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Abstract. In many practical applications, the data is organized along a
manifold of lower dimension than the dimension of the embedding space.
This additional information can be used when learning the model param-
eters of Gaussian mixtures. Based on a mismatch measure between the
Euclidian and the geodesic distance, manifold constrained responsibilities
are introduced. Experiments in density estimation show that manifold
Gaussian mixtures outperform ordinary Gaussian mixtures.

1 Introduction

Probability density estimation is a fundamental concept in unsupervised learning
and knowledge discovery. In general, density estimation is performed regardless
of the intrinsic geometric structure of the data. However, they are concentrated
on lower dimensional manifolds embedded in the higher dimensional input space
in many data mining applications. As a result, the true density mass in the
vicinity of a data point is oriented along the manifold, rather than along all the
directions in the input space. Estimating the unknown density by conventional
techniques such as the Parzen windows [1] is suboptimal, as it leads to giving
too much probability to irrelevant directions of space (i.e. perpendicular to the
local manifold orientation) and too little along the manifold. In [2] manifold
Parzen windows are introduced to improve nonparametric density estimation in
this situation. In this paper, a related approach for mixture models is proposed.

In practice, finite mixtures [3], and in particular Gaussian mixtures, can also
be used for nonparametric-like density estimation [4]. That is, provided the num-
ber of components can be varied arbitrarily and provided the numerical difficul-
ties encountered when learning the parameters by the expectation-maximization
(EM) algorithm [5] can be avoided, they are suitable to estimate any unknown
density. The aim of this work is to show how to incorporate the prior knowledge
that the data are located on a lower dimensional manifold during the learning
process by EM. This is achieved by acting on the responsibilities only. Based
on the discrepancy between the Euclidian and the geodesic distance, a manifold
constrained E-step is constructed resulting in better generalization capabilities.
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Section 2 presents how to recover the data manifold and how to approximate
the geodesic distance by the graph distance. In Section 3, the learning procedure
of finite Gaussian mixtures (FGM) by EM is recalled. Section 4 introduces mani-
fold constrained Gaussian mixtures (MFGM) and discusses the resulting E-step.
Finally, in Section 5, the approach is validated experimentally and compared to
Parzen windows using Gaussian isotropic kernels and ordinary FGM.

2 Constructing the Data Manifold

The basic principle of nonlinear data projection techniques, such as CDA [6] and
ISOMAP [7] is to find the lower dimensional data manifold (if any) embedded
in the input space and unfold it. An essential building block for constructing the
manifold is the geodesic distance. This metric is measured along the manifold
and not through the embedding space, akin the Euclidean distance. As a result,
the geodesic distance less depends on the curvature of the manifold, thus taking
the intrinsic geometrical structure of the data into account.

2.1 Geodesic Distances

Consider two data points xi and xj on the multidimensional manifold M of
lower dimensionality as the embedding space. Manifold M is parameterized as
follows:

m : R
p → M ⊂ R

d : t �→ x = m(t) ,

where d is the dimension of the embedding space and p (≤ d) is the dimension of
M. Different paths may go from point xi to point xj . Each of them is described
by a one-dimensional submanifold Pi,j of M with parametric equations:

p : R → Pi,j ⊂ R
p : z �→ t = p(z) .

The geodesic distance between xi and xj is then defined as the minimal arc
length connecting both data samples:

l(xi,xj) = min
p(z)

∫ zj

zi

||Jzm(p(z))||dz ,

where Jz(·) denotes the Jacobian with respect to z. In practice, such a mini-
mization is untractable, since it is a functional minimization.

2.2 Graph Distances

Even though geodesic distances cannot be computed in practice, they can eas-
ily be approximated by graph distances [8]. The problem of minimizing the arc
length between two data samples lying on M reduces to the problem of mini-
mizing the length of path (i.e. broken line) between these samples, while passing
through a number of other data points of M. In order to follow the manifold,
only the smallest jumps between successive samples are permitted. This can be
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achieved by using either the K-rule, or the ε-rule. The former allows jumping to
the K nearest neighbors. The latter allows jumping to samples lying inside a ball
of radius ε centered on them. In the remaining of the paper, we only consider
the K-rule as the choice for ε is more difficult in practice than for K.

