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ABSTRACT
Motivation Stress response in cells is often mediated by quick ac-
tivation of transcription factors. Given the difficulty in experimentally
assaying transcription factor activities, several statistical approaches
have been proposed to infer them from microarray time-courses.
However, these approaches often rely on prior assumptions which
rule out the rapid responses observed during stress response.
ResultsWe present a novel statistical model to infer how transcription
factors mediate stress response in cells. The model is based on the
assumption that sensory transcription factors quickly transit between
active and inactive states. We therefore model mRNA production us-
ing a bi-stable dynamical systems whose behaviour is described by a
system of differential equations driven by a latent stochastic process.
We assume the stochastic process to be a two state continuous time
jump process, and devise both an exact solution for the inference
problem as well as an efficient approximate algorithm. We evaluate
the method on both simulated data and real data describing E. coli’s
response to sudden oxygen starvation. This highlights both the ac-
curacy of the proposed method and its potential for generating novel
hypotheses and testable predictions.
Availability MATLAB and C++ code used in the paper can be
downloaded from http://www.dcs.shef.ac.uk/g̃uido/.
Contact guido@dcs.shef.ac.uk

INTRODUCTION
Understanding the molecular basis of stress reaction in cells is one
of the most important tasks in Systems Biology. Stress reaction
mechanisms are key in a number of biomedical and bio-engineering
applications, ranging from drug design to genetic engineering of
drought-resistant crops. While most experimental studies have tra-
ditionally focused on comparing steady states before and after the
imposition of the stress, it is becoming increasingly clear that the
dynamics of the immediate reaction to the stress hold important
biological information [see e.g. Partridge et al., 2007].
Cells respond to external stimuli in a variety of ways; perhaps
the most fundamental is the transcriptional one. The stimulus is me-
diated by transcription factors (TFs) which transit from inactive to
active state and bind to specific genes to activate or inhibit their tran-
scription. Despite its importance, transcriptional regulation is far
from being wholly understood. In particular, its experimental explo-
ration is severely hampered by the fact that some of the fundamental
key players are very hard to measure: experimental techniques to

measure active TF concentrations or to quantitate their effect on
target genes are difficult and time consuming.
In response to these experimental limitations, there has been a
significant amount of effort in the modelling community in order to
produce statistical models of transcription to infer the activity lev-
els of TFs from time-series measurements of the targets’ expression
levels. Broadly speaking, there are two categories of models for TF
activity inference: coarse models which attempt to capture the si-
multaneous behaviour of all TFs and all genes in an organism [e.g.
Liao et al., 2003, Sanguinetti et al., 2006, Sabatti and James, 2006]
and detailed, ordinary differential equations (ODE) based models
of small subnetworks involving only a handful of genes and one
TF (Single Input Motifs, SIM) [e.g. Barenco et al., 2006, Lawrence
et al., 2006, Rogers et al., 2007, Khanin et al., 2007, Gao et al.,
2008]. While this may seem an overly simple system, it should
be pointed out that SIMs are amongst the most over-represented
network motifs in bacterial transcriptional networks [Alon, 2006].
Most of these models discretise time assuming TF activity to be
constant between observation points; to our knowledge, the only
approach to infer a continuous time TF activity profile is Lawrence
et al. [2006], where a Gaussian process (GP) prior distribution is
placed over TF activity (this was extended further in Gao et al.
[2008]).
While these approaches have certainly set important groundwork
to understand transcriptional regulation, stress reaction poses new
challenges to the statistical modeller. Rapid adaptation to environ-
mental changes is often key to the survival of the cell; in order to
cope with this, TFs are often post-transcriptionally regulated via
fast processes such as dimerisation and phosphorylation, so that
they can be turned on or off as soon as the signal is received [see
e.g. Alon, 2006]. This is clearly a problem for discrete time mod-
els as the piecewise constant assumption cannot be justified in this
case. While the continuous time approach of Lawrence et al. [2006]
is more appealing, using a GP prior for TF activity introduces
a strong continuity constraint (indeed a smoothness constraint in
many cases). Moreover, if a stationary covariance is employed, this
will automatically determine a characteristic time-scale over which
the latent process can change. This is ill suited to model transcrip-
tion factors which occasionally vary very quickly, while remaining
in a steady state for the majority of time. Of course, this could be
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avoided by using a non-stationary covariance (as for example in Ar-
chambeau et al. [2007]), but the computational overheads incurred
would be very significant.
In this contribution, we present a new approach for continuous
time TF activity inference which specifically models quick response
to stress signals. We build on the model-based approach initiated in
Barenco et al. [2006], where mRNA expression for some genes is
controlled by an unobserved TF via a system of ordinary differential
equations. We then model the latent process as a Markovian stochas-
tic dynamical process which performs transitions between two states
(the telegraph process). Thus, our model of transcription is an ap-
proximation to the classical Michaelis-Menten dynamics where the
time taken for TF concentrations to change from negligible to sat-
uration level is assumed to be extremely short (compared to the
time between observations). The Markovian nature of the process
means that exact inference is possible for this system. However, the
computational overheads are significant, and we devise an efficient
approximate inference scheme based on a variational approach. In
addition to inferring TF profiles, our method also gives an effective
way to estimate a number of parameters, such as mRNA production
and decay rates, which often play a critical role in systems biology
models but are rarely precisely known.
The rest of the paper is organised as follows. In the model and
methods section, we describe our transcriptional regulation model,
briefly review inference approaches for continuous time Markov
processes, and describe both our exact and variational solutions. In
the results section, we test both the exact and approximate inference
on a simulated data set, and compare our approach to Lawrence et al.
[2006] to underline the importance of appropriate prior assumptions.
We then use our approach to study the behaviour of the master regu-
lator FNR in the adaptation of E. coli during the sudden change from
aerobic to anaerobic conditions. FNR activation coordinates the ac-
tion of hundreds of genes involved in switching E. coli metabolism
from aerobic to nitric; our analysis leads to biologically measurable
predictions, such as the existence of a finite (measurable) time-lag
between stress imposition and FNR activation, and a predicted de-
crease in activity when the new anaerobic steady state is achieved. In
the discussion section, we discuss related approaches and evaluate
the relative merits of our approach, as well as highlighting potential
extensions.

