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Abstract

In recent work we have developed a novel variational inference method

for partially observed systems governed by stochastic differential equa-

tions. In this paper we provide a comparison of the Variational Gaussian

Process Smoother with an exact solution computed using a Hybrid Monte

Carlo approach to path sampling, applied to a stochastic double well po-

tential model. It is demonstrated that the variational smoother provides

us a very accurate estimate of mean path while conditional variance is

slightly underestimated. We conclude with some remarks as to the ad-

vantages and disadvantages of the variational smoother.

1 Introduction

Stochastic dynamical systems [1] have been used for modelling of real-life sys-
tems in various areas ranging from physics [1] to system biology [2] to envi-
ronmental science [3]. Such systems are often only partially observed, which
makes statistical inference in those systems difficult. The inference problem for
stochastic dynamical systems usually includes both state- and parameter esti-
mation. In this paper, we focus on state estimation and assume that the system
equation and its parameters are both known a priori. This is known as filtering
and/or smoothing problems in statistical signal processing [4]. It is known that
the Kushner-Stratonovich-Pardoux (KSP) equations are the optimal solution to
a general filtering/smoothing problem [5, 6, 7]. For linear systems, the filtering
part of KSP equations is reduced to the well-known Kalman-Bucy filter[8] which
is computationally very efficient. For non-linear dynamics in general, however,
filtering/smoothing is still a challenging problem because a numerical solution
to the KSP equations is not feasible for high-dimensional systems. Recently,
a variational smoothing algorithm has been proposed in [10]. This paper is to
illustrate the performance of that computationally efficient algorithm by com-
paring with Markov Chain Monte Carlo (MCMC) smoother.

Mathematically, a stochastic dynamical system is often represented by stochas-
tic differential equation (SDE) [11]:

dX(t) = f(X, t)dt + (2D)1/2(t)dW(t), (1)
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where X(t) ∈ Rd is state vector, D ∈ Rd×d is so-called diffusion matrix, f
represents a deterministic dynamical process. The driving noise process is rep-
resented by a Wiener process W(t). Eq. 1 is also referred to as a diffusion
process. Note that the diffusion matrix D is assumed to be state-independent.
The state is observed via some measurement function H(·) at discrete times,
say {tk}k=1,...,M . The observations are contaminated by i.i.d Gaussian noise:

yk = H(X(tk)) + R
1
2 · ξk (2)

where yk ∈ Rd′

is the k-th observation, R ∈ Rd′
×d′

is the covariance matrix
of measurement errors, and ξk represents multivariate white noise. A Bayesian
approach to filtering/smoothing is typically adopted in which the posterior dis-
tribution p(X(t)|{y1, ...,yk, tk < t}) and p(X(t)|{y1, ...,yM}), respectively, are
to be formulated and estimated. Theoretically, an optimal estimate of p(·) is
the solution to the corresponding KSP equations. Computational approaches
are either based on a variety of approximation schemes or achieved by MCMC
sampling methods.

Using Markov Chain Monte Carlo [12], one is able to sample from a pos-
terior distribution exactly. At each step of a MCMC simulation, a new state
is proposed and will be accepted or rejected in a probabilistic way. For appli-
cations to stochastic dynamical systems, it is also referred to path sampling.
A path sampling approach to discrete-time state-space models has been ad-
dressed in [9] and many references therein. In those works, a Gibbs-sampler
with single-site update was used. To achieve better mixing, several algorithms
using multiple-site update are explored in [13]. Recently, a Hybrid Monte Carlo
(HMC) algorithm for path sampling is proposed in [14]. The HMC method
updates the entire sample path at each step of path sampling while keeping the
acceptance of new paths high. In this work, we first scrutinise the use of HMC
for non-linear smoothing and then assess the performance of the variational
smoother proposed in [10] by comparing its results with those of HMC.

In contrast to MCMC, all other approaches to non-linear filtering/smoothing,
including the one proposed in [10], are based on a particular approximation
scheme. The extended Kalman filter is the first attempt to tackle the non-
linearity by linearising the dynamics around the currently available state es-
timate [15]. However, unstable error growth is observed in such linearisation
methods [16]. To alleviate this difficulty, the Ensemble Kalman Filter (EnKF)
was introduced in [17]. An ensemble of states are integrated forward in time.
Therefore, the Kalman gain can be estimated by using the error covariances
which are not propagated but calculated from the ensemble of states at each
time step. Note that this method drops the linear approximation of non-linear
dynamics while keeping the Gaussian assumption of error statistics. Particle
filter (PF) proposed in [18] represents a different direction of approximation
strategies. Essentially, the posterior density of filtering variables in PF is ap-
proximated by a discrete distribution with random support. Each one in the dis-
crete support is called particle and its probability mass is considered as weight.
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It will be seen that the approximation strategy implemented in [10] is distinct
from those in the above methods.

