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Abstract

A new variational Bayesian learning algorithm for Student-t mixture models is in-
troduced. This algorithm leads to (i) robust density estimation, (ii) robust clustering
and (iii) robust automatic model selection. Gaussian mixture models are learning
machines which are based on a divide-and-conquer approach. They are commonly
used for density estimation and clustering tasks, but are sensitive to outliers. The
Student-t distribution has heavier tails than the Gaussian distribution and is there-
fore less sensitive to any departure of the empirical distribution from Gaussianity.
As a consequence, the Student-t distribution is suitable for constructing robust mix-
ture models. In this work, we formalize the Bayesian Student-t mixture model as
a latent variable model in a different way than Svensén and Bishop (2004). The
main difference resides in the fact that it is not necessary to assume a factorized
approximation of the posterior distribution on the latent indicator variables and
the latent scale variables in order to obtain a tractable solution. Not neglecting the
correlations between these unobserved random variables leads to a Bayesian model
having an increased robustness. Furthermore, it is expected that the lower bound
on the log-evidence is tighter. Based on this bound, the model complexity, i.e. the
number of components in the mixture, can be inferred with a higher confidence.

Key words: Bayesian learning, graphical models, approximate inference,
variational inference, mixture models, density estimation, clustering, model
selection, student-t distribution, robustness to outliers

1 Introduction

Probability density estimation is a fundamental tool for extracting the in-
formation embedded in raw data. For instance, efficient and robust density
estimators are the foundation for Bayesian (i.e., optimal) classification and
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statistical pattern recognition. Finite Gaussian mixture models (GMM) are
commonly used in this context (see for example McLachlan and Peel, 2000).
They provide an appealing alternative to nonparametric density estimators
(Parzen, 1962) as they do not assume the overall shape of the underlying
density either. However, unlike nonparametric techniques, they are based on
a divide-and-conquer approach, meaning that subpopulations of the observed
data are modeled by parametric distributions, the resulting density being often
far from any standard parametric form. Thus, unlike the nonparametric meth-
ods, the complexity of the model is fixed in advance, avoiding a prohibitive
increase of the number of parameters with the size of the data set.

The GMM has been successfully applied to a wide range of applications. Its
success is partly explained by the fact that maximum likelihood (ML) esti-
mates of the parameters can be found by means of the popular expectation-
maximization (EM) algorithm, which was formalized by Dempster, Laird, and
Rubin (1977). The problem with ML is that it favors models of ever increasing
complexity. This is due to the undesirable property of ML of being ill-posed
since the likelihood function is unbounded (see for example Archambeau, Lee,
and Verleysen, 2003; Yamazaki and Watanabe, 2003). In order to determine
the optimal model complexity, resampling techniques such as cross-validation
or the bootstrap (Efron and Tibshirani, 1993), are therefore required. Yet,
these techniques are computationally intensive. An alternative is provided by
the Bayesian framework. In this approach, the parameters are treated as un-
known random variables and the predictions are averaged over the ensemble
of models they define. Let us denote the set of observed data by X = {xn}N

n=1.
The quantity of interest is the evidence of the data given the model structure
HM of complexity M :

p(X|HM) =
∫

θ

p(X|θ,HM)p(θ|HM)dθ , (1)

where θ is the parameter vector and p(X|θ,HM) is the data likelihood. In
the case of mixture models, M is the number of components in the mixture.
Unfortunately, taking the distribution of the parameters into account leads
usually to intractable integrals. Therefore, approximations are required. Sam-
pling techniques such as Markov Chain Monte-Carlo are for example used for
this purpose (see Richardson and Green, 1997, for its application to the GMM
with unknown M). However, these techniques are rather slow and it is gener-
ally difficult to verify if they have converged properly. More recently, Attias
(1999) addressed this problem from a variational Bayesian perspective. By
assuming that the joint posterior on the latent variables 1 and the parameters
factorizes, the integrals become tractable. As a result, a lower bound on the

1 Although latent variables cannot be observed, they may either interact through
the model parameters in the data generation process, or are just mathematical
artifacts that are introduced into the model in order to simplify it in some way.
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log-evidence can be computed. This bound can be maximized (thus made as
tight as possible) by means of an EM-like iterative procedure, called varia-
tional Bayes, which is guaranteed to increase monotonically at each iteration.

