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ABSTRACT

Collaborative tagging systems are now deployed extensively
to help users share and organize resources. Tag prediction
and recommendation can simplify and streamline the user
experience, and by modeling user preferences, predictive ac-
curacy can be significantly improved. However, previous
methods typically model user behavior based only on a log
of prior tags, neglecting other behaviors and information in
social tagging systems, e.g., commenting on items and con-
necting with other users. On the other hand, little is known
about the connection and correlations among these behav-
iors and contexts in social tagging systems.
In this paper, we investigate improved modeling for pre-

dictive social tagging systems. Our explanatory analyses
demonstrate three significant challenges: coupled high or-
der interaction, data sparsity and cold start on items. We
tackle these problems by using a generalized latent factor
model and fully Bayesian treatment. To evaluate perfor-
mance, we test on two real-world data sets from Flickr and
Bibsonomy. Our experiments on these data sets show that
to achieve best predictive performance, it is necessary to
employ a fully Bayesian treatment in modeling high order
relations in a social tagging system. Our methods noticeably
outperform state-of-the-art approaches.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; H.2.8 [Database Management]:
Database applications—Data Mining ; H.3.1 [Information
Storage and Retrieval]: Content Analysis and Indexing;
H.1.2 [Models and Principles]: User/Machine Systems—
Human Information Processing
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prediction; personalized comment recommendation; co-
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1. INTRODUCTION
Collaborative tagging systems have become widely used

for sharing and organizing resources in recent years. In social
bookmarking, as one type of collaborative tagging system,
users can add metadata in the form of descriptive terms,
called tags, to describe web resources. Social bookmarking
systems have been utilized successfully in many areas, such
as web search [5], personalized search [36], web resource clas-
sification [39] and clustering [26]. However, the major bot-
tleneck for large scale applications of social tagging systems
is that only a small number of web resources have manually
assigned tags, compared to the size of the Web. There-
fore, systems that can automatically tag web resources are
needed. On the other hand, from the user’s perspective, a
system that can provide suggestions and recommendations
when users are about to assign tags to new resources can
improve human-computer interactions and organization of
the knowledge base as well.

Motivated by the needs described above, researchers have
considered how to build systems to recommend or predict
tag usage. Early work in this area, such as Hotho et
al. [14] and Lipczak et al. [18], has demonstrated two ba-
sic approaches—content-based and graph-based methods—
to tackle the problem. Recent work, including Rendle et
al. [27] and Yin et al. [38, 37], show how personalized tag
recommenders that take the user’s previous tagging behav-
iors into account usually have better performance. However,
most previous methods for social tagging system only model
user behavior based on the log of prior tags [27] and item
content [18, 38], neglecting the other behaviors and infor-
mation found in real-world social tagging systems. In such
social tagging systems, there exist many other artifacts of
user activities, such as comments on items [4] and social
connections with other users. Unlike tags which are usually
personalized descriptions of the item, users’ comments on
the items are user-generated opinionated texts. Although
they share some similar patterns of behaviors (both are
user-generated texts for specific items), they have different
properties and aims. Personalized tag prediction has been
studied for several years, but comment prediction, which
is quite different from traditional opinion mining, is rarely
investigated. Recently, Agarwal et al. [4] develop personal-
ized comment recommendation via factor models but they
do not predict the content (e.g., term frequency) of person-
alized comments which could potentially help in the inter-
pretation of comments and be applied to improve sentiment
analysis of comments. In addition, the effects of mutual re-



inforcement across contexts such as user-tag-item and user-
comment-item are still unknown.
In addition to user-generated tags and comments, users

are often also able to denote friendship (via links) with other
users. All of these activities provide potential hints for tag
prediction, comment prediction and prediction of other user
behaviors. By analyzing all of these activities, we can better
capture users’ preferences and make more accurate recom-
mendations, but many of these activities are coupled and
their effects on each other are not easily modeled.
In this paper, we systematically investigate the coupled

activities of users and their mutual effects in a social tagging
system. Our explanatory analyses show that the main chal-
lenges in modeling tagging systems are from three points:
coupled high order interaction, data sparsity, and cold start
on items. We tackle these problems by proposing a gener-
alized Bayesian probabilistic latent factor model which can
be tailored to fit the tagging system. We conduct empiri-
cal evaluations on two public data sets—Flickr and Bibson-
omy. The experiments show that in social tagging systems,
a user’s commenting and tagging behaviors are highly cor-
related and can be mutually inferred, which has not been
explored previously. The contributions of this paper are
summarized as follows:

1. To better model social tagging systems, we propose a
novel generalized latent factor model which is based
on a Bayesian approach.

2. We find that connecting comments and tags within
the same model permits mutual reinforcement and im-
proves overall performance.

3. Experiments on real-world data show that our
Bayesian methods can achieve much better perfor-
mance than the probabilistic version of our model, due
to the sparsity of the high-order relational data in so-
cial media. Our model significantly outperforms state-
of-the-art methods.

The paper is organized as follows: Section 2 discusses
related work. We present preliminary experiments in Sec-
tion 3. Section 4 presents the proposed model, followed by
describing an efficient and scalable approach developed for
estimating the model parameters in Section 5. Section 6
presents the empirical evaluations of the proposed approach
on both data sets. Section 7 concludes the paper.