In essence, the variational smoother in [10] makes a global linear approxi-
mation of non-linear dynamics. This implies a Gaussian approximation of the
posterior process

p(X(t)|{y1, ...,yM}).
The quality of approximation is measured by Kullback-Leibler (KL) diver-
gence [19] between the true and approximate posterior, and the optimal ap-
proximate posterior is obtained by minimising the KL divergence. Following
this, any statistical inference in the true system is based on the approximate
posterior. This method is within the framework of variational approximation
for Bayesian inference, which is computationally very efficient and popular in
machine learning community [20].

The structure of this paper is as follows: First, we present a Bayesian treat-
ment of non-linear smoothing. In Sec. 3, the MCMC method is described in
details while we give a summary of the variational smoother in Sec. 4. For de-
tailed proofs, we refer to [10]. After that, we compare both methods in Sec. 5
by numerical experiments with a double-well potential system. The paper con-
cludes with a discussion.

2 Bayesian approach to non-linear smoothing

Both for the MCMC method in [14] and for the variational smoother in [10],
stochastic differential equations are discretized by using an explicit Euler-Maruyama
scheme [11]. The discretized version of Eq. 1 is given by

xk+1 = xk + f(xk, tk)δt + (2D)1/2(tk)
√

δt · ξk, (3)

with tk = k · δt, k = 0, 1, ..., N , and a smoothing window from t = 0 to T =
N · δt. Note that ξk are white noise. An initial state x0 needs to be set. There
are M observations within the smoothing window, and they are denoted by

(tkj
,yj)j=1,...,M with {tk1

, ..., tkM
} ⊆ {t0, ..., tN}.

In the following, we formulate the posterior distribution step by step.

The prior of a diffusion process can be written down as

p(x0, ....,xN ) = p(x0) · p(x1|x0) · .... · p(xN |xN−1),

where p(x0) is the prior of initial states and p(xk+1|xk) with k = 0, ...., N−1 are
transition densities of the diffusion process. For small enough δt, those transition
densities can be well approximated by a Gaussian density [21]. Accordingly,

p(xk+1|xk) = N (xk+1|xk + f(xk)δt, 2Dδt).
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Therefore, the prior is given by

p(x0, ....,xN ) ∝ p(x0) · exp(−Hdynamics),

where

Hdynamics =

N−1
∑

k=0

δt

4

[

xk+1 − xk

δt
− f(xk, tk)

]⊤

D−1

[

xk+1 − xk

δt
− f(xk, tk)

]

.

As we assume that measurement noises are i.i.d. Gaussian random variables,
the likelihood is simply given by

p(y1, ...,yM |x0, ...,xN ) = exp(−Hobs),

where

Hobs =
1

2

M
∑

j=1

[

H(xkj
) − yj

]⊤
R−1

[

H(xkj
) − yj

]

. (4)

In summary, we have the posterior

p(x0, ...,xN |{y1, ...,yM}) ∝ p(x0) · exp(−1(Hdynamics + Hobs)).

3 Markov Chain Monte Carlo (MCMC) Smoother

In Hybrid Monte Carlo, the molecular dynamics simulation algorithm is applied
to make proposals in a Metropolis-Hastings algorithm, for example,

X k = {xk
0 , ...,xk

N} −→ X k+1 = {xk+1

0 , ...,xk+1

N },

at step k. To make a proposal of X k+1, one simulates a fictitious deterministic
system as follows

dX
dτ

= P

dP

dτ
= −∇X Ĥ(X ,P)

where P = (p0, ...,pN ) represents momentum and Ĥ is a fictitious Hamiltonian

which is the sum of potential energy Hpot and kinetic energy Hkin = 1

2

∑N
k=1

p2
k.

For the posterior distribution of non-linear smoothing in Sec. 2, the potential
energy is given by

Hpot = − log(p(x0) + Hdynamics + Hobs.

