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Abstract

The variational approximation of posterior distributions by
multivariate Gaussians has been much less popular in the Ma-
chine Learning community compared to the corresponding ap-
proximation by factorising distributions. This is for a good rea-
son: the Gaussian approximation is in general plagued by an
O(N2) number of variational parameters to be optimised, N be-
ing the number of random variables. In this work, we discuss
the relationship between the Laplace and the variational approx-
imation and we show that for models with Gaussian priors and
factorising likelihoods, the number of variational parameters is
actually O(N). The approach is applied to Gaussian process re-
gression with non-Gaussian likelihoods.

1 Introduction

The variational approximation is among the most important techniques for
treating intractable probabilistic models in the field of Machine Learning.
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An intractable probability distribution (usually the Bayesian posterior) is ap-
proximated by the closest distribution within a tractable family, where close-
ness is defined by the Kullback-Leibler divergence (Kullback & Leibler, 1951).
In most applications, the tractable families contain distributions which fac-
torize in all or in tractable subgroups of random variables (Beal, 2003; Winn,
2003). Hence, the method neglects correlations between variables which may
be crucial in the learning of the hyperparameters.

If the random variables are continuous and unconstrained, the family of
multivariate Gaussian densities suggests itself as a natural alternative to fac-
torizing densities, allowing incorporation of correlations. Nevertheless, such
a variational Gaussian approximation has been applied, to our knowledge,
only a few times to problems in Machine Learning (e.g., Barber and Bishop
(1998), Seeger (2000), Honkela and Valpola (2005)). One possible expla-
nation is that the covariance matrix of the Gaussian requires a number of
variational parameters to be optimised, which scales quadratically with the
number of latent variables in the model.

However, we show that this prejudice against the variational Gaussian ap-
proximation is not always justified. We derive the exact fixed point conditions
for the optimal setting of the variational parameters and find that for certain
classes of probabilistic models, related to Gaussian processes (O’Hagan, 1978;
Rasmussen & Williams, 2006), the number of free variational parameters will
be only 2N . While this fact seems to be known, at least in some parts of
the Machine Learning community (Seeger, 1999, p. 119), several discussions
have shown that many researchers were not aware of this result. We will
demonstrate the method only on toy regression problems. Our results have
also motivated the inclusion of the variational Gaussian approach within a
larger study of different methods for classification with Gaussian processes
(Nickisch & Rasmussen, 2008). In this complementary work a variety of
comparisons can be found.

2 The variational Gaussian approximation

We consider probabilistic models for a set of observations y = (y1, . . . , yM)>

and a set of latent, unobserved random variables x = (x1, . . . , xN)> defined
by a joint probability distribution p(y,x|θ), where θ denotes a set of hyper-

parameters. We aim to approximate the posterior density p(x|y,θ) = p(y,x|θ)
p(y|θ)

by a density q(x), which belongs to a family of tractable densities. The op-
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timal q(x) is chosen to minimise the variational free energy

F(q,θ) = − ln p(y|θ) + KL [q‖p] , (1)

where KL [q‖p] =
∫
q(x) ln q(x)

p(x|y,θ)
dx is the Kullback-Leibler (KL) divergence.

The free energy is an upper bound to the negative log-marginal probability
of the observations and can be used to estimate hyperparameters by a vari-
ational EM algorithm (Dempster et al., 1977; Neal & Hinton, 1998).

If we restrict the approximate posterior q(x) to be a multivariate Gaussian
with mean µ and covariance Σ, i.e.

q(x) = (2π)−N/2|Σ|−
1
2 e−

1
2
(x−µ)>Σ−1(x−µ), (2)

we get

F(q,θ) =− 〈ln p(x,y|θ)〉q −
N

2
ln 2πe− 1

2
ln |Σ|. (3)

Hence, setting the derivatives of F(q,θ) with respect to the variational pa-
rameters equal to zero leads to

0 = ∇µ 〈ln p(x,y|θ)〉q and Σ−1 = −2∇Σ 〈ln p(x,y|θ)〉q . (4)

In general, this will require the computation of N(N + 3)/2 free variational
parameters, which is much larger than the typically O(N) number of param-
eters often required for factorising variational distributions.

