
UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 1

One-time trapdoor one-way functions

Julien Cathalo1 and Christophe Petit2

1 Smals 2 UCL Crypto Group

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 2

Trapdoors in cryptography

I One-way function (OWF)
I Easy to compute but hard to invert

x f (x)

easy

hard

I Trapdoor one-way function (TOWF)
I Can be inverted with the help of a trapdoor
I Useful for public key cryptography :

public key encryption, digital signatures,...

I In general, a trapdoor gives some power to its holder

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 2

Trapdoors in cryptography

I One-way function (OWF)
I Easy to compute but hard to invert

x f (x)

easy

hard

I Trapdoor one-way function (TOWF)
I Can be inverted with the help of a trapdoor
I Useful for public key cryptography :

public key encryption, digital signatures,...

I In general, a trapdoor gives some power to its holder

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 3

RSA and Rabin TOWF

I Oldest and most famous TOWF [RSA78,R79]

f : Z∗n → Z∗n : x → xe mod n

RSA and Rabin differ in the choice of e

I One-way if n = pq, p and q large primes, and 1 < e < n

I Trapdoor : given p, q we can invert f

I Can we use the trapdoor and keep it secret ?
Does inverting f reveal p, q ?

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 3

RSA and Rabin TOWF

I Oldest and most famous TOWF [RSA78,R79]

f : Z∗n → Z∗n : x → xe mod n

RSA and Rabin differ in the choice of e

I One-way if n = pq, p and q large primes, and 1 < e < n

I Trapdoor : given p, q we can invert f

I Can we use the trapdoor and keep it secret ?
Does inverting f reveal p, q ?

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 3

RSA and Rabin TOWF

I Oldest and most famous TOWF [RSA78,R79]

f : Z∗n → Z∗n : x → xe mod n

RSA and Rabin differ in the choice of e

I One-way if n = pq, p and q large primes, and 1 < e < n

I Trapdoor : given p, q we can invert f

I Can we use the trapdoor and keep it secret ?
Does inverting f reveal p, q ?

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 4

Leaking trapdoors

I Suppose Bob has a trapdoor.
Alice chooses x , sends y = f (x) to Bob.
Bob uses the trapdoor to compute x ′ such
that f (x ′) = y . Bob sends x ′ to Alice.

f (x)

x ′

I RSA :
I gcd(e, ϕ(n)) = 1
I f : x → xe mod n is bijective
I x ′ = x so x ′ does not leak anything

I Rabin :
I f : x → x2 mod n is four to one
I x ′ = xε where ε2 = 1 mod n (there are 4 values)
I If ε 6= ±1, the trapdoor is leaked

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 4

Leaking trapdoors

I Suppose Bob has a trapdoor.
Alice chooses x , sends y = f (x) to Bob.
Bob uses the trapdoor to compute x ′ such
that f (x ′) = y . Bob sends x ′ to Alice.

f (x)

x ′

I RSA :
I gcd(e, ϕ(n)) = 1
I f : x → xe mod n is bijective
I x ′ = x so x ′ does not leak anything

I Rabin :
I f : x → x2 mod n is four to one
I x ′ = xε where ε2 = 1 mod n (there are 4 values)
I If ε 6= ±1, the trapdoor is leaked

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 4

Leaking trapdoors

I Suppose Bob has a trapdoor.
Alice chooses x , sends y = f (x) to Bob.
Bob uses the trapdoor to compute x ′ such
that f (x ′) = y . Bob sends x ′ to Alice.

f (x)

x ′

I RSA :
I gcd(e, ϕ(n)) = 1
I f : x → xe mod n is bijective
I x ′ = x so x ′ does not leak anything

I Rabin :
I f : x → x2 mod n is four to one
I x ′ = xε where ε2 = 1 mod n (there are 4 values)
I If ε 6= ±1, the trapdoor is leaked

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 5

Limiting the trapdoor’s power

I Typically leaking trapdoors are undesirable... but what
about positive applications ?

I Useful to restrict the trapdoor’s power
I To ensure that it is used only once ⇒ e-coins ?
I To prove that it has been used ⇒ right delegation

system ?
I To achieve some delayed fairness ⇒ fair exchange ?

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 5

Limiting the trapdoor’s power

I Typically leaking trapdoors are undesirable... but what
about positive applications ?

