree polynomials encountered during the computation. This is for example the
case of F4, F5 and XL2.

Algorithm 1 Simple Gröbner basis algorithm for degree reverse lexicographic ordering

1: S ← {g1, . . . , gn}
2: d← max{deg gi}
3: r ← n
4: repeat
5: S ← {hij := mjgi| deg hij ≤ d, mj is a monomial, gi ∈ S}
6: Linearize the set S, eliminating terms with the highest degrees first
7: if #S = r then
8: d← d + 1
9: else

10: r ← #S
11: end if
12: until S contains a Gröbner basis



The cost of Gröbner basis algorithms is mostly determined by the cost of linear algebra on

Macaulay matrices. This cost is O
((

n+d−1
k

)ω)
operations over K, where ω < 3 is the linear

algebra constant and d is the degree of regularity of the system, which is the largest degree reached
during the computation. It can be approximated by O(nωd) if d is small compared to n. For random
systems of n polynomials in n variables with degrees d1, . . . , dn, the degree of regularity is expected
to be d =

∑n
i=1(di−1)+1. However, polynomial systems with particular structures can have much

lower degrees of regularity, and can therefore be much easier to solve in practice.

2.2 Polynomial systems arising from a Weil descent

Let now K := Fpn where p is a “small” prime and n is a natural number. Let R := K[x1, . . . ,m].
The field K is a vector space of dimension n over Fp. Let V ⊂ K be a subspace of dimension
n′ ≈ n/m, and let f ∈ R with degree bounded by pt − 1 in each variable. The following problem
was introduced by Faugère, Perret, Petit and Renault in [13,14]:

Find xi ∈ V such that f(x1, . . . , xm) = 0.

This problem has several applications in cryptography, to the factorization problem in SL(2,F2n) [13],
to HFE cryptosystem [19,21] and to index calculus algorithms for the discrete logarithm problem
and the elliptic curve discrete logarithm problem over finite fields of small characteristic [14,21].

In [13,14,21], the above problem was reduced to a polynomial system over Fp via a Weil descent
as follows. First, two bases {θ1, . . . , θn} and {v1, . . . , vn′} are fixed for Fpn and V over Fp. Then,

mn′ variables xi,j over Fp are introduced such that xi =
∑n′

j=1 xijvj . To model the constraints
xi ∈ V , these expressions are used to substitute the variables xi in f , and the resulting equation
is decomposed with respect to the basis {θ1, . . . , θn}. We thereby obtain a polynomial system

[f ]↓1 (x1, . . . , xn) = 0, . . . , [f ]↓n (x1, . . . , xn) = 0 (1)

of n equations in mn′ variables over Fp, with degrees bounded by mt [14,21].
A particular and modified version of these systems appears in the cryptanalysis of the Hidden

Field Equation (HFE) cryptosystem [19]. In that context, V := Fpn (the whole field), m = 1
(monovariate case) and f is a secret polynomial of the particular form

f(x) =
∑

pi+pj≤D

fijx
pi+pj +

∑
pi≤D

fix
pi + f0

for some f0, fi, fij ∈ Fpn . The Weil descent of f is “hidden” by two secret linear bijections L1 and L2

to form a public set of polynomials gj such that g1(x1, . . . , xn) := L2◦[f ]↓1◦L1(x1, . . . , xn), . . . , gn(x1, . . . , xn) :=

L2◦[f ]↓n◦L1(x1, . . . , xn). An attacker against HFE cryptosystem is given some ciphertext (c1, . . . , cn) ∈
(Fp)

n and must find xi ∈ Fp such that cj = gj(x1, . . . , xn) for all j. It has long been observed that
the two secret linear transformations do not influence the efficiency of a Gröbner basis attack on
this system [12,15].