General properties

The variational Gaussian approach can be compared to the well-known Laplace
approximation, where the mean of a Gaussian density is fitted locally at a
point x which maximises the posterior p(x|y,θ). The covariance is then built
from the curvature of the log-posterior at the maximum. Hence, we have

0 = ∇x ln p(x,y|θ) and Σ−1 = −∇x∇x ln p(x,y|θ). (5)

By contrast, (4) can be rewritten in two different ways using (18) and (19)

0 = ∇µ 〈ln p(x,y|θ)〉q = 〈∇x ln p(x,y|θ)〉q , (6)

Σ−1 = −∇µ∇µ 〈ln p(x,y|θ)〉q = −〈∇x∇x ln p(x,y|θ)〉q . (7)

3



The second set of equalities on both lines shows that we have a global ap-
proximation: the conditions of the Laplace approximation hold on average.
Another interpretation comes from the first set of equalities. Here we see that
the variational Gaussian method is equivalent to applying Laplace’s method
to a new (implicitly defined) probability density q̃(µ) ∝ e〈ln p(x,y|θ)〉q , which
is defined over the space of parameters µ.

3 Gaussian prior models

We will now specialise to a class of models which are of the following form:

p(x,y|θ) =
1

Z0

e−
P

n Vn− 1
2
x>K−1x, (8)

where K is a positive definite matrix, Vn is a shorthand notation for V (yn, xn)
and Z0 is the normalization constant (including the factor |K|1/2). A typical
application is inference with Gaussian process (GP) models (O’Hagan, 1978;
Rasmussen & Williams, 2006), where x = (x(s1), . . . , x(sN))> denotes the
values of a latent function x(s) at inputs s1, . . . , sN , K is the kernel matrix
and Vn = − ln p(yn|xn) denotes the negative log-likelihood.

From (8), we get

F(q,θ) =
∑
n

〈Vn〉qn +
1

2
tr{K−1Σ}+

1

2
µ>K−1µ− 1

2
ln |Σ|

+ lnZ0 −
N

2
ln 2πe, (9)

where 〈 · 〉qn indicates that the expectation is taken with respect to the
marginal q(xn), the univariate Gaussian with mean µn and variance Σnn.

Each term 〈Vn〉qn depends only on the mean µn and the diagonal element
Σnn of the full covariance Σ. As a result, the second equation in (4) shows
that the nondiagonal elements of Σ−1 are simply equal to those of K−1 and
that the optimal covariance will be of the form

Σ =
(
K−1 + Λ

)−1
, (10)

where Λ is a diagonal matrix with λ ≡ ( . . . λn . . . )> on its diagonal.
Hence, we can use the N elements λn as new parameters. We found it also
useful to represent the mean parameters in the form µ = Kν with a vector
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ν of N new effective parameters. Inserting these definitions into the free
energy, a short calculation shows that the gradients of the free energy with
respect to the new 2N parameters are given by

gν ≡ ∇νF(q,θ) = K(ν − ν̄), (11)

gλ ≡ ∇λF(q,θ) =
1

2
(Σ ◦Σ)(λ− λ̄), (12)

where ◦ denotes the Hadamard product. ν̄ ≡ ( . . . − ∂ 〈Vn〉qn /∂µn . . . )>

and where λ̄ ≡ ( . . . 2∂ 〈Vn〉qn /∂Σnn . . . )>. We use these gradients within
a nonlinear conjugate gradient method with back-tracking (Hager & Zhang,
2005) to optimise the parameters.

One could generalize this approach to models where only a few of the
likelihood terms depend on more than a single variable. In this case as well,
a relatively small number of variational parameters would have to be be
optimised.

Derivatives of the Gaussian expectations

The computation of the gradients requires explicit expressions for 〈Vn〉qn
for which there is often no analytical solution. However, one can circum-
vent this problem by using the Gaussian identities (18) and (19), along with〈
∂Vn

∂xn

〉
Σnn = 〈(xn − µn)Vn〉:

−ν̄n =
∂ 〈Vn〉qn
∂µn

=

〈
∂Vn
∂xn

〉
qn

=
〈(xn − µn)Vn〉qn

Σnn

, (13)

λ̄n
2

=
∂ 〈Vn〉qn
∂Σnn

=
1

2

〈
∂2Vn
∂x2

n

〉
qn

=
〈(xn − µn)2Vn〉qn − Σnn 〈Vn〉qn

2Σ2
nn

. (14)

