
Chapter 1

Approximate inference for continuous-time Markov processes

Cédric Archambeau1 and Manfred Opper2

1.1 Introduction

Markov processes are probabilistic models for describing data with a sequential
structure. Probably the most common example is a dynamical system, of which the
state evolves over time. For modelling purposes it is often convenient to assume
that the system states are not directly observed: each observation is a possibly
incomplete, nonlinear and noisy measurement (or transformation) of the underlying
hidden state. In general, observations of the system occur only at discrete times,
while the underlying system is inherently continuous in time. Continuous-time
Markov processes arise in a variety of scientific areas such as physics, environmental
modeling, finance, engineering and systems biology.

The continuous-time evolution of the system imposes strong constraints on the
model dynamics. For example, the individual trajectories of a diffusion process are
rough, but the mean trajectory is a smooth function of time. Unfortunately, this
information is often under- or unexploited when devicing practical systems. The
main reason is that inferring the state trajectories and the model parameters is a
difficult problem as trajectories are infinite dimensional objects. Hence, a practical
approach usually requires some sort of approximation. For example, Markov Chain
Monte Carlo (MCMC) methods usually discretise time (Shephard, 2001; Eraker,
2001; Roberts and Stramer, 2001; Alexander et al., 2005; Golightly and Wilkinson,
2006), while particle filters approximate continuous densities by a finite number
of point masses (Crisan and Lyons, 1999; Del Moral and Jacod, 2001; Del Moral
et al., 2002). More recently, approaches using perfect simulation have been proposed
(Beskos et al., 2006, 2008; Fearnhead et al., 2008). The main advantage of these
MCMC techniques is that they do not require approximations of the transition
density using time discretisations. Finally, a variety of approaches like extensions
to the Kalman filter/smoother (Särkkä, 2006) and moment closure methods (Eyink
et al., 2004) express the statistics of state variables by a finite set of moments, for
example based on Gaussian assumptions.

In this work we discuss a promising variational approach to the inference problem
for continuous-time Markov processes, which was introduced by Archambeau et al.
(2007, 2008). We will focus on diffusion processes, where the system state is a
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continuous variable subject to a deterministic forcing, called drift, and a stochastic
noise process, called diffusion. However, the approach can also be applied to other
processes, such as Markov jump processes (MJPs) (Opper and Sanguinetti, 2008;
I.Cohn et al., 2009; Sanguinetti et al., 2009). In MJPs the state trajectories are still
functions of continuous-time, but the system state can only take discrete values. For
diffusions, the approach is based on a Gaussian approximation, but as in perfect
simulation MCMC, it is not based on a discrete-time approximation of the transition
density. The approximate statistics are made not ad hoc as in the case of the Kalman
filter/smoother, but introduced in such a way that the true intractable probability
measure is optimally approximated.

This chapter is organised as follows. In Section 1.2 we will define partly observed
diffusion processes and state the inference problem. Next we will characterise the
probability measure over state trajectories given the data and show that the result-
ing posterior process is a non-stationary Markov process. In Section 1.4 we intro-
duce the variational approximation and show how this approach popular in Machine
Learning can be applied to Markov processes and in particular to diffusions. Note,
however, that unlike in most variational approaches we will not assume any form
of factorised approximation. In Section 1.5, we will consider a practical smoothing
algorithm based on the Gaussian variational approximation and discuss the form of
the solution in more detail. Finally, we will draw conclusions in Section 1.8.

1.2 Partly observed diffusion processes

We will be concerned with (Itô) stochastic differential equations, where the dynam-
ics of a state variable x(t) ∈ Rd is given by

dx(t) = f(x(t))dt+D1/2(x(t)) dW (t) . (1.1)

The vector function f is called the drift. The second term describes a (in general
state dependent) white noise process defined through a positive semi-definite matrix
D, called diffusion matrix, and a Wiener process W (t). We can think of this process
as the limit of the discrete-time process

x(t+ ∆t)− x(t) = f(x(t))∆t+D1/2(x(t))
√

∆t εt , (1.2)

where εt is now a vector of i.i.d. Gaussian random variables. The specific scaling of
the white noise with

√
∆t gives rise to the nondifferentiable trajectories of sample

paths characteristic for a diffusion process (Karatzas and Schreve, 1998; Kloeden and
Platen, 1999; Øksendal, 2005). The form (1.2) is known as the Euler-Maruyama
approximation of (1.1).

We assume the diffusion process is stationary, i.e. f and D are not explicit
functions of time, although this is not required. We have only access to a finite
set of noisy observations Y ≡ {yi}Ni=1 of the unobserved process x(t) at times
ti for i = 1, . . . , N . Conditioned on the state x we assume that observations are
independent with an observation likelihood p(y|x). We are interested in the problem
where f and D are known only up to some unknown parameters θ. It is usually
necessary to add the initial state x(0) = x0 as an unknown to the parameters to
infer.