Two decades of research on HFE cryptosystem and its variants have provided strong evidence
that the degrees of regularity of HFE systems are O(log deg f), implying that the Gröbner basis
attack on HFE is quasipolynomial. However, the various “proofs” of this result all rely on some
heuristic assumption,1 like the close equality of the first fall degree and the degree of regular-
ity [8,7,21], generic behaviour of some subsystem of HFE system [15] or a variant of Fröberg’s
conjecture [1].

1 We stress that because of a terminology confusion due to the interaction of two different communities, some
statements on the “degree of regularity” in the literature actually refer to the “first fall degree”, hence they
require a heuristic assumption to imply complexity bounds on the resolution of the systems (see [21]).



For generic polynomial systems arising from a Weil descent, the degree of regularity was con-
jectured to be close to mt + 1 when p = 2 by Petit and Quisquater [21]. For larger p values, a
generalization of their analysis would approximate the degree of regularity by (p− 1)mt+ 1. Both
approximations rely on the close equality of the first fall degree and the degree of regularity, which
was verified in practice for small parameters [21,17,22].

2.3 The Successive Resultants Algorithm (SRA)

For any basis {v1, . . . , vn} of Fpn over Fp, we can recursively define n+ 1 functions L0, L1, . . . , Ln

from Fpn to Fpn such that L0(x) = x and Li(x) =
∏

c∈Fp
Li−1(x − cv1) for i > 0. It is easy

to prove [20] for all i that the function Li is linear, that it evaluates to zero at exactly all the
elements of the vector space 〈v1, . . . , vi〉 and that we have Li(x) = Li−1(x)p − aiLi−1(x) where
ai := (Li−1(vi))

p−1.
Let now f be a monovariate polynomial over Fpn . It is easy to check that solving the system

f(x1) = 0

xpj − ajxj = xj+1 j = 1, . . . , n− 1

xpn − anxn = 0

(2)

is equivalent to solving the equation f(x) = 0 with x ∈ Fpn .
The Successive Resultants Algorithm (SRA) uses the quasi-diagonal structure of this system

to efficiently solve f with resultants. Let f (1) := f . In the first step of SRA, the polynomials

f (j+1)(xj+1) = Resxj

(
f (j)(xj), xj+1 − (xpj − ajxj)

)
are successively computed for j = 1, . . . , n − 1. It can be shown [20] that each polynomial f (j)

has the same degree as f and only depends on the variable xj . In the second step of SRA, the
polynomial

g(n)(xn) := gcd
(
f (n)(xn), xpn − anxn

)
.

and the set Sn := {x̂n|g(n)(x̂n) = 0} are first computed. Then for j = n, . . . , 2, the polynomials

g(j−1)(xj−1) := gcd
(
f (j−1)(xj−1), x̂n − (xpj−1 − aj−1xj−1)

)
are computed for all x̂j ∈ Sj , all roots of all these polynomials are computed, and a new set Sj−1
is formed that contains all these roots. It can be shown [20] that each polynomial g(j−1)(xj−1) is
split with degree at most p, that each set Sj contains at most deg f elements, and that the set S1
eventually contains all the solutions of the equation f(x) = 0, x ∈ Fpn .

3 Bounding HFE with SRA

We are now ready to prove our results. In Section 3.1, we provide a preliminary result on the
behaviour of Gröbner basis algorithms on polynomial systems that include some “field equations”.
In Section 3.2, we bound the degree of regularity of System (1) by the degree of regularity of (a
slight modification of) System 2. We then focus on that new system. In Section 3.3, we essentially
prove that all the polynomials computed in the first step of SRA can also be computed by a
Gröbner basis algorithm without increasing the degree above our upper bound. When the system
has at most one solution, we then prove in Section 3.3 that this solution can also be computed by



a Gröbner basis algorithm without increasing the degree above our upper bound, essentially by
following the second step of SRA. Finally in Section 3.5, we generalize our proof to any monovariate
polynomial over Fpn , using a variant of SRA that we introduce.