The above system is initialised by setting X (τ = 0) = Xk and sampling a
random number from N (0, 1) for each component of P(τ = 0). After that, one
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integrates the system equations forward in time with time increment δτ by using
leapfrog as follows:

X ′ = X + δτAP +
δτ2

2
AA⊤(−∇X Ĥ)

P′ = P +
δτ

2
A⊤(−∇X Ĥ − ∇X ′Ĥ)

where A denotes so-called preconditioning matrix which accelerates the conver-
gence of matrix iterations. Further, the matrix A is a circulant matrix which is
constructed from the vector

{1, exp(−α), ..., exp(−α · T )}
where α is a tuning parameter. After J iterations, the state X (τ = Jδτ) is
proposed as X k+1 which will be accepted with probability

min{1, exp
(

−Ĥk+1 + Ĥk
)

}.

A reasonably high acceptance rate can be achieved by tuning the parameter
δτ , J and α. If δτ is too large, then the leapfrog algorithm gives us a poor
approximation to the true dynamics of the fictitious system. If J is too large,
small discretisation errors could be accumulated so that the simulated trajectory
shifts away from the true one. Both lead to low acceptance rate. With too
small δτ and J , however, the change of sample paths at each step is too small
to improve mixing significantly.

4 Variational Gaussian Process Approximation
(VGPA) Smoother

The starting point of the variational Gaussian Process approximation method
is to approximate Eq. 1 by a linear SDE:

dX(t) = fL(X, t)dt + (2D)1/2(t)dW(t), (5)

where
fL(X, t) = −A(t)X(t) + b(t). (6)

Note that D must not be state-dependent so that X(t) of the approximate SDE
is a Gaussian process. The matrix A(t) ∈ Rd×d and the vector b(t) ∈ Rd are
two variational parameters to be optimised.

The approximation made by Eq. 6 implies that the true posterior process,
i.e. p(X(t)|y1, ...,yM ) and say p(t), is approximated by a Gaussian Markov
process, say q(t). If we discretise the linear SDE in the same way as the true
SDE, the approximate posterior can be written down as

q(x0, ....,xN ) = q(x0) ·
N−1
∏

k=0

N (xk+1|xk + fL(xk)δt, 2Dδt).
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In [10], q(x0) is fixed to N (x0|m0,S0), and the prior on initial states p(x0) is a
uniform distribution.

The optimal A(t) and b(t) are obtained by minimising the KL divergence
of q(t) and p(t) which is given by

KL[q||p] =

∫

dq ln
dq

dp
=

∫ T

0

E(t)dt + const. (7)

with E(t) = Esde(t) + Eobs(t), Eobs(t) =
〈

Hobs
〉

qt
and

Esde(t) =
1

4

〈

f(X) − fL(X))⊤D−1(f(X) − fL(X))
〉

qt

where Hobs is defined in Eq. 4 and qt denotes the marginal distribution of the
approximate posterior process q(t) at time t.

To compute the KL divergence, we introduce two auxiliary variational pa-
rameters m(t) and S(t) which are the mean and covariance matrix of the
marginal distribution qt. However, the pair (m(t),S(t)) is not independent
of (A(t),b(t)). There exists two constraints between them:

dm(t)

dt
= −A(t)m(t) + b(t), (8)

and
dS(t)

dt
= −A(t)S(t) − S(t)A⊤(t) + 2D. (9)

Accordingly, we find optimal (A(t), b(t)), (m(t), and S(t)) by looking for the
stationary points of the following Lagrangian

L =

∫

{E − tr{Ψ(
dS

dt
+ AS + SA⊤ − 2D)}

−λ⊤(
dm

dt
+ Am) − b}dt

where Ψ(t) ∈ Rd×d and λ(t) ∈ Rd are Lagrange multipliers. By definition,
Ψ(T ) = 0 and λ(T ) = 0.

By taking the derivatives of L with respect to m, S, A and b, we obtain the
following Euler-Lagrange equations:

∂E

∂A
− 2ΨS− λm⊤ = 0 (10)

∂E

∂b
+ λ = 0 (11)

∂E

∂m
− A⊤λ +

dλ

dt
= 0 (12)

∂E

∂S
− 2ΨA +

dΨ

dt
= 0 (13)
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Note that the optimal m, S, A, b, Ψ and λ should fulfil the above equations
and Eq. (8-9) as well. Hence, the non-linear smoothing problem is reduced to
solving a system of first-order differential equations.

The equation system above is solved iteratively. We start with an initial
guess of m, S, A, b, Ψ and λ. First, we compute m(t) and S(t) by performing
standard Gaussian Process regression [22]. Then, we set Ψ(t) = 0 and λ(t) = 0
for all t. Finally, A and b are initialised by

A(t) =

〈

∂f

∂X

〉

qt

+ DΨ(t) (14)

b(t) = < f(X) >qt
+A(t)m(t) − 2Dλ(t). (15)

Note that Eq. (14-15) are derived from Eq. (10-11).