Our goals are then to learn as much as possible from the observations in order to
infer the system parameters θ, the initial state x0 and to estimate the unknown sam-
ple path x(t) over some interval 0 ≤ t ≤ T . The latter task (when all observations
during this time are used) is called smoothing.
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In a maximum likelihood approach (or more precisely type II maximum like-
lihood (Berger, 1985) or evidence maximisation (MacKay, 1992; Bishop, 1995))
one would solve the first two problems by integrating out the latent process x(t)
and then maximising the marginal likelihood p(Y |x0, θ) with respect to θ and x0.
In a fully Bayesian approach, one would encode prior knowledge in a prior density
p(x0, θ) and would obtain the information about the unknowns in the posterior den-
sity p(x0, θ|Y ) ∝ p(Y |x0, θ) p(x0, θ). In both cases, the computation of p(Y |x0, θ)
is essential, but in general analytically intractable.

1.3 Hidden Markov characterisation

Let us first assume the parameters are known. To deal with the reconstruction of a
sample path we compute pt(x|Y, x0, θ), which is the marginal posterior of the state
at time t, i.e. x(t) = x. This marginal can be computed in the same way as the
marginals of standard discrete-time hidden Markov models (Rabiner, 1989). The
only difference is that we have to deal with continuous-time and continuous states.

Using the Markov nature of the process3 and Bayes’ rule it is not hard to show
that we can represent this posterior as a product of two factors

pt(x|Y, x0, θ) ∝ p(x(t)|Y<t, x0, θ)︸ ︷︷ ︸
.
=p

(F )
t (x)

p(Y≥t|x(t))︸ ︷︷ ︸
.
=ψt(x)

.

where p(F )
t (x) is the posterior density of x(t) = x based on the observations Y<t ≡

{yi}ti<t before time t and ψt(x) is the likelihood of the future observations Y≥t =
{yi}ti≥t conditioned on x(t) = x.

For times smaller than the next observation time p
(F )
t (x) fulfils the Fokker-

Planck (or Kolmogorov forward) equation (see for example Karatzas and Schreve,
1998, for a detailed discussion) corresponding to the SDE defined in (1.1):{

∂

∂t
+∇>f − 1

2
Tr(∇∇>)D

}
p
(F )
t (x) = 0 , (1.3)

where ∇ is the vector differential operator. The Fokker-Planck equation describes
the time evolution of the density p(F )

t (x) given some earlier density, e.g. at the most
recent observation time.

The second factor is found to obey the Kolmogorov backward equation corre-
sponding to the SDE defined in (1.1), that is{

∂

∂t
+ f>∇+

1
2

Tr(D∇∇>)
}
ψt(x) = 0 . (1.4)

This equation describes the time evolution of ψt(x), i.e. the likelihood of future
observations. The knowledge of ψt(x) also gives us the desired marginal likelihood
as

p(Y |x0, θ) = ψ0(x) .
3More specifically, we need the Chapman-Kolmogorov equation to compute pt(x|Y<t, x0, θ). By

the Markov property we have p(x(t)|x(s), x(r)) = p(x(t)|x(s)), such thatZ
dx(s) p(x(t), x(s)|x(r)) =

Z
dx(s) p(x(t)|x(s)) p(x(s)|x(r)) = p(x(t)|x(r)) ,

for all r ≤ s ≤ t. Hence, using this result recursively and then applying Bayes’ rule leads to

p(x(t)|Y<t, x0, θ) ∝ p(x(t)|x0, θ) p(Y<t|x(t)) .



4

The equations (1.3) and (1.4) hold for times between observations. The informa-
tion about the observations enters the formalism through a set of jump conditions
for p(F )

t and ψt(x) at the observation times. This result is known as the so-called
KSP equations (Kushner, 1962; Stratonovich, 1960; Pardoux, 1982).

Intuitively, the occurrence of jumps can be understood as follows. Assume we
are moving forward in time up to time t, where we encounter the observation
y(t). The information associated to yt is removed from ψt(x) and incorporated
into p

(F )
t (x). Mathematically, the “prior” p

(F )
t (x) is updated using the likelihood

factor p(y(t)|x(t)) causing jumps in p
(F )
t (x) and ψt(x) at time t:

p
(F )
t (x)← 1

Z
p
(F )
t (x) p(y(t)|x(t)) , (1.5)

ψt(x)← ψt(x)
p(y(t)|x(t))

, (1.6)

where Z is a normalising constant.
Moreover, by direct differentiation of pt(x|Y, x0, θ) with respect to time and

using (1.3) and (1.4), we find after some calculations that the posterior also fulfils
the Fokker-Planck equation:{

∂

∂t
+∇>g − 1

2
Tr(∇∇T )D

}
pt(x|Y, x0, θ) = 0 , (1.7)

with a new drift defined as

g(x, t) = f(x) +D(x)∇ lnψt(x) . (1.8)

This shouldn’t be too surprising because conditioning on the observations does not
change the causal structure of the process x(t). It is still a Markov process, but
a non-stationary one due to the observations. Note that there are no jumps for
pt(x|Y, x0, θ) as it found as the product of (1.5) and (1.6).