We insist that our proofs only hold for Gröbner basis algorithms like Algorithm 1, taking
advantage of low degree polynomials found to construct further polynomials (this is the case for
F4 and F5). In particular, they do not apply to linearization Gröbner basis algorithms à la Lazard
such as XL in its basic version [18,3].

3.1 Field Equations and Gröbner Basis Computations

Our proof involves polynomial systems including either the equations R1 := {xpi −xi|i = 1, . . . , n},
or the equations R2 := {ypi − yi+1 = 0|i = 1, . . . , n − 1} ∪ {ypn − y1 = 0}, or the equations
R3 := {xpj − ajxj = xj+1|j = 1, . . . , n − 1} ∪ {xpn − anxn = 0} where the ai values are as in
Section 2.3. With an abuse of terminology, we will call all these equations “field equations”.

We define the map ϕ : Fpn [y1, . . . , yn]→ Fpn [y1, . . . , yn] as the “reduction modulo the equations
ypi −yi+1 = 0”. More precisely for any g ∈ Fpn [y1, . . . , yn], ϕ(g) is the normal form of g with respect
to the ideal generated by the polynomials of R2, for a graded reverse lexicographic ordering of
the monomials. We also define the map φ : Fpn [x1, . . . , xn] → Fpn [x1, . . . , xn] as the “reduction
modulo the equations xi− (xpi−1− ai−1xi−1) = 0”. More precisely for any g ∈ Fpn [x1, . . . , xn], φ(g)
is the normal form of g with respect to the ideal generated by the polynomials pf R3, for a graded
reverse lexicographic ordering of the monomials. Clearly, images of polynomials by either φ and ϕ
have degrees at most p− 1 with respect to all variables.

We first prove the following result:

Lemma 1. Let f, h be monovariate polynomials over Fpn. Let S := {φ(f(x1)) = 0}∪R3. Starting
from this system, the polynomial φ(h(x1)f(x1)) can be computed by a Gröbner basis algorithm at
degree at most (p− 1)dlogp(deg h+ deg f)e+ 1.

Proof. It is sufficient to prove the lemma for all monomials h. We proceed by induction on deg h. If
deg h = 0, there is nothing to prove. The polynomial φ(xi1f(x1)) has degree (p−1)dlogp(i+deg f)e.
Let us assume by induction that it can be computed at degree (p − 1)dlogp(i + deg f)e + 1.
Then the polynomial x1φ(xi1f(x1)) can be computed at the same degree. Finally, the polyno-
mial φ(xi+1

1 f(x1)) can be obtained by “reducing x1φ(xi1f(x1)) modulo the equations xi − (xpi−1 −
ai−1xi−1) = 0”, which corresponds to adding an algebraic combination of these equations:

φ(xi+1
1 f(x1)) = x1φ(xi1f(x1)) +

n−1∑
j=1

hi(x1, . . . , xn)(xpj − ajxj − xj+1) + hn(x1, . . . , xn)(xpn − anxn)

for some polynomials hi, hn with degrees smaller or equal to (p − 1)dlogp(i + deg f) − 1e. This
operation can be “blindly” performed by a Gröbner basis algorithm without increasing the degree.
This shows that φ(xi+1

1 f(x1)) can be computed at degree (p − 1)dlogp(i + deg f)e + 1 ≤ (p −
1)dlogp(i+ 1 + deg f)e+ 1, and it concludes the proof.

Similarly, we have

Lemma 2. Let f, h be monovariate polynomials over Fpn. Let S := {ϕ(f(x1)) = 0}∪R2. Starting
from this system, the polynomial ϕ(h(x1)f(x1)) can be computed by a Gröbner basis algorithm at
degree at most (p− 1)dlogp(deg h+ deg f)e+ 1.



3.2 From HFE to SRA Systems

We now argue that the degree of regularity of HFE systems can be bounded by the degree of
regularity of (the image by φ of) System (2). We first define a notion of equivalent systems of
equations.

