
1

Latent IBP compound Dirichlet Allocation
Cédric Archambeau, Balaji Lakshminarayanan, Guillaume Bouchard

Abstract—We introduce the four-parameter IBP compound Dirichlet process (ICDP), a stochastic process that generates sparse non-
negative vectors with potentially an unbounded number of entries. If we repeatedly sample from the ICDP we can generate sparse
matrices with an infinite number of columns and power-law characteristics. We apply the four-parameter ICDP to sparse nonparametric
topic modelling to account for the very large number of topics present in large text corpora and the power-law distribution of the
vocabulary of natural languages. The model, which we call latent IBP compound Dirichlet allocation (LIDA), allows for power-law
distributions, both, in the number of topics summarising the documents and in the number of words defining each topic. It can be
interpreted as a sparse variant of the hierarchical Pitman-Yor process when applied to topic modelling. We derive an efficient and
simple collapsed Gibbs sampler closely related to the collapsed Gibbs sampler of latent Dirichlet allocation (LDA), making the model
applicable in a wide range of domains. Our nonparametric Bayesian topic model compares favourably to the widely used hierarchical
Dirichlet process and its heavy tailed version, the hierarchical Pitman-Yor process, on benchmark corpora. Experiments demonstrate
that accounting for the power-distribution of real data is beneficial and that sparsity provides more interpretable results.

Index Terms—Bayesian nonparametrics, power-law distribution, sparse modelling, topic modelling, clustering, bag-of-words represen-
tation, Gibbs sampling
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1 INTRODUCTION

P ROBABILISTIC topic models such as latent Dirichlet
allocation (LDA) [1], [2] are widespread tools to

analyse and explore large text corpora. LDA models the
documents in the corpus as a mixture of K discrete
distributions over the vocabulary, which are called top-
ics. The key simplifying assumption made in LDA is
that the sequential structure of text can be ignored to
capture the semantic structure of the corpus. As a result,
LDA considers a bag-of-words representation of the doc-
uments. Among the many, notable extensions include the
modelling of topical trends over time [3], their particular-
isation to the discovery of topics in conjunction with the
underlying social network [4] or the joint representation
of topics and sentiment [5]. In recent years, topic models
have been used in numerous applications, not only in
text analysis, but also to model huge image databases
[6], [7], software bugs [8] or regulatory networks in
systems biology [9], and they proved to give state-of-
the-art results in the unsupervised extraction of human
intelligible topics from a wide variety of documents [10].

While LDA can be viewed as a hierarchical Bayesian
extension of probabilistic latent semantic analysis (PLSA)
[11] and can be interpreted as a multinomial PCA model
[12], its tremendous success (over 4800 citations accord-
ing to Google Scholar at the time of writing) can be
attributed to its simplicity and its natural interpretation.
The model not only proposes an appealing generative
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model of documents, but it also enjoys a relatively sim-
ple inference procedure (i.e. a collapsed Gibbs sampler
[13]) based on simple word counts, which is able to
handle millions of documents in a couple of minutes.
A practical issue with LDA, however, is model selection
(i.e., the identification of the number of topics capturing
the underlying semantics). When modelling real data,
the number of topics are expected to grow logarithmi-
cally with the size of the corpus. When the number of
documents in the corpus increases, it is reasonable to
assume that new topics will appear, but that the increase
will not be linear in the number of documents; there
will be a saturation effect. Model selection can be dealt
with in a principled way by considering the hierarchical
Dirichlet process (HDP), which can be interpreted as the
nonparametric extension of LDA [14].

Despite the success and appealing generative con-
struct of HDP-LDA for topic modelling, it is interesting
to note that the distributions it postulates are inappropri-
ate for modelling real corpora. Data sampled from HDP-
LDA show typically significant departure from real ob-
servation counts. For example, it is well-known that the
ordered frequencies of the vocabulary words observed in
most real corpora follow Zipf’s law [15]: the frequency
of a specific word is proportional to the inverse of its
rank. This is illustrated in Figure 1, where the ordered
word frequencies of the four corpora we will consider
in the experiments are shown. A more realistic non-
parametric topic model would be based on the Poisson-
Dirichlet process [16], also known as the Pitman-Yor pro-
cess (PYP) [17]. This stochastic process is a generalisation
of the Dirichlet process (DP) [18]; it has one additional
parameter, called the discount parameter, which enables
it to account for power-law characteristics in the data. Its
hierarchical extension, the hierarchical Pitman-Yor process
(HPYP) was used successfully for language modelling
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Fig. 1. Ordered word frequencies of the four benchmark
corpora that will be considered in the experiments (see
Section 5 for a detailed description). Let fw be the fre-
quency of word w in the corpus. It can be observed that
the ranked word frequencies follow Zipf’s law, which is an
example of a power-law distribution: p(fw) ∝ f−cw , where
c is a positive constant. Like many natural phenomena,
human languages including English exhibit this property.
Intuitively, this means that human languages have a very
heavy tail: few words are extremely frequent, while many
words are very infrequent.

in [19] and for more general sequence modelling in [20].
It was also shown to have a remarkable connection to
interpolated Kneser-Ney, which is currently still one of
the most effective language models since it was first
proposed more than a decade ago [21], [22]. HPYP-LDA
was proposed for topic modelling to account for the
power-law distribution of text [23] and it was shown to
outperform HDP-LDA in terms of predictive likelihood
on several benchmark data sets such as the Reuters and
the New York Journal corpora.

Recently, sparsity-enforcing priors have been pro-
posed to enable topics to be defined by a small sub-
set of the vocabulary. Sparsity enforcing priors lead to
compression as well as an easier interpretation of the
topics. A suitable candidate in the Bayesian nonparamet-
ric domain is the IBP compound-Dirichlet process (ICDP)
[24]. On top of the simple sparsity-promoting advantage,
the ICDP enables to decouple the topic inter-document
frequency and intra-document frequency [25]. An HDP-
LDA model assumes implicitly that an infrequent topic
should also be infrequent in every document where it
appears. Hence, unlike HDP-LDA, the ICDP can lead
to very specific topics that might be very rare in a
document corpus overall, but relate to a lot of words
in the few documents that include this topic. The ICDP
assumes that a random infinite binary matrix generated
by an Indian Buffet Process (IBP) [26], [27] prior “selects”
a subset of the components before applying a Dirichlet
prior on the subset of activated components. The ICDP
based on the one-parameter IBP has been applied as

a prior for the document-topic distribution in a model
called the Focused Topic Model (FTM) to enable a small
number of topics allocated per document [24]; it has
also been applied as prior for the topic-word matrix
in the Sparse-Smooth Topic Model (SSTM) to obtain top-
ics with fewer words describing them [25]. While the
posterior Dirichlet associated with each topic in HDP-
LDA is peaked for a small value of its hyperparameters,
it puts non-zero probability mass on all words of the
vocabulary. SSTM removes this constraint and it enables
topics to be expressed by words that might be very
discriminative, but do not necessarily appear in the same
proportion in all documents associated with these topics.