1 MODEL AND METHODS
The starting point for our model is the Michaelis-Menten model of transcrip-
tion for a single-input motif model with i = 1, . . . , m gene targets [Alon,
2006, Barenco et al., 2006]

dxi(t)

dt
= Ai

c (t)

κi + c (t)
+ bi − λixi(t)

Here xi(t) is mRNA concentration of target gene i as a function of time, bi

is its baseline transcription rate, λi is the mRNA decay rate and c(t) is the
active TF concentration, itself a function of time. The remaining parameters
Ai and κi determine the amplitude and shape of the activation curve; Ai

can be interpreted as the sensitivity of xi to the TF, and κi represents the
concentration at which half the saturation level of activation is achieved.
Our aim is to model a situation where a rapid response to a signal makes
the TF activity quickly switch between the saturation level and zero. We will
therefore simplify the model as

dxi(t)

dt
= Aiµ (t) + bi − λixi(t) (1)

where µ(t) ∈ {0, 1}. The model therefore is a bi-stable model with a higher
steady state xi = Ai+bi

λi
and a lower steady state for xi = bi

λi
.

Given the time dependence of the driving process µ, equation (1) is easy to
solve in closed form, and the parameters can be estimated by standard meth-
ods (e.g. least squares). However, we are interested in the situation where
the process µ is not observed. To encode the fact that µ can perform an ar-
bitrary number of switches between its two states, we will place a prior on it
in the form of a two-states Markov jump process, also known as a telegraph
process. The telegraph process is characterised by its transition rates f±(t),
which give the rate at which the process switches between the two states. To
perform inference, we will be interested in the single time marginal proba-
bility p1(t), giving the probability that the process is in the on state at time t.
Given transition rates f± for the process, the probability of the system being
in a particular state at a given time is given by the following Master equation

dp1 (t)

dt
= −f−p1 (t) + f+p0 (t)

dp0 (t)

dt
= −f+p0 (t) + f−p1 (t) .

Using the fact that p0 + p1 = 1 at all times, one can reduce the Master
equation to a single equation on the probability p1 as

dp1 (t)

dt
= −(f+ + f−)p1 (t) + f+. (2)

We will assume that we have noise corrupted observations x̂i (tj) of the
output xi(t) at discrete time points tj , j = 0, . . . , N with xi (t0) serving
as initial conditions for the problem. The observations (conditioned on the
true state) will be assumed to be i.i.d. with normal noise model with variance
σ2

i . Thus the probability of making a single observation x̂(t) given x(t) at
time t is described by a Gaussian likelihood

p(x̂(t)|x(t)) ∝ exp

 

−
1

2

m
X

i=1

„

x̂i(t) − xi(t)

σi

«2
!