Nonetheless, a major limitation of the GMM is its lack of robustness to out-
liers. Providing robustness to outlying data is essential in many practical
problems, since the estimates of the means and the precisions (i.e., the in-
verse covariance matrices) can be severely affected by atypical observations.
In addition, in the case of the GMM, the presence of outliers or any other
departure of the empirical distribution from Gaussianity can lead to selecting
a false model complexity. More specifically, additional components are used
(and needed) to capture the tails of the distribution. Robustness can be intro-
duced by embedding the Gaussian distribution in a wider class of elliptically
symmetric distributions, called the Student-t distributions. They provide a
heavy-tailed alternative to the Gaussian family. The Student-t distribution is
defined as follows:

S(x|µ,Λ, ν) =
Γ

(

d+ν
2

)

Γ
(

ν
2

)

(νπ)
d
2

|Λ|
1

2

[

1 +
1

ν
(x − µ)T

Λ (x − µ)
]−

d+ν
2

, (2)

where d is the dimension of the feature space, µ and Λ are respectively the
component mean and the component precision and Γ(·) denotes the gamma
function. Parameter ν > 0 is the degree of freedom, which can be viewed as a
robustness tuning parameter. The smaller ν is, the heavier the tails are. When
ν tends to infinity, the Gaussian distribution is recovered. A finite Student-
t mixture model (SMM) is then defined as a weighted sum of multivariate
Student-t distributions:

p(x|θS) =
M
∑

m=1

πmS(x|µm,Λm, νm) , (3)

where θS ≡ (π1, . . . , πM ,µ1, . . . ,µM ,Λ1, . . . ,ΛM , ν1, . . . , νM). The mixing pro-
portions {πm}

M
m=1 are non-negative and must sum to one.

In the context of mixture modeling, a crucial role is played by the respon-
sibilities. Each such quantity is simultaneously associated to a data point
and a mixture component. It corresponds to the posterior probability that a
particular data point was generated by a particular mixture component. In
other words, the responsibilities are soft labels for the data. During the train-
ing phase, these labels are used in order to estimate the model parameters.
Therefore, it is essential to estimate them reliably, especially when considering
robust approaches. In this paper, we introduce an alternative robust Bayesian
paradigm to finite mixture models (in the exponential family), which focuses
on this specific problem. In general, one way to achieve robustness is to avoid
making unnecessary approximations. In the Bayesian framework, it means
that dependencies between random variables should not be neglected as it
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leads to underestimating the uncertainty. In previous attempts to construct
robust Bayesian mixture models, independency of all the latent variables was
assumed. However, we show that this hypothesis is not necessary; removing it
results in more consistent estimates for the responsibilities.

This article is organized as follows. In Section 2, the Bayesian Student-t mix-
ture model is formalized as a latent variable model, which enables us to use
the variational Bayesian framework to learn the model parameters as in the
conjugate-exponential family (Ghahramani and Beal, 2001). In Section 3, the
variational update rules are derived, as well as the lower bound on the log-
evidence. Finally in Section 4, the approach is validated experimentally. It
is shown empirically that the proposed variational inference scheme for the
SMM leads to a model having a higher robustness to outliers than previous
approaches. The robustness has a positive impact on the automatic model
selection (based on the variational lower bound), as well as the quality of
the parameter estimates. These properties are crucial when tackling real-life
problems, which might be very noisy.

2 The latent variable model

The SMM can be viewed as a latent variable model in the sense that the
component label associated to each data point is unobserved. Let us denote
the set of label indicator vectors by Z = {zn}

N
n=1, with znm ∈ {0, 1} and

such that
∑M

m=1 znm = 1, ∀n. In contrast to the GMM, the observed data X
augmented by the indicator vectors Z is still incomplete, meaning that there
are still random variables that are not observed. This can be understood by
noting that (2) can be re-written as follows:

S(x|µ,Λ, ν) =
∫ +∞

0
N (x|µ, uΛ)G(u|ν

2
, ν

2
)du , (4)

where u > 0. The Gaussian and the Gamma distribution are respectively given
by

N (x|µ,Λ) = (2π)−
d
2 |Λ|

1

2 exp
{

−
1

2
(x − µ)TΛ(x − µ)

}

, (5)

G(u|α, β) =
βα

Γ(α)
uα−1 exp(−βu) . (6)

Equation (4) is easily verified by noting that the Gamma distribution is con-
jugate to the Gaussian distribution. Under this alternative representation, the
Student-t distribution is thus an infinite mixture of Gaussian distributions
with the same mean, but different precisions. The scaling factor u of the pre-
cisions is following a Gamma distribution with parameters depending only
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on ν. In contrast to the Gaussian distribution, there is no closed form solu-
tion for estimating the parameters of a single Student-t distribution based on
the maximum likelihood principle. However, as discussed by Liu and Rubin
(1995), the EM algorithm can be used to find an approximate ML solution by
viewing u as an implicit latent variable on which a Gamma prior is imposed.
This result was extended to mixtures of Student-t distributions by Peel and
McLachlan (2000).