I Useful to restrict the trapdoor’s power
I To ensure that it is used only once ⇒ e-coins ?
I To prove that it has been used ⇒ right delegation

system ?
I To achieve some delayed fairness ⇒ fair exchange ?

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 6

Outline

Introduction

One-time trapdoor one-way functions (OTTOWF)

Constructions

Fair exchange protocols

Conclusion

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 7

Outline

Introduction

One-time trapdoor one-way functions (OTTOWF)

Constructions

Fair exchange protocols

Conclusion

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 8

Definition

I A one-time trapdoor one-way function (OTTOWF) is
given by 5 algorithms

I Setup : generates 〈k, t〉 where k is a key (parameter)
and t is the trapdoor

I Eval : upon input of 〈k ,m〉 where m is some message,
outputs a hash value h

I Verify : upon input of 〈k ,m, h〉, outputs either 0 or 1

I Preimage : upon input of 〈k , h, t〉, outputs a message m
I TrapExtr : upon input of 〈k ,m,m′〉 where m,m′ are

two messages, outputs either ⊥ or a trapdoor t

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 8

Definition

I A one-time trapdoor one-way function (OTTOWF) is
given by 5 algorithms

I Setup : generates 〈k, t〉 where k is a key (parameter)
and t is the trapdoor

I Eval : upon input of 〈k ,m〉 where m is some message,
outputs a hash value h

I Verify : upon input of 〈k ,m, h〉, outputs either 0 or 1
I Preimage : upon input of 〈k , h, t〉, outputs a message m

I TrapExtr : upon input of 〈k ,m,m′〉 where m,m′ are
two messages, outputs either ⊥ or a trapdoor t

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 8

Definition

I A one-time trapdoor one-way function (OTTOWF) is
given by 5 algorithms

I Setup : generates 〈k, t〉 where k is a key (parameter)
and t is the trapdoor

I Eval : upon input of 〈k ,m〉 where m is some message,
outputs a hash value h

I Verify : upon input of 〈k ,m, h〉, outputs either 0 or 1
I Preimage : upon input of 〈k , h, t〉, outputs a message m
I TrapExtr : upon input of 〈k ,m,m′〉 where m,m′ are

two messages, outputs either ⊥ or a trapdoor t

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 9

Definition

I These algorithms satisfy the following properties
I Correctness : Verify(Eval) = 1

I Onewayness : without the trapdoor, impossible to
“invert” in the sense of satisfying Verify

I Trapdoor : with the trapdoor, possible to “invert” in
the sense of satisfying Verify

I Fairness : TrapExtr recovers the trapdoor if it gets two
messages with the same hash value, one of them
computed with the trapdoor

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 9

Definition

I These algorithms satisfy the following properties
I Correctness : Verify(Eval) = 1
I Onewayness : without the trapdoor, impossible to

“invert” in the sense of satisfying Verify

I Trapdoor : with the trapdoor, possible to “invert” in
the sense of satisfying Verify

I Fairness : TrapExtr recovers the trapdoor if it gets two
messages with the same hash value, one of them
computed with the trapdoor

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 9

Definition

I These algorithms satisfy the following properties
I Correctness : Verify(Eval) = 1
I Onewayness : without the trapdoor, impossible to

“invert” in the sense of satisfying Verify
I Trapdoor : with the trapdoor, possible to “invert” in

the sense of satisfying Verify

I Fairness : TrapExtr recovers the trapdoor if it gets two
messages with the same hash value, one of them
computed with the trapdoor

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 9

Definition

I These algorithms satisfy the following properties
I Correctness : Verify(Eval) = 1
I Onewayness : without the trapdoor, impossible to

“invert” in the sense of satisfying Verify
I Trapdoor : with the trapdoor, possible to “invert” in

the sense of satisfying Verify
I Fairness : TrapExtr recovers the trapdoor if it gets two

messages with the same hash value, one of them
computed with the trapdoor

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 10

Definition remarks

I The trapdoor cannot be recovered with the key only

I An OTTOWF is not necessarily a TOWF

I Eval can be probabilistic
I Correctness does not require Eval(Preimage(h)) = h,

but only that the Preimage algorithm finds a value that
satisfies the Verify algorithm

