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Abstract. Discovering low-dimensional (nonlinear) manifolds is an im-
portant problem in Machine Learning. In many applications, the data
are in a high dimensional space. This can be problematic in practice due
to the curse of dimensionality. Fortunately, the core of the data lies of-
ten on one or several low-dimensional manifolds. A way to handle these
is to pre-process the data by nonlinear data projection techniques. An-
other approach is to combine local linear models. In particular, mixtures
of probabilistic principal component analyzers are very attractive as each
component is specifically designed to extract the local principal orienta-
tions in the data. However, an important issue is the model sensitivity
to data lying off the manifold, possibly leading to mismatches between
successive local models. The mixtures of robust probabilistic principal
component analyzers introduced in this paper heal this problem as each
component is able to cope with atypical data while identifying the local
principal directions. Moreover, the standard mixture of Gaussians is a
particular instance of this more general model.

1 Introduction

Principal component analysis (PCA) is a well-known statistical technique for
linear dimensionality reduction [1]. It projects high-dimensional data into a
low-dimensional subspace by applying a linear transformation that minimizes the
mean squared reconstruction error. PCA is used as a pre-processing step in many
applications involving data compression or data visualization. The approach has,
however, severe limitations. Since it minimizes a mean squared error, it is very
sensitive to atypical observations, which in turn leads to identifying principal
directions strongly biased toward them.

Recently, PCA was reformulated as a robust probabilistic latent variable
model based on the Student-t distribution [2]. The Student-t distribution is a
heavy tailed generalization of the Gaussian distribution. Similarly, the robust
probabilistic reformulation of PCA generalizes standard probabilistic PCA [3, 4].
Increasing the robustness by replacing Gaussian distributions with Student-t
distributions was already proposed in the context of finite mixture modeling [5].
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In contrast with previous robust approaches to PCA (see for example [6]
and [7], and the references therein), the probabilistic formalism has a number
of important advantages. First, it only requires to choose the dimension of
the projection space, the other parameters being set automatically by maximum
likelihood (ML). Previous attempts need in general to optimize several additional
parameters. Second, the probabilistic approach provides a natural framework
for constructing mixture models. This enables us to model low-dimensional
nonlinear relationships in the data by aligning a collection of local linear models
instead of using nonlinear dimensionality reduction techniques [9].

In this paper mixtures of robust PPCAs are introduced. The method gener-
alizes mixtures of standard PPCAs proposed in [10]. An additional interesting
feature of the approach is that it can be used for robust density estimation and
robust clustering, even in high-dimensional spaces. The main advantage resides
in the fact that the full-rank, possibly ill-conditioned covariance matrices are
approximated by low-rank covariance matrices, where the correlation between
the (local) principal directions need not to be neglected to avoid numerical in-
stabilities. In Section 2 and 3, we derive the model and then illustrate its use
on the examples in Section 4.

2 Robust Probabilistic Principal Component Analysis

Principal component analysis (PCA) seeks a linear projection, which maps a set
of observations {yn}Nn=1 to a set of lower dimensional vectors {xn}Nn=1 such that
the variance in the projection space is maximized [1]. This can be formalized
as a latent variable model with yn = Wxn + µ + ǫn. Matrix W ∈ R

D×d is the
(transposed) projection matrix. The data offset and the projection errors are
respectively denoted by µ and {ǫn}Nn=1. In probabilistic principal component
analysis (PPCA) [3, 4], it is further assumed that the error terms, as well as the
uncertainty on the latent vectors, are drawn from isotropic Gaussian distribu-
tions. As shown in [4], ML leads to a solution that is equivalent to PCA (up to
a rotation). More specifically, the columns of the ML estimate of W span the
same subspace as the d principal eigenvectors of the sample covariance matrix.

As its non-probabilistic counterpart, PPCA suffers from the following well-
known problem: since the approach is based on Gaussian noise model, it is very
sensitive to atypical observations such as outliers. Outliers occur quite often
in practice. Compared to the Gaussian distribution, the Student-t distribution
has an additional parameter, called the number of degrees of freedom ν. This
parameter regulates the thickness of the distribution tails and therefore its ro-
bustness to atypical observations. As noted in [11], the Student-t distribution
can be interpreted as the following latent variable model:

S(y|µ,Λ, ν) =

∫ +∞

0

N (y|µ, uΛ)G(u|ν2 ,
ν
2 )du, (1)

where u > 0 is a latent scale variable, N (y|µ,Λ) ∝ |Λ|1/2e−
1

2
(y−µ)TΛ(y−µ) is the

Gaussian distribution (with inverse covariance Λ) and G(u|α, β) ∝ uα−1e−βu is



the Gamma distribution. Hence, the Student-t distribution can be reformulated
as an infinite mixture of Gaussian distributions with the same mean and where
the prior on u is a Gamma distribution with parameters depending only on ν.