Definition 1. We say two polynomials systems {fi(x1, . . . , xn) = 0|i = 1, . . . ,m} and {gi(x1, . . . , xn) =
0|i = 1, . . . ,m} defined over a finite field K are equivalent over K if there exists two linear permu-
tations L1 : Kn → Kn and L2 : Km → Km such that fi(x1, . . . , xn) = L2 ◦ (gi) ◦ L1(x1, . . . , xn).

Equivalent systems of equations have the same degree of regularity, simply because any algebraic
combination of the equations of one system leads to a similar algebraic combination with the same
degrees in the other system.

Lemma 3. Let f be a polynomial defined over Fpn and let [f ]↓i be the polynomials resulting from
its Weil descent for an arbitrary basis. Let L1 and L2 be two permutations of (Fp)

n. Then any
system {

gi(x1, . . . , xn) := L2 ◦ ([f ]↓i ) ◦ L1(x1, . . . , xn) = ci i = 1, . . . , n

xpi − xi = 0 i = 1, . . . , n.
(3)

is equivalent over Fpn to a system with the form
ϕ(fp

i−1
(yi)) = cp

i−1
i = 1, . . . , n

ypi − yi+1 = 0 i = 1, . . . , n− 1

ypn − y1 = 0.

(4)

Proof. This follows from Granboulan et al. [15], Section 4. Starting from System 3, the two per-
mutations L1 and L2 can first be eliminated to lead to an equivalent system{

[f ]↓i (x1, . . . , xn) = di i = 1, . . . , n

xpi − xi = 0 i = 1, . . . , n
(5)

where di ∈ Fp. Moreover, up to two additional permutations of the variables and the equations,

we can assume that the basis chosen for the Weil descent is a normal basis {θ, θp, . . . , θpn−1}. We
then apply a linear change of variables yi :=

∑n
j=1 xjθ

pi+j−1
to this system. Note that “modulo

the field equations”, we have y1 = x, y2 = xp, y3 = xp
2
, etc. A linear change of equations∑n

j=1 θ
pi+j−1

(xpj − xj) leads to ypn − y1 = 0 and to ypi − yi+1 = 0 for i = 1, . . . , n− 1. A final linear

change of equations fi :=
∑n

j=1 [f ]↓j θ
pi+j−1

leads to the equations ϕ(f), ϕ(fp), ϕ(fp
2
), etc. Note

that all these transformations are invertible.

Lemma 4. The degree of regularity of System (4) is bounded by the degree of regularity of the
truncated system {

ϕ(f(y1)) = c

ypi − yi = 0 i = 1, . . . , n.
(6)

Conversely, the degree of regularity of System (6) is bounded by the maximum of d(p−1)(logp deg f+
1)e+ 1 and the degree of regularity of System (4).



Proof. We first note that the equations removed in System (6) are algebraically redundant in
System (4). Indeed, the equation f(y2) = cp follows from

f(y1)− c = 0⇒
(

(f(y1))
p−1 + c (f(y1))

p−2 + c2 (f(y1))
p−3 + . . .+ cp−1

)
(f(y1)− c) = 0

⇒ (f(y1))
p − cp = fp(yp1)− cp = fp(y2)− cp = 0.

All the polynomials involved in these relations have degrees smaller than p deg(f). By Lemma 2,
the same relations can be computed “modulo the field equations ypi − yi−1” with polynomials of
degree at most d(p− 1)(logp deg f + 1)e+ 1.

Proceeding recursively with at most n− 1 steps at degree d(p− 1)(logp deg f + 1)e+ 1, (linear
combinations of) all equations of System (4) will be recovered if we compute algebraic multiples
of System (6) with a Gröbner basis algorithm.

Lemma 5. System (6) is equivalent over Fpn to the system
φ(f(x1)) = c

xpj − ajxj = xj+1 j = 1, . . . , n− 1

xpn − anxn = 0

(7)

where the ai values are as in Section 2.3.

Proof. This follows from the linear change of variables xi := Li−1(y1) and from Lemma 1 in [20].