Hence, the process of exact inference boils down to solving the linear partial
differential equation (1.4) backwards in time starting with the final condition ψT (x)
and taking the jumps ψt−i (x) = ψti(x)p(yi|xi) into account to get the function
ψt(x) from which both the likelihood p(Y |x0, θ) and the posterior drift (1.8) are
obtained. Finally, the posterior marginals are computed by solving the linear partial
differential equation (1.7) forwards in time for some initial condition p

(F )
0 (x).

1.3.1 Example

As an analytically tractable one dimensional example we consider the simple Wiener
process dx(t) = dW (t) starting at x(0) = 0 together with a single, noise free
observation at t = T , i.e. x(T ) = y.

The forward equation

∂p
(F )
t (x)
∂t

− 1
2
∂2p

(F )
t (x)
∂x2

= 0

with initial condition p
(F )
0 (x) = δ(x) is solved by p

(F )
t (x) = N (0, t), while the

backward equation
∂ψt(x)
∂t

+
1
2
∂2ψt(x)
∂x2

= 0
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with end condition ψT (x) = δ(x−y) is solved by ψt(x) = N (y, T−t). The posterior
density and the posterior drift are then respectively given by

pt(x|x(T ) = y, x(0) = 0) ∝ p(F )
t (x) ψt(x) = N (ty/T, t(T − t)/T ) , (1.9)

g(x, t) =
∂ lnψt(x)

∂x
=
y − x
T − t

, (1.10)

for 0 < t < T . A process with drift (1.10) is known as a Brownian bridge (see
Figure 1.1). Inspection of (1.9) shows that any path of the process starting at the
origin and diffusing away will eventually go to the noise free observation y at time
T .

In general, especially in higher dimensions, the solution of the partial differential
equations (PDEs) will not be analytically tractable. Also numerical methods for
PDE solving (Kloeden and Platen, 1999) might become time consuming. Hence,
we may have to consider other types of approximations. One such possibility will
be discussed next.

1.4 The variational approximation

A different idea for solving the inference problem might be to attempt a direct
computation of the marginal likelihood or partition function Z(x0, θ)

.= p(Y |x0, θ).
Using the Markov property of the process x(t) we obtain

Z(x0, θ) =
∫ N∏

i=1

{dxi p (xi|xi−1, θ) p(yi|xi)} ,

where xi is a shorthand notation for x(ti) and x0 is fixed. Unfortunately, except for
simple linear SDEs, the transition density p(xi|xi−1, θ) is not known analytically.
In fact it would have to be computed by solving the Fokker-Planck equation (1.3).

Nevertheless, at least formally we can write Z as an infinite dimensional or
functional integral over paths x(t) starting at x0 using a proper weighting of the
paths. Using the Girsanov change of measure formula from stochastic calculus
(Øksendal, 2005) one could write such a path integral as:

Z =
∫
dµ exp

(
−1

2

∫ T

0

{
f>D−1fdt− 2f>D−1dx

}) N∏
i=1

p(yi|xi) ,

where dµ denotes a Gaussian measure over paths starting at x(0) = x0 induced
by the simple linear SDE dx(t) = D1/2(x(t)) dW (t) without drift. Note, that in
the case of a diagonal diffusion matrix and a drift derived from a potential, the Itô
integral

∫
f>D−1dx can be transformed into an ordinary integral. These types of

functional integrals play an important role in quantum statistical physics (usually
written in a slightly different notation). Most functional integrals cannot be solved
exactly, but the variational approach of statistical physics pioneered by Feynman,
Peierls, Bogolubov and Kleinert (Feynman and Hibbs, 1965; Kleinert, 2006) gives
us an idea how to approximate Z.

Consider some configuration χ of the system of interest. In our application
χ is identified with the path x(t) in the time window [0, T ]. We can represent
the probabilities over configurations in the form dp(χ) = 1

Z dµ(χ) e−H(χ), where
H(χ) = 1

2

∫ T
0

{
f>D−1fdt− 2f>D−1dx

}
−
∑N
i=1 ln p(yi|xi) is the Hamiltonian,

which in statistical physics corresponds to the energy associated to the configura-
tion. To compute an approximation to the partition function Z =

∫
dµ(χ) e−H(χ),
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(a) Sample paths and corresponding posterior drifts.
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Figure 1.1: Illustration of a one dimensional diffusion process without drift and unit diffusion
coefficient, starting at the origin and with a noise free observation y = 1 at t = 1. The posterior
process is a Brownian bridge. Note how the drift increases drastically when getting close to the
final time. (a) shows 5 sample paths with their corresponding posterior drift functions. (b) shows
the mean and variance (shaded region) of the prior, the likelihood and the posterior marginals.
Observe how the variance of the posterior pt(x) is largest in the middle of the time interval and
eventually decreases to 0 at t = 1.
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we first approximate dp(χ) by a simpler distribution dq(χ) = 1
Z0

dµ(χ) e−H0(χ),
which is defined by a simpler Hamiltonian H0(χ) and for which Z0 is tractable. Us-
ing a simple convexity argument and Jensen’s inequality, we get an approximation
to the log partition function or free energy by the bound

− lnZ ≤ − lnZ0 + 〈H〉 − 〈H0〉 , (1.11)

where the brackets denote expectations with respect to the measure q. Usually H0

contains free parameters, which can be adjusted in such a way that the inequality
becomes as tight as possible by minimising the upper bound on the right hand side.