The data and the set of allowed jumps constitutes a weighted graph, the
vertices being the data, the edges the allowed jumps and the edge labels the
Euclidean distance between the corresponding vertices. In order to be a distance,
the path length (i.e. the sum of successive jumps) must satisfy the properties of
non-negativity, symmetry and triangular inequality. The first and the third are
satisfied by construction. Symmetry is ensured when the graph is undirected.
For the K-rule, this is gained by adding edges as follows: if xj belongs to the K
nearest neighbors of xi, but xi is not a neighbor of xj then the corresponding
edge is added. Remark also that extra edges are added to the graph in order to
avoid disconnected parts. For this purpose a minimum spanning tree [9] is used.

The only remaining problem for constructing the distance matrix of the
weighted undirected graph is to compute the shortest path between all data
samples. This is done by repeatedly applying Dijkstra’s algorithm [10], which
computes the shortest path between a source vertex and all other vertices in a
weighted graph provided the labels are non-negative (which is here the case).

3 Finite Gaussian Mixtures

A finite Gaussian mixture (FGM) [3] is a linear combination of M Gaussian
distributions:

p̂(x) =
M∑

m=1

πmN (x|µm,Λm) , (1)

The mixing proportions {πm}M
m=1 are non-negative and must sum to one. The

multivariate Gaussian distribution with mean µ and precision or inverse covari-
ance matrix Λ is defined as:

N (x|µ,Λ) = (2π)−
d
2 |Λ| 12 exp

{
−1

2
(x − µ)T Λ (x − µ)

}
, (2)

where x ∈ R
d and |Λ| is the determinant of Λ.

Estimating the true density p(x) by the approximate density p̂(x) then con-
sists in computing the parameters {µm}M

m=1, {Λm}M
m=1 and {πm}M

m=1 based on
the observed data {xn}N

n=1. By applying the EM algorithm [5] their maximum
likelihood estimates can be computed in an elegant way.

Given a particular density model and assuming the data samples are i.i.d.,
the joint distribution of the observed data or data likelihood is:

L = p̂(x1, ...,xN |π1, ..., πM ,µ1, ...,µM ,Λ1, ...,ΛM ) =
N∏

n=1

p̂(xn) .
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Unfortunately for FGM, maximizing L (or equivalently its log) subject to the
constraint on the mixture proportions is untractable, unless one defines a com-
ponent dependent auxiliary variable associated to each data sample:

ρm(xn) =
πmN (xn|µm,Λm)∑M
m=1 πmN (x|µm,Λm)

. (3)

Keeping the auxiliary variables fixed, the Lagrangian logL+λ(
∑M

m=1 πm−1),
λ being the Lagrange multiplier, can be maximized by setting its derivatives with
respect to the model parameters to zero. Rearranging leads to the following
estimation formulas for the component means, precisions and weights:

µm =
∑N

n=1 ρm(xn)xn∑N
n=1 ρm(xn)

, (4)

Λm =

{∑N
n=1 ρm(xn) (xn − µm) (xn − µm)T∑N

n=1 ρm(xn)

}−1

, (5)

πm =
1
N

N∑
n=1

ρm(xn) . (6)

Observe that (4) and (5) are nothing else than weighted averages based on the
auxiliary variables ρm(xn).

EM [5, 3] operates iteratively in two stages. In the E-step, the auxiliary vari-
ables (3) are computed, while the current model parameters are kept fixed.
Subsequently, during the M-step the model parameters are updated according
to (4-6) using the auxiliary variables computed in the E-step. At each iteration
step a monotonic increase of the likelihood function is guaranteed [11].

Interpretation of the E-Step. Each mixture proportion πm is the prior pro-
bability of having the mth component of the mixture. Recalling Bayes’ rule, it
can easily be seen from expression (3) that each auxiliary variable ρm(xn) is
the posterior probability that data sample xn was generated by the mixture
component m, provided density model (1). In other words, it corresponds to the
probability of having component m if data sample xn is observed:

P̂ (m|xn) =
P (m)p̂(xn|m)

p̂(xn)
=

πmN (xn|µm,Λm)∑M
m=1 πmN (xn|µm,Λm)

= ρm(xn) .

The auxiliary variables are therefore often called responsibilities.