Based on (4), one can see that for each data point xn and for each component
m, the scale variable unm given znm is unobserved. For a fixed number of com-
ponents M , the latent variable model of the SMM can therefore be specified
as follows:

p(zn|θS ,HM) =
M
∏

m=1

π znm

m , (7)

p(un|zn, θS ,HM) =
M
∏

m=1

G(unm|
νm

2
, νm

2
)znm , (8)

p(xn|un, zn, θS ,HM) =
M
∏

m=1

N (xn|µm, unmΛm)znm , (9)

where the set of scale vectors is denoted by U = {un}N
n=1. Marginalizing over

the latent variables results in (3). At this point, the Bayesian formulation of
the SMM is complete when imposing a particular prior on the parameters. As
it will become clear in the next section, it is convenient to choose the prior as
being conjugate to the likelihood terms (7–9). Therefore, the prior on the mix-
ture proportions is chosen to be jointly Dirichlet D(π|κ0) and the joint prior
on the mean and the precision of each component is chosen to be Gaussian-
Wishart NW(µm,Λm|θNW0

). The former is conjugate to the multinomial dis-
tribution p(zn|θS ,HM) and the latter to each factor of p(xn|un, zn, θS ,HM).
Since there is no conjugate prior for {νm}m

m=1, no prior is imposed on them.
Moreover, the hyperparameters are usually chosen such that broad priors are
obtained. The resulting joint prior on the model parameters is given by

p(θS |HM) = D(π|κ0)
M
∏

m=1

NW(µm,Λm|θNW0
) . (10)

The Gaussian-Wishart distribution is the product of a Gaussian and a Wishart
distribution: NW(µm,Λm|θNW0

) = N (µm|m0, η0Λm)W(Λm|γ0,S0). The Dirich-
let and the Wishart distribution are respectively defined as follows:

D(π|κ) = cD(κ)
M
∏

m=1

π κm−1
m , (11)

W(Λ|γ,S) = cW (γ,S) |Λ|
γ−d−1

2 exp
(

−
1

2
tr{SΛ}

)

, (12)
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Fig. 1. Graphical representation of the Bayesian Student-t mixture model. The
shaded node is observed. The arrows represent conditional dependencies between
the random variables. The plates indicate independent copies. Note that the scale
variables and the indicator variables are contained in both plates, meaning that
there is one such variable for each component and each data point. It is important
to see that the scale variables depend on the discrete indicator variables. Similarly,
the component means depend on the component precisions.

where cD (κ) and cW (γ,S) are normalizing constants. Figure 1 shows the
directed acyclic graph of the Bayesian SMM. Each observation xn is condi-
tionally dependent on the indicator vector zn and the scale vector un, which
are both unobserved. The scale vectors are also conditionally dependent on
the indicator variables. By contrast, Svensén and Bishop (2004) assume that
the scale variables are independent of the indicator variables, therefore ne-
glecting the correlations between these random variables. Furthermore, they
assume that the component means are independent from the corresponding
precisions.

3 Variational Bayesian inference for the SMM

The aim in Bayesian learning is to compute (or approximate) the evidence.
This quantity is obtained by integrating out the latent variables and the pa-
rameters. For a fixed model structure HM of the SMM, the evidence is given
by

p(X|HM) =
∫

θS

∫

U

∑

Z

p(X,U, Z, θS |HM)dUdθS . (13)

This quantity is intractable. However, for any distribution q(U,Z, θS), the
logarithm of the evidence can be lowerbounded as follows:

log p(X|HM) ≥ log p (X|HM) − KL [q(U,Z, θS)‖p (U,Z, θS |X,HM)] . (14)