The primary goal of FTM and SSTM is to render topic
models more expressive, either by allowing more diverse
topic distributions, or by favouring more specialised
topic definitions. FTM decouples the prevalence of a
topic in the corpus from its prevalence in individual
documents, while SSTM decouples the prevalence of
a word occurring in the corpus and its prevalence in
the individual topics. However, neither of these models
address the fundamental weakness of HDP-LDA regard-
ing the power-law distribution of natural language and
possibly of topics. Both, FTM and SSTM, are based on
the one-parameter IBP, which typically generates very
tall binary matrices. As a result, most of the features are
shared by most topics, which is undesirable.

In this work, we introduce the four-parameter IBP
compound Dirichlet process (ICDP), which is based on
the three-parameter IBP [28]. As illustrated in Figure 2,
the ranked frequencies of features generated from a one-
parameter IBP are not power-law distributed, while they
are for a three-parameter IBP. Hence, it is natural to
consider the four-parameter ICDP to model real text
corpora. We also propose a unified framework for the
power-law extensions of FTM and SSTM, which contains
them as special cases. The power-law extension of FTM
can be viewed as a sparse variant of HPYP-LDA [23].
Moreover, unlike previous methods we derive a very
simple collapsed Gibbs sampler in the same vein as the
collapsed Gibbs sampler for LDA. In the experimental
section, we apply the proposed models on several text
corpora; the predictive likelihood compares favourably
with respect to the widely used HDP-LDA. A detailed
analysis of the results show that the topic models based
on the four-parameter ICDP are more expressive and
result in a higher number of topics, many of them being
infrequent. The most common topics tend to be easier to
interpret than HDP-based topics. The infrequent topics
are often associated with a subset of documents and are
more difficult to interpret, but specialised.

The paper is organised as follows. First, we introduce
the four-parameter IBP compound Dirichlet process.
Next, we present latent IBP compound Dirichlet allocation
(LIDA), a sparse nonparametric Bayesian topic model
with power-law characteristics. Subsequently, we discuss
a simple collapsed Gibbs sampler. Finally, we validate
the model on several toy and benchmark corpora.
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Fig. 2. Ordered feature frequencies drawn from a three-
parameter IBP with parameters η = 10 and δ = 1. The
features are power-law distributed when σ > 0.

2 IBP COMPOUND DIRICHLET PROCESS

The Dirichlet process (DP) [18] has been extensively
studied in the literature as a prior for the number of
components in a mixture model [29], [30]. Draws from a
DP are completely random measures, which means that
they are discrete with probability one [31]:

H ∼ DP(α0H0) ⇒ H =

∞∑
k=1

τkδ(φk), (1)

where α0 > 0 is the mass parameter, δ(·) is Dirac’s
delta function and H0 is the base measure. The atoms
{φk}∞k=1 are drawn from the base measure H0. The
weights {τk}∞k=1 associated with the atoms depend on
α0 and

∑∞
k=1 τk = 1. If we think of H0 as a prior on

the mean and the covariance of a multivariate Gaussian
distribution, then a draw from H0 would generate an
atom φk, which would correspond to the mean vector
and the covariance matrix of component k. Its mixture
weight would then be τk. Hence, it is natural to use the
Dirichlet process as a prior for the weights in an infinite
mixture, e.g. of Gaussians.

The HDP is a two-level hierarchical extension of the
Dirichlet process. It is still assumed that the data are
generated from an underlying mixture model, but every
data point now corresponds to a group of observations,
each of which has been generated from one of the
mixture components. Hence, we can think of every data
points as a mixture model with a specific weighting of
the mixture components. Let H ∼ DP(αH0) be a prior
for measure Gd, such that

Gd ∼ DP(αH) ⇒ Gd =

∞∑
k=1

θkdδ(φk). (2)

The first point to note from this expression is that Gd
is again a mixture model and that it shares all its atoms
with H . The second point to note is that each draw Gd is
characterised by a set of weights {θkd}∞k=1, which satisfy

∑∞
k=1 θkd = 1. As shown in [14], the set {τk}∞k=1 defines

a prior on every set {θkd}∞k=1:

θd ∼ DP(ατ ), (3)

where θd and τ can be thought of as infinite dimen-
sional vectors. One of the most popular applications of
the HDP is topic modelling, which we have denoted
HDP-LDA. Each data point corresponds to a document,
which is summarised by a bag of words and each word
in the document is assumed to be generated from an
underlying topic. A topic is just a discrete distribution
over the vocabulary and documents are modelled as a
mixture of topics, the mixture weights being document
dependent. Hence, the topics correspond to the atoms,
while the topic proportions are the mixture weights.

Unfortunately, the main issue comes from (3): the
distribution over topics (i.e., components) depends only
on ατ , meaning that the importance of each topic (i.e.
component) in the whole corpus is linked to its proba-
bility of being associated with any document (i.e., data
point). This is undesirable as it might well be that a
specific topic does not occur often, but is very important
to one specific document. The one-parameter ICDP was
proposed in [24] to address this weakness. However,
this process relies on the one-parameter IBP [26], [27],
in which the expected number of active topics is cou-
pled to the number of topics that are shared among
documents (see Figure 3 top left corner). Hence, the one-
parameter ICDP only partially addresses the issue with
HDP-LDA as relatively few topics are shared by many
documents. We will address this issue by considering
the four-parameter ICDP extension. Our model relies on
the three-parameter IBP [28], which exhibits a power-law
behaviour as we will illustrate in the next section.

2.1 Three-parameter Indian Buffet process

The Indian Buffet process (IBP) is a nonparametric
Bayesian model typically used to generate an un-
bounded number of latent features when we can assume
the data are exchangeable. However, for a finite number
of observations, let say D, the number of features is finite
with probability one. In the IBP metaphor, the observa-
tions are called customers and the features dishes [27].
Let η > 0, δ > −σ and σ ∈ [0, 1) be the three parameters
of the IBP. The generative process of the features is as
follows [28]:

1) The first customer tries Poisson(η) dishes;
2) Next, customer d tries dish k with probabil-

ity mk−σ
d−1+δ and Poisson

(
η Γ(1+δ)Γ(d−1+δ+σ)

Γ(d+δ)Γ(δ+σ)

)
new

dishes,

where Γ(·) is the Gamma function and mk is the number
of customers having tried dish k.