To define a tractable variational approximation (1.11) for our inference problem,
we would use an H0 which is quadratic functional in the process x(t). This would
lead to a Gaussian measure over paths. While this is indeed possible we prefer
a different, but equivalent formulation of the variational method, which neither
needs the definition of a Hamiltonian, nor the application of stochastic calculus.
The variational method in this formulation has been extensively applied in recent
years in Machine Learning to problems involving finite dimensional latent variables
(Jordan, 1998; Opper and Saad, 2001; Bishop, 2006).

1.4.1 The variational approximation in Machine Learning

Let us denote the observations by Y and assume a finite dimensional latent variable
X. Consider some prior distribution p(X|θ) parametrised by θ and some like-
lihood function p(Y |X). To approximate the intractable posterior p(X|Y, θ) ∝
p(Y |X) p(X|θ) we directly choose a simpler trial distribution q(X). The optimal
q is chosen to minimise the Kullback-Leibler (KL) divergence or relative entropy
(Cover and Thomas, 1991)

KL[q‖p] =
〈

ln
q(X)

p(X|Y, θ)

〉
≥ 0 . (1.12)

This inequality directly leads to the bound

− lnZ(θ) ≤ −〈ln p(Y |X)〉+ KL[q(X)‖p(X|θ)] .= F(q, θ) . (1.13)

The right hand side of (1.13) defines the so-called variational free energy which is
an upper bound to the marginal likelihood of the data. Hence, minimising such a
bound with respect to the parameters θ can be viewed as an approximation to the
(type II) maximum likelihood method.

One can also apply the variational method in a Bayesian setting, where we have
a prior distribution p(θ) over model parameters (Lappalainen and Miskin, 2000).
To approximate the posterior p(θ|Y ), we set p(X, θ|Y ) ≈ q(X|θ)q(θ) and apply
the variational method to the joint space of variables X and θ. Let q(X|θ) be the
distribution which minimises the variational free energy F(q, θ) of (1.13). We then
get

q(θ) =
e−F(q,θ) p(θ)∫
e−F(q,θ) p(θ) dθ

(1.14)

as the best variational approximation to p(θ|Y ).

1.4.2 The variational approximation for Markov processes

In the case of partly observed diffusion processes we are interested in the posterior
measure over latent paths, which are infinite dimensional objects. The prior measure
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p(χ|x0, θ) is derived from an SDE of the form (1.1) and the posterior measure
p(χ|Y, x0, θ) is computed from Bayes’ rule:

p(χ|Y, x0, θ)
p(χ|x0, θ)

=
∏N
i=1 p(yi|xi)
Z(x0, θ)

, 0 ≤ t ≤ T .

When the exact posterior is analytically intractable, we consider a trial posterior
q(χ) that we would like to match to the true posterior by applying the variational
principle. All we need is an expression for the KL divergence. From Section 1.3,
we already know that the posterior process is also Markovian and that it obeys an
SDE with the time-dependent drift (1.8):

dx(t) = g(x(t), t)dt+D1/2(x(t)) dW (t) . (1.15)

Consider two continuous-time diffusion processes having the same4 diffusion
matrix D(x), but different drift functions f(x) and g(x). We call the probability
measures induced over the corresponding sample paths respectively p(χ) and q(χ).
Although we could prove the following rigorously using Girsanov’s change of mea-
sure theorem (Karatzas and Schreve, 1998; Øksendal, 2005), we will use a simpler,
more intuitive heuristic in this paper which can also be applied to Markov jump
processes.

Let us discretise time into small intervals of length ∆t and consider discretised
sample paths X = {xk = x(tk = k∆t)}Kk=1 with their corresponding multivariate
probabilities p(X|x0) and q(X|x0). We then aim to compute the KL divergence
between the measures dp and dq over some interval [0, T ] as the limit of

KL [q(X)‖p(X)] =
∫
dX q(X|x0) ln

q(X|x0)
p(X|x0)

(1.16)

=
K∑
k=1

∫
dxk−1 q(xk−1)

∫
dxk q(xk|xk−1) ln

q(xk|xk−1)
p(xk|xk−1)

,

where we have used the Markov property to represent p(X|x0) and q(X|x0) respec-
tively as

∏
k p(xk|xk−1) and

∏
k q(xk|xk−1). Next, we plug in the specific short term

behaviour (i.e. ∆t → 0) of the transition probabilities. Since we are dealing with
diffusions we obtain the Gaussian forms

p(xk|xk−1) ∝ exp
(
− 1

2∆t
‖xk − xk−1 − f(xk−1)∆t‖2D(xk−1)

)
,

q(xk|xk−1) ∝ exp
(
− 1

2∆t
‖xk − xk−1 − g(xk−1)∆t‖2D(xk−1)

)
,

where ‖f‖2D = f>D−1f . Following Archambeau et al. (2008), a direct computation
taking the limit ∆t→ 0 yields

KL [q(X)‖p(X)] =
1
2

∫ T

0

dt

{∫
dqt(x) ‖g(x)− f(x)‖2D(x)

}
,

where qt(x) is the posterior marginal at time t. Note that this result is still valid if
the drift function and the diffusion matrix are time-dependent.