2. RELATED WORK
Personalized tag recommendation, as a special case of col-

laborative filtering, is a recent topic in recommender sys-
tems. Two main directions for these systems are content-
based approaches and graph-based approaches.
Content-based methods, which usually encode users’ pref-

erences from textual information within items (e.g., web
pages, academic papers, tags), can predict tags for new users
and new items. State-of-the-art content-based tag recom-
mendation systems [18, 37] utilize several tag sources includ-
ing item content and the user’s previous history to build pro-
files for both users and tags. New tags are checked against
user profiles, which are a rich, but imprecise source of in-
formation about user interests. The result is a set of tags
related both to the resource and user.
Graph-based approaches, which usually have stronger as-

sumptions than content-based ones (e.g., every user, every

item and every tag has to occur in at least p posts), can of-
ten provide better performance. An example of early work is
FolkRank, introduced by Hotho et al. [14], which is an adap-
tation of PageRank that can generate high quality recom-
mendations and is shown to be empirically better than pre-
viously proposed collaborative filtering models [16]. Guan et
al. [10] propose a framework based on the graph Laplacian to
model interrelated multi-type objects involved in a tagging
system. More recently, factorization models (also considered
as graph-based approaches) have shown success on person-
alized tag recommendation problems. Symeonidis et al. [33]
propose a method based on Higher-Order-Singular-Value-
Decomposition (HOSVD), which corresponds to a Tucker
Decomposition (TD) model optimized for square-loss where
all not observed values are learned as 0s. Rendle et al. [27,
28] present a better learning approach for TD models, which
is to optimize the model parameters for the AUC (area un-
der the ROC-curve) ranking statistic. The main problem
of the graph-based methods is that they can only predict
tags for certain groups of existing users and web resources.
Thus, a better tag recommender should be able to recom-
mend tags for new users or new web resources, and still have
reasonably good performance.

Non-personalized tag recommenders—i.e., for a given item
they recommend to all users the same tags—have also at-
tracted attention (e.g., [12, 32]). However, Rendel et al. [27]
shows that personalized tag recommendation systems empir-
ically outperform the theoretical upper bound for any non-
personalized tag recommender.

Existing opinion mining or sentiment analysis studies [8,
15, 19] focus on summarizing and classifying comments, and
discard higher-order relations for user-comment-item. In
contrast, we focus on predicting users’ opinions (i.e., the
terms used) for an item instead of simply classifying the
comment contents. Recently, Agarwal et al. [4] develop per-
sonalized comment recommendation via factor models but
they do not predict the content (e.g., term frequency) of
personalized comments.

There exist a number of latent factor methods. One re-
lated method is collective matrix factorization from Singh
and Gordon [31] which provides a general framework to
model multi-relational data, extending many previous ap-
proaches for matrix factorization in the presence of ad-
ditional features. These extensions of matrix factoriza-
tion/factor analysis tend to be limited to two or three rela-
tions to take into account contextual information (such as
user-specific and movie-specific features) in a recommender
system [42, 1, 2, 20]. For instance, Zhu et al. [42] propose
to make use of links and content for web page classification.
More recently, Agarwal and Chen [3] incorporate explicit
features of users and items into latent factor models, and
Ma et al. [20] propose to improve recommendation quality
based on social regularization. However, these methods only
model two factor data and cannot be directly used in a social
tagging system which is naturally a higher-order system.

More generally, co-factorization models [11, 40, 41]
make recommendations across multiple contexts or domains.
While the framework proposed by Singh and Gordon [31] is
fairly general, the key weakness is that it does not enable the
handling of high-order relations, such as that needed in a so-
cial tagging system and it does not use Bayesian estimation
to tackle the problem of data sparsity. Modeling higher or-



(a) Clique relations among the entity types serve as con-
texts

(b) Bipartite graph between relations and entity types

Figure 1: An example of four relations on five entity types in a social tagging system. R1 is the tag post
context (user-tag-item), R2 is the item-content context (item-content feature), R3 is the social network context
(user-user) and R4 is the comment context (user-comment-item).

der data in social media is often neglected in existing factor
models.

3. PRELIMINARY EXPERIMENTS
In this section, we review characteristics of social tagging

systems and describe the challenges and problems in mod-
eling user behaviors such as tagging and commenting.
Unlike traditional collaborative filtering and recommen-

dation tasks, in social tagging systems, a user’s tagging
and commenting activities generate relations involving more
than two types of entities. In contrast, most traditional work
focuses on second order relations that involve just two types
of entities (e.g., user-item). In social tagging systems, the
posts (that is, each tag produced by a user for an item)
are by nature third order data [28, 27, 38, 37] that we con-
sider as a triple (user-tag-item). Figure 1(a) shows that in
a tagging system, users, tags and items pairwise interact
and compose a clique. Similarly, users, tags and comments
also interact pairwise. For the tag and comment prediction
tasks, we cannot drop any one of user, tag/comments, or
item. By involving the temporal factor, it even becomes
fourth order data [37]. However, these types of higher order
relations have rarely been studied due to the complexity and
difficulty in modeling and inference.
On the other hand, the relational data from different

contexts are coupled together. In Figure 1(a), we can see
the social tagging entity relations: there exist four cliques
in this social tagging system (user-tag-item, user-comment-
item, user-user, item-content). Within these cliques, all in-
volved entities interact with all others. Activities within
these cliques are also strongly correlated with each other: for
instance, activities where users comment on items or where
users rate items share two of the same types of entity—user
and item. With Figure 1(a), after recognizing the cliques,
we can define them as contexts. Each context can be con-
sidered a type of observation individually and generated by
the associated entities. In Figure 1(b), we see the directed
bipartite graph, which describes which entities contribute
to the process of generating each context. These contexts

are frequently coupled together by sharing the same entities,
increasing the difficulty of modeling.