We deduce the following Proposition:

Proposition 1. The degree of regularity of System (3) is not larger than the degree of regularity
of System (7).

In the next sections, we will bound the degree of regularity of System (7).

3.3 SRA First Step

We now show that the images by φ of all the polynomials computed in the first step of SRA
can also be computed “blindly” by Gröbner basis algorithms without increasing the degree above
d(p− 1)(logp deg f + 1)e+ 1.

Lemma 6. Let f (i) be the polynomials computed by SRA. Starting from System (7), all the polyno-
mials φ(f (i)) can be computed by a Gröbner basis algorithm at degree at most d(p− 1)(logp deg f +
1)e+ 1.

Proof. 2 Since f (2)(x2) = Resx1(f(x1), x2− (xp1−a1x1)), there exist two polynomials h(x1, x2) and
g(x1, x2) such that

f (2)(x2) = h(x1, x2)f(x1) + g(x1, x2)(x2 − (xp1 − a1x1)).

Defining h1(x1) := h(x1, x
p
1 − a1x1), we deduce

f (2)(xp1 − a1x1) = h1(x1)f(x1) (8)

and deg h1 = p deg f (2) − deg f = (p − 1) deg f . By Lemma 1, the polynomial φ(f (2)(x2)) can
therefore be computed by a Gröbner basis algorithm at degree at most d(p − 1)(logp deg f +
1)e + 1. The argument can then be repeated recursively. There exists a polynomial of degree
(p− 1) deg f (2) = (p− 1) deg f such that multiplying this polynomial by f (2)(x2) leads to f (3)(x3),
etc. After n− 1 steps at degree at most d(p− 1)(logp deg f + 1)e+ 1, the Gröbner basis algorithm

will have computed all polynomials φ(f (i)(xi)).

2 Proof corrected with the help of Timothy Hodges.



3.4 SRA Second Step, Single Root Case

We now temporarily assume that the polynomial f has at most one root. The general case will be
considered in the next section.

When f has at most one solution, the only operations occuring in the second step of SRA are
gcd computations. We therefore have

Lemma 7. Let f (j), g(j) be the polynomials computed by SRA. If the polynomial f has at most
one solution, then φ(f (j)) and g(j) can be computed by Gröbner basis algorithms at degree d(p −
1)(logp deg f + 1)e+ 1.

Proof. We have already seen that a Gröbner basis algorithm can compute φ(f (n)) at degree d(p−
1)(logp deg f + 1)e + 1. Because it is “reduced modulo the equation xpn − anxn”, the polynomial

φ(f (n)(xn)) is a polynomial in xn only, with degree at most p− 1. By definition, we have

g(n)(xn) = gcd(f (n)(xn), xpn − anxn) = gcd(φ(f (n)(xn)), xpn − anxn).

Following Euclide’s algorithm for the computation of gcds, the polynomial g(n)(xn) can be com-
puted at degree p.

If f has exactly one solution, then f (n) has exactly one solution too, hence g(n) is a polynomial
of degree 1 that we can assume monic: g(n)(xn) := xn−x̂n where x̂n ∈ Fpn is the unique root of f (n).
From this polynomial and the polynomial xn− (xpn−1− an−1xn−1), a Gröbner basis algorithm can
compute a new polynomial x̂n − (xpn−1 − an−1xn−1). Similarly by adding an appropriate algebraic

multiple of g(n)(xn) to the already computed φ(f (n−1)(xn−1)), a Gröbner basis algorithm will
obtain a new polynomial

f̂n−1(xn−1) = φ(f (n−1)(xn−1)) mod (xn − x̂n)

of degree at most p− 1 in xn−1. By definition, we have

g(n−1)(xn−1) = gcd
(
f (n−1)(xn−1), x̂n − (xpn−1 − an−1xn−1)

)
= gcd

(
f̂ (n−1)(xn−1), x̂n − (xpn−1 − an−1xn−1)

)
,

which for the same reasons as above has degree 1 and can be computed at degree p. All the
operations so far can be done by Gröbner basis algorithms without increasing the degree above
the degree of the polynomials that were already computed. Proceeding recursively, we see that
a Gröbner basis algorithm can recompute all the polynomials g(i) without increasing the degree
above d(p− 1)(logp deg f + 1)e+ 1.