Hence, the variational free energy in the context of diffusion processes can be
written as

F(q, θ) = KL[q(χ)‖p(χ|θ)]−
∑
i

〈ln p(yi|xi)〉qti
, (1.17)

4It can be shown that the KL divergence diverges for different diffusions matrices.
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where χ is a continuous sample path in the interval [0, T ]. The bound (1.11) is
equivalent to the bound (1.17) for appropriate definitions of Hamiltonians H(χ) and
H0(χ). The advantage of (1.17) is that we can directly compute the KL divergence
for Markov processes, without defining H(χ) and H0(χ) explicitly. The results can
also be applied to MJPs as proposed by Opper and Sanguinetti (2008).

1.4.3 The variational problem revisited

Before discussing approximations, we will show that total minimisation of the free
energy yields our previous result (1.8). For the corresponding derivation in the case
of MJPs see Ruttor et al. (2009). The free energy can be written as

F(q, θ) =
∫ T

0

dt

∫
dx qt(x)

{
1
2
‖g(x, t)− f(x)‖2D(x) + u(x, t)

}
,

where the observations are included in the term

u(x, t) = −
∑
i

ln p(yi|x) δ(t− ti) .

The drift g and the marginal qt are connected by the Fokker-Planck equation

∂qt
∂t

=
{
−∇>g +

1
2

Tr(∇∇T )D
}
qt

.= Lgqt

as a constraint in the optimisation of qt. We can deal with this constraint by
introducing a Langrange multiplier function λ(x, t) to obtain the following Lagrange
functional:

L .= F(q, θ)−
∫ T

0

dt

∫
dx λ(x, t)

(
∂qt(x)
∂t

− (Lgqt)(x)
)
.

Performing independent variations of qt and g leads respectively to the following
Euler-Lagrange equations:

1
2
‖g − f‖2D + u+

{
g>∇+

1
2

Tr(D∇∇>)
}
λ+

∂λ

∂t
= 0 ,

D−1(g − f) +∇λ = 0 ,

where we have used integration by parts when appropriate. Defining the logarithmic
transformation λ(x, t) = − lnψt(x) and rearranging yields then the conditions{

∂

∂t
− u(x, t)

}
ψt(x) =

{
−f>(x)∇− 1

2
Tr(D(x)∇∇>)

}
ψt(x) , (1.18)

g(x, t) = f(x) +D(x)∇ lnψt(x) , (1.19)

for all t ∈ [0, T ]. By noting that u(x, t) = 0 except at the observation times, we find
that these results are equivalent to (1.4) and (1.8); the Dirac δ functions yield the
proper jump conditions when there are observations. Note that this derivation still
holds if f and D are time-dependent.

1.5 The Gaussian variational approximation

In practice, rather than assuming the correct functional form (1.19), we will view
g as a variational function with a simplified form. The function g can then be
optimised to minimise the free energy.
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Gaussian distributions are a natural choice for approximations. For example,
they have been used frequently in statistical physics applications. For previous
(finite dimensional) applications in machine learning see Barber and Bishop (1998);
Seeger (2000); Honkela and Valpola (2005). In the present inference case, a Gaussian
approximating measure over paths, that is a Gaussian process, is considered. In this
case the drift must be a linear function of the state x. We consider a drift of the
form g(x, t) = −A(t)x + b(t), where A(t) and b(t) are functions to be optimised.
In addition, we limit ourselves to the special case of a constant diffusion matrix D
(Archambeau et al., 2007, 2008). The approximation equally holds in the case of
time-dependent diffusions. The more general case of multiplicative noise processes,
that is with state dependent diffusion matrices, will be discussed in Section 1.6.