3.1 Data sets
In this section, we conduct some simple analysis on two

data sets: Flickr and Bibsonomy. The main data set is from
Flickr. We crawl the data from Flickr by using the social-
network connectors (Flickr API).1 This data set includes
2,866 users, 60,339 tags, 32,752 comment terms and 46,733
items (e.g., images), leading to the four relations shown in
Figure 1(b). The remaining dataset is a public dataset. The
Bibsonomy dataset is from the ECML PKDD 09 Discovery
Challenge Workshop2 which includes two relations: user-
tag-item and item-content.

In order to observe the variety of user interests in both
datasets, for each user, we calculate and plot the total num-
ber of tags, and the total number of posts. In Figure 2(a),
we can see that the two datasets have different properties
and users form two clusters. In Bibsonomy, users typically
apply a larger variety of tags across fewer posts, suggesting
that their interests are more varied. In contrast, the users
in Flickr use fewer tags and their interests are more focused,
reusing their tags many times. This suggests that it may be
easier to track user interests in Flickr.

3.2 Coupled higher-order system
We now conduct some simple analyses for different rela-

tions. At first, we check the distribution of tags and terms
in the comments. Figure 2(b) shows a linear relationship
between the of number of tags/terms and the frequency of
tags/terms in log scale. We can see that the distributions
over both tags and comment terms are very similar and show
two straight lines with the same slope in the log-log plot.
In the (user, comment, item) relation, among the 21,881
records where a user comments on an item, 8,307 records
show that the user also tags the same item, meaning if a
user comments on an item there will be around 1/3 chance
that the user will also contribute a tag on that item. This

1http://www.flickr.com/services/api/
2http://www.kde.cs.uni-kassel.de/ws/dc09/
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(a) The number of unique tags as a
function of the number of posts for each
user across datasets
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(c) For each user, number of friends as
a function of the number of commented
items in Flickr

Figure 2: Representative analyses for different activities.

Table 1: Fractions of new users, items, or tags in
samples from each data set.

Bibsonomy Flickr
New/Total Users 41/668 23/1000
New/Total Items 602/668 1000/1000
New/Total Tags 321/2207 175/4123

evidence shows the strong connection between the relation
(user, comment, item) and the relation (user, tag, item).
Figure 2(c) shows the coupling between user-user inter-

action and commenting activity. From the figure, we can
see that most users are located on the upper left portion of
the Figure. Some users with many friends may NOT com-
ment at all (or very little) but users who frequently comment
items usually have many friends. We also note that the in-
verse does not hold.

3.3 Cold start
As in our earlier work in tag prediction [38, 37], we em-

ploy online evaluation3 in which only training posts which
have earlier timestamps than those of the test posts are used.
Note that this implies that the available training data is dif-
ferent for each test post and, for items tagged earlier in the
timeline, fewer training data are available. While the on-
line evaluation approach naturally fits the real-world case in
which every post is used for testing a model trained on all
prior posts, its feasibility depends highly on the efficiency of
the training method as a new model may be necessary for
each post. Instead, we can estimate the performance of the
complete system by performing evaluation on only a sam-
ple of test posts, and largely avoid model-building efficiency
concerns for the purpose of evaluation of effectiveness.
We utilize the online evaluation model and conduct time-

sensitive sampling experiments on two data sets. For the
Bibsonomy dataset, we use the same sampling dataset as in
Yin et al. [38] which includes 668 test posts. For Flickr, we
randomly choose 1000 posts. In all cases we effectively sim-
ulate a system running—the tagging system operates in an
incremental mode. The data set statistics (shown in Table
1) demonstrate that in Bibsonomy data, we face a new user

3In this paper, online mode means an incremental mode of
a real tagging system rather than real-time tag prediction.

(a user which is not in any prior data) in 6.1% of the cases,
and in 90.1% of the time users are trying to bookmark a
“new item” not previously seen by the system. In addition,
there is 13.9% chance that users would use new tags (which
do not appear in the system before).

This shows that most of the time (i.e., 86.1% of posts) it
is feasible to predict tags based only on past tags. The other
dataset also shows similar distributions. Thus, in the real
world, the principal difficulty is to handle cases in which
existing users try to tag new items and therefore strictly
graph-based recommenders (e.g., [27, 28]) will not be able
to make recommendations most of the time. This also sug-
gests that incorporating external information, such as item
or comment content into the model might help process these
cold start cases.

3.4 Data sparsity
Another notorious problem in most social media systems

is data sparsity. Here, we define the number of observa-
tions over the total number of entries in the relations as
the density of the data. For comparison, in one MovieLens
data set4, there are 1,000,000 ratings for 6,000 users and
4,000 movies, so the data density is just 4.17%, rendering it
95.83The sparsity of data is even more serious when the re-
lation is higher-order and coupled in a social tagging system:
in our Flickr data, there are 373,125 records of the user-tag-
item relation, so the density of the context user-tag-item is
4.6170× 10−8 (373125/(2866× 60339× 46733)), and for the
context user-comments-item, there are 218161 records, so its
density is 3.8518 × 10−8 (218161/(2866 × 60339 × 32752)).
Similarly in our Bibsonomy data, the data density is 3.52×
10−8. Thus, data sparsity is dauntingly higher in social tag
data than the traditional two-dimensional recommendation
problem. The serious problem of sparsity in higher order re-
lations strongly suggests Bayesian treatment. Previous work
has already shown the significant advantage of the Bayesian
approach in processing sparse data, such as in the compari-
son of LDA [6] to PLSA [13] and BPMF [29] to PMF [30].