While usually defined by one parameter [26] or two
parameters [32], the IBP is used as a generative model
for binary matrices. Each row is obtained by repeatedly
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Fig. 3. Binary matrices sampled from a three-parameter
IBP. The mass parameter η is constant, the concentration
parameter δ increases across columns, while the discount
parameter σ increases across rows. In all cases the
expected number of non-zero entries is ηD. The amount
of features that is shared decreases when the concen-
tration parameter δ increases. The discount parameter σ
is responsible for the power-law characteristic. The top
left matrix is drawn from a one-parameter IBP, while the
matrix below is drawn from a two-parameter IBP with
the same mass parameter, but a larger concentration
parameter.

sampling from a beta-Bernoulli process where the beta
process is integrated out [33]:

Gd|H ∼ BeP(H), H ∼ BP(δ, ηH0), (4)

where η > 0 is the mass parameter and H0 is a
smooth base distribution. The concentration parameter
δ is positive and it is set to 1 in the one-parameter case.
Both, the Bernoulli and the beta process are examples
of completely random measures [34]. In particular, the
beta process is a completely random measure with an
unnormalised beta distribution as rate measure. It is
defined on the product space [0, 1]× F:

Λ0(dπ × dφ) = ηδπ−1(1− π)δ−1dπH0(φ)dφ. (5)

Draws from the beta process correspond to draws from
the Poisson process with rate measure Λ0, which inte-
grates to infinity over its entire domain. This means that
the random measure H has a countably infinite number

of atoms, each independently and identically distributed
according to H0:

H =

∞∑
k=1

πkδ(φk). (6)

Since all πk lie in [0, 1], we can interpret H as an infinite
collection of coin-tossing probabilities. Hence, any ran-
dom measure Gd drawn from the Bernoulli process with
base measure H is of the form

Gd =

∞∑
k=1

θ̄kdδ(φk), (7)

where θ̄kd ∼ Bernoulli(πk) and the atoms {φk}∞k=1 are the
same as the ones of H .

The mass parameter η regulates the expected number
of active features per observation Gd and thus the total
number of features active in the random matrix formed
by stacking the observations {Gd}Dd=1. The concentration
parameter δ can be interpreted as a repulsion parameter:
when it increases, the number of different features will
increase for a given number of expected active features.
This is illustrated in Figure 3. The first column compares
draws from the one-parameter and a two-parameter IBP.
When δ > 1 it can be observed that less features are
shared.

The three-parameter IBP is based on a generalisation
of the beta process [35], [28]:

Gd|H ∼ BeP(H), H ∼ CRM(Λ0). (8)

The rate measure Λ0(dπ × dφ) is now given by

η
Γ(1 + δ)

Γ(1− σ)Γ(δ + σ)
π−σ−1(1− π)δ+σ−1dπH0(φ)dφ, (9)

where σ ∈ [0, 1) is the discount parameter and δ > −σ.
Again, the three-parameter IBP is obtained by integrat-
ing out the completely random measure H and draws
Gd are of the form (7).

Like the two-parameter IBP, the number of active fea-
tures depends on η and the number of non-zero entries
is decoupled from the number of shared entries thanks
to δ. However, the three-parameter IBP also exhibits
a power-law in the number of unique features thanks
to the additional discount parameter [36], which has a
similar role as the discount parameter in the PYP [17].
The effect of the discount parameter is shown in Figure 3.

Another, less formal way to understand the three-
parameter IBP is by taking the limit of the finite-
dimensional case. Let Θ̄ be a random binary matrix of
size K × D where K is finite, with rows {θ̄k}Kk=1. We
define the intensity ε as the expected number of rows
with at least one activated feature:

ε = η

D−1∑
j=0

Γ(1 + δ)Γ(j + δ + σ)

Γ(j + 1 + δ)Γ(δ + σ)
. (10)

We assume that the total number of rows K is greater
than ε so that the fraction of activated rows is ε/K in
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expectation. The matrix Θ̄ is generated according to the
following process:

ak ∼ Bernoulli
( ε
K

)
if ak = 0 (row k is not activated)
θ̄kd = 0 for all d ∈ {1, 2, · · · , D}

else (row k is activated)
d ∼ Uniform ({1, 2, · · · , D})
θ̄kd = 1

πk|θ̄kd = 1 ∼ Beta

(
1 +

ηδ

K
− σ, δ + σ

)
for d′ 6= d

θ̄kd′ ∼ Bernoulli(πk) (11)

Hence, when the latent activation variable ak is equal
to one, row k is activated. The posterior probability of πk
given θ̄k is obtained by multiplying the Bernoulli likeli-
hood (11) with the improper prior p(πk) ∝ π

ηδ
K −σ−1(1−

π)δ+σ−1 and normalising. This leads to

πk|θ̄k· ∼ Beta

(
ηδ

K
+ θ̄k· − σ,D − θ̄k· + δ + σ

)
, (12)

where θ̄k· > 1. The notation “·” indicates a summation
over the index. When more than one column is activated,
i.e. θ̄\kdk· > 1, we can further derive the conditional by
integrating out πk:

θ̄kd|Θ̄
\kd

; θ̄
\kd
k· > 1 ∼ Bernoulli

(
ηδ
K + θ̄

\kd
k· − σ

ηδ
K +D − 1 + δ

)
, (13)

where the notation “\kd” indicates the contribution of
θ̄kd was removed. We recover the expression derived
in [28] when identifying θ̄\kdk· with mk and letting K tend
to infinity. When θ̄kd is the only active entry in row k, i.e.
θ̄
\kd
k· = 0, setting θ̄kd equal to 1 is equivalent to creating

a new row. Hence, we get

θ̄kd|Θ̄
\kd

; θ̄
\kd
k· = 0 ∼ Bernoulli

( ε
K

)
. (14)

More generally, for a given number of columns D, the
number K∗ of activated rows is Binomial

(
ε
K ,K

)
. If we

invoke the law of rare events, we find that when K
tends to infinity, K∗ tends in distribution to a Poisson
distribution with mean parameter ε, again recovering
the result of [28]. The expected number of new features
also tends to a Poisson distribution with parameter
equal to the difference between the two intensities, i.e.
Poisson

(
η Γ(1+δ)Γ(D+δ+σ)

Γ(D+1+δ)Γ(δ+σ)

)
, again recovering the original

formulation of the three-parameters IBP.