If f has no solution, then f (n) has no solution either, hence g(n) = 1. The other g(i) are all equal
to 1, and can equally be computed without increasing the degree above d(p−1)(logp deg f+1)e+1.

When f has no root, Gröbner basis algorithms will find the polynomial 1 and return the
Gröbner basis {1}. When f has exactly one root, then all g(i)(xi) are linear polynomials, hence
they form a Gröbner basis of System (7) for any ordering. Therefore if the polynomial f has at
most one root, a Gröbner basis algorithm will complete its computation without increasing the
degree above d(p− 1)(logp deg f + 1)e+ 1.



3.5 Degree of Regularity in the General Case

When f has more than one root, SRA’s second step may include some factorization steps of
some polynomials g(i), whereas Gröbner basis algorithms do not include partial factorizations as
subroutines. To analyze the behaviour of Gröbner basis algorithms when f has several roots, we
first introduce a variant of SRA. This variant does not include any factorization routine, but on
the other hand it only returns the splitting part of f (removing all non linear factors) without
explicitly returning the roots.

The first step of our variant is identical to SRA. In the second step, we first compute

ĝ(n)(xn) := gcd
(
f (n)(xn), xpn − anxn

)
in the same way as g(n) is computed in SRA. However instead of factoring g(n) at this point, we
successively compute ĝ(j) for j = n− 1, . . . , 1 as

ĝ(j−1)(xj−1) := gcd
(
f (j−1)(xj−1), ĝ

(j)(xpj−1 − aj−1xj−1)
)
.

By the properties of resultants and gcds, the factorization of each polynomial ĝj only contains
linear terms corresponding to the solutions of f (j)(xi) = 0. In particular, ĝ(1) is the squarefree split
part of f .

Lemma 8. Let f (j), ĝ(j) be the polynomials computed by our variant of SRA. The polynomials
φ(f (j)) and φ(ĝ(j)) can be computed by Gröbner basis algorithms at degree d(p − 1)(logp deg f +
1)e+ 1.

Proof. By Lemma 6, a Gröbner basis algorithm can compute φ(f (n)) at degree d(p−1)(logp deg f+

1)e + 1. We also showed that the polynomial φ(ĝ(n)(xn)) can be computed at the same degree

in the proof of Lemma 7. By elementary division, there exist polynomials r
(n−1)
1 , q

(n−1)
1 with

deg r
(n−1)
1 < pdeg ĝ(n) such that

r
(n−1)
i (xn−1) = f (n−1)(xn−1) + q

(n−1)
1 (xn−1)ĝ

(n)(xpn−1 − an−1xn−1).

By Lemma 1, the polynomial φ
(
q
(n−1)
i (xn−1)ĝ

(n)(xpn−1 − an−1xn−1)
)

= φ
(
q
(n−1)
i (xn−1)ĝ

(n)(xn)
)

can be computed at the same degree, hence so can the polynomial φ
(
r
(n−1)
i (xn−1)

)
. Similarly by

following the Euclidean algorithm, a Gröbner basis algorithm can eventually compute φ(ĝ(n−1)(xn−1))
without increasing the degree. All the polynomials φ(ĝ(j)) can then be recovered similarly.

We remark that the knowledge of φ(ĝ(1)) essentially gives us a Gröbner basis of System (7) for
a lexicographical ordering with xn > xn−1 > . . . > x1. Indeed this basis is trivially given by

{ĝ(1)(x1)} ∪ {xpj − ajxj − xj+1|j = 1, . . . , n− 1} ∪ {xpn − anxn}.