4. MULTI-RELATIONAL DATA MODEL
To address the problems described above in Section 3, here

we propose a novel latent factor model to handle coupled

4http://www.grouplens.org/node/73



K Number of entity types.
Nk Number of entities of type k.
D Latent feature dimension.
V Number of relations.
Θk Latent features for entities of type k.
Rv Set of relation v observations.
Mv Total number of observations of relation v.
Sv List of indices identifying the types of relation v.
α−1
v Variance of the observations of relation v.

Table 2: Summary of the notation used.

higher-order data in social tagging systems. We describe a
Bayesian treatment to learn the parameters in the model.
An activity performed by a user in a specific social tag

context induces a relation; for instance, the activity con-
sisting of the triple (user-comment-item) is a 3-order rela-
tion with three types of entities. Let us consider a cou-
pled higher order relational dataset with K types of enti-
ties. There are V possible relations among the entities and,
for each entity type k ∈ {1, . . . ,K}, there are Nk possible
entities. Each relation v ∈ {1, . . . , V } is associated with
the list Sv of the entity types involved in relation v, that is
Sv = (Sv1, . . . , Sv|Sv|) with Svj ∈ {1, . . . ,K}. Relations are
then encoded by multi-dimensional arrays, where dimension
j is indexed by entity type Svj . The data associated with
relation v are the observed triplets D = (vm, im, rm)Mm=1

where for the mth observation, vm ∈ {1, . . . , V } is the index
of the relation and im = (im1, . . . , im|Svm |) is a list of entity
indices identifying the observation with value rm ∈ R.
Our probabilistic multi-relational data model assumes

that each entity can be represented by a latent (i.e., unob-
served) continuous feature vector in R

D, whereD is typically
small (e.g., of the order of 10 or 100). The low-dimensional
latent features are denoted by Θ = (Θ1, . . . ,ΘK), where
Θk = (θk1, . . . ,θkNk

)T ∈ R
Nk×D contains the feature vec-

tors associated to entity type k.
A summary of notation is shown in Table 2. To facilitate

understanding of the notation, we consider the example de-
scribed in Figure 3 where there are four relations and five
entity types: u for users, i for items, f for item features, t
for tags and c for comment terms. The four relations are
coupled together by linking the same types of entities. Two
of these four relations linking different entity types forms a
3-dimensional array, while the other two relations are en-
coded as two 2-dimensional arrays. To this end, we can de-
fine S as {S1, S2, S3, S4}, where S1 = {u, i, t}, S2 = {i, f},
S3 = {u, u} and S4 = {u, c, i}.
Figure 4 shows the graphical model for multi-relational

data factorization. The model assumes multilinear links in
order to predict the mean of the observations given the la-

R4 R3 R1 R2

c u t i f

Figure 3: A bipartite graph representation of tag-
ging system shown in Fig 1(b)

tent features of the corresponding entities. Formally, this
means that for an observation of relation v with indices
i = (i1, . . . , i|Sv|), the mean of the observation r is a multi-
dimensional dot-product 〈., · · · , .〉 defined as

〈Θi〉 = 〈θi1 , · · · , θi|Sv|〉 =
D∑

d=1

∏
k∈Sv

θkikd .

Note that for binary relations, this is equivalent to a stan-
dard vectorial dot-product. In this paper, the distribution
of the observations is assumed to be Gaussian with relation-
dependent variances α−1

v . This assumption can be relaxed
easily to model other types of generalized linear models such
as Poisson or Bernoulli distributions. Assuming independent
observations, the likelihood of total observations D is given
by

p(D|Θ) =
∏

(v,i,r)∈D

p(r|θSv1i1 , . . . , θSv|Sv|i|Sv|
, αv)

=
∏

(v,i,r)∈D

N (r|
D∑

d=1

∏
k∈Sv

θkikd, α
−1
v )

=
∏

(v,i,r)∈D

e−ℓ(
∑D

d=1

∏
k∈Sv

θkikd,r;αv),

where ℓ(r̄, r;α) = α
2
(r− r̄)2 − 1

2
log α

2π
is the quadratic loss.

We also assume that the prior distributions over
Θ1, . . . ,ΘK are independent isotropic Gaussian distribu-
tions with type-dependent variances σ2

1 , . . . , σ
2
K :

p(Θk|σ
2
k) =

Nk∏
j=1

N (θkj |0, σ
2
kI).

Now that we have presented the model, the remaining
problem is to infer the latent variables Θ given the obser-
vations. We consider the Maximum a Posteriori (MAP)
estimator of Θ. The problem is therefore a simple mini-
mization problem of a smooth and differentiable objective
function equal to the negative log-likelihood:

min
Θ

O, where O := − log p(D|Θ,α)− log p(Θ|σ) (1)

and α = (α1, . . . , αV ) and σ = (σ1, . . . , σK).
Two approaches to solve the optimization problem are

stochastic gradient descent (SGD) and alternating least

squares (ALS). ALS is a block-coordinate descent algorithm
which minimizes Equation (1) with respect to one of the
types, say Θk by fixing all others and repeats the same pro-
cedure for each Θk sequentially, ensuring that each step de-
creases the objective function. The procedure is repeated
until convergence. The inner optimization problems are or-
dinary least squares which can be solved optimally. How-
ever, there is evidence from the tensor factorization litera-
ture that this procedure is not always effective because there
are often strong dependencies between the feature values of
the different types [25]. In addition, our method targets
very large data sets for which even one pass through the
data can be slow. This setting favors SGD-type algorithms
since every gradient estimation is much cheaper than their
batch counterpart (i.e., using standard unconstrained opti-
mization tools such as L-BFGS [23]). This type of first-order
optimization technique can be formally justified by a bias-
variance argument, remarking that the ultimate goal of the



estimation procedure is not the minimization of the objec-
tive (1), but the minimization of its expectation E [O] under
the sample distribution [7].