The second term on the right hand side is the Kullback-Leibler divergence
(KL) between the approximate posterior q(U,Z, θS) and the true posterior
p (U,Z, θS |X,HM). Below, we show that when assuming that q(U,Z, θS) only
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factorizes over the latent variables and the parameters, a tractable lower bound
on the log-evidence can be constructed. Performing a free-form maximization
of the lower bound with respect to q(U,Z) and q(θS) leads to the following
VBEM update rules:

VBE-step : q(un, zn) ∝ exp
(

EθS
{log p(xn,un, zn|θS ,HM)}

)

, ∀n . (15)

VBM-step : q(θS) ∝ p(θS |HM) exp
(

EU,Z{logLc(θS |X,U, Z,HM)}
)

. (16)

In the VBE-step we have used the fact that the data are i.i.d. and in the
VBM-step Lc(θS |X,U, Z,HM) is the complete data likelihood. The expecta-
tions EU,Z{·} and EθS

{·} are respectively taken with respect to the variational
posteriors q(U,Z) and q(θS). From (14), it can be seen that maximizing the
lower bound is equivalent to minimizing the KL divergence between the true
and the variational posterior. Thus, the VBEM algorithm consists in itera-
tively updating the variational posteriors by making the bound as tight as
possible. By construction, the bound cannot decrease. Note also that for a
given model complexity, the only difference between the VBE- and VBM-
steps is the number of quantities to update. For the first one, this number
scales with the size of the learning set, while for the second one it is fixed.

Due to the factorized form of p(xn,un, zn|θS ,HM), it is likely that q(zn) =
∏M

m=1 q(znm)znm and similarly that q(un|zn) =
∏M

m=1 q(unm)znm . Furthermore,
since the prior on the parameters is chosen conjugate to the likelihood terms, it
can be seen from the VBM-step that the corresponding variational posteriors
have the same functional form:

q(θS) = D(π|κ)
M
∏

m=1

N (µm|mm, ηmΛm)W(Λm|γm,Sm) . (17)

Given the form of the variational posteriors, the VBE-step can be computed.
Taking expectations with respect to the posterior distribution of the parame-
ters leads to the following identity:

EθS
{log p(xn,un, zn|HM)} =

M
∑

m=1

znm

{

log π̃m −
d

2
log 2π +

d

2
log unm

+
1

2
log Λ̃m −

unmγm

2
(xn −mm)TS −1

m (xn − mm) −
unmd

2ηm

+
νm

2
log

νm

2
− log Γ

(

νm

2

)

+
(

νm

2
− 1

)

log unm −
νm

2
unm

}

. (18)

The special quantities in (18) are log π̃m ≡ EθS
{log πm} = ψ(κm)−ψ (

∑M

m′=1
κm′)

and log Λ̃m ≡ EθS
{log |Λm|} =

∑d
i=1 ψ

(

γm+1−i

2

)

+d log 2− log |Sm|, where ψ(·)
denotes the digamma function.

First, the VBE-step for the indicator variables is obtained by substituting (18)
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in (15) and integrating out the scale variables:

q(znm = 1) ∝
Γ

(

d+νm

2

)

Γ
(

νm

2

)

(νmπ)
d
2

π̃mΛ̃
1

2
m (19)

×

[

1 +
γm

νm

(xn − mm)T
S −1

m (xn − mm) +
d

νmηm

]−
d+νm

2

.

This equation resembles a weighted Student-t distribution (which is an infinite

mixture of scaled Gaussian distributions).

The corresponding VBE-step obtained by Svensén and Bishop (2004) has the
form of a single weighted Gaussian distribution with a scaled precision, the
scale being the expected value of the associated scale variable:

q(SB)(znm = 1) ∝ (2π)−
d
2 π̃mΛ̃

1

2
m EU{log unm}

d
2 (20)

× exp

{

EU{unm}

2
EθS

{(xn − µm)T
Λm (xn − µm)}

}

.

It is thus assumed that most of the probability mass of the posterior distribu-
tion of each scale variable is located around its mean. This is not necessarily
true for all data points as the Gamma prior might be highly skewed. In con-
trast, (19) results from integrating out the scale variables, which are here
nuisance parameters:

q(znm = 1) ∝ (2π)−
d
2 π̃mΛ̃

1

2
m

∫ +∞

0
u

d
2

nm G(unm|
νm

2
, νm

2
) (21)

× exp
{

unm

2
EθS

{(xn − µm)T
Λm (xn − µm)}

}

dunm .