2.2 Four-parameter ICD process
The name IBP compound Dirichlet process (ICDP) was
first coined in [24], where its one-parameter version was
proposed as an alternative Bayesian nonparametric prior
to the DP. In contrast to the DP, which can be highly
peaked and thus quasi sparse for small values of its

hyperparameter α, the ICDP is truly sparse. This has not
only advantages in terms of storage, but also in terms of
representation capabilities. In this section, we introduce
the four-parameter extension of the ICDP. On top of
being more flexible, it exhibits power-law characteristics.
We start our discussion with finite dimensional matrices
and then generalise to the infinite case.

Let Θ̄ be a binary matrix of size K × D, where K
is finite. We assume Θ̄ is a binary entry selection mask
for Θ ∈ RK×D, such that they share the same non-zero
entries. The prior on the columns of Θ can be formalised
as follows:

θd|θ̄d ∼ Dirichlet(αθ̄d) =
Γ(θ̄·dα)∏

k:θ̄kd 6=0 Γ(θ̄kdα)

K∏
k:θ̄kd 6=0

θα−1
kd ,

(15)

where it is assumed θ̄·d > 0. The Dirichlet distribution is
degenerate: it is defined over the simplex of dimension∑
k θ̄kd− 1. By convention, we force θkd to be equal to 0

if it does not belong to the support (i.e., if θ̄kd = 0). This
distribution was proposed in [37] for modelling large
discrete domains such as in language modelling.

A finite sparsity inducing prior for Θ can be con-
structed based on the truncated IBP:

θ̄d ∼
∏
k

Bernoulli(πk), Θ|Θ̄ ∼
∏
d

Dirichlet(αθ̄d), (16)

where p(πk) ∝ π
ηδ
K −σ−1(1 − π)δ+σ−1. Each column θ̄d

of Θ̄ is a binary vector, its kth entry being equal to
one with probability πk. The random variable π is a K-
dimensional vector containing the Beta random variables
{πk}Kk=1.The infinite extension is obtained by letting K
tend to infinity and integrating out π:

Θ̄ ∼ IBP(η, δ, σ), Θ|Θ̄ ∼
∏
d

DP(αθ̄d). (17)

The last equation yields θd ∼ DP(αθ̄d), which should
be compared to (3), where θd ∼ DP(ατ ). Here, each θ̄d
is independently and identically distributed according
to the marginal beta-Bernoulli process inducing (17). In
other words, the {θd} do not share the same prior as in
the case of the DP, as desired.

The four-parameter ICDP is obtained by integrating
out the latent binary mask Θ̄:

Θ ∼ ICDP(α, η, δ, σ) =
∑
Θ̄

p(Θ|Θ̄)p(Θ̄). (18)

Since the number of observed features K is finite when
the number of columns D is finite, the four-parameter
ICDP can be understood as a mixture of degenerate
Dirichlet distributions over simplices of different dimen-
sions. A similar type of degenerate Dirichlet priors was
used in [37], [25], [24]. All considered the special case
where δ = 1 and σ = 0. Only [24] considered the ICDP,
but the weights associated with each column of Θ̄ were
independently drawn from a Gamma distribution. A
Dirichlet distribution was then recovered by normalising
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the weights. We do not follow this route as it leads to
a complicated sampler partially based on Hybrid Monte
Carlo (see e.g. [38]). Instead, we draw the weights from
a degenerate Dirichlet with mass parameter α shared
by all columns. Thanks to the binary mask, α does not
need to be small to ensure that the individual Dirichlet
priors are peaked on a small set of features. Importantly,
this construction enables us to derive a relatively simple
collapsed Gibbs sampler as discussed in Section 4.

Draws from several ICDPs are shown in Figure 4 and
they are compared to DPs with a similar mass parameter
α. It can be observed that the columns of the matrices
drawn from the ICDP have a variable number of active
elements, even for large values of the mass parameter
α. This is not the case for matrices drawn from the
DP. In the context of topic modelling, the ICDP can be
used as a prior on the topic proportion matrix as well
as the topic distribution. This means that some topics
(words) might only occur in few documents (topics)
or, conversely, some document (topics) could only have
few topics (words) associated with them. As we will
show in the experimental section, this is a more realistic
assumption than the ones made in conventional topic
model like HDP-LDA or even HPY-LDA.

3 LATENT IBP COMPOUND DIRICHLET ALLO-
CATION
As LDA and its nonparametric extension HDP-LDA,
latent IBP compound Dirichlet allocation (LIDA) is a gener-
ative model of documents that is based on their bag-
of-words representation. At first sight, this might be
perceived as a crude assumption, but it has been proven
to be valid for topic modelling. However, one unsatis-
factory aspect about LDA and HDP-LDA is that they
assume the vocabulary is known in advance. Hence, they
could be considered to be incomplete generative models
as they are incapable of incorporating new words when
new documents are observed. LIDA does not suffer from
this weakness as explained below. Moreover, LIDA im-
poses ICDP priors on the topic and the word proportion
matrices. As a result, LIDA can account for power-laws
in the topics and the words. The latter is especially
appealing as the vocabulary of real corpora exhibits
power-law characteristics as discussed in Section 1.

The generative process of documents based on LIDA
can be summarised as follows:

1) Topic generation:
• The first topic picks Poisson(γ) words;
• Next, topic k picks a previously used word v

with probability mv−ζ
k−1+ξ and enriches the topic

with Poisson
(
γ Γ(1+ξ)Γ(k−1+ξ+ζ)

Γ(k+ξ)Γ(ξ+ζ)

)
new words;

• Topic k is then defined by drawing a discrete
distribution over the subset of Vk words defin-
ing it from a Dirichlet(β1Vk),

where β > 0, γ > 0, ξ > −ζ and ζ ∈ [0, 1). The
count variable mv indicates the number of times
word v appeared in previously observed topics.
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Fig. 4. Left column matrices are generated from a Dirich-
let distribution (like in HDP-LDA) with mass parameter
α ∈ {10, 0.1, 0.01}. It can be observed that the amount
of sparsity for each column of the matrix is similar; if one
is interested in sparse topics, then all of them show a
similar level of sparsity. The matrices in right column are
generated from an ICDP (like in LIDA). It can be observed
that the amount of sparsity varies across the columns of
the matrix.