N1 N2 N3 Nk

M1 M2 MV

α1 α2 αV

R1 R2 RV

Θ1 Θ2 Θ3 ΘK

µ1 Λ1 µ2 Λ2 µ3 Λ3 µK ΛK

ν′
0
,W ′

0
ν′
0
,W ′

0
ν′
0
,W ′

0

µ0 ν0,W0 µ0 ν0,W0 µ0 ν0,W0 µ0 ν0,W0

· · ·

· · ·

Figure 4: Sample Bayesian probabilistic multi-
relational data factorization graphical model.
R1, . . . , RV are the observed relations. Θ1, . . . ,ΘK

are the latent features associated to the K entity
types. α1, . . . , αV are the unobserved precisions (in-
verse variances) associated with the observed rela-
tions, and similarly µ1, µ2, . . . , µk and Λ1,Λ2, . . . ,Λk are
the unobserved mean and variances associated with
latent features.

4.1 Bayesian Treatment
The performance of the probabilistic model is tied to the

careful tuning of the hyper-parameter when model param-
eters Θ are estimated by maximum a posteriori probability
(MAP) [29]. When the hyper-parameters are not properly
tuned, such a point estimation—MAP—is often vulnerable
to overfitting, especially when the data is large and sparse.
Instead of using MAP, an alternative estimation scheme

that may avoid these problems is a fully Bayesian treat-
ment, which integrates out all model parameters and hyper-
parameters, arriving at a predictive distribution of future
observations given observed data. Because this predictive
distribution is obtained by averaging all models in the model
space specified by the priors, it is less likely to over-fit a given
set of observations.
A graphical overview of our entire model is in Figure 4,

and each component is described below.
In this paper, we assume the observations follow a Gaus-

sian distribution. As in the probabilistic model, this as-
sumption can also be relaxed easily to model other types of
generalized linear models such as Poisson or Bernoulli dis-
tributions. For each observation (v, i, r) ∈ D, we have

r|Θi ∼ N (〈Θi〉, αv), where (v, i, r) ∈ D

The prior distribution for hidden feature Θ is assumed
to be Gaussian too, but the mean and the precision matrix
(inverse of the covariance matrix) may take arbitrary value:

θkj ∼ N (µk,Λ
−1
k ), j = 1...Nk

The key ingredient of our fully Bayesian treatment is to view
the hyper-parameter Φk ≡ {µk,Λk} also as a random vari-
able, leading to a predictive distribution for an unobserved
rating (v, i, r̂)

p(r̂|D) =

∫ ∫
p(r̂|Θi, αv)p(Θi, α,Φi|D)d{Θi, αv}, d{Φi}

For convenience, we also define Φi = {Φi1 , . . .Φi|Sv|
}. We

then need to choose a prior distribution for the hyper-
parameters. For the Gaussian parameter, we choose the
conjugate distribution as priors that facilitate subsequent
computation:

p(αv) = W(αv|W
′
0, v

′
0)

p(Φk) = p(µk|Λk)p(Λk) = N (µ0, (β0Λk)
−1)W(Λk|W0, v0)

Here W is the Wishart distribution of a D × D random
matrix Λ with v0 degrees of freedom and a D×D scale W0:

W(Λ|W0, v0) =
|Λ|(v0−D−1)/2

C
exp(−

Tr(W−1
0 Λ)

2
)

where C is a normalizing constant. There are several param-
eters in the hyper-priors: µ0, ρ0, β0,W0, v0,W

′
0, v

′
0, which re-

flect our prior knowledge about the specific problem and can
be treated as constants during training. In fact, Bayesian
learning is able to adjust them according to the training
data, and varying their values (within in a reasonably large
range) has little impact on the final prediction, as is often
observed in Bayesian estimation procedures [35].

5. INFERENCE
One can represent the predictive distribution of the rela-

tion value r given observation (v, i, r) ∈ D by marginalizing
over model parameters:

p(r̂|D) =

∫ ∫
p(r̂|Θi, αv)p(Θi, α,Φi|D)d{Θi, αv}, d{Φi}

Often the exact predictive disribution is intractable; thus
one relies on approximate inference such as sampling based
on Markov chain Monte Carlo (MCMC) [21, 22]. For in-
stance, MCMC can be used to approximate the predictive
distribution of Eq. 2:

p(r̂|D) =
1

L

L∑
l=1

p(r̂|Θ(l)
i
)

where the sample Θ
(l)
i

is generated by running a Markov
chain whose stationary distribution is the posterior distribu-
tion over the model parameters and hyper-parameter Θ,Φ.

One of the simplest MCMC algorithms is Gibbs sampling
[9], which cycles through the latent variables, sampling each
one from the conditional distribution given the current val-
ues of all other variables. Gibbs sampling is typically used
when these conditional distributions can be sampled from
easily. In this section we give detailed derivation for the
conditional distributions of model parameters and hyper-
parameters which are required for implementing Gibbs sam-
pling. Note that with our model assumptions, the joint pos-
terior distribution can be factorized as

p(Θ, α,Φ|D) ∝
∏

(v,i,r)∈D

p(r|θSv1i1 , . . . , θSv|Sv|i|Sv|
, αv)

∏
k

[p(Θk|Φk)p(Φk)]
∏
v

p(αv) (2)



5.1 Hyper-parameters
We start with the derivation of the conditional distribu-

tions of the model hyper-parameters. For each v, αv follows
the Wishart distribution. By using the conjugate prior to
αv, we have the conditional distribution of αv given Rv,Θ
following the Wishart distribution:

p(αv|Dv,Θ) = W(αv|W
∗
0 , v

∗
0) (3)

where

v∗0 = v′0 + |Dv|,

(W ∗
0 )

−1 = W ′
0
−1

+
∑

(v,i,r)∈Dv

(r − 〈Θi〉)
2.