This means that the uncertainty on the scale variables is here properly taken
into account when estimating the responsibilities.

Since the distribution q(zn) must be normalized for each data point xn, we
define the responsibilities as follows:

ρ̄nm =
q(znm = 1)

∑M
m′=1 q(znm′ = 1)

, ∀n , ∀m . (22)

These quantities are similar in form to the responsibilities computed in the
E-step in ML learning (see for example McLachlan and Peel, 2000).

Second, since the Gamma prior on the scale variables is conjugate to the ex-
ponential family, the variational posterior on the scale variables conditioned
on the indicator variables has also the form of a Gamma distribution. Sub-
stituting (18) in (15) and rearranging leads to the VBE-step for the scale
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variables:

q(unm|znm = 1) = G(unm|αnm, βnm) , (23)

where

αnm =
d+ νm

2
, (24)

βnm =
γm

2
(xn − mm)TS −1

m (xn − mm) +
d

2ηm

+
νm

2
. (25)

The VBE-step for the scale variables consists simply in updating these hyper-
parameters. Again, there is a striking similarity with the corresponding E-step
in ML learning (see Peel and McLachlan, 2000).

Next, let us compute the VBM-step. The expected complete data log-likelihood
is given by

EU,Z{logLc(θS|X,U, Z)} =
N

∑

n=1

M
∑

m=1

ρ̄nm

{

log πm −
d

2
log 2π +

d

2
log ũnm +

1

2
log |Λm|

−
ūnm

2
(xn − µm)TΛm(xn − µm) +

νm

2
log

νm

2

− log Γ
(

νm

2

)

+
(

νm

2
− 1

)

log ũnm −
νm

2
ūnm

}

, (26)

where the special quantities are ūnm ≡ EU{unm} = αnm/βnm and log ũnm ≡
EU{log unm} = ψ (αnm) − log βnm, which are both found using the proper-
ties of the Gamma distribution. Substituting the expected complete data log-
likelihood in (16) and rearranging leads to the VBM update rules for the
hyperparameters:

κm = Nπ̄m + κ0 , (27)

ηm = Nω̄m + η0 , (28)

mm =
Nω̄mµ̄m + η0m0

ηm

, (29)

γm = Nπ̄m + γ0 (30)

Sm = Nω̄mΣ̄m +
Nω̄mη0

ηm

(µ̄m − m0) (µ̄m − m0)
T + S0 , (31)

where (most of) the auxiliary variables correspond to the quantities computed

9



in the M-step in ML learning:

µ̄m =
1

Nω̄m

N
∑

n=1

ρ̄nmūnmxn , (32)

Σ̄m =
1

Nω̄m

N
∑

n=1

ρ̄nmūnm (xn − µ̄m) (xn − µ̄m)T , (33)

π̄m =
1

N

N
∑

n=1

ρ̄nm , (34)

ω̄m =
1

N

N
∑

n=1

ρ̄nmūnm . (35)

(36)

It is worth mentioning that the normalizing factor of the covariance matrices,
which is here obtained automatically, is the one proposed by Kent, Tyler,
and Vardi (1994) in order to accelerate the convergence of the ordinary EM
algorithm.

Finally, since no prior is imposed on the degrees of freedom, we update them
by maximizing the expected complete data log-likelihood. This leads to the
same M-step as the one obtained by Peel and McLachlan (2000):

log
νm

2
+ 1 − ψ

(

νm

2

)

+
1

Nπ̄m

N
∑

n=1

ρ̄nm {log ũnm − ūnm} = 0 . (37)

At each iteration and for each component, the fixed point can be easily found
by line search. In contrast, Shoham (2002) proposed to use an approximate
formula instead.

To end our discussion, we provide the expression of the variational lower
bound:

EU,Z,θS
{log p(X|U,Z, θS ,HM)} + EU,Z,θS

{log p(U,Z|θS ,HM)}

+ EθS
{log p(θS |HM)} − EU,Z{log q(U,Z)} − EθS

{log q(θS)} . (38)

Note that the last two terms correspond to the entropies of the variational
distributions. Given the functional form of the posteriors, each term of the
bound can be computed (see Appendix). Since the Bayesian approach takes
the uncertainty of the model parameters into account and since the lower
bound is made as tight as possible during learning, it can be used as a model
selection criterion.
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4 Experimental results and discussion

In this section, the robustness of the variational Bayesian learning algorithm
for the SMM is investigated. First, we show that this new algorithm enables
us to perform robust automatic model selection based on the variational lower
bound. Second, we focus on robust clustering and on the quality of the param-
eter estimates. Finally, some empirical evidence is given in order to explain
why the proposed algorithm performs better than previous approaches.