2) Document generation:
• The first document picks Poisson(η) topics;
• Next, document d picks a previously used

topic k with probability mk−σ
d−1+δ and draws

Poisson
(
η Γ(1+δ)Γ(d−1+δ+σ)

Γ(d+δ)Γ(δ+σ)

)
new topics;

• The topic proportions associated with docu-
ment d are then obtained by drawing a discrete
distribution over the subset of Kd topics from
a Dirichlet(α1Kd);

• Word wi in document d is generated by first
drawing a topic zi from the topic proportion
distribution of document d and then drawing
wi from the word distribution of topic zi,

where α > 0, η > 0, δ > −σ and σ ∈ [0, 1). The
count variable mk indicates the number of times
topic k appeared in previous documents.

Hence, the main differences with the generative model
of HDP-LDA are:
• For every newly generated document, a subset of

the previously observed topics is selected (according
to their importance) and potentially a small set of
new topics are generated. Hence, words will be
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generated not only from previously observed topics,
but also from new topics.

• Similarly, every time a word is generated it is se-
lected from a subset of the previously observed
vocabulary words or a small set of new candidate
words. Hence, every topic definition will take into
account the fact that the size of the vocabulary
increases when the corpus increases.

More formally, let Θ ∈ RK×D be the topic proportions
matrix and Θ̄ ∈ RK×D its associated binary mask.
Further, let Φ ∈ RV×K be the word proportions matrix
and Φ̄ ∈ RV×K its binary mask. Both, K and V are po-
tentially infinite, but given a finite number of documents
D, they have a finite number of non-zero entries. The
probabilistic model of LIDA is defined as follows:

Θ ∼ ICDP(α, η, δ, σ), (19)
Φ ∼ ICDP(β, γ, ξ, ζ), (20)

zi|θd ∼ Discrete(θd), (21)
wi|zi, {φk}∞k=1 ∼ Discrete(φzi), (22)

where i = {1, . . . , Nd} and d = {1, . . . , D}. The total
number of words in the corpus is given by N =

∑
dNd.

The priors (19) and (20) can be decomposed according to
(17). While θd and φk are infinite dimensional vectors,
they have a finite number of non-zero entries, which
sum up to one. Hence, (21) and (22) are proper discrete
distributions. However, it should be noted that LIDA is a
nonparametric model where both the number of topics
and the number of vocabulary words are unbounded.
The graphical model is depicted in Figure 5.

Next, we derive a collapsed Gibbs sampler to infer the
latent topic assignments and the latent binary masks. It
is relatively simple to implement and is closely related to
the collapsed Gibbs samplers for LDA [13], the Chinese
restaurant franchise process [14] and the IBP [26].

4 INFERENCE

The sampler that we present is derived from the trun-
cated version of LIDA. The nonparametric version de-
scribed in the subsequent subsections is obtained triv-
ially from the posteriors by passing to the infinite limit.

First, we integrate out the latent weights {θd} and
{φk} associated respectively with the topics and the
words. This leads to the following marginal likelihoods:

z|Θ̄ ∼
∏
d

Γ(θ̄·dα)

Γ(θ̄·dα+ n··d)

∏
k:θ̄kd 6=0

Γ(θ̄kdα+ n·kd)

Γ(θ̄kdα)
, (23)

w|z, Φ̄ ∼
∏

k:θ̄k· 6=0

Γ(φ̄·kβ)

Γ(φ̄·kβ + n·k·)

∏
v:φ̄vk 6=0

Γ(φ̄vkβ + nvk·)

Γ(φ̄vkβ)
,

(24)

where w = {wi}Ni=1, z = {zi}Ni=1 and nvkd is the number
of times word v was assigned to topic k in document
d. The notation · means we sum over the corresponding
index. Note that n·kd = 0 if θ̄kd = 0 (as θkd = 0) and

Algorithm 1 Collapsed Gibbs Sampler Pseudocode

Initialize {θ̄kd}K,Dk=1,d=1, {φ̄vk}V,Kv=1,k=1 and {zi}Ni=1.
do

for d = 1, . . . , D
for k = 1, . . . ,K

if n·kd = 0
if θ̄k· = θ̄kd

Sample θ̄kd according to (30).
else

Sample θ̄kd according to (29).
Sample Poisson(π̃kd) new topics using (30).

for k = 1, . . . ,K
for v = 1, . . . , V

if nvk. = 0
Sample φ̄vk according to (31).

Sample Poisson(κ̃vk) new words using (33).
for i = 1, . . . , N

Sample zi according to (35).
Sample α, η, δ, σ, β, γ, ξ, ζ (see Section 4.5).

while not converged

nvk· = 0 if φ̄vk = 0 (as φvk = 0). Based on the above
conditionals, we can write the collapsed Gibbs updates:

p(θ̄kd|z, Θ̄
\kd

) ∝ p(z|Θ̄)p(θ̄kd|Θ̄
\kd

), (25)

p(φ̄vk|w, z, Φ̄
\vk

) ∝ p(w|z, Φ̄)p(φ̄vk|Φ̄
\vk

), (26)

p(zi|w, z\i, Θ̄, Φ̄) ∝ p(w|z, Φ̄)p(z|Θ̄). (27)

In the finite case, p(θ̄kd|Θ̄
\kd

) is given by (13) if θ̄\kdk· > 1

and by (14) otherwise. The conditional p(φ̄vk|Φ̄
\vk

) has
the same functional form as p(θ̄kd|Θ̄

\kd
).

4.1 Sampling the topic activations
The topic activations per document are sampled accord-
ing to (25). If there is at least one word allocated to
topic k in document d, the document-topic indicator
θ̄kd is automatically set to 1 (i.e., if n·kd > 0, we have
p(θ̄kd = 1|z, Θ̄\kd) = 1); otherwise, when n·kd = 0, the
probability that θ̄kd is activated is given by

θ̄kd|z, Θ̄
\kd ∼ Bernoulli (πkd) , (28)

where B(·, ·) is the Beta function and πkd is defined as

πkd =
1

1 +
B(θ̄
\kd
·d α,α)(D−1−θ̄\kdk· +δ+σ)

B(θ̄
\kd
·d α+n··d,α)(θ̄

\kd
k· −σ)

. (29)

This formula is obtained using (13) and letting K tend
to infinity. However, it is not valid when the topic is a
“new” topic. This is the case when, for a given topic k,
the binary mask is only active in the current document
d, that is, when θ̄k· = θ̄kd. In this case, the probability of
creating the topic k given by (14) is involved, leading to

π̃kd =
η

η +
B(θ̄
\kd
·d α,α)Γ(D+δ)Γ(δ+σ)

B(θ̄
\kd
·d α+n··d,α)Γ(1+δ)Γ(D−1+δ+σ)

. (30)
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D

Nd ∞

∞ ∞
η, δ, σ πk θ̄d φ̄k κv γ, ξ, ζ

α θd zi wi φk β

Fig. 5. Graphical models for the different configurations: HDP-LDA: solid arrows only; four-parameter FTM: solid +
dashed arrows; LIDA: solid + dashed + dotted arrows. Nodes indicate random variables (gray: observed variables;
blue: latent variables; orange: hyperparameters). Rectangle plates correspond to repetitions.