Next, we derive the conditional probability for Φk. Our
graphical model (Fig. 4) assumption suggests that it is con-
ditionally independent of all the other parameters given Θk.
We thus integrate out all the random variables in Eq. 2 ex-
cept Θk, and obtain the Gaussian-Wishart distribution:

p(Φk|Θk) = N(µk|µ
∗
0, (β

∗
0Λk)

−1)W(Λk|W
∗
0 , v

∗
0), (4)

where

µ∗
0 =

β0µ0 +Nkθ̄k
β0 +Nk

, β∗
0 = β0 +Nk, v∗0 = v0 +Nk;

(W ∗
0 )

−1 = W−1
0 +NkS̄ +

β0Nk

β0 +Nk
(µ0 − θ̄k)(µ0 − θ̄k)

T ,

θ̄k =
1

Nk

Nk∑
j=1

θkj, S̄ =
1

Nk

Nk∑
j=1

(θkj − θ̄k)(θkj − θ̄k)
T .

5.2 Model-parameters
The remaining conditional distributions are for model pa-

rameters Θk, and we describe the derivation of these distri-
butions in this section. According to the graphical model
(Fig. 4), its conditional distribution factorizes with respect
to the individual entities:

p(Θk|D,Θ−k, α,Φk) =

Nk∏
j=1

p(θkj |D,Θ−k, α,Φk)

p(θkj |D,Θ−k, α,Φk) = N (θkj |µ
∗
kj , (Λ

∗
kj)

−1) (5)

where

µ∗
kj = (Λ∗

kj)
−1(Λkµk +

∑
v∈{v′|k∈Sv′}

αv

∑
(v,i,r)∈Dv ,kj∈i

rQ(v,i,r))

Λ∗
kj = Λk +

∑
v∈{v′|k∈Sv′}

αv

∑
(v,i,r)∈Dv ,kj∈i

Q(v,i,r)Q
T
(v,i,r)

Q(v,i,r) =

∏|Sv|
n=1 θSv,n,in

θkj

6. EXPERIMENTS
We conduct systematic experiments to evaluate the two

versions of our proposed model, named PRA (Probabilistic
Relational-data Analysis) and BPRA (Bayesian Probabilis-
tic Relational-data Analysis) on two data sets: Flickr and
Bibsonomy.5

5To facilitate replication of experiments, sourcecode and
datasets are available upon request.

Algorithm 1 Gibbs sampler for Relational Data Analysis

INPUT: hyper-prior parameters {µ0, ρ0, β0,W0, v0,W
′
0, v

′
0}

OUTPUT: model parameters {Θ}

1: Initialize model parameters {Θ(1)}
2: for l = 1, ..., L, do
3: Sample the hyper-parameters according to Eq. {3, 4 },

respectively:

α
(l)
v ∼ p(αv |D,Θ(1)) where v = 1, . . . , V

Φ
(l)
k ∼ p(Φk|D,Θ

(1)
k ) where k = 1, . . . ,K

4: Sample the model parameters in parallel
according to Eq. {5}:

5: for k = 1, . . . ,K do

6: for each latent factor

θ
(l+1)
kj ∼ p(θkj |D,Θ

(l+1)
1:k−1,Θ

(l)
k+1:K , α(l),Φ(l))

where j = 1, . . . , Nkand k 6= t

7: end for

8: end for

6.1 Evaluation and Comparison Methods
As there are different kinds of responses (such as binary,

term frequency and real value) in our recommendation tasks
across multi-contexts, we employ Root Mean Square Error
(RMSE) as our primary measurement for all contexts. In our
Bayesian probabilistic relational-data model, we simply set
µ0, ρ0, β0,W0, v0,W

′
0, v

′
0 all equal to one or identity vector

and D = 20 for the dimension of latent factors, on all three
data sets. Our experiments also show that the performance
is fairly robust to changes to the hyper-prior.

In the following experiments, we compare our methods
with four state-of-the-art latent factor methods:

• Salakhutdinov’s Probabilistic Matrix Factorization
(PMF) [30]: collaborative filtering using probabilistic
matrix factorization which treats activities as indepen-
dent.

• Bayesian Probabilistic Matrix Factorization (BPMF)
proposed by Salakhutdinov et al. [29]: the Bayesian
version of PMF.

• Rendle’s Tensor Factorization (TF) [27, 28] which han-
dles high-order relational data for tag prediction and
showed prior success in the graph-based tag recom-
mendation task.

• Bayesian Probabilistic Tensor Factorization (BPTF)
proposed by Xiong et al. [35] which models temporal
collaborative filtering, and whose extension is straight-
forward to model higher order relational data such as
user-tag-comments.