4.1 Robust automatic model selection

Before investigating the performance of the proposed approach compared to
previous approaches, let us first illustrate the model selection procedure on a
toy example. Consider a mixture of three multivariate Gaussian distributions
with the following parameters:

µ1 = (−6 1.5)T , µ2 = (0 0)T , µ3 = (6 1.5)T ,

Λ1 =







5 4

4 5







−1

, Λ2 =







5 −4

−4 5







−1

, Λ3 =







1.56 0

0 1.56







−1

.

One hundred and fifty data points are drawn from each component (each
component is thus equally likely). Two training set examples are shown in
Figure 2. The first one contains no outliers, while the second one is the same
data augmented by 25% of outliers. The outliers are drawn from a uniform
distribution on the interval [−20, 20], in each direction of the feature space.
Figure 3 shows the variational lower bound in presence and absence of outliers,
for both the Bayesian Gaussian mixture model (GMM) and Bayesian Student-
t mixture model (SMM). The variational Bayesian algorithm is run 10 times.
The curves in Figure 3 are thus averages. The model complexity M ranges
from 1 to 5 components. When there are no outliers, the GMM and the SMM
perform similarly. Both methods select the correct number of components,
which is 3. In contrast, when there are atypical observations only the SMM
selects the right number of components.

Next, let us consider the well-known Old Faithful Geyser data. The data are
recordings of the eruption duration and the waiting time between successive
eruptions. In the experiments, the data are normalized and then corrupted
by a certain amount of outliers. The latter are generated uniformly on the
interval [−10, 10] in each direction of the feature space. Figure 4(a) shows
the variational lower bound for the GMM, the type-1 SMM, which assumes
that the variational posterior on the indicator variables and the scale vari-
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(a) (b)

Fig. 2. Training sets. The data shown in (a) are generated from a mixture of three
Gaussian distributions with different mean and precision. In (b) the same data are
corrupted by 25% of atypical observations (uniform random noise).
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Fig. 3. Variational lower bound on the log-evidence versus the number of components
M . The solid and the dashed lines correspond respectively to the lower bounds
obtained for the GMM and the SMM. The curves show the average on 10 trials,
(a) in absence and (b) in presence of outliers. The model complexity is selected
according to the maximum of the lower bound.

ables factorizes (Svensén and Bishop, 2004), and the type-2 SMM, which does
not make this assumption. The number of components is varied from 1 to 6.
For each model complexity 20 runs are considered. Note that in some cases
components are automatically pruned out when they do not have sufficient
support. In absence of outliers, the bound of the three methods is maximal for
two components. In presence of 2% of outliers the bound of the type-1 SMM
has almost the same value for two and three components. This was also ob-
served by Svensén and Bishop (2004). For the type-2 SMM, the bound is still
maximal for two components. The GMM however favors 3 components. When
the amount of noise further increases (25%), only the type-2 SMM selects 2
components. As a matter of fact, the value of the bound seems almost not af-
fected by a further increase of the noise. Thus, not neglecting the correlation
between the indicator variables and the scale variables clearly increases the
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(a) Geyser data.
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(b) Enzyme data.

Fig. 4. Variational lower bound for (a) the Old Faithful Geyser data and (b) the
Enzyme data versus the number of components. An increasing number of outliers is
successively added to the training set. Results are reported for the Bayesian GMM,
as well as the type-1 and type-2 Bayesian SMM. Twenty runs are considered for all
model complexities. The value of the bound obtained for each run is indicated by a
cross. It is important to realize that the number of crosses for each model complexity
might differ from method to method. The reason is that mixture components are
pruned out during the learning process when there is too little evidence for them.
Therefore, we did not use a standard representation such as box and whiskers plots
to show the variability of the results but preferred this more intuitive representation.

robustness. A similar behavior was observed on the Enzyme data (Richardson
and Green, 1997). The results are presented in Figure 4.
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In practice, the type-2 SMM is less affected by the outliers as expected. How-
ever, a tighter lower bound was not always observed, but the bound appeared
to be more stable from run to run than for the type-1 SMM. This suggests that
the type-2 SMM is less sensitive to local maxima in the objective function.