I An OTTOWF is a TOWF if Eval is deterministic and
Verify just recomputes it

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 10

Definition remarks

I The trapdoor cannot be recovered with the key only

I An OTTOWF is not necessarily a TOWF

I Eval can be probabilistic
I Correctness does not require Eval(Preimage(h)) = h,

but only that the Preimage algorithm finds a value that
satisfies the Verify algorithm

I An OTTOWF is a TOWF if Eval is deterministic and
Verify just recomputes it

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 10

Definition remarks

I The trapdoor cannot be recovered with the key only

I An OTTOWF is not necessarily a TOWF

I Eval can be probabilistic
I Correctness does not require Eval(Preimage(h)) = h,

but only that the Preimage algorithm finds a value that
satisfies the Verify algorithm

I An OTTOWF is a TOWF if Eval is deterministic and
Verify just recomputes it

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 11

Outline

Introduction

One-time trapdoor one-way functions (OTTOWF)

Constructions

Fair exchange protocols

Conclusion

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 12

3 OTTOWF constructions

I 3 constructions
I Tweak of Rabin’s TOWF
I Tweak of Paillier’s TOWP
I Based on generic OWF

I Various assumptions
I Factoring assumption for n = pq
I Factoring assumption for n = p2q
I OWF

I Different flavors of our definition

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 13

OTTOWF based on Rabin

I Tentative construction :
I Setup : t = 〈p, q〉 and k = n := pq
I Eval : given 〈n,m〉, returns h = m2 mod n
I Verify : given 〈n,m, h〉, outputs 1 iff h = Eval(n,m)
I Preimage : given 〈n, h, 〈p, q〉〉, uses CRT to compute

m′ such that m′2 = h mod n

I TrapExtr : given 〈k ,m,m′〉, computes
p′ = gcd(|m −m′|, n). Returns (p′, n/p′)

I Fairness only satisfied with probability 1/2
I Trapdoor recoverd iff m 6= ±m′
I If m = m′ then p′ = n
I If m = −m′ then p′ = 1

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 13

OTTOWF based on Rabin

I Tentative construction :
I Setup : t = 〈p, q〉 and k = n := pq
I Eval : given 〈n,m〉, returns h = m2 mod n
I Verify : given 〈n,m, h〉, outputs 1 iff h = Eval(n,m)
I Preimage : given 〈n, h, 〈p, q〉〉, uses CRT to compute

m′ such that m′2 = h mod n
I TrapExtr : given 〈k ,m,m′〉, computes

p′ = gcd(|m −m′|, n). Returns (p′, n/p′)

I Fairness only satisfied with probability 1/2
I Trapdoor recoverd iff m 6= ±m′
I If m = m′ then p′ = n
I If m = −m′ then p′ = 1

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 13

OTTOWF based on Rabin

I Tentative construction :
I Setup : t = 〈p, q〉 and k = n := pq
I Eval : given 〈n,m〉, returns h = m2 mod n
I Verify : given 〈n,m, h〉, outputs 1 iff h = Eval(n,m)
I Preimage : given 〈n, h, 〈p, q〉〉, uses CRT to compute

m′ such that m′2 = h mod n
I TrapExtr : given 〈k ,m,m′〉, computes

p′ = gcd(|m −m′|, n). Returns (p′, n/p′)

I Fairness only satisfied with probability 1/2
I Trapdoor recoverd iff m 6= ±m′
I If m = m′ then p′ = n
I If m = −m′ then p′ = 1

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 14

OTTOWF based on Rabin

I Improve fairness probability
I Choose m ∈ ZN

n
I Eval : given n and m = (m1, ...,mN), returns

h = (m2
1 mod n, ...,m2

N mod n)

I Resulting OTTOWF
I Fairness up to 1− 2−N

I Messages and hash values are quite long
I Not surjective

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 14

OTTOWF based on Rabin

I Improve fairness probability
I Choose m ∈ ZN

n
I Eval : given n and m = (m1, ...,mN), returns

h = (m2
1 mod n, ...,m2

N mod n)

I Resulting OTTOWF
I Fairness up to 1− 2−N

I Messages and hash values are quite long
I Not surjective

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 15

OTTOWF based on Paillier

I Paillier [P99]