At iteration i, we first update m and S by solving Eq. (8-9) forward in time
where Ai and bi are used. Next, Ψ and λ are updated by solving Eq. (12-13)
with final condition Ψ(T ) = 0 and λ(T ) = 0 where mi+1 and Si+1 are used.
Note that the data are assimilated at this step. To clarify it, this can be split
into two steps:

1. Between two successive observations, we update Ψ and λ by solving

dΨ(t)

dt
= 2Ψ(t)A(t) − ∂Esde

∂S
(16)

dλ(t)

dt
= A⊤(t)λ(t) − ∂Esde

∂m
(17)

2. When there is an observation at tkj
, j = 1, ..., M , the following jump-

conditions apply

Ψ(t+kj
) = Ψ(t−kj

) − 1

2
H⊤R−1H (18)

λ(t+kj
) = λ(t−kj

) +

H⊤R−1H(yj − Hm(tkj
)). (19)

Finally, we compute

A(t;mi+1,Si+1,Ψi+1, λi+1)

and
b(t;mi+1,Si+1,Ψi+1, λi+1)

by using Eq. (14-15). To keep the algorithm stable, the update of A(t) and b(t)
is done by

Ai+1(t) = Ai(t)

− ω{Ai(t) − A(t;mi+1,Si+1,Ψi+1, λi+1)}
bi+1(t) = bi(t)

− ω{bi(t) − b(t;mi+1,Si+1,Ψi+1, λi+1)}
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where 0 < ω < 1. The iteration stops when L has converged.

5 Numerical Experiments

The MCMC and variational algorithms are compared on a double-well potential
system which is given by

ẋ(t) = f(x(t)) + κ · ξ(t), (20)

where
f(x) = 4x(1 − x2)

and ξ(t) is white-noise [1]. The parameter κ corresponds to (2D)
1
2 in Eq. 1

and determines the strength of random fluctuations within the system. This
system has two stable states, namely x = +1 and x = −1. However, random
fluctuations could cause a transition of the system from one stable state into
another. The average time needed for the occurrence of such an event is called
exit time [1]. In this study, we set κ = 0.5 and the corresponding exit time is
about 4000 time units [23]. This provides us some prior knowledge on initial
states.

In the numerical experiments, we consider a smoothing window ranging from
t = 0 to t = 12.0. Further, we assume that states x can be observed directly,
which makes H an identity function. Within the smoothing window, we gener-
ate three data sets, say A, B, and C, from a sample path which was considered
in [23] and [25]. The variance R of measurement errors are 0.04, 0.09, and 0.36,
respectively. Each data set consists of seven data points which are ”measured”
at times tk1

= 1.0, ...., tkM
= 7.0. Although multiple data sets are generated

and analysed for each of those R-values, the results of data set A, B, and C are
representative and chosen for illustration.

For the MCMC method, Eq. 20 is discretized with time increment δt = 0.1.
The prior on initial states is set to a Gaussian density with mean at x = +1 and
variance equal to 0.05. This choice is strongly based on our prior knowledge
of the system. The tuning parameters of Hybrid Monte Carlo are chosen as
follows: J = 2, δτ = 0.005 and α = 0.02. The use of preconditioning matrix
A keeps the necessary J small, which makes the simulation computationally
more efficient. However, the multiplication of the matrix A with various vectors
would cost extra computational time. Because of the circulant property of A,
this part of computational burden can be reduced [24].

For each of 3 data sets, we run a Markov chain of length 5,000,000 and
subsample from this chain with sampling interval equal to 1,000. The first
1,000 samples are discarded as burn-in period. It turns out that it is insuffi-
cient to determine burn-in only by monitoring a summary statistic like energy
Ĥ. On the contrary, one has to monitor the traces of state x at different time
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Figure 1: Comparison of mean-path and conditional-variance estimates between
the MCMC- (dashed) and variational (solid) method with a double-well poten-
tial system. Filled circles represent 7 observations from data set A, with mea-
surement noise variance equal to 0.04. The mean paths are displayed by thick
lines, while each pair of thin lines indicates an envelope of mean path with 2 ×
standard deviation.

points. Particularly, those time points must be chosen from different phases of
the smoothing window, for example, transition phases, stationary phases, and
the phase before/after the first/last observation.

For the variational GP approximation method, Eq. 20 is discretized with
time increment δt = 0.01. The only tuning parameter ω is set to 0.15 as in [10].
The number of iterations required for the convergence of VGPA may increase
when we extend the smoothing window or add more measurement noise. This
is because of the poor initial states estimated by standard GP regression.