The number of topics K is infinite, so this corresponds
to activating Poisson(π̃kd) topics.

4.2 Sampling the word activations
The word activations per topic are sampled according to
(26). Similar to the topic activations, when nvk· > 0, the
corresponding topic-word indicator φ̄vk is automatically
set to 1; otherwise, when nvk· = 0, the probability that
φ̄vk is activated is given by

φ̄vk|w, z, Φ̄
\vk ∼ Bernoulli (κvk) , (31)

where

κvk =
1

1 +
B(φ̄
\vk
·k β,β)(K∗−1−φ̄\vkv· +ξ+ζ)

B(φ̄
\vk
·k β+n·k·,β)(φ̄

\vk
v· −ζ)

, (32)

where K∗ is the total number of activated topics. For the
observed words, this expression is always valid. How-
ever, LIDA accounts for potential unobserved words in
every topic. Again, in this case the formula is not valid
when the unobserved word is a “new” one, that is, it
does not belong to the current vocabulary (observed or
unobserved). This leads to

κ̃vk =
γ

γ +
B(φ̄
\vk
·k β,β)Γ(K∗+ξ)Γ(ξ+ζ)

B(φ̄
\vk
·k β+n·k·,β)Γ(1+ξ)Γ(K∗−1+ξ+ζ)

. (33)

The number of words V is potentially infinite, so this
corresponds to activating Poisson(κ̃vk) new words.

However, if one desires to consider a finite vocabulary,
one should assign at least one vocabulary word to
every topic and sample word activations using the finite
version of the Gibbs update, which uses the finite version
of the activation probability:

κvk =
1

1 +
B(φ̄
\vk
·k β,β)(K∗−1− γξV −φ̄

\vk
v· +ξ+ζ)

B(φ̄
\vk
·k β+n·k·,β)( γξV +φ̄

\vk
v· −ζ)

. (34)

4.3 Sampling the topic assignments
The topic assignments are sampled according to (27). The
variable zi indicates the topic assigned to word wi in
document d. The posterior is given by

p(zi = k|w, z\i, Θ̄, Φ̄) ∝ (α+n
\i
·kd)(β+n

\i
vk·)

φ̄·kβ+n
\i
·k·

φ̄vkθ̄kd. (35)

The product φ̄vkθ̄kd equals one only if the topic-
document and topic-word binary masks are activated.
The inference algorithm is a Gibbs sampler, which alter-
nates between the sampling of the discrete variables θ̄kd,
φ̄vk and zid conditionally to the others. The sampler is
summarised in Algorithm 1.

4.4 Special cases

The four-parameter Focussed Topic Model (FTM) is ob-
tained if φ̄k = 1V . In this case, there is no need to
sample the topic-word activation variables {φ̄vk}. The
topic assignments are then sampled as follows:

p(zi|w, z\i, Θ̄) ∝
(α+ n

\i
·kd)(β + n

\i
vk·)

V β + n
\i
·k·

θ̄kd. (36)

The two-parameter FTM proposed in [24] is recovered
when setting δ = 1 and σ = 0 in (29).

Similarly, the infinite version of Sparse-Smooth Topic
Model (SSTM) is obtained if θ̄d = 1K and there is no
need to sample the topic-document activation variables
{θ̄kd}. The topic assignments are sampled as follows:

p(zid = k|w, z\i, Φ̄) ∝
(α+ n

\i
·kd)(β + n

\i
vk·)

φ̄·kβ + n
\i
·k·

φ̄vk. (37)

It should be noted that SSTM is infinite in the size of the
vocabulary, unlike the version proposed in [25] where a
DP prior was used to account for an infinite number of
topics.

Finally, standard LDA is recovered by letting φ̄k = 1V
and θ̄d = 1K . This leads to the well-known collapsed
Gibbs sampler [13]:

p(zi = k|w, z\i) ∝
(α+ n

\i
·kd)(β + n

\i
vk·)

V β + n
\i
·k·

. (38)

4.5 Hyperparameter sampling

In order to infer the hyperparameter values we also use
Markov Chain Monte Carlo. When we cannot derive
a Gibbs sampler, we use Metropolis-Hastings [38] to
sample hyperparameter values.
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TABLE 1
Data characteristics and average log-perplexity (with

standard errors) on held-out data. LIDA outperforms all
other methods, except on 20 newsgroups, where the

four-parameter FTM performs best.

20 newsgroup Reuters KOS NIPS
#docs 1000 2000 3430 1500
#unique words 1407 1472 6906 12419

HDP-LDA 6.568±0.033 6.188±0.009 NA NA
FTM (δ = 1, σ = 0) 6.342±0.020 5.623±0.015 7.262±0.007 6.901±0.005
HPY-LDA 6.572±0.029 6.164±0.011 NA NA
FTM 6.332±0.020 5.622±0.013 7.266±0.009 6.883±0.008
LIDA 6.376±0.026 5.592±0.024 7.257±0.010 6.795±0.007

For α and β, we obtain closed form Gibbs updates:

p(α|z, Θ̄) ∝ p(z|Θ̄, α)p(α), (39)
p(β|w, z, Φ̄) ∝ p(w|z, Φ̄, β)p(β), (40)

where p(z|Θ̄, α) is given by (23) and p(α) ∝ 1
α . Similarly,

p(w|z, Φ̄, β) is given by (24) and p(β) ∝ 1
β .

In order to sample η and δ, we use the joint likelihood
of the three-parameter IBP. This leads to

p(η|Θ̄, δ, σ) ∝ p(Θ̄|η, δ, σ)p(η), (41)
p(δ|Θ̄, η, σ) ∝ p(Θ̄|η, δ, σ)p(δ), (42)

where p(η) = Gamma(a, b) and p(δ) ∝ 1
δ+σ − σ. The

joint marginal likelihood of the document-topic indicator
matrix was derived in [28]. It is given by

P (Θ̄|η, δ, σ) = exp

−η D−1∑
j=0

Γ(1 + δ)Γ(j + δ + σ)

Γ(j + 1 + δ)Γ(δ + σ)

 ηK
∗

×
∏
k6K∗

Γ(1 + δ)Γ(D − θ̄k· + δ + σ)Γ(θ̄k· − σ)

Γ(1− σ)Γ(δ + σ)Γ(D + δ)
,

(43)

where K∗ is the number of activated features. For com-
pleteness, we provide an alternate derivation in Ap-
pendix A to the one proposed in [28], which is derived
from the truncated IBP.