I f (m1,m2) = gm1mn
2 mod n with n = p2q and p ≈ q

I m1 ≈ p and m2 ≈ pq ⇒ f ≈ bijective
I f can be inverted and inverse is unique

I Idea : make Paillier non injective
I m1 ≈ p and m2 ≈ p2q ⇒ f is many to one
I f can be inverted but inverse not unique

I Two distinct inverses leak trapdoor
f (m1,m2) = f (m′1,m

′
2)⇒ m1 = m′1 mod p and

f (m1,m2) = f (m1,m
′
2)⇔ m2 = m′2 mod pq

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 15

OTTOWF based on Paillier

I Paillier [P99]

I f (m1,m2) = gm1mn
2 mod n with n = p2q and p ≈ q

I m1 ≈ p and m2 ≈ pq ⇒ f ≈ bijective
I f can be inverted and inverse is unique

I Idea : make Paillier non injective
I m1 ≈ p and m2 ≈ p2q ⇒ f is many to one
I f can be inverted but inverse not unique

I Two distinct inverses leak trapdoor
f (m1,m2) = f (m′1,m

′
2)⇒ m1 = m′1 mod p and

f (m1,m2) = f (m1,m
′
2)⇔ m2 = m′2 mod pq

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 15

OTTOWF based on Paillier

I Paillier [P99]

I f (m1,m2) = gm1mn
2 mod n with n = p2q and p ≈ q

I m1 ≈ p and m2 ≈ pq ⇒ f ≈ bijective
I f can be inverted and inverse is unique

I Idea : make Paillier non injective
I m1 ≈ p and m2 ≈ p2q ⇒ f is many to one
I f can be inverted but inverse not unique

I Two distinct inverses leak trapdoor
f (m1,m2) = f (m′1,m

′
2)⇒ m1 = m′1 mod p and

f (m1,m2) = f (m1,m
′
2)⇔ m2 = m′2 mod pq

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 16

OTTOWF based on OWF

I Setup
I Generate a OWF f
I Trapdoor t is random domain element
I Key k = 〈f , β〉 where β := f (t)

I Eval : given m returns h = f (m)

I Verify : given 〈k ,m, h〉
returns 1 if either f (m) = h or f (m) = β

I Preimage : returns t

I TrapExtr : given 〈t,m〉 returns t

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 16

OTTOWF based on OWF

I Setup
I Generate a OWF f
I Trapdoor t is random domain element
I Key k = 〈f , β〉 where β := f (t)

I Eval : given m returns h = f (m)

I Verify : given 〈k ,m, h〉
returns 1 if either f (m) = h or f (m) = β

I Preimage : returns t

I TrapExtr : given 〈t,m〉 returns t

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 16

OTTOWF based on OWF

I Setup
I Generate a OWF f
I Trapdoor t is random domain element
I Key k = 〈f , β〉 where β := f (t)

I Eval : given m returns h = f (m)

I Verify : given 〈k ,m, h〉
returns 1 if either f (m) = h or f (m) = β

I Preimage : returns t

I TrapExtr : given 〈t,m〉 returns t

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 16

OTTOWF based on OWF

I Setup
I Generate a OWF f
I Trapdoor t is random domain element
I Key k = 〈f , β〉 where β := f (t)

I Eval : given m returns h = f (m)

I Verify : given 〈k ,m, h〉
returns 1 if either f (m) = h or f (m) = β

I Preimage : returns t

I TrapExtr : given 〈t,m〉 returns t

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 16

OTTOWF based on OWF

I Setup
I Generate a OWF f
I Trapdoor t is random domain element
I Key k = 〈f , β〉 where β := f (t)

I Eval : given m returns h = f (m)

I Verify : given 〈k ,m, h〉
returns 1 if either f (m) = h or f (m) = β

I Preimage : returns t

I TrapExtr : given 〈t,m〉 returns t

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 17

OTTOWF based on OWF

I Onewayness : to satisfy Verify we must invert f either
on h or on β

I Trapdoor and fairness are clear

I Not a TOWF !