Since we are dealing with a Gaussian process, the marginals qt(x) are Gaussian
densities. This result represents a significant simplification of the calculations. First,
qt(x) are fully specified by their marginal means m(t) and their marginal covariances
S(t). Second, we don’t need to solve PDEs, but are left with simpler ordinary
differential equations (ODEs). Since (1.15) is a linear SDE, we have

dm
.= 〈dx〉 = (−Am+ b)dt ,

dS
.= 〈d((x−m)(x−m)>)〉 = (−AS − SA>)dt+Ddt+O(dt2) ,

where the term Ddt is obtained by applying the stochastic chain rule.5 Hence, the
evolution of m(t) and of S(t) is described by the following set of ODEs:

dm(t)
dt

= −A(t)m(t) + b(t) , (1.20)

dS(t)
dt

= −A(t)S(t)− S(t)A>(t) +D . (1.21)

We can follow a similar approach as in Section 1.4.3 to optimise the Gaussian
variational approximation. More specifically, we use these ODEs as a contstraint
during the optimisation. Let us define e(x, t) = 1

2‖g(x, t)−f(x)‖2D. The Lagrangian
functional is now defined as

L =
∫ T

0

dt 〈e(x, t) + u(x, t)〉qt
−
∫ T

0

dt λ>(t)
(
dm(t)
dt

+A(t)m(t)− b(t)
)

−
∫ T

0

dt Tr
(

Ψ(t)
(
dS(t)
dt

+A(t)S(t) + S(t)A>(t)−D
))

, (1.22)

where λ(t) and Ψ(t) are vector and matrix Lagrange parameter functions which
depend on time only. Performing independent variations of m(t) and S(t) (which
is equivalent to performing an independent variation of qt) yields an additional set
of ODEs:

dλ(t)
dt

= −∇m〈e(x, t)〉qt
+A>(t)λ(t) , (1.23)

dΨ(t)
dt

= −∇S〈e(x, t)〉qt
+ Ψ(t)A(t) +A>(t)Ψ(t) , (1.24)

along with jump conditions at observation times

λi = λ−i −∇m〈u(x, t)〉qt

∣∣
t=ti

, λ−i = lim
t↑ti

λ(t) , (1.25)

Ψi = Ψ−i −∇S〈u(x, t)〉qt

∣∣
t=ti

, Ψ−i = lim
t↑ti

Ψ(t) . (1.26)

5This result can also be obtained by an informal derivation not relying on stochastic calculus
but only using properties of the Wiener process (see Archambeau et al., 2007, Appendix).
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Hence, the Fokker-Planck equation is replaced by (1.20) and (1.21) in the Gaussian
variational approximation, while the Kolmogorov backward equation is replaced by
(1.23) and (1.24). Based on (1.23–1.26) we can devise a smoothing algorithm as
described in Archambeau et al. (2007, 2008). Also, a procedure to infer of θ (which
parametrises f and D) is discussed in detail in Archambeau et al. (2008).

One important advantage of the Gaussian variational approach is that repre-
sentations can be based on a discretisation of ODEs instead of a direct discreti-
sation of the SDE. The loss of accuracy is expected to be less severe because of
the smoothness of the paths (Kloeden and Platen, 1999). Also the approximation
holds in continuous-time and is thus independent of the chosen representations un-
like most MCMC schemes (Alexander et al., 2005; Golightly and Wilkinson, 2006).
In contrast to these discrete-time MCMC schemes, perfect simulation MCMC for
continuous-time systems was recently proposed (Beskos et al., 2006, 2008; Fearn-
head et al., 2008). This method is sofar restricted to problems where drift terms are
derived as gradients of a potential function, which is not required in the Gaussian
variational approximation. The main similarity between the Gaussian variational
approximation and these advanced MCMC approaches is that they do not depend
on a discrete-time approximation of the transition density. However, the Gaussian
variational approximation differs from perfect simulation in its approximation of
the non-Gaussian transition density by a (time dependent) Gaussian one.

Thorough experimental comparisons are still required to assess the advantages
and disadvantages of the different methods, but the Gaussian variational approxi-
mation is likelily to be computationally faster as it is not based on sampling; it only
cares about the marginal means and covariances, which can be computed efficiently
by forward integration (1.20) and (1.21). On the other hand, perfect sampling
MCMC will capture the posterior measure more accurately if run for a sufficiently
long period of time.

1.5.1 Interpretation of the solution

In this subsection we discuss the form of the Gaussian variational solution in more
detail. Let us perform the independent variation of A(t) and b(t), which can be
viewed as performing the independent variation of g as in Section 1.4.3. This leads
to the following conditions

A(t) = −
〈
∇(f>)(x, t)

〉
qt

+ 2DΨ(t), (1.27)

b(t) = 〈f(x, t)〉qt +A(t)m(t)−Dλ(t), (1.28)

for all t. In order to obtain (1.27) we used the identity 〈f(x −m)>〉 = 〈∇(f>)〉S,
which holds for any nonlinear function f(·) applied to a Gaussian random variable
x. The solution (1.27–1.28) is closely related to a solution known as statistical
linearisation (Roberts and Spanos, 2003).

Consider a nonlinear function f , which is applied to a continuous random vari-
able x with density q. We are interested in the best linear approximation −Ax+ b
to f . Instead of directly truncating the Taylor series of f to obtain a linear approx-
imation, we would like to take into account the fact that x is a random variable.
Statistical linearisation takes this information into account by taking A and b such
that the linear approximation is optimal in the mean squared sense:

A, b← min
A,b

〈
‖f(x) +Ax− b‖2

〉
q
.