Setting σ = 0 in (43) leads to the marginal likelihood
for the two-parameter IBP [32]. Further setting δ = 1
leads to the marginal likelihood for the one-parameter
IBP as originally derived in [26]. Hence, we can derive
a closed form Gibbs update for η as the Gamma distri-
bution is conjugate to the joint marginal likelihood (43)
and we use a Metropolis-Hastings step for δ. We use a
similar procedure to sample γ and ξ. We did not sample
σ or ζ, but this is possible in principle.

5 EXPERIMENTS
This section is divided into three parts. First, we detail
how we approximate the log-predictive likelihood of the
words of a test corpus. Next, we study the properties
of the the Gibbs sampler and the convergence of the
parameters on a toy example. Finally, we evaluate the
four-parameter FTM and LIDA on standard benchmarks
data sets.
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Fig. 6. Training log-perplexity for 10 randomly generated
corpora. It can be observed that the sampler converges
relatively quickly.

5.1 Evaluation
Let w∗ denote the test corpus of size N∗ . We use
perplexity as a performance metric. Lower perplexity
is better. It corresponds to the harmonic mean of the
inverse test likelihood:

Perplexity(w∗) = exp

(
− lnP (w∗|w)

N∗

)
. (44)

The test log-likelihood lnP (w∗|w) is approximated by
empirical averages based on samples after burn-in:

lnP (w∗|w) ≈
∑
d∗

∑
v

nv·d∗ lnE
[
φ>v |z∗

]
E [θd∗ |z∗] ,

(45)

where the posterior expectation of the topic proportions
associated with the test documents are computed as
follows:

E [θkd∗ |z∗] ≈
1

S

S∑
s=1

θ̄kd∗α+ n·kd∗
θ̄·d∗α+ n··d∗

. (46)

The posterior expectation of the word proportions is
computed in the same fashion:

E [φvk|w, z] ≈ 1

S

S∑
s=1

φ̄vkβ + nvk·
φ̄·kβ + n·k·

. (47)

In practice, we sample the topics of the test documents
on half of the corpus and evaluate perplexity on the
other half. In Section 5.3, we split the data sets randomly
into five folds and report mean and standard error of the
log-perplexities to assess the significance of the results.

5.2 Toy data set
We generated an artificial corpus consisting of 1000
documents, each having an expected number of 150
words. We focussed on the convergence of the sampler
of the ICDP. Hence, we restricted the analysis to the
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Fig. 7. Toy example – Convergence of the hyperparameters based on ten random initialisations and fixed σ. The
correct value is indicated by the constant dashed line. In all cases, the hyperparameter samples converge to a value
close to the ground truth. However, α and η show a small bias.

case where topics are sampled from finite dimensional
Dirichlet distributions with parameter β = 0.01. We
randomly initialise α, η and δ. We set σ to its true value,
0.1. While in principle we could sample the discount
parameter, we noticed that for values greater than 0.25,
a very large number of topics could be generated during
burn-in, slowing down the sampler significantly. We
thus recommend constructing models based on a grid
of values that lie in [0, 1) in practice.

The log-perplexity for 10 randomly generated corpora
is shown in Figure 6. We observe a modest burn-in of ap-
proximately 250 sampling rounds. The parameter sam-
ples for 10 random initialisations is shown in Figure 7 for
one of these corpora. While the parameters converge to
reasonably similar values in all cases, it can be observed
that α is underestimated, while η is overestimated. This
essentially means that a larger number of sparse topics
is preferred compared to the ground truth. We observed
experimentally, that this bias reduces when the number
of documents increases, but that that this number needs
to be relatively large for the reduction to be significant.

5.3 Benchmark data sets

We consider four benchmark corpora: 20 newsgroup,
Reuters, KOS and NIPS. The characteristics of these data
sets are reported in Table 1. The KOS and NIPS data
sets are from the UCI Machine Learning Repository1; we
did not perform any further processing, such as removal
of stopwords. For the 20 newsgroup and Reuters-21758
data sets, we used the preprocessed version from [24].
Further details about the pre-processing steps is avail-
able in [24]. Figure 1 shows the power-law distribution
of their word occurrences.

As a baseline, we used the Matlab implementation of
the HDP-LDA topic model by Teh.2 The mass parameters
of the DP were set to 1, while the mass parameter of the
Dirichlet prior on topic distribution was set to 0.10. We
also compared our results to the HPY-LDA topic model;

1. http://archive.ics.uci.edu/ml.
2. www.stats.ox.ac.uk/∼teh/research/npbayes/npbayes-r1.tgz
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Fig. 8. Convergence of the hyperparameters for NIPS
when ζ = 0.25.The blue, red and green curves corre-
spond respectively to σ = 0, σ = 0.10 and σ = 0.25.

further details are available in Appendix B. We used the
Chinese restaurant franchise sampler for both HDP-LDA
and HPY-LDA (with discount equal to 0.25).

The results of test log-perplexity are shown in Table 1.
Both, FTM and LIDA significantly outperform HDP-
LDA and HPY-LDA. The results reported for FTM and
LIDA are for the optimal hyperparameters. While the
optimal value for σ is typically close to 0, the optimal
value for ζ is typically moderate, around 0.25. This
indicates that the power-law is more prominent for
the word occurrences than for the topic occurrences.
However, the performance gain between FTM and LIDA
is modest. The concentration δ is in all cases different
from 1, meaning that the two-parameter FTM similar
to the one proposed in [24] is always suboptimal, as
shown in the table. While its performance is close to
the four-parameter FTM, it should be noted that the
number of topics created in the former is typically three

http://archive.ics.uci.edu/ml
www.stats.ox.ac.uk/~teh/research/npbayes/npbayes-r1.tgz
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(a) 20 newsgroup.
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(b) Reuters.
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(c) KOS.

Fig. 9. Histogram of the number of topics per document. The FTM and LIDA assign more topics to the documents
compared to HDP-LDA. We do not note a significant difference between FTM and LIDA, even though LIDA is
consistently outperforming FTM in terms of test log-perplexity.

times larger or more than in the latter. Thus, accounting
for the power-law enables us to learn not only a better
performing model, but also a model with a lower model
complexity which is much faster to learn.