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 18

Outline

Introduction

One-time trapdoor one-way functions (OTTOWF)

Constructions

Fair exchange protocols

Conclusion

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 19

Signature scheme

I Setup : create a pair (private key, public key) 〈SK ,PK 〉
I Sign : given a message m and a private key SK ,

returns a signature σ

I Ver : given a message, a public key, checks that the
signature is valid for corresponding private key

I Existential unforgeability against adaptive
adversaries : impossible to create a valid signature
without the private key, even after seeing many valid
signatures

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 19

Signature scheme

I Setup : create a pair (private key, public key) 〈SK ,PK 〉
I Sign : given a message m and a private key SK ,

returns a signature σ

I Ver : given a message, a public key, checks that the
signature is valid for corresponding private key

I Existential unforgeability against adaptive
adversaries : impossible to create a valid signature
without the private key, even after seeing many valid
signatures

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 19

Signature scheme

I Setup : create a pair (private key, public key) 〈SK ,PK 〉
I Sign : given a message m and a private key SK ,

returns a signature σ

I Ver : given a message, a public key, checks that the
signature is valid for corresponding private key

I Existential unforgeability against adaptive
adversaries : impossible to create a valid signature
without the private key, even after seeing many valid
signatures

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 20

The fair exchange problem

I Two parties want to exchange their own signatures
Each party should get the other one’s signature
if and only if he has sent his own signature

I Issue : prevent abortions
I Typical protocols have four rounds

I Exchange of partial signatures
I Exchange of full signatures

I Semi-trusted third party (STTP) may help
I Can convert partial signatures into full signatures
I Optimistic if it only works in case of conflict

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 20

The fair exchange problem

I Two parties want to exchange their own signatures
Each party should get the other one’s signature
if and only if he has sent his own signature

I Issue : prevent abortions
I Typical protocols have four rounds

I Exchange of partial signatures
I Exchange of full signatures

I Semi-trusted third party (STTP) may help
I Can convert partial signatures into full signatures
I Optimistic if it only works in case of conflict

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 20

The fair exchange problem

I Two parties want to exchange their own signatures
Each party should get the other one’s signature
if and only if he has sent his own signature

I Issue : prevent abortions
I Typical protocols have four rounds

I Exchange of partial signatures
I Exchange of full signatures

I Semi-trusted third party (STTP) may help
I Can convert partial signatures into full signatures
I Optimistic if it only works in case of conflict

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 21

Verifiably committed signatures (VCS)

I State of the art with STTP [DR03]

I Exchange of partial signatures then full ones
I STTP converts partial signatures into full ones

(if one party aborts)
I Full signatures ≈ converted partial signatures

I Fairness relies on STTP
I OK if STTP honest
I KO if STTP colludes with one of the parties

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 21

Verifiably committed signatures (VCS)

I State of the art with STTP [DR03]

I Exchange of partial signatures then full ones
I STTP converts partial signatures into full ones

(if one party aborts)
I Full signatures ≈ converted partial signatures

I Fairness relies on STTP
I OK if STTP honest
I KO if STTP colludes with one of the parties

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 21

Verifiably committed signatures (VCS)

I State of the art with STTP [DR03]

I Exchange of partial signatures then full ones
I STTP converts partial signatures into full ones

(if one party aborts)
I Full signatures ≈ converted partial signatures

I Fairness relies on STTP
I OK if STTP honest
I KO if STTP colludes with one of the parties

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 22

Concurrent signatures

I State of the art without STTP [CKP04]

I Partial ambiguous signatures are exchanged
I Ambiguity removed when Initiator releases a keystone

Full signature = partial signature + keystone

I No STTP but delayed fairness :
fairness iff the responder sees the keystone

I Even the willingness to sign is hidden in partial signatures

I Partial signatures are non committing for the initiator

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 22

Concurrent signatures

I State of the art without STTP [CKP04]

I Partial ambiguous signatures are exchanged
I Ambiguity removed when Initiator releases a keystone

Full signature = partial signature + keystone

I No STTP but delayed fairness :
fairness iff the responder sees the keystone

I Even the willingness to sign is hidden in partial signatures

I Partial signatures are non committing for the initiator

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 22

Concurrent signatures

I State of the art without STTP [CKP04]

I Partial ambiguous signatures are exchanged
I Ambiguity removed when Initiator releases a keystone

Full signature = partial signature + keystone

I No STTP but delayed fairness :
fairness iff the responder sees the keystone

I Even the willingness to sign is hidden in partial signatures

I Partial signatures are non committing for the initiator

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 22

Concurrent signatures

I State of the art without STTP [CKP04]

I Partial ambiguous signatures are exchanged
I Ambiguity removed when Initiator releases a keystone

