Robust Probabilistic Projections: Errata Appendix

Equation (47) should read as follows:

$$
\begin{align*}
\mathbf{V}_{1} \mathbf{\Upsilon}^{2} \mathbf{V}_{1}^{\mathrm{T}} & =\left(\mathbf{V}_{1} \mathbf{\Upsilon} \mathbf{V}_{2}^{\mathrm{T}}\right)\left(\mathbf{V}_{1} \mathbf{\Upsilon} \mathbf{V}_{2}^{\mathrm{T}}\right)^{\mathrm{T}} \\
& =\overline{\boldsymbol{\Sigma}}_{11}^{-\frac{1}{2}} \overline{\boldsymbol{\Sigma}}_{12} \overline{\boldsymbol{\Sigma}}_{22}^{-1} \overline{\boldsymbol{\Sigma}}_{21} \overline{\boldsymbol{\Sigma}}_{11}^{-\frac{1}{2}} \\
& =\overline{\boldsymbol{\Sigma}}_{11}^{-\frac{1}{2}} \widehat{\mathbf{W}}_{1} \widehat{\mathbf{W}}_{2}^{\mathrm{T}}\left(\widehat{\mathbf{W}}_{2} \widehat{\mathbf{W}}_{2}^{\mathrm{T}}+\mathbf{\Psi}_{2}^{-1}\right)^{-1} \widehat{\mathbf{W}}_{2} \widehat{\mathbf{W}}_{1}^{\mathrm{T}} \overline{\boldsymbol{\Sigma}}_{11}^{-\frac{1}{2}} \\
& =\overline{\boldsymbol{\Sigma}}_{11}^{-\frac{1}{2}} \widehat{\mathbf{W}}_{1}\left(\mathbf{I}_{d}-\mathbf{B}_{2}^{-1}\right) \widehat{\mathbf{W}}_{1}^{\mathrm{T}} \overline{\boldsymbol{\Sigma}}_{11}^{-\frac{1}{2}} \tag{1}\\
& =\widetilde{\mathbf{V}}_{1}\left(\mathbf{I}_{d}-\mathbf{B}_{1}^{-1}\right)^{1 / 2}\left(\mathbf{I}_{d}-\mathbf{B}_{2}^{-1}\right)\left(\mathbf{I}_{d}-\mathbf{B}_{1}^{-1}\right)^{1 / 2} \widetilde{\mathbf{V}}_{1}^{\mathrm{T}} \\
& =\widetilde{\mathbf{V}}_{1} \mathbf{R}_{1} \widetilde{\mathbf{\Upsilon}}^{2} \mathbf{R}_{1}^{\mathrm{T}} \widetilde{\mathbf{V}}_{1}^{\mathrm{T}}
\end{align*}
$$

where we made use of the Woodburry inversion formula in (1) twice. We also defined $\mathbf{B}_{i} \equiv \widehat{\mathbf{W}}_{i}^{\mathrm{T}} \mathbf{\Psi}_{i} \widehat{\mathbf{W}}_{i}+\mathbf{I}_{d}$ and $\widetilde{\mathbf{V}}_{1} \equiv \overline{\boldsymbol{\Sigma}}_{11}^{-\frac{1}{2}} \widehat{\mathbf{W}}_{1}\left(\mathbf{I}_{d}-\mathbf{B}_{1}^{-1}\right)^{-\frac{1}{2}}$. The latter is an orthogonal matrix, since we have

$$
\begin{aligned}
\tilde{\mathbf{V}}_{1}^{\mathrm{T}} \tilde{\mathbf{V}}_{1} & =\left(\mathbf{I}_{d}-\mathbf{B}_{1}^{-1}\right)^{-\frac{1}{2}} \widehat{\mathbf{W}}_{1}^{\mathrm{T}} \overline{\boldsymbol{\Sigma}}_{11}^{-1} \widehat{\mathbf{W}}_{1}\left(\mathbf{I}_{d}-\mathbf{B}_{1}^{-1}\right)^{-\frac{1}{2}} \\
& =\left(\mathbf{I}_{d}-\mathbf{B}_{1}^{-1}\right)^{-\frac{1}{2}}\left(\mathbf{I}_{d}-\mathbf{B}_{1}^{-1}\right)\left(\mathbf{I}_{d}-\mathbf{B}_{1}^{-1}\right)^{-\frac{1}{2}} \\
& =\mathbf{I}_{d} .
\end{aligned}
$$

The matrix \mathbf{R}_{1} contains the eigenvectors of $\left(\mathbf{I}_{d}-\mathbf{B}_{1}^{-1}\right)^{1 / 2}\left(\mathbf{I}_{d}-\mathbf{B}_{2}^{-1}\right)\left(\mathbf{I}_{d}-\mathbf{B}_{1}^{-1}\right)^{1 / 2}$ and $\widetilde{\Upsilon}^{2}$ the corresponding eigenvalues. Similarly, \mathbf{R}_{2} contains the eigenvectors of $\left(\mathbf{I}_{d}-\mathbf{B}_{2}^{-1}\right)^{1 / 2}\left(\mathbf{I}_{d}-\mathbf{B}_{1}^{-1}\right)\left(\mathbf{I}_{d}-\mathbf{B}_{2}^{-1}\right)^{1 / 2}$ and the same eigenvalues $\widetilde{\boldsymbol{\Upsilon}}^{2}$.

Identifying the first and the last equalities of (47), we find $\mathbf{V}_{1}=\widetilde{\mathbf{V}}_{1} \mathbf{R}_{1}$ and $\boldsymbol{\Upsilon}=\widetilde{\boldsymbol{\Upsilon}}$. Doing the same development for $\mathbf{V}_{2} \mathbf{\Upsilon}^{2} \mathbf{V}_{2}^{\mathrm{T}}$, one gets $\mathbf{V}_{2}=\widetilde{\mathbf{V}}_{2} \mathbf{R}_{2}$. Hence, we find

$$
\left\{\begin{array}{l}
\mathbf{U}_{1 d}=\overline{\boldsymbol{\Sigma}}_{11}^{-1} \widehat{\mathbf{W}}_{1}\left(\mathbf{I}_{d}-\mathbf{B}_{1}^{-1}\right)^{-\frac{1}{2}} \mathbf{R}_{1}, \\
\mathbf{U}_{2 d}=\overline{\boldsymbol{\Sigma}}_{22}^{-1} \widehat{\mathbf{W}}_{2}\left(\mathbf{I}_{d}-\mathbf{B}_{2}^{-1}\right)^{-\frac{1}{2}} \mathbf{R}_{2}
\end{array}\right.
$$