4.2 Robust clustering

In order to assess the robustness of the type-2 SMM, we first consider the 3-
component bivariate mixture of Gaussian distributions from Ueda and Nakano
(1998). The mixture proportions are all equal to 1/3, the mean vectors are
(0 − 2)T, (0 0)T and (0 2)T, and the covariance matrix of each component is
equal to diag{2, 0.2}. The label assignment of the data points are presented
in Figure 5. Two situations are considered. In presence of a small proportion
of outliers (2%), the two Bayesian SMMs perform similarly. However, note
that the type-2 SMM assigns the same label to all the outliers, while the
type-1 SMM partitions the feature space in three parts. In presence of lots of
outliers (15%) only the type-2 SMM provides a satisfactory solution. Still all
outliers are assigned the same label, i.e. the label of the middle component. By
contrast, the type-1 SMM cannot make a distinction between the data clumps
and the outliers.

Next, we consider again the Old Faithful Geyser data. The goal is to illustrate
that the parameter estimates of the type-2 SMM are less sensitive to outliers.
Figure 6 shows the location of the means of the two components in presence
and in absence of outliers. The ellipses correspond to a single standard de-
viation. It can easily be observed that the estimates of the means and the
precisions are less affected by the outliers in the case of the type-2 SMM.

4.3 Effect of the factorization of the latent variable posteriors

As already mentioned, the type-1 SMM assumes that the variational poste-
rior on the latent indicator variables and the latent scale variables factorize,
as well as the priors on the component means and precisions. However, we
have demonstrated in Section 3 that these factorizations are not necessary. In
particular, taking into account the correlations between the indicator and the
scale variables leads to a model with (i) an increased robustness to atypical
observations and (ii) to a tighter lower bound on the log-evidence.

From (32–35) it can be observed that the responsibilities play an essential role
in the estimation of the component parameters. As a consequence, accurate
estimates are mandatory when considering robust mixture models. As shown
in Section 3, when we assume that the scale variables are conditionally depen-
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(a) Type-1 SMM, 2% of outliers. (b) Type-2 SMM, 2% of outliers.

(c) Type-1 SMM, 15% of outliers. (d) Type-2 SMM, 15% of outliers.

Fig. 5. Reconstructed data labels by the Bayesian type-1 and type-2 SMMs. (a) and
(b) are the models obtained when 2% of outliers is added to the training set, while
(c) and (d) are the ones obtained in presence of 15% of outliers.

(a) Type-1 SMM. (b) Type-2 SMM.

Fig. 6. Old Faithful Geyser data. The markers ‘×’ and ‘+’ indicate respectively the
means in absence and presence of outliers (25%). The dashed curves and the solid
curves correspond respectively to single standard deviation in absence and presence
of outliers. The models are constructed with 2 components.
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dent on the indicator variables (type-2 SMM), we end up with responsibilities
of the following form:

ρ̄nm ∝ π̃ × Student−t distribution . (39)

The Student-t is an infinite mixture of scaled Gaussian distribution and the
prior on the scales is assumed to be Gamma distributed. Clearly, the uncer-
tainty on the scale variable is explicitly taken into account when estimating
the responsibilities by (39), as the scale variables (which can be here viewed
as nuisance parameters) are integrated out.

By contrast, Svensén and Bishop (2004) neglect the dependencies between the
scale and the indicator variables (type-1 SMM) and therefore find responsibil-
ities of the following form:

ρ̄(SB)
nm ∝ π̃ × scaled Gaussian distribution , (40)

where the scale is equal to ūnm. Thus, in this approach we find that each
data point is assumed to be generated from a single Gaussian distribution, its
covariance matrix being scaled. In other words, it is assumed that the posterior
distribution of the corresponding scale variable is highly peaked around its
mean and therefore that the mean is a good estimate for the scale. Of course,
this is not true for all data points.

In Figure 7, the typical variational posterior of a single data point xn is shown.
It can be observed that the type-1 SMM assigns the probability mass almost
exclusively to one component (here to component m = 2) and that the poste-
rior for that component is more peaked than the posterior of the type-2 SMM.
This suggests that the empirical variance is (even more) underestimated when
assuming that the scale variables are independent from the indicator vari-
ables. Since the uncertainty is underestimated, the robustness of the model is
reduced. This was also observed experimentally.