Latent Variable Viewpoint of the E-Step. More formally, finite mixture
models can be viewed as latent variable models. The component label asso-
ciated to each data sample is unobserved, that is we do not know by which
component a data sample was generated. Consider the set of binary latent vec-
tors {zn}N

n=1, with latent variables znm ∈ {0, 1} indicating which component has
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generated xn (znm = 1 if xn was generated by component m and 0 otherwise,
and

∑M
m=1 znm = 1). The prior distribution of the latent variables and the con-

ditional distribution of observed data are then respectively:

P̂ (zn) =
M∏

m=1

π znm
m , p̂(xn|zn) =

M∏
m=1

N (xn|µm,Λm)znm .

Marginalizing over the latent variables results indeed in (1). Given this latent
variable model, it can be shown that EM maximizes iteratively the expected
complete data log-likelihood with respect to the posterior distribution of the
latent variables (subject to the constraint on the mixture proportions):

Ez|x [logL] =
N∑

n=1

M∑
m=1

Ez|x [znm]︸ ︷︷ ︸
ρm(xn)

{log πm + logN (xn|µm,Λm)} ,

where Ez|x [·] is the expectation with respect to P̂ (znm|xn). In other words, EM
uses the expected value of the latent variables as indicator of the component that
generated the data samples. This expected value is equal to the responsibility.

4 Manifold Finite Gaussian Mixtures

Assume the data is lying on a manifold of lower dimension than the dimension
of the input space. It would be appealing to take this additional information
into account when learning the model parameters. Below, we explain how to
achieve this by adjusting the responsibilities according to some prior belief on
the discrepancy between the Euclidian and the geodesic distance.

4.1 Manifold Constrained E-Step

Let us respectively denote the Euclidian and graph distance between sample xn

and component mean µm by δe(xn,µm) and δg(xn,µm). The graph distance
δg(xn,µm) approximates the corresponding geodesic distance l(xn,µm).

Consider the exponential distribution with location parameter γ and scale
parameter β:

E(y|γ, β) =
1
β

exp
{
−y − γ

β

}
. (7)

Setting γ to δe(xn,µm)2 and y to δg(xn,µm)2 provides an appropriate measure
of the mismatch between both distances, since δe(xn,µm) ≤ δg(xn,µm). The
adjusted responsibilities can be defined as follows:

ρm
′(xn) =

P (m)p̂′(xn|m)
p̂′(xn)

=
πmNE(xn|µm,Λm)∑M

m=1 πmNE(xn|µm,Λm)
, (8)

where NE(xn|µm,Λm) is a Gaussian-Exponential distribution of the following
particular form:

NE(xn|µm,Λm) = N (xn|µm,Λm)E(δg(xn,µm)2|δe(xn,µm)2, 1) . (9)
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Choosing β equal to 1 leaves the responsibility unchanged if both distances
are identical. However, when the discrepancy between the distances increases
the conditional distribution p̂′(xn|m) decreases. This means that it is less likely
that data sample xn was generated by component m because the corresponding
geodesic distance is large compared to the Euclidian distance. This results in
a weaker responsibility. As a consequence, data samples lying far away from
the component means on the manifold will contribute less to the update of the
corresponding component means and precisions during the M-step.

Remark also that adapting the responsibilities in this way is consistent with
the latent variable viewpoint. It can be shown that in this case, manifold con-
strained EM maximizes iteratively the expected complete data log-likelihood
with respect to the resulting adjusted posterior P̂ ′(znm|xn) instead of P̂ (znm|xn):

Ez|x [logL] =
N∑

n=1

M∑
m=1

Ez|x [znm]︸ ︷︷ ︸
ρm

′(xn)

{log πm + logN (xn|µm,Λm)} .

In this equation Ez|x [·] is the expectation with respect to the posteriorP̂ ′(znm|xn),
which is adjusted according to the mismatch between both distances.

4.2 Learning Manifold Gaussian Mixtures

The learning procedure for manifold constrained finite Gaussian mixtures
(MFGM) can be summarized as follows:

1. Construct the learning manifold by the K-rule and compute the associated
distance matrix δg(xi,xj) by Dijkstra’s shortest path algorithm.

2. Repeat until convergence:

Update the distance matrix of the component means. Find for each
µm the K nearest training samples {xk}K

k=1 and compute its graph dis-
tances to all training data by δg(xn,µm)= mink{δg(xn,xk)+δe(xk,µm)}.

E-step. Compute the manifold constrained responsibilities by (8).
M-step. Update the model parameters by (4-6).
End.