As shown in [2], PPCA can be made robust by using a Student-t model
instead of a Gaussian one. This leads to the following robust reformulation:

p(xn) = S(xn|0, Id, ν), (2)

p(yn|xn) = S(yn|Wxn + µ, τID, ν), (3)

where τ is the inverse noise variance. Integrating out the latent variable xn leads
to the marginal likelihood p(yn) = S(yn|µ,A, ν), with A−1 ≡WWT + τ−1ID.
Next, we show how to combine multiple robust PPCAs to form a mixture.

3 Mixtures of Robust PPCAs

A mixture of M robust probabilistic principal component analyzers is defined as

p(yn)=
∑

m πmp(yn|m). (4)

where {πm}Mm=1 is the set of mixture proportions, with
∑

m πm = 1 and ∀m :
πm ≥ 0. The likelihood term p(yn|m) is defined as a single robust PPCA, that
is p(yn|m) = S(yn|µm,Am, νm) with A−1

m ≡WmWT
m + τ−1

m ID.
In order to reconstruct the mth robust PPCA model, we define a set of

continuous lower dimensional latent variables {xnm}Nn=1 and a set of latent scale
variables {unm}Nn=1. In addition, for each observation yn, there is a binary latent
variable zn indicating by which component yn was generated. The resulting
complete probabilistic model is defined as follows:

P (zn) =
∏

m πznm

m , (5)

p(un|zn) =
∏

m G(unm|
νm

2 ,
νm

2 )znm , (6)

p(χn|un, zn) =
∏

mN (xnm|0, unmId)
znm , (7)

p(yn|χn,un, zn) =
∏

mN (yn|Wmxnm + µm, unmτmID)znm , (8)

where zn = (zn1, . . . , znM )T, un = (un1, . . . , unM )T and χn = (xn1, . . . ,xnM )T.
Integrating out all the latent variables leads to (4) as desired.

The (complete) log-likelihood is given by

logL({πm}, {µm}, {Wm}, {τm}, {νm}) =
∑

n log p(yn,χn,un, zn). (9)

The EM algorithm [8] maximizes the expectation of this quantity, the expecta-
tion being taken with respect to the posterior distribution of the latent variables.
Therefore, the E-step consists in estimating these posteriors, i.e. P (znm = 1|yn),
p(unm|yn, znm = 1) and p(xnm|yn,un, znm = 1), which allow us to compute the
expectations required in the M-step (details omitted):

ρ̄nm ≡ E{znm} = πmS(yn|µ
m

,Am,νm)
P

m
πmS(yn|µ

m
,Am,νm) , (10)

ūnm ≡ E{unm} = D+νm

(yn−µ
n
)TAm(yn−µ

m
)+νm

, (11)



log ũnm ≡ E{logunm} = ψ
(

D+νm

2

)

− log
(

(yn−µ
m

)TAm(yn−µ
m

)+νm

2

)

, (12)

x̄nm ≡ E{xnm} = τmB−1
m WT

m(yn − µm), (13)

S̄nm ≡ E{unmxnmxT
nm} = B−1

m + ūnmx̄nmx̄T
nm, (14)

where Bm ≡ τmWT
mWm + Id and ψ(·) ≡ Γ′(·)/Γ(·) is the digamma function.

The M-step maximizes the expected value of (9). This leads to the following
update rules for the parameters:

πm ←
1
N

∑

n ρ̄nm, (15)

µm ←
P

n
ρ̄nmūnm(yn−Wmx̄nm)

P

n
ρ̄nmūnm

, (16)

Wm ←
(
∑

n ρ̄nmūnm(yn − µ)x̄T
nm

) (
∑

n ρ̄nmS̄nm

)−1
, (17)

τ−1
m ← 1

DNπm

∑

n ρnm

(

ūnm‖yn − µm‖
2 − tr{WmS̄nmWT

m}
)

. (18)

Similarly, the maximum likelihood estimate for each νm is found by solving the
following expression by line search at each iteration:

1 + log
(

νm

2

)

− ψ
(

νm

2

)

+ 1
Nπm

∑

n ρ̄nm{log ũnm − ūnm} = 0. (19)

Using a low-dimensional representation in the latent space has a clear advan-
tage over a standard mixture of Gaussians (or Student-ts). Indeed, the number
of parameters to estimate each covariance matrix in the case of the latter is
D(D+1)/2, while it is equal to Dd+1−d(d−1)/2 in the case of the mixture of
(robust) PPCAs (taking the rotational invariance into account). The interesting
feature of our approach is that the correlations between the principal directions
are not neglected. By contrast, it is common practice to force the covariance
matrices to be diagonal in order to avoid numerical instabilities.