As a consequence, the evaluation of these expectations does not require to
compute the first and second order derivatives of Vn explicitly. They can
either be naively estimated by sample averages, the samples being generated
from the univariate Gaussian marginals qn, or by more elaborate techniques
such as Gauss-Hermite quadrature (Liu & Pierce, 1994), provided Vn satisfies
some smoothness properties.
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4 Application to robust Gaussian process re-

gression

We test our approach on the Boston housing regression data. The aim is to
predict the median value of a home. The input data is 13-dimensional. More
information on this data set can be found at http://lib.stat.cmu.edu/datasets/.
We investigate two noise models, Laplace and Cauchy noise, which have heav-
ier tails compared to a simple Gaussian and are thus expected to be less
sensitive to outliers. The likelihoods are respectively given by

p(y|x, η) =
η

2
e−η|y−x| and p(y|f, γ) =

1

πγ

{
1 +

(y − x)2

γ2

}−1

, (15)

where η > 0 and γ > 0 are the noise parameters. In order to estimate the
kernel parameters, which we denote by θ = {θi}i, and the noise parameters,
we resort to gradient descent algorithms (Nocedal & Wright, 2000). The
gradient of the variational free energy w.r.t. θi is given by

gθi
= −1

2
tr

{(
ν̄ν̄> − B̄−1

) ∂K

∂θi

}
, B̄ = K + Λ̄

−1
, (16)

where Λ̄ is a diagonal matrix with λ̄ on its diagonal. When computing this
gradient, we have kept the variational parameters fixed, that is ν = ν̄ and
Λ = Λ̄. The reason is that the implicit derivatives vanish at ν̄ and Λ̄,
which are stationary points of the free energy F(q,θ). The overall training
algorithm requires thus to perform an inner and an outer optimization loop.
After each gradient step (16), one needs to recompute ν̄ and Λ̄ using (11)
and (12). To compute approximate predictions for x(s∗) at inputs s∗ which
are not in the training set using the approximate Gaussian on x, we follow
Rasmussen and Williams (2006, p. 44).

Table 1 shows the average test mean squared error (MSE) and the 1-
standard deviation of the MSE for the standard GP , the variational Gaus-
sian approximation assuming Laplace noise and the variational Gaussian
approximation assuming Cauchy noise. All models use a squared exponen-
tial kernel function with common length scale and common multiplicative
constant. The standard GP assumes additive Gaussian noise with variance
σ2. All hyperparameters are optimised by gradient techniques. We use 5-fold
cross-validation to estimate the MSE. It can be observed from Table 1 that
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Table 1: Average test mean squared error (MSE) and 1-standard deviation
of the MSE for the Boston housing data. See text for details.

likelihood Cauchy Laplace Gaussian

boston 47.92± 16.13 42.35± 13.65 53.75± 22.02

both variational Gaussian approximations outperform the standard GP . As-
suming Laplace distributed noise seems to be advantageous over the Cauchy
noise, suggesting that there are no strong outliers in the data.

5 Conclusion

In this paper, we have reconsidered the variational Gaussian approximation.
We have clarified its relation to the Laplace approximation. We have shown
that it is a tractable approach at least for models with Gaussian priors and
factorising likelihoods, which naturally occur within the Gaussian process
framework. We have also discussed several ways to compute the Gaussian
expectations. The variational Gaussian approximation may also be natu-
rally combined with variational sparse Gaussian approximations in order to
speed up the inference for large datasets. We will give such extensions and
comparisons of the method with other techniques in a forthcoming paper.

A Appendix

Derivatives of multivariate Gaussian expectations with respect to the mean µ
and the covariance Σ are most conveniently computed using the characteristic
function G(k) = 〈eik>x〉q = e−

1
2
k>Σk+ik>µ of the Gaussian measure q. Using

standard Fourier analysis, we can express expectations of any function V (x)
as

〈V (x)〉q =
1

(2π)n

∫
G(k)e−ik

>yV (y) dy dk

=
1

(2π)n

∫
e−

1
2
k>Σk+ik>(µ−y)V (y) dy dk. (17)
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This shows that any derivative with respect to µ is equivalent to (−) the
derivative of the exponential under the integral with respect to y. This in
turn, using integrations by parts with respect to y, yields

∇µ 〈V (x)〉q = 〈∇xV (x)〉q (18)

∇Σ 〈V (x)〉q =
1

2
〈∇x∇xV (x)〉q =

1

2
∇µ∇µ 〈V (x)〉q . (19)

where the second equality in the last line follows from the first line.
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