When x is a Gaussian random variable it is easy to show that the solution to this
problem is given by A = −

〈
∇(f>)(x)

〉
q

and b = 〈f(x)〉q + Am. Comparing these
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expressions to (1.27) and (1.28), it can be observed that the variational solution
reduces to the statistical linearisation solution when the Lagrange multipliers are
zero. Recalling that the Lagrange mulitpliers account for the constraints and the
observations, one can see that the solution (1.27–1.28) is biased compared to the
standard statistical linearisation solution. This bias corresponds to a correction
based on future information and it is weighted by the diffusion matrix. The weight-
ing by D makes sense as the magnitude of the correction should depend on the
amount of stochasticity in the system.

1.5.2 Example

Applications of the Gaussian variational approximation to statistical inference for
nonlinear SDEs can be found in Archambeau et al. (2007, 2008). We will illustrate
the basic idea of the calculation only for the simple, analytically tractable case of
Section 1.3.1. For later use, we introduce an extra parameter σ in the model which
controls the diffusion coefficient, i.e. we set dx(t) = σdW (t).

We have g(x, t) = −a(t)x(t)+b(t). The evolution of the mean m(t) and variance
s(t) simplify to

dm

dt
= −a(t)m(t) + b(t) , (1.29)

ds

dt
= −2a(t)s(t) + σ2 . (1.30)

We model the noise free observation as the limit of a Gaussian observation centred
at y and with variance σ2

0 → 0. Hence, we have

L =
∫ T

0

dt

{
1

2σ2
a2(s+m2) +

1
2σ2

b2 − 1
σ2
amb

}
+
∫ T

0

dt
1

2σ2
0

(y2 + s+m2 − 2my)δ(t− T )

−
∫ T

0

dt λ

(
dm

dt
+ am− b

)
−
∫ T

0

dt ψ

(
ds

dt
+ 2as− σ2

)
. (1.31)

The Euler-Lagrange equations (1.23–1.28) are then given by

dλ(t)
dt

= −a
2(t)m(t)
σ2

+
a(t)b(t)
σ2

+ a(t)λ(t) , (1.32)

dψ(t)
dt

= −a
2(t)
2σ2

+ 2ψ(t)a(t) , (1.33)

a(t) = 2σ2ψ(t) , (1.34)

b(t) = a(t)m(t)− σ2λ(t) , (1.35)

along with the jump conditions

λ(T ) = λ(T−)− m(T )− y
σ2

0

, ψ(T ) = ψ(T−)− 1
2σ2

0

.

Substitution of (1.34) into (1.33) leads to dψ
dt = 2σ2ψ2 with the end condition 1

2σ2
0
.

It follows that the solution to this ODE is given by ψ(t) = 1
2σ2(T−t)+2σ2

0
. Second,

substitution of (1.35) into (1.32) implies λ is a constant. The end condition yields
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Figure 1.2: Illustration of a one dimensional diffusion process without drift and unit diffusion
coefficient, starting at the origin and with a noise free observation y = 1 at t = 1. The top panel
shows a sample path and the corresponding drift g(x, t) = −a(t)x(t) + b(t) is shown in the middle
panel. The middle panel also shows the variational parameter a(t). The bottom panel shows the
posterior process, which corresponds to the one obtained in Figure 1.1.

λ = m(T )−y
σ2
0

. Next, substitution of (1.35) into (1.29) leads to m(t) = −σ2λt + c

with c = 0 as m(0) = 0, such that m(T ) = yT
σ2
0/σ

2+T
. Hence, we obtain:

a(t) =
σ2

σ2(T − t) + σ2
0

,

b(t) =
σ2y

σ2(T − t) + σ2
0

.

This leads to the same result for g(x, t) as (1.10) when σ2
0 → 0. The solution is

illustrated in Figure 1.2.

1.6 Diffusions with multiplicative noise

In Section 1.5 we discussed the Gaussian variational approximation of diffusion pro-
cesses with a constant or a time-dependent diffusion matrix. However, the method-
ology can still be applied to diffusion processes with multiplicative noise.

In some cases one can apply an explicit transformation to transform the original
diffusion process with multiplicative noise into a diffusion process with a unit diffu-
sion matrix (e.g., Ait-Sahalia, 2008). The resulting drift is then expressed in terms
of f and D via Itô’s formula. Although this add-hoc approach is always possible
when the state space is one dimensional, such a transformation typically does not
exist in the multivariate case.

In the general case of a state dependent diffusion, the ODEs describing the
evolution of the mean m(t) and the covariance S(t) are defined by

dm(t)
dt

= −A(t)m(t) + b(t) , (1.36)

dS(t)
dt

= −A(t)S(t)− S(t)A>(t) + 〈D(x(t), t)〉qt
. (1.37)
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The only difference with (1.20) and (1.21) is that in (1.37) the expectation of the
diffusion matrix appears. The variational energy is still given by (1.17). Hence, we
can construct a valid Gaussian process approximation of the posterior process using
the constraints (1.36) and (1.37). Note, however, that A(t) and b(t) are no longer
given by (1.27) and (1.28), but have a more complicated form.