Full signature = partial signature + keystone

I No STTP but delayed fairness :
fairness iff the responder sees the keystone

I Even the willingness to sign is hidden in partial signatures

I Partial signatures are non committing for the initiator

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 23

Fair exchange with OTTOWF

I General idea :
I Take a randomness r , let h = OTTOWF (r)
I Partial signature = signature on 〈text, h〉

Full signature = 〈 partial signature, r〉

I Possible to check partial and full signatures
I Conversion partial signatures into full ones

I Hard without the trapdoor
I Easy with the trapdoor

I If used once, the trapdoor becomes public
If one partial signature converted, then any partial
signature can be converted (fairness !)

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 23

Fair exchange with OTTOWF

I General idea :
I Take a randomness r , let h = OTTOWF (r)
I Partial signature = signature on 〈text, h〉

Full signature = 〈 partial signature, r〉

I Possible to check partial and full signatures

I Conversion partial signatures into full ones
I Hard without the trapdoor
I Easy with the trapdoor

I If used once, the trapdoor becomes public
If one partial signature converted, then any partial
signature can be converted (fairness !)

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 23

Fair exchange with OTTOWF

I General idea :
I Take a randomness r , let h = OTTOWF (r)
I Partial signature = signature on 〈text, h〉

Full signature = 〈 partial signature, r〉

I Possible to check partial and full signatures
I Conversion partial signatures into full ones

I Hard without the trapdoor
I Easy with the trapdoor

I If used once, the trapdoor becomes public
If one partial signature converted, then any partial
signature can be converted (fairness !)

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 23

Fair exchange with OTTOWF

I General idea :
I Take a randomness r , let h = OTTOWF (r)
I Partial signature = signature on 〈text, h〉

Full signature = 〈 partial signature, r〉

I Possible to check partial and full signatures
I Conversion partial signatures into full ones

I Hard without the trapdoor
I Easy with the trapdoor

I If used once, the trapdoor becomes public
If one partial signature converted, then any partial
signature can be converted (fairness !)

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 24

Protocol 1 (no STTP)

I The initiator holds the trapdoor

1. (I) Generates OTTOWF ; keeps the trapdoor, sends the key.
Generates rI and sends σ(text||OTTOWF (rI))

2.(R) Generates rR and sends σ(text||OTTOWF (rR))
3. (I) Sends rI
4.(R) Sends rR

I Fairness :
I I or R aborts before Step 2 : none has full signature
I R aborts after Step 3 : I uses his trapdoor
I I aborts after Step 2 and uses its trapdoor : the trapdoor

is leaked, R can use it as well

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 24

Protocol 1 (no STTP)

I The initiator holds the trapdoor

1. (I) Generates OTTOWF ; keeps the trapdoor, sends the key.
Generates rI and sends σ(text||OTTOWF (rI))

2.(R) Generates rR and sends σ(text||OTTOWF (rR))
3. (I) Sends rI
4.(R) Sends rR

I Fairness :
I I or R aborts before Step 2 : none has full signature

I R aborts after Step 3 : I uses his trapdoor
I I aborts after Step 2 and uses its trapdoor : the trapdoor

is leaked, R can use it as well

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 24

Protocol 1 (no STTP)

I The initiator holds the trapdoor

1. (I) Generates OTTOWF ; keeps the trapdoor, sends the key.
Generates rI and sends σ(text||OTTOWF (rI))

2.(R) Generates rR and sends σ(text||OTTOWF (rR))
3. (I) Sends rI
4.(R) Sends rR

I Fairness :
I I or R aborts before Step 2 : none has full signature
I R aborts after Step 3 : I uses his trapdoor

I I aborts after Step 2 and uses its trapdoor : the trapdoor
is leaked, R can use it as well

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 24

Protocol 1 (no STTP)

I The initiator holds the trapdoor

1. (I) Generates OTTOWF ; keeps the trapdoor, sends the key.
Generates rI and sends σ(text||OTTOWF (rI))

2.(R) Generates rR and sends σ(text||OTTOWF (rR))
3. (I) Sends rI
4.(R) Sends rR

I Fairness :
I I or R aborts before Step 2 : none has full signature
I R aborts after Step 3 : I uses his trapdoor
I I aborts after Step 2 and uses its trapdoor : the trapdoor

is leaked, R can use it as well

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 25

Comparison with concurrent signatures

I Delayed fairness
I If I uses his trapdoor to convert R’s partial signature,

then the resulting full signature leaks the trapdoor.
R will therefore be able to convert I’s partial signature as
well, but only after seeing this full signature