Table 1 shows that FTM actually slightly outperforms
LIDA on the 20 newsgroup data set. The preprocessing
carried out by [24] consists among others to filter out
low-frequency words, which is in favour of FTM. To
assess the effect of the preprocessing, we ran additional
experiments on the unprocessed version of the 1000
documents in the 20 newsgroup data, which contains
20659 unique words in the vocabulary. The perplexities
are 7.017 ± 0.040, 6.999 ± 0.048, and 6.759 ± 0.036 for
FTM (δ = 1, σ = 0), unconstrained FTM and LIDA
respectively. LIDA now outperforms FTM as it is able to
better account for the power law in word distribution.
This supports the fact that LIDA is more suitable for
modelling real world data with power law characteristic.

We only report the performance of HDP-LDA and
HPY-LDA on 20 newsgroup and Reuters as they did not
converge in a reasonable amount of time on KOS and
NIPS. Sampling the topics was extremely slow due to
the dense vector of topic proportions. For example, it
took more than 120 hours to run 30 training iterations
for HPY-LDA on KOS or NIPS data sets. We also ex-
perimented with the C++ implementation of HDP-LDA
by Wang,3 but found that the sampler was again very
slow. It can be observed that HPY-LDA outperforms
HDP-LDA on Reuters data set, which is larger than 20
newsgroup, suggesting that accounting for the power-
law characteristic is beneficial in more realistic settings.
It is worth noting that HPY-LDA does not account for the
power-law distribution of the word occurrences. Also,
it should be noted that HPY-LDA performs worse than
FTM, indicating that sparsity is more important than the
power-law distribution of the topic proportions.

Figure 8 shows the Markov chains of the hyperpa-
rameters of LIDA for σ ∈ {0, 0.10, 0.25}. The discount

3. www.cs.cmu.edu/∼chongw/software/hdp.tar.gz

parameter ζ is fixed to 0.25, which is the value that led
to the test log-perplexity reported in Table 1. It can be
observed that most chains stabilise after approximately
250 to 500 sampling rounds. The mass parameter α con-
verges to a relatively large value when σ 6= 0 compared
to optimal values for HDP-LDA, where it is typically
equal to 0.1 or smaller to allow for a sparse topic
assignment. Similarly, the mass parameter η converges
to a very large value. The concentration parameter δ
is slightly negative. The model behaves very differently
when σ = 0: the mass parameter α is relatively small like
in HDP-LDA, favouring a peaked degenerate Dirichlet
posterior, while the concentration δ is large, favouring
a large number of topics. In other words, the model
attempts to compensate for the absence of power-law
characteristics by creating many, quasi-sparse vectors
of topic proportions. In all cases, the mass parameter
β is relatively large compared to typical values used
in HDP-LDA or HPY-LDA. The large number of very
sparse topics that are created (over 4000) authorise β to
be large as it is not necessary to enforce spiked word
distributions.

Figure 9 compares the histograms of the number of
topics per document. It can be observed that the sparse
models assign a larger number of topics to each docu-
ment, indicating that the documents are more accurately
characterised by the topics and less topics are shared
by many documents. This is confirmed when computing
the average number of words per topic and the average
number of documents per topic. For example, in the
case of KOS, the average number of words per topic for
HDP-LDA, FTM and LIDA is respectively 158, 43, and
47, while the average number of documents per topic is
respectively 9, 4, and 4 The histograms of the number of
topics per word (See Figure 10 for an example) indicate
that the sparse models tend to learn more diverse topics.

We end our discussion by showing and comparing
topics inferred by HDP-LDA, FTM and LIDA. Examples
of topics extracted from Reuters are shown in Table 2
and the ones extracted from NIPS in Table 3. We selected

www.cs.cmu.edu/~chongw/software/hdp.tar.gz
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Fig. 10. Histogram of the number of topics per word for 20
newsgroup. Most words are assigned to a relatively small
number of topics in FTM and LIDA, which increases the
diversity of the topics.

random topics from FTM and then identified the closest
topics inferred by HDP-LDA and LIDA. As distance
measure between topics, we used the minimum mean
absolute distance:

kwin = argmin
k

∑
v

|φvk − φ∗vl|, (48)

where φ∗l is the reference topic. The words are ordered
by decreasing weight. While all models return relatively
clean topics, the ranked list of words provided by the
sparse models appear more coherent (e.g. third, fourth or
sixth topic extracted from Reuters). When comparing the
topics inferred by FTM and LIDA, the latter appear more
descriptive. This is more apparent when comparing the
topics extracted from NIPS (e.g. first, third or last topic).

6 CONCLUSION

In this work, we studied a family of partially ex-
changeable arrays [39] exhibiting sparse and power-law
characteristics. We introduced the four-parameter IBP
compound Dirichlet process (ICDP) which is a sparse
alternative to the hierarchical Pitman-Yor process (PYP).
The sparsity in the ICDP is controlled by a latent IBP.
It was shown that the three-parameter IBP is more
suitable than the one-parameter IBP when modelling real
textual corpora and we expect this to apply to a wide
variety of non-textual corpora. The new type of sparse
nonparametric topic models we propose better fit real
data in terms of predictive likelihood compared to the
widely used HDP-based topic models (HDP-LDA) or
its heavy-tailed counterpart (HPY-LDA). Besides the fact
that the resulting topic-document and topic-word matri-
ces are sparser and thus easier to handle in downstream
applications, the advantage is that it decouples the word
and/or topic occurrences in single documents and their
occurrences in the corpus.

The main contributions of the paper are the introduc-
tion of a unified framework to encode sparsity both in

the topic-document and topic-word matrices, and the
fact that the generative model accounts for the power-
law distributions of the word and the topic frequencies.
We also propose a simple collapsed Gibbs sampler that
scales better in terms of speed and memory requirements
compared to the popular samplers currently used in
HDP-LDA or in HPY-LDA.

As a concluding remark, recent advances showed that
variational techniques can be used to obtain scalable
topic model algorithms able to handle millions of docu-
ments [40]. These algorithms are based on deterministic
approximations of the posterior distributions [2]. They
rely on the stick-breaking construction of HDP-LDA and
HPY-LDA. Similarly, we anticipate that the stick break-
ing construction of the the three-parameter IBP [28], [36]
could be easily extended to scale up the three-parameter
FTM and LIDA to the same data sizes.
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