In Fig. 1, Fig. 2 and Fig. 3, the estimates of both mean path and conditional
variance are displayed for data set A, B, and C, respectively. In each figure,
the results of VGPA are compared with the MCMC results.

For the data sets with relatively small measurement noise, the estimated
mean paths of both methods agree with each other very well whereas the esti-
mated conditional covariance of VGPA is overall but only slightly smaller than
that of MCMC. It is also seen that the estimated mean path is slightly biased
towards zero during both stationary phases. This can be explained by the fact
that although the posterior of x has a distinct mode at x = +1.0 before the
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Figure 2: The same as in Fig. 1 but with data set B (measurement noise variance
= 0.09).

transition or x = −1.0 after the transition, the mode at another stable state is
not vanishing. Moreover, we see that the mean path stays at the left well after
the last observation. This is also in accordance with the large exit time of the
system we consider.

A small dip of mean paths is evident in the results of the VGPA smoother
when we look into the initial period of the smoothing window. This is accompa-
nied with large conditional variance S(0). To explain this observation, we run
MCMC simulations with increasingly larger prior variance of initial states. As
expected, the posterior variance of x0 increases with its prior variance. Further,
it turns out that a similar dip of mean paths appears when the prior variance
becomes sufficiently large. It can be understood as follows: Without any data, a
double-well systems does show a bimodal probabilistic structure. With a poste-
rior mean of x0 close to +1 and a large value of its posterior variance, the mean
path could be further biased towards zero in the initial period where the first
observation has little influence. Note that the approximate posterior variance
S(0) is not optimised, but held fixed.

Finally, we turn our attention to data set C with very large measurement
noise. Note that it is difficult to identify where the transition starts by visual
inspection of the data themselves. In contrast, this is possible with data set A

and B. From Fig. 3, we can see that there is significant difference both in mean
path and in conditional variance between the MCMC and VGPA smoother,
particularly in the period before t = 5.0. Due to the ambiguity shown by the
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Figure 3: The same as in Fig. 1 but with data set C (measurement noise variance
= 0.36).

data between t = 2.0 and t = 4.0, the MCMC sampler seems to be exploring the
bimodal structure of the posterior distribution. In contrast, the approximate
posterior of the VGPA method is fixed to one particular mode at any time. This
may explain the difference in mean path between two methods and a significant
underestimation of conditional variance for the VGPA smoother.

6 Discussions

By comparing with Markov Chain Monte Carlo , we scrutinise a variational
method for non-linear smoothing which is recently proposed in [10]. Both meth-
ods are tested on a double-well potential system. Three data sets with different
measurement noise are used to find out the strength and weakness of the novel
smoother.

Our investigation is based on the fact that MCMC methods provide an exact
inference tool for comparison. For data sets with small or moderate measure-
ment noise, it turns out that the VGPA method does produce a very accurate
estimate of mean path while the conditional variance is slightly under-estimated.
As expected, the variational method is computationally more efficient than
MCMC. Regarding other approximation-based smoothers, it has been reported
that Ensemble Kalman smoother fails to reconstruct the transition of a double-
well system accurately from a sparse data set [25]. As stated in [25], the failure
is due to the fact that in KF and EnKF the propagated states are corrected by
a linear interpolation scheme when new data are assimilated.
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However, the weakness of the VGPA method is also evident when the am-
biguity of data becomes significant. As many other variational approximation
methods, the novel smoother is not good at exploring the multi-mode structure
of some probability measures. In this paper, the role of prior on initial state is
also investigated. It turns out that the estimates of mean path could be biased
in the initial phase of the smoothing window, where the first observation has
little influence, unless the prior on initial states is incorporated by the varia-
tional smoother.

In this paper, the focus of the comparison is on the accuracy of the varia-
tional smoother when compared to MCMC. Future work will focus on a com-
prehensive assessment of its relative performance when compared with other
approximation-based algorithms. As application of so-called ”statistical lineari-
sation”-strategy, the ensemble Kalman smoother [17] and unscented Kalman
smoother [26] are of most interest. For multimodal systems, the Gaussian sum
smoother proposed in [27] is particularly promising, as it does propagate a Gaus-
sian sum approximation of true marginal posterior [28] .

Many MCMC algorithms suffer from poor mixing when high-dimensional
stochastic complex systems are concerned. Development of efficient MCMC
algorithms is always a challenging task. A combination of variational approxi-
mation methods and sampling methods would offer a new promising direction
to improve the efficiency of MCMC algorithms.
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