. (3)

Although this is an incorrect noise model as the quantity x is clearly positive
at all times, the error made will be small for bi/λi much larger than the
observation noise σi. The remaining parameters of the model Ai, bi and
λi are constrained positive given their physical meaning as production and
decay rates and will be given exponential or flat priors.
The inference task consists of two parts: state inference, where we use

the noisy observations x̂ to infer the posterior distribution over the true state
of the system (both x and µ), and parameter estimation, where we learn
the model parameters Ai, bi, λi and σi. In the following subsections, we
will present two approaches to performing inference in this model. First,
we outline an exact inference approach which exploits the causal structure
of the model to derive a forward-backward algorithm for the joint posterior
over x and µ. This is closely related to the familiar algorithm for Hidden
Markov Models, the main differences being that our state vector is hybrid
continuous-discrete, and that time is continuous. The main drawback of this
approach is computational: the forward-backward pass requires solving nu-
merically partial differential equations in potentially high dimensions. We
then present a more efficient approximate inference algorithm which avoids
these problems by directly modelling the posterior distribution over the TF
activity µ.

1.1 Exact inference
Although the process x(t) with observations x̂(tj ) looks like a standard
Hidden Markov Model, this assumption is not correct. In fact, x(t) is an in-
tegral over the Markov jump process µ(t), as shown by obtaining the general
solution of equation (1) using Laplace transform:

xi(t) = e−λi(t−t0)
»

x(t0) +

Z t

t0

eλi(s−t0)(Ai µ(s) + bi)ds

–

. (4)

Therefore x(t) depends on the whole history of the process µ(t) up to time
t. However, the combined process (µ(t), x(t)) is Markovian, as the dynam-
ics described in (1) and (2) depend only on the current state of the system.
Consequently, we can base our exact solution to the state inference prob-
lem on the forward-backward algorithm for Markovian stochastic processes,
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if we use both µ(t) and x(t) as state variables. There are however still two
key differences between our switching model and a standard HMM: the state
variable (x(t), µ(t)) is hybrid continuous-discrete, and time is a continuous
variable. Therefore the well-known forward and backward recursion rules
for discrete Hidden Markov Models are replaced by partial differential equa-
tions (PDEs), the Chapman-Kolmogorov equations [ e.g. Gardiner, 1996].
Our model is somehow simpler than the general case: jumps only occur in
µ(t) and there is no diffusion, as x(t) is a deterministic function if µ(t) is
known.
Wewill use the Chapman-Kolmogorov equations to calculate the marginal

probability distribution qµ(x, t) of the posterior process of µ and x =
(x1, x2, . . . xm)". Using the Markovian structure of this joint process one
can show that

qµ(x, t) =
1

Z
pµ(x, t)Ψµ(x, t) . (5)

This decomposition of the posterior marginal is the continuous time version
of the well known decomposition in terms of forward and backward mes-
sages for Hidden Markov Models [see e.g. Bishop, 2006]. Here pµ(x, t)
denotes the marginal probability distribution of the process conditioned on
the data before time t, i.e. the filtered process or forward message, and
Z is a time-independent normalisation constant, which equals the like-
lihood p(x̂1, . . . , x̂N |θ) of the data given the model parameters θ =
(λ, f0, f1, A, b). The last part of (5),

Ψµ(x, t) = p ({x̂(tj )|tj > t}|x(t) = x, µ(t) = µ) , (6)

is the likelihood of all observations after time t under the condition that the
process has state (x, µ) at time t (the backward message).
Adapting the general form of the differential Chapman-Kolmogorov equa-

tions [Gardiner, 1996] to our case, we obtain the following backward
equation satisfied by Ψµ(x, t),

∂Ψ1

∂t
+

m
X

i=1

(1Ai + bi − λixi)
∂Ψ1

∂xi
= f− · (Ψ1(x, t) − Ψ0(x, t)),

∂Ψ0

∂t
+

m
X

i=1

(0Ai + bi − λixi)
∂Ψ0

∂xi
= f+ · (Ψ0(x, t) − Ψ1(x, t)).

(7)

These PDEs must be solved backward in time starting at the last observation
x̂(tN ) using the initial condition

Ψµ(x, tN ) = p(x̂(tN )|x(tN ) = x) . (8)

The other observations are taken into account by jump conditions

Ψµ(x, t−j ) = Ψµ(x, t+j ) p(x̂(tj)|x(tj) = x) (9)

with Ψµ(x, t∓j ) being the values of Ψµ(x, t) before and after the j-th ob-
servation. Here we use the property of the noise model that the observations
x̂(tj ) are independent conditioned on the process (µ(t), x(t)). Therefore
the likelihood Ψµ(x, t−j ) including x̂(tj) is the product of Ψµ(x, t+j ) for
observations at later time points and the probability p(x̂(tj )|x(tj) = x)
given by (3).
In order to calculate qµ(x, t) we need to consider the filtered process

described by pµ(x, t), too. Its time evolution is given by the forward
Chapman-Kolmogorov equation