Obtaining a tighter and more reliable variatonal lower bound is also important.
When using the lower bound as a model selection criterion, it is implicitly
assumed that the gap between the log-evidence and the bound is identical
after convergence for models of different complexity. In general, this is not true.
Usually, variational Bayesian inference tends to overpenalize complex models,
as the factorized approximations lead to a posterior that is more compact (i.e.,
less complex) than the true posterior. This can be understood by seeing that
maximizing the lower bound is done by minimizing the KL divergence between
the variational posterior and the true posterior. However, the KL divergence is
taken with respect to the support of the variational distribution and not with
respect to the support of the true posterior. Therefore, the optimal variational
posterior underestimates the correlations between the latent variables and the
parameters, and in turn leads to an approximation of the joint posterior that
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Fig. 7. The typical joint variational posterior q(un|zn) of the indicator and the scale
variable for a single data point xn. The mixture has two components. The data
is the Old Faithful Geyser data. The solid curve does not neglect the correlation
between both latent variables (type-2 SMM), while the dashed curve does (type-1
SMM).

is more peaked. Now, the type-1 SMM makes the additional assumption that
the distribution on latent variable factorizes as well. As a result, the type-1
SMM makes additional approximations compared to the type-2 SMM, such
that the approximate posterior is even more compact. In practice, this leads,
for example depending on the initialization, to a less reliable estimate of the
lower bound (see Figure 4).

5 Conclusion

In this article, we derive new variational update rules for Bayesian mixtures
of Student-t distributions. It was demonstrated that it is not required to as-
sume a factorized variational posterior on the indicator and the scale variables.
Taking the correlation between these latent variables into account leads to a
variational posterior that is less compact than the one obtained in previous
approaches; therefore it underestimates less the uncertainty in the latent vari-
ables. Although the resulting lower bound is not always tighter, the correct
model complexity is selected in a more consistent way, as it is less sensitive to
local maxima of the objective function. Finally, it was shown experimentally
that the resulting model is less sensitive to outliers, which leads to very robust
mixture modeling in practice.
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Appendix

The following expressions are obtained for each term of the variational lower
bound (38):

∑

Z

∫ ∫

qU(U |Z)qZ(Z)qθS
(θS) log p(X|U,Z, θS ,HM)dUdθS

=
∑N

n=1

∑M
m=1 ρ̄nm

{

− d
2
log 2π + d

2
log ũnm + 1

2
log Λ̃m

− ūnmγm

2
(xn −mm)TS −1

m (xn −mm) − ūnmd
2ηm

}

, (41)

∑

Z

∫ ∫

qU(U |Z)qZ(Z)qθS
(θS) log p(U |Z, θS ,HM)dUdθS

=
∑N

n=1

∑M
m=1 ρ̄nm

{

νm

2
log νm

2
− log Γ

(

νm

2

)

+
(

νm

2
− 1

)

log ũnm − νm

2
ūnm

}

, (42)

∑

Z

∫

qZ(Z)qθS
(θS) log p(Z|θS ,HM)θS

=
∑N

n=1

∑M
m=1 ρ̄nm log π̃m , (43)

∫

qθS
(θS) log p(θS |HM)dθS

= log cD(κ0) +
∑M

m=1(κ0 − 1) log π̃m +
∑M

m=1

{

− d
2
log 2π

+ d
2
log η0 −

γmη0

2
(mm − m0)

TS −1
m (mm −m0) −

η0d

2ηm

+ log cNW(γ0,S0) + γ0−d

2
log Λ̃m − γm

2
tr{S0S

−1
m }

}

, (44)

∑

Z

∫

qU(U |Z)qZ(Z) log qU(U |Z)dU

=
∑N

n=1

∑M
m=1 ρ̄nm

{

− log Γ (αnm) + (αnm − 1)ψ (αnm)

+ log βnm − αnm

}

, (45)
∑

Z

qZ(Z) log qZ(Z)

=
∑N

n=1

∑M
m=1 ρ̄nm log ρ̄nm , (46)

∫

qθS
(θS) log qθS

(θS)dθS

= log cD(κ) +
∑M

m=1(κm − 1) log π̃m +
∑M

m=1

{

− d
2
log 2π

+ d
2
log ηm − d

2
+ log cNW(γm,Sm) + γm−d

2
log Λ̃m − γmd

2

}

. (47)
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