4 Experiments

The two experiments considered in this section illustrate the use of the mixture
of robust PPCAs. In the first one, it is shown how a low-dimensional nonlinear
manifold spoiled by noisy data can still be estimated. In the second one, it
allows finding and interpreting clusters of high-dimensional data.

Robust reconstruction of low-dimensional manifolds: The following
3-dimensional data set is used: y3n = y2

1n + y2
2n − 1 + ǫn. The data {yin : i ∈

{1, 2}}Nn=1 are drawn from a uniform distribution in the [−1, 1] interval and the
error terms {ǫn}Nn=1 are distributed according to N (ǫn|0, τǫ), with τ−1

ǫ = 0.01.
The data is located along a 2-dimensional paraboloid; 500 training data were
genererated. The number of components was fixed to 5 and d was set to 2
(the true dimension of the manifold). Fig. 1 shows the results for a mixture
of standard PPCAs and robust PPCAs in presence of 10% of outliers. These
are drawn from a uniform distribution on the interval [−1, 1] in each direction.
The shaded surfaces at the bottom of each plot indicate the regions associated
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(a) Projection by mixt. PPCAs.
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(b) Projection by mixt. robust PPCAs.

Fig. 1: Noisy paraboloid data set. Each shaded region is associated with a
different local linear model (or component). These regions can be projected on
the 3-dimensonal paraboloid in order to identify which part is modeled by which
linear model. The outliers are indicated by squares.

to each component (or local linear model) after projection. In other words,
the data belonging to these regions are assigned to the component with highest
responsibility. When the local models are nicely aligned with the manifold, the
regions do not split. However, as shown in Fig. 1, only the mixture of robust
PPCAs provides a satisfactory solution. Indeed, one of the components of the
mixture of standard PPCAs is “lost”; it is not oriented along the manifold (and
thus crosses the paraboloid) to account for the dispersion of outliers.

Analysis of high-dimensional data: In this experiment, the well-known
USPS handwritten digit data1 is considered. The data are black and white
16 × 16-pixels images of digits (0 to 9). To simplify the illustration, we kept
only the images of digit 2 and digit 3 (respectively 731 and 658 images), as well
as 100 (randomly chosen) images of digit 0. In this setting, these are outliers.
We compared the mixture of PPCAs and the mixture of robust PPCAs in their
ability to find the two main clusters assuming a 1-dimensional latent space.
The result is shown in Fig. 2. Each row represents images generated along the
principal directions. The mixture of robust RPPCAs completely ignores the
outliers. The first component concentrates on the digits 3 and the second on the
digits 2. Interestingly, the model is able to discover that the main variability
of digits 3 is along their width, while the main variability of digits 2 is along
their height. On the other hand, the mixture of PPCAs is very sensitive to the
outliers as its first component makes the transition between digits 3 and outliers
digits 0. This is undesirable in general as we prefer each component to stick to
a single cluster. Of course, one could argue that three components would be a
better choice in this case. However, we think that this example exploits a very
common property of high-dimensional data, namely that the major mass of the
density is confined in a low-dimensional subspace (or clusters of them), but not

1The USPS data were gathered at the Center of Excellence in Document Analysis and
Recognition (CEDAR) at SUNY Buffalo during a project sponsored by the US Postal Service.
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Fig. 2: Mixture of 2 component PPCAs with 1-dimensional latent space to
cluster USPS digit 2 and 3, and outliers digit 0. Right: robust, Left: standard.

entirely. This experiment shows that the mixture of robust PPCAs is able to
model such noisy manifolds, which are common in practice.

5 Conclusion

Principal component analysis is an elementary and fundamental tool for ex-
ploratory data mining, data visualization and unsupervised learning. When
tackling real-life problems, it is essential to take a robust approach. Here, the
term “robust” is used to indicate that the performance of the algorithm is not
spoiled by non-Gaussian noise (e.g., outliers). This property is obtained by ex-
ploiting the heavier distribution tails of the Student-t. In this paper, mixtures
of robust probabilistic principal component analyzers were introduced. They
provide a practical approach for discovering nonlinear relationships in the data
by combining robust local linear models. More generally, they can also be used
for robust mixture modeling, the multivariate Gaussian mixture model being a
special case.
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