6.2 Flickr Experiments

6.2.1 Data set

The Flickr data has been briefly described in Section 3.
This data set includes 2,866 users, 60,339 tags, 32,752 com-
ment terms and 46,733 items (e.g., images), leading to four
relations. The relation S1 = (u, t, i) indicates that user u
tags item i with tag t. The relation S2 = (i, f) character-
izes item i with a 1024-dimension feature vector f extracted



according to [24], which are of real numbers. The relation
S3 = (u1, u2) encodes a partially observed adjacency ma-
trix representing the explicitly expressed friendship relations
among users. For instance, if user u1 and u2 are friends,
then the value at (u1, u2) and (u2, u1) are both equal to 1,
0 otherwise. The relation S4 = (u, c, i) indicates that user u
comments on item i using word c, and this relation can be
described by term frequency (positive integers).
In the first relation, the problem of interest is tag predic-

tion, that is, to predict tags that users will assign to items.
We need to model relation S1, for which the Flickr data set
has a total of 373,125 records with time stamps. The data
is partitioned into training and test sets based on the time
stamp of April 1st 2010. In total, there are 2,613,388 ob-
servations for training and 205,880 observations for testing.
Note that there are only positive samples of tags available
for the Flickr data set, so we sample 50 tags at random
as negative examples for training. For the relation user-
comment-item, where users could make some comments on
a specific item, we try to predict the term frequency in the
comments and the data also are split into training and test
data set similarly, resulting in 1,366,068 training observa-
tions and 341,043 testing observations.
As mentioned above, we also have two more contexts: for

image content, we characterize image i by a feature vector f
of 1024-dimensional visual features according to Perronnin
and Dance [24]; the social context is also comprised of bi-
nary typed observations, which contain 1,377,548 training
observations and 342,576 test observations.

6.2.2 Analysis of relations and their co-effects

Some explanatory analysis has been presented in Sec-
tion 3. A social tagging system is a coupled higher-order
data system and multiple contexts are coupled together.
Here, we will show that by using our methods together with
Bayesian treatment, predictive accuracy can be mutually
improved.
We first conduct two versions of our model: PRA for MAP

version and BPRA for Bayesian version. In Table 3, it can
be seen that the Bayesian method clearly outperforms the
MAP version (in all scenarios), due to the high data sparsity.
In Figure 5(a), we show the convergence of our Bayesian
model BPRA which starts sampling with parameters based
on the results of PRA. We can see that after around 50
epochs, the performance on two relations converge. In the
following sections, we will use Bayesian version for analysis
and comparison.
Another interesting question is: do coupled relations lead

to mutually improved prediction performance? We con-
duct experiments on modeling different relations with sev-
eral combinations to study this question. The tasks are de-
scribed in Section 6.2.1 for different relations and the results
are shown in Table 3. The first four rows of the table in-
dicate that best performances are achieved for all four re-
lations when modeling them together. The following three
rows (rows 5-7) of the table indicate the performance of mod-
eling three relations (C1, C2, C4). Similarly, the results of
modeling (C1, C3, C4) and (C1, C4) are shown in the re-
maining rows. Taking the prediction of Context 1 (C1: user-
tag-item) relation as an example: the best performance is
0.3073 in modeling all four relations, 0.3177 in modeling the
three relations (C1, C3, C4), and degrades to 0.3465 when

only modeling the relation (C1, C4) together. Comparable
results for comment prediction are also shown in Figure 5(c).

6.2.3 Comparison with existing methods

We report the evaluation of our models together with
comparisons to state-of-the-art approaches introduced ear-
lier. Bayesian Probabilistic Matrix Factorization and its
Bayesian treatment are popular methods and have shown
success in traditional collaborative filtering. In our experi-
ments with binary contexts, we compare our methods with
PMF and BPMF. Since TF and BPTF can model the tag
prediction and comment prediction tasks, we compare our
methods with them in such higher-order contexts.

We summarize the results in Table 3. While Section 3
showed that over 90% of real-world cases are cold start
problems and the graph-based methods (such as Hotho’s
Folkrank and Rendle’s tensor factorization) will not work on
such cases, we still compare to the state of the art method—
tensor factorization. The results show that Rendle’s TF
performs the worst in tag prediction, because it only mod-
els a single relation without encoding external information
of items. Intuitively the external information of items (e.g.,
comments, features) is more critical to the tag prediction
task. This result agrees with [38]. For the cold start prob-
lem, the external information of items is essential for tag
prediction because most items do not exist in the training
data.

In the comment prediction context, we see similar re-
sults; tensor factorization performs the worst because of
the lack of external information and data sparsity. Xiong’s
method—Bayesian Tensor Factorization—is much better,
but our methods still achieve the best performance. In both
tag and comment prediction, the experiments show that in
such a real-world case, tensor factorization is insufficient and
Bayesian treatment on tensor factorization can improve per-
formance significantly because of the data sparsity. We also
note that with more information in the model, the perfor-
mance of our approach improves, e.g., with social relation
information (C3), we can see that both tag and comment
prediction improves.