∂p1

∂t
+

m
X

i=1

∂

∂xi
(1Ai + bi − λixi) p1(x, t) =

f+ p0(x, t) − f− p1(x, t)

∂p0

∂t
+

m
X

i=1

∂

∂xi
(0Ai + bi − λixi) p0(x, t) =

f− p1(x, t) − f+ p0(x, t)

(10)

and the posterior qµ(x, t) fulfils a similar PDE. This can be seen by
calculating the time derivative

∂qµ

∂t
=

1

Z

„

Ψµ(x, t)
∂pµ

∂t
+ pµ(x, t)

∂Ψµ

∂t

«

(11)

of the posterior distribution. Using the PDEs given in (7) and (10) we find

∂q1

∂t
= −

1

Z

m
X

i=1

∂

∂xi
(1Ai + bi − λixi)Ψ1(x, t)p1(x, t)

+
1

Z
(f+Ψ1(x, t)p0(x, t) − f−Ψ0(x, t)p1(x, t)) ,

∂q0

∂t
= −

1

Z

m
X

i=1

∂

∂xi
(0Ai + bi − λixi)Ψ0(x, t)p0(x, t)

+
1

Z
(f−Ψ0(x, t)p1(x, t) − f+Ψ1(x, t)p0(x, t)) .

(12)

This equation can be further simplified by introducing time and state
dependent posterior jump rates

g+(x, t) =
Ψ1(x, t)

Ψ0(x, t)
f+ g−(x, t) =

Ψ0(x, t)

Ψ1(x, t)
f− (13)

and applying (5). We then find

∂q1

∂t
+

m
X

i=1

∂

∂xi
(1Ai + bi − λixi)q1(x, t) =

g+(x, t) q0(x, t) − g−(x, t) q1(x, t),

∂q0

∂t
+

m
X

i=1

∂

∂xi
(0Ai + bi − λixi)q0(x, t) =

g−(x, t) q1(x, t) − g+(x, t) q0(x, t) ,

(14)

which is also the forward Chapman-Kolmogorov equation. Consequently,
the only differences between prior and posterior process are the jump rates
for the telegraph process µ(t).
In the case of a single target gene numerical integration of the PDEs (7)

and (14) is computationally feasible. We use the Lax algorithm [Vesely,
1994] for that purpose, because it prevents negative values for Ψµ(x, t)
and qµ(x, t) as long as the step sizes fulfil the condition ∆x > A∆t.
The boundaries are determined by the two steady states xlow = b/λ and
xhigh = (A + b)/λ. In the forward integration these boundaries are closed,
as the process cannot leave the interval between xlow and xhigh. But it
can come from the outside, so that we have to use open boundaries in the
backward integration.
Parameter estimation based on the exact solution of the state inference

problem is also possible. For that purpose we use the free energy F ≡
− ln p(x̂(t1), . . . , x̂(tN )|θ), i.e. the negative log-likelihood of the data as
a function of the model parameters θ = (λ, f0, f1, A, b). This quantity is
given by

F = − ln Eprior [Ψµ(x, t0)]

= − ln

Z

[Ψ0(x, t0)p0(x, t0) + Ψ1(x, t0)p1(x, t0)] dx
(15)

and only a single backward integration is necessary in order to obtain
Ψµ(x, t1). Here Eprior denotes expectation under the prior distribution for
the first observation at t0. Minimising the free energy with respect to the
model parameters then leads to their type II maximum likelihood estimates
θ∗ = arg min F (θ).

1.2 Variational approximation
As discussed above, the exact solution for the inference problem for the
switching model suffers from the curse of dimensionality, so that exact in-
ference in higher dimensions becomes prohibitively expensive. Variational
inference [see e.g. Jordan et al., 1999] is a powerful approach to solving
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approximately the inference problem. Given an intractable probability dis-
tribution p, the variational approach finds an optimal approximation to p
within a certain family of distributions. This is usually done by minimizing
the Kullback-Leibler (KL) divergence between the two distribution

KL [q‖p] = Eq

»

log
q

p

–

=

Z

dq log
q

p
.