We now prove that a degree reverse lexicographic oredring Gröbner basis can also be computed at
the degree d(p− 1)(logp deg f + 1)e+ 1 (irrespectively of the particular degree ordering chosen).

Proposition 2. Let f be a monovariate polynomial over Fpn. The degree of regularity of Sys-
tem (7) is bounded by d(p− 1)(logp deg f + 1)e+ 1.



Proof. Let D := d(p− 1)(logp deg f + 1)e+ 1 and let I be the ideal generated by the equations of
System (7). We show that any polynomial of degree less than or equal to D in I can be computed
at degree D.

For convenience, let us define
sj,ej := φ

(
x
ej
j ĝ

(j)(xj)
)

0 ≤ ej < (p deg ĝ(j+1) − deg ĝ(j)), 1 ≤ j < n,

sn,en := φ
(
xenn ĝ

(n)(xn)
)

0 ≤ en < p,

εj := xpj − ajxj − xj+1 1 ≤ j ≤ n− 1,

εn := xpn − anxn.

Since deg g(j) ≤ deg f , all the polynomials sj,ej have degree at most B − 1. By Lemma 8, the

polynomials φ
(
ĝ(j)(xj)

)
can be computed at degree D. By Lemma 1, all the polynomials sj,ej can

also be computed at that degree.

Since ĝ(j−1)(xj−1) = gcd
(
f (j−1)(xj−1), ĝ

(j)(xpj−1 − aj−1xj−1)
)

, there exist polynomials h(j) of

degrees at most pj−1 deg ĝ(j) − deg ĝ(1) such that

ĝ(j+1)(Lj(x1)) = h(j)(x1)ĝ
(1)(x1). (9)

where the polynomials Lj are as defined in Section 2.3.

Let us now consider an arbitrary polynomial u ∈ I. We have

u(x1, . . . , xn) = v(x1)ĝ
(1)(x1) +

n−1∑
j=1

qj(x1, . . . , xn)(xpj − ajxj − xj+1) + qn(x1, . . . , xn)(xpn − anxn)

for some monovariate polynomial v and some polynomials qj . By successive divisions of v by h(n),
h(n−1), etc, we can write

v(x1) = v(n+1)(x1)h
(n)(x1) + v(n)(x1)h

(n−1)(x1) + . . .+ v(2)(x1)h
(1)(x1) + v(1)(x1)

with deg v(j) < deg h(j) ≤ pj−1 deg ĝ(j) − deg ĝ(1). Successively reducing u by ε1, ε2, up to εn
amounts to computing φ(u). By Equation (9) and the bounds on deg v(j) we have

φ(u) =
∑
j

φ
(
v(j)(x1)h

(j)(x1)g
(1)(x1)

)
=
∑
j

∑
ej

qj,ej (x1, . . . , xj−1)φ
(
x
ej
j g

(j)(xj)
)

=
∑
j

∑
ej

qj,ej (x1, . . . , xj−1)sj,ej

for some polynomials qj,ej with degrees respectively bounded by (p− 1)(j − 1).

Let now u ∈ I such that deg φ(u) ≤ B. If the leading term of each term qj,ejsj,ej is bounded
by B, we are done. Otherwise, there must be at least one cancellation between two leading terms
with degree larger than B in the sum. Since deg v(1)g(1) < pdeg g(2), such a cancellation may not
involve any polynomial s1,e1 “of the first block”. Let us first assume it involves one polynomial
s2,e2 in the second block, and let sj,ej (j > 1) be the other polynomial involved in this cancellation.
The polynomials q2,e2 and qj,ej may be rewritten as

q2,e2 =
∑

0≤e1≤p−1
xe11 q2,e2,e1(x2), qj,ej =

∑
0≤e1≤p−1

xe11 qj,ej ,e1(x2, . . . , xj−1).



The cancellation necessarily involves terms with the same value of e1. For this value of e1, we have

LM(xe11 q2,e2,e1(x2)) = LM(xe11 qj,ej ,e1(x2, . . . , xj−1))

where the two polynomials both have degrees larger than B but an appropriate linear combination
of them has degree lower or equal to B.