I Fairness also delayed in concurrent signatures

I Committing partial signatures
I Not true for concurrent signatures because of ambiguity

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 25

Comparison with concurrent signatures

I Delayed fairness
I If I uses his trapdoor to convert R’s partial signature,

then the resulting full signature leaks the trapdoor.
R will therefore be able to convert I’s partial signature as
well, but only after seeing this full signature

I Fairness also delayed in concurrent signatures

I Committing partial signatures
I Not true for concurrent signatures because of ambiguity

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 26

Protocol 2 (with an STTP)

I STTP has the trapdoor

STTP generates an OTTOWF, keeps t, sends k

1. (I) Generates rI and sends σ(m||OTTOWF (rI))
2.(R) Generates rR and sends σ(m||OTTOWF (rR))
3. (I) Sends rI
4.(R) Sends rR

I If STTP honest :
I If abortion after Step 2, STTP can convert partial

signatures

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 26

Protocol 2 (with an STTP)

I STTP has the trapdoor

STTP generates an OTTOWF, keeps t, sends k

1. (I) Generates rI and sends σ(m||OTTOWF (rI))
2.(R) Generates rR and sends σ(m||OTTOWF (rR))
3. (I) Sends rI
4.(R) Sends rR

I If STTP honest :
I If abortion after Step 2, STTP can convert partial

signatures

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 27

Protocol 2 reduces the trust on the STTP

I If STTP and R collude :
I R has the trapdoor.

R aborts after Step 1 and converts I’s partial signature
I Fairness KO (same in VCS)

I If STTP and I collude :
I Amounts to Protocol 1 : I has the trapdoor
I Still some delayed fairness (KO in VCS)

⇒ Compared to VCS, Protocol 2 reduces the trust that R
needs to put on the STTP

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 27

Protocol 2 reduces the trust on the STTP

I If STTP and R collude :
I R has the trapdoor.

R aborts after Step 1 and converts I’s partial signature
I Fairness KO (same in VCS)

I If STTP and I collude :
I Amounts to Protocol 1 : I has the trapdoor
I Still some delayed fairness (KO in VCS)

⇒ Compared to VCS, Protocol 2 reduces the trust that R
needs to put on the STTP

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 27

Protocol 2 reduces the trust on the STTP

I If STTP and R collude :
I R has the trapdoor.

R aborts after Step 1 and converts I’s partial signature
I Fairness KO (same in VCS)

I If STTP and I collude :
I Amounts to Protocol 1 : I has the trapdoor
I Still some delayed fairness (KO in VCS)

⇒ Compared to VCS, Protocol 2 reduces the trust that R
needs to put on the STTP

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 28

Outline

Introduction

One-time trapdoor one-way functions (OTTOWF)

Constructions

Fair exchange protocols

Conclusion

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 29

Conclusion

I Leaking the trapdoor might be useful
I This paper :

I OTTOWF definition
I 3 constructions
I Application to fair exchange

I Two new fair exchange protocols
I Some advantages over previous protocols

I Other applications of OTTOWFs ?

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 30

Main references

I [RSA78] R Rivest, A Shamir, L Adleman, A method for
obtaining digital signatures and public-key cryptosystems

I [R79] M Rabin, Digitalized signatures and public key
functions as intractable as factorization

I [P99] P Paillier, A trapdoor permutation equivalent to
factoring

I [CKP04] L Chen, C Kudla, K Paterson, Concurrent
signatures

I [DR03] Y Dodis, L Reyzin, Breaking and repairing
optimistic fair exchange from PODC 2003

UCL Crypto Group
Microelectronics Laboratory Ch. Petit - ISC 2010 - October 2010 31

Conclusion

I Leaking the trapdoor might be useful
I This paper :

I OTTOWF definition
I 3 constructions
I Application to fair exchange

I Two new fair exchange protocols
I Some advantages over previous protocols

I Other applications of OTTOWFs ?

	Introduction
	One-time trapdoor one-way functions (OTTOWF)
	Constructions
	Fair exchange protocols
	Conclusion