1.7 Parameter inference

The formulation of the variational approach in terms of (1.22) is especially useful
when we would like to estimate model parameters by an approximate type II max-
imum likelihood method. In this approximation, we use the free energy F(q∗, θ)
evaluated at the optimal variational Gaussian measure q∗ for given parameters θ as
a proxy for the negative log-marginal likelihood − lnZ(θ).

The optimal parameters θ∗ are obtained by minimising F , which requires the
computation of the gradients ∇θF(q∗, θ). Although q∗ is a function of θ, this
optimisation problem is facilitated by the following argument. For each θ, we have
L = F(q∗, θ) at the stationary solution, which is also stationary with respect to
marginal moments, variational parameters and Lagrange parameters. Hence, to
compute the gradients ∇θF(q∗, θ), we just have to take the explicit gradients of L
with respect to θ, while keeping all other quantities fixed.

1.7.1 Example

This idea is illustrated for the simple diffusion example of Section 1.3.1, where we
have introduced a parameter σ to control the diffusion variance: dx(t) = σdW (t).
We are interested in computing the derivative of the negative log-marginal likelihood
of the single observation y (at time T ) with respect to σ2.

For a direct computation, let us first note that p
(F )
t (x) = N (0, σ2t). The

marginal likelihood for y is given by

p(y|, σ2) =
∫
δ(y − x(T ))p(F )

T (x)dx(T ) = N (0, σ2T ) ,

which yields

−∂ ln p(y|σ2)
∂σ2

=
1

2σ2
− y2

2σ4T
.

On the other hand, differentiating (1.31) with respect to σ2 leads to

∂L
∂σ2

= − 1
2σ4

∫ T

0

dt
(
a2s+ σ4λ2

)
+
∫ T

0

dt ψ(t) =
1

2σ2
− y2

2σ4T
.

The first equality is obtained by differentiating (1.31) and using (1.35). To get the
final result we have inserted the explicit results for a(t), λ(t) and ψ(t) obtained in
Section 1.5.2 for σ2

0 → 0, as well as the corresponding solution to (1.30): s(t) =
σ2t
T (T − t).

1.8 Discussion and outlook

Continuous-time Markov processes, such as diffusion processes and Markov jump
processes, play an important role in the modelling of dynamical systems. In a vari-
ety of applications, the state of the system is a (time-dependent) random variable
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of which the realisation is not directly observed. One has only access to noisy obser-
vations taken at a discrete set of times. The problem is then to infer from data the
unknown state trajectory and the model parameters, which define the dynamics.
While it is fairly straightforward to present a theoretical solution to these estima-
tion problems, a practical solution in terms of PDEs or by MCMC sampling can be
time consuming. One is thus interested in efficient approximations.

In this work we described a method to fit a Gaussian process to a non-Gaussian
process induced by a SDE. The method is based on the variational principle origi-
nally developed in statistical physics and now extensively used in Machine Learning.
It provides a practical alternative to exact methods and MCMC. Unlike previous
variational approaches (Wang and Titterington, 2004) it is not required to discretise
the sample paths, nor to factorise the posterior across time. Although this might
lead to good results when the number of observations is large compared to the speed
of the dynamics, this approach leads in general to poor results. For a systematic dis-
cussion of the effect of factorisation in discrete-time dynamical systems we refer the
interested reader to Chapter ??. By contrast our approximation does not assume
any form of factorisation of the posterior. Rather, we choose a posterior process
within a tractable family, namely the Gaussian family, which explicitly preserves
the time dependency. Moreover, the approximation holds in continuous-time such
that discretisation is only required for representation purposes.

The Gaussian variational approximation is attractive as it replaces the problem
of directly solving a SDE (or equivalently a set of PDEs) by the simpler problem of
solving a set of ODEs. The variational parameters are optimised to obtain the best
possible approximation. This optimisation is done concurrently with the estimation
of the model parameters, which enable us to learn the dynamics of the system.
However, the proposed approach might be too time consuming in high dimensional
applications, such as numerical weather prediction. The main reason is that the
dynamics of the marginal covariance S scales with d2, d being the state space
dimension. Hence, one could envisage suboptimal schemes in which the variational
parameters are reparametrised by a small number of auxiliary quantities. Another
potential issue is the estimation of the multivariate Gaussian expectations, which
appear in the computation of A and b, as well as the computation of free energy
F . In low dimensional state spaces they can be estimated naively using sampling.
Alternatively, one can use quadrature methods, but most existing approaches break
down or are too slow in higher dimensional spaces and/or for highly nonlinear
dynamics.

As mentioned earlier there are ongoing efforts to develop computationally effi-
cient algorithms for fully Bayesian inference in diffusion processes. A very promising
direction is to combine the Gaussian variational method and MCMC. One could
for example develop a MCMC algorithm which uses the variational approximat-
ing process as a proposal process (Shen et al., 2008). Sample paths could then
be simulated using the optimal non-stationary linear diffusion and flexible blocking
strategies would be used to further improve the mixing.
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