We argue that the linear combination can be computed without increasing the degree above
B (even though each polynomial has some terms with degree larger than B). Indeed, a Gröbner
basis algorithm can first compute the corresponding linear combination between q2,e2,e1 and qj,ej ,e1
without the xe11 factors. The bound on deg v(2) tranlates into a bound on deg q2,e2,e1 that ensures
that this will be possible at degree B. The degree of this linear combination is strictly lower than the
original one (including the xe11 factor) by e1. Once this linear combination has been computed, the
Gröbner basis algorithm can then compute the linear combination involved in φ(u) by multiplying
by xe11 . We have therefore shown that any algebraic combination of the equations sj,ej with degree
bounded by B and involving a cancellation of a leading term in the first or second blocks can be
computed at degree B (even if the corresponding polynomials in the above decomposition of φ(u)
involve some terms with larger degrees). We proceed similarly with the other blocks to obtain the
result.

We deduce the following result:

Proposition 3. Let f be a monovariate polynomial over Fpn. The degree of regularity of any
polynomial system arising from its Weil descent is at most d(p− 1)(logp deg f + 1)e+ 1. The same
bound also holds if the system is “hidden” by two bijective linear transformations of variables and
equations (as in HFE).

4 Conclusion and Open Problems

In this paper, we provided a rigourous upper bound on the degree of regularity of polynomial
systems arising from a Weil descent of a monovariate polynomial f over the finite field Fpn . This
proves a conjecture of Petit-Quisquater [21] in the monovariate case, and implies that Gröbner
basis algorithms have a quasi-polynomial complexity on this type of systems. We also definitely
established similar complexity results on HFE cryptosystems. Although these results have been
suspected for more then ten years [12], they have only been “proved” under plausible conjectures
or heuristic assumptions so far [15,8,7,1].

In contrast, the proof we presented here holds independently of any heuristic assumption or
unproven conjecture. Our approach is radically different from previous ones. The main steps of our
proof are heavily connected to (a variant of) SRA, a recently introduced algorithm for finding roots
of polynomial equations over an extension field [20]. Not surprisingly, the proof greatly relies on
the way these particular systems are generated, from a single polynomial over Fpn to a polynomial
system over Fp. As an additional advantage, the connection to SRA makes our proof completely
constructive in contexts were the original polynomial is known. We believe that our variant of SRA
is of independent interest.

This paper leaves several more general problems open. Most importantly, an extension of our
proof to polynomial systems arising from a Weil descent on a multivariate polynomial over Fpn

would be an extremely interesting result. In particular, it would prove that the elliptic curve discrete
logarithm over small characteristic fields can be solved in subexponential time, as conjectured
in [21]. Another interesting open problem is to consider how the particular structure of some
polynomials over Fpn (besides their degrees) may potentially affect the degree of regularity of their



Weil descent. In particular in the case of HFE polynomials, currently known bounds on the first
fall degree [16] as well as experimental results [12] suggest that our upper bound may overestimate
the degree of regularity by a factor roughly 2. It will be very interesting to extend our approach
to derive better unconditional bounds in this context.

Acknowledgements The author would like to Tim Hodges for carefully reviewing this paper, for
pointing out to us an error in a previous version, and for a hand in the proof of Lemma 6.
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using Gröbner bases. In Dan Boneh, editor, CRYPTO, volume 2729 of Lecture Notes in Computer Science, pages
44–60. Springer, 2003.

13. Jean-Charles Faugère, Ludovic Perret, Christophe Petit, and Guénaël Renault. New subexponential algorithms
for factoring in SL(2, 2n). Cryptology ePrint Archive, Report 2011/598, 2011. http://eprint.iacr.org/.

14. Jean-Charles Faugère, Ludovic Perret, Christophe Petit, and Guénaël Renault. Improving the complexity of
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