Overall, we can see that for all methods, the Bayesian

Table 3: RMSE of 4 relations for Flickr data set.
Context 1 for users tagging items (user-tag-item),
Context 2 for item content (item-feature), Context
3 for social interaction (user-user) and Context 4 for
users’ comments on item (user-item-comments)

BPRA PRA PMF BPMF TF BPTF
C1 0.3073 0.3599 N/A N/A 0.8226 0.3520
C2 0.9215 0.9627 0.9913 0.9004 N/A N/A
C3 0.1828 0.2053 0.1841 0.1878 N/A N/A
C4 0.3478 0.3676 N/A N/A 0.4185 0.3593
C1 0.3449 0.4450 N/A N/A 0.8226 0.3520
C2 0.9198 0.9630 0.9913 0.9004 N/A N/A
C4 0.3516 0.3681 N/A N/A 0.4185 0.3593
C1 0.3177 0.3984 N/A N/A 0.8226 0.3520
C3 0.1858 0.2298 0.1841 0.1878 N/A N/A
C4 0.3482 0.4241 N/A N/A 0.4185 0.3593
C1 0.3465 0.7843 N/A N/A 0.8226 0.3520
C4 0.3530 0.3656 N/A N/A 0.4185 0.3593
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Figure 5: Experimental results for different activities exhibited in the two data sets.

versions always outperform the MAP version respectively,
due to the sparsity of the data. Our model outperforms all
four recent nontrivial methods—PMF, TF, BPMF, BPTF
in the comments context, social network context and tag
context. We also notice that in the item feature relation,
our model is slightly worse than BPMF. That is because our
model tries to maximize the total likelihood for all relations.

6.3 Bibsonomy Experiments
The second data set used to evaluate our model is

Bibsonomy—the bookmark data set of the ECML-PKDD’09
Discovery Challenge. This data set involves 2,679 users,
263,004 items, 56,424 tags, 262,336 posts and 1,401,104
records. Clearly, this is also a very sparse data set, whose
density is only 3.52 × 10−8. Each post is associated with
a time stamp, and each item contains textual content. In
this experiment, we show that the single graph-based model
cannot work in the real world (where the data set is split
by time stamp). By incorporating content into the model,
prediction accuracy can be significantly improved. To gen-
erate a descriptor for the items, we first use the bag-of-words
language model and then use Latent Dirichlet Allocation [6]
to produce a latent factor for each item. There are only
two relations for this data set: S1 = (u, t, i), where user u
tag item i with tag t, and S2 = (i, f), where each item i is
described by a 100-dimensional feature f . To model S1, we
use a time stamp of August 1st 2008 to distinguish training
and testing sets with 7,214,426 and 1,585,179 observations
respectively.
We show the results for Bibsonomy in Table 4. At first, we

compare the two versions of our model: BPRA is still clearly
much better than PRA, benefiting from handling sparse data
well. Similarly, in Figure 5(b), we show the convergence of
our Bayesian model BPRA which starts sampling with pa-
rameters based on the results of PRA. We can see that after
around 50 epochs, performance converges. The convergence
in Bibsonomy experiments is consistent with our Flickr ex-
periments. We also compare our methods with the base-
lines. Similarly, BPMF and BPTF outperform PMF and
TF respectively. The experiments on this data set also ver-
ify the necessity of employing Bayesian treatment in social
relational data.
TF almost fails to solve the task specified by (user-tag-

item) relation without item external information, because as
we have shown in Section 3, most items in a tagging log are

Table 4: RMSE on the Bibsonomy data set. Con-
text 1 for users tagging items (user-tag-item) and
Context 2 for item content (item-feature)

BPRA PRA PMF BPMF TF BPTF
C1 .3097 0.3484 N/A N/A 1.0409 0.3455
C2 1.0088 1.0118 1.7387 1.1025 N/A N/A

new items. The results of our model are consistent with the
Flickr data: our model noticeably decreases the RMSE for
the tag prediction task. The performance for both relations
can lead to significant improvements: 0.3097 in the (user-
tag-item) relation and 1.0088 in the (item-feature) relation
respectively. This also confirms that the two contexts can
mutually reinforce the performance of the model. Overall,
like in Flickr experiments, our Bayesian model noticeably
outperforms all other methods in the Bibsonomy data set.

7. CONCLUSION AND FUTURE WORK
In this paper, we examined how to model predictive social

tagging systems. We found that user activity modeling in
social tagging systems suffers from coupled high order in-
teraction, data sparsity, and the cold start problem. We
tackled these problems with a novel generalized latent fac-
tor model and Bayesian treatment. We found that in social
tagging systems, the user-comment-item and user-tag-item
relations can be mutually inferred based on common latent
factors and thus improve prediction performance, which has
not been explored previously.

Our novel latent factor model can handle multiple activ-
ities, such as commenting within tagging systems and can
do so simultaneously and demonstrate predictive superior-
ity over state-of-the-art methods. Our experiments on two
real-world data sets also show the advantage of employing a
fully Bayesian treatment to boost the performance of point
estimation when modeling high order relations.

There are many possible extensions to the current ap-
proach, either in terms of scalability or in terms of mod-
eling. A first direction is to investigate how to incorporate
temporal factors into the model. Temporal factors have been
shown to be important by a number of previous efforts[37,
17, 35]. A significant improvement is expected through in-
corporating temporal factors.



Secondly, in our experiments, we found that different con-
texts, e.g., tag context and comments context may have dif-
ferent convergence speeds. One possible solution is that one
could add a core tensor in each of the factored matrices and
tensors, as is done in Tucker decomposition for tensors [34].
It enables a more flexible parameterization of the problem
thanks to the use of relation-specific core tensors.6 It will
also enable entity specific latent dimensions D1, · · · , Dk in-
stead of the constant dimension D used for all the entities.
While the proposed algorithm can scale to hundreds of

thousands of observations, it requires several hours to con-
verge. A possible solution is to utilize deterministic approx-
imate inference techniques such as variational Bayes to fur-
ther improve the convergence speed and enable the possi-
bility of using gradient descent algorithms instead of Gibbs
sampling.
Another potentially interesting follow-up of this work is

the study of very large data sets, for which distributed algo-
rithms can be designed thanks to the decomposable formu-
lation of the loss. The on-the-fly computation of predictions
might be also of interest in order to obtain near real-time
responses.
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