Remark that the increase of the computational cost at each iteration step is
limited with respect to conventional FGM. Indeed, updating the distance matrix
of the component means does not require to recompute the data manifold, nor
to re-apply Dijkstra’s algorithm. The additional computational effort is due to
the construction of the learning manifold and the computation of its distance
matrix; both are performed only once (in step 1).

5 Experimental Results

In this section, the quality of MFGM density estimators are assessed on three 2D
artificial data sets. MFGM is compared to ordinary FGM and Parzen windows
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(a) Learn. Manif. (b) MFGM(-1.25). (c) FGM(-1.17). (d) Parzen (-1.04)

(e) Learn. Manif. (f) MFGM (- 0.41). (g) FGM (-0.31). (h) Parzen (- 0.59).

(i) Learn. Manif. (j) MFGM (4.53). (k) FGM (4.61). (l) Parzen (4.62).

Fig. 1. Density estimators of a Cross, a Spiral and a S-shape. Each column shows

successively the learning manifolds, the estimates of MFGM, ordinary FGM and Parzen

windows. For each model, the ANLL of the test set is between parentheses

using Gaussian kernels [1]. The performance measure that we use is the average
negative log-likelihood of the test set {xq}Nt

q=1: ANLL = − 1
Nt

∑Nt

q=1 log p̂(xq).
The first distribution is a Cross. The data samples are generated from a

uniform U(−0.5,+0.5) in horizontal or vertical direction with probability 1
2 .

Gaussian noise with zero mean and standard deviation σn = 0.03 is added in
the transversal direction. The training set and the validation set contain both
100 samples, and the test set 500 samples. For comparison purposes M is fixed
a priori to 4 for both mixture models. The density estimators using the opti-
mal kernel width for Parzen windows (σopt = 0.03) and the optimal number of
neighbors for MFGM (Kopt = 3), as well as the ANLL are shown in Figure 1.

The second data set is located along a noisy Spiral. A training set of 300
points, a validation set of 300 points and a test of 1000 points were generated
from the following distribution: x = [0.04t sin(t) + e1,−0.04t cos(t) + e2], where
t ∼ U(3, 15) and e1, e2 ∼ N (0, 0.025−2). The number of components in the
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mixtures is fixed to 10, the optimal kernel width for Parzen is 0.025 and the
optimal number of neighbors for constructing the learning manifold is 4. The
results are shown in Figure 1.

The third distribution has a S-shape. A training set, validation set a and test
set of respectively 100, 100 and 1000 points are generated from one of the fol-
lowing distributions with probability 1

2 : x = [3 cos(t) − 3 + e1,−10 sin(t) + e2] or
x = [3 cos(t) + 3 + e1, 10 sin(t) + e2], with t ∼ U(0, π) and e1, e2 ∼ N (0, 0.5−2).
The results for M = 6, σopt = 0.5 and Kopt = 10 are shown in Figure 1.

Discussion. Visually MFGM gives the best results for the three experiments,
the discretization step being chosen sufficiently small to avoid visual artifacts.
On the one hand, MFGM provides smoother estimates than Parzen windows.
On the other hand, the geometric arrangement of the data is better respected
with MFGM than with conventional FGM. In the case of the spiral, FGM com-
pletely fails to provide a good estimate as one component mixes two branches.
Numerically, MFGM generalizes better than FGM in the three examples, as we
observe a lower ANLL on the test set (see Fig. 1). Note also that the MFGM is
not sensitive to few unhappy edges in the learning manifold, e.g. the S-shape.

6 Conclusion

In this paper, manifold finite Gaussian mixtures (MFGM) were introduced. It
was shown that in situations where the data are located along a lower dimen-
sional manifold, MFGM outperforms ordinary FGM. As with FGM, the param-
eters of MFGM are learnt by EM, except that the E-step is further constrained
according to the mismatch between the Euclidean and the geodesic distance. As
a result, training samples lying close to a component mean in Euclidean space,
but far away on the manifold, will less contribute to the computation of the
corresponding mean and covariance matrix in the M-step. In the near future, we
plan to extend the approach to other mixtures models, e.g. Student-t mixtures.
We also plan to study the effect of fine tuning hyperparameter β, which regulates
how the mismatch between both distances penalizes the responsibilities.
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