By selecting a suitable family of approximating distributions, the inference
problem is then turned into an optimisation problem.
We will restrict the discussion to the case of a single target gene, the gen-

eralisation to more genes being straightforward. In the following, we will
view the stochastic process as a probability measure over the (infinite dimen-
sional) space of possible paths of the TF µ0:T (the notation µ0:T indicates a
specific realisation of the process between 0 and T ). Given a prior telegraph
process p (µ0:T |f±) and a noise model for the observations p (x̂|µ0:T ),
Bayes’ theorem allows in principle the computation of a posterior process as

ppost (µ0:T |x̂) =
1

Z
p (x̂|µ0:T ) pprior (µ0:T |f±) . (16)

As the solution (4) of the model (1) depends on the whole history of the
process µ, so will the likelihood factor in (16). This means that the posterior
process will not be a Markov process. However, it still makes sense to seek
a Markov process that approximates optimally the posterior process.
To do this, we will compute the Kullback-Leibler (KL) divergence be-

tween the posterior process in (16) and an approximating Markov process
q (µ|g±). This is given by

KL [q‖ppost] = ln Z + KL [q‖pprior] −
N
X

j=1

Eq [ln p (x̂j |x (tj))] .

(17)
The KL divergence between two Markov jump processes was computed in
the general case in Opper and Sanguinetti [2007] material). A derivation of
the KL divergence in the special case of the telegraph process can be found
in the supplementary material, the final result being given by

KL [q‖pprior] =

Z T

0
dtq1(t)

»

g−(t) ln
g−(t)

f−(t)
+ f−(t) − g−(t)

–

+

Z T

0
dt [1 − q1(t)]

»

g+(t) ln
g+(t)

f+(t)
+ f+(t) − g+(t)

–

.

The estimation of the likelihood term in (17) is more challenging; under
the assumption of Gaussian noise, it requires the computation of the first
two moments of the random variable x(t) under the approximating process
q. These are given by

〈x (ti)〉 = exp (−λti)

»

x (0) +
b

λ
(exp (λti) − 1)

+A

Z ti

0
exp (λs) q1 (s) ds

–

˙

x2 (ti)
¸

= exp (−2λti)



x (0)2 +
b2

λ2
[exp (λti) − 1]2 +

+ 2x (0)
b

λ
(exp (λti) − 1) + 2x (0)AIi + 2

b

λ
(exp (λti) − 1) AIi+

+ A2
Z ti

0

Z ti

0
exp [λ (t + s)] q1 (t, s) dtds

ff

.

(18)

Here, Ii =
R ti

0 exp (λs) q1 (s) ds and we have used the fact that 〈µ(t)〉q =
q1(t).
In general, these integrals are analytically intractable when the rates for

the approximating process g± are functions of time. We will therefore solve
the optimisation problem on a grid, assuming the approximating process
rates to be constant between points in the grid. This allows us to solve ex-
plicitly the Master equation on the grid, and therefore allows the calculation

of the integrals needed in (18) (the explicit calculations are given in the sup-
plementary material). By taking the grid to be sufficiently fine, the numerical
solution can approximate the true minimum to arbitrary precision. This al-
gorithm scales linearly with the number of genes (since we need to compute
a set of moments per gene), making it computationally much more efficient
than the exact inference solution.

1.3 Parameter estimation
The variational procedure outlined above will obtain an approximation to the
posterior distribution of the switching TF µ given the observations and the
model parameters. This can then be used to estimate the parameters of the
model, in an EM-like scheme (often called Variational Bayes EM). In the E-
step, an approximate posterior is computed by minimising the KL divergence
with respect to the rate parameters gi

±. This can be done by gradient descent
or using other search strategies.
In the M-step, we use the approximate posterior q(µ) to marginalise the

process µ, obtaining an approximation to the marginal likelihood of the data
as

p (x̂|Θ) (
1

Z
exp

˘

Eq(µ) [log p (x̂, µ|Θ)]
¯

(19)

where Z = exp(−H[q]) and H[q] is the entropy of the approximate pos-
terior. This can be shown to be a lower bound on the true likelihood by
invoking Jensen’s inequality [see e.g. Jordan et al., 1999]. Equation (19)
can be used in Bayes’ theorem to compute posterior distributions over the
model parameters. The posterior distribution over the parameters A, b and σ
is obtained analytically (for suitable choices of priors) in the form of trun-
cated Gaussian and inverse Wishart distributions. Unfortunately, this is not
possible for the decay parameter λ; estimation of its posterior distribution
is done by direct evaluation of the un-normalised posterior over a grid in 1
dimension.

2 RESULTS
2.1 Synthetic data
To benchmark the model and assess the validity of our approx-
imation, we ran the model on a simple synthetic example. We
constructed a simple toy data set made up of ten equally spaced
observations drawn from the model with input signal (TF activity)

µ(t) =



1 t ∈ [0, 169] ∪ [660, 1000]
0 t ∈ [170, 659]

.

The differential equation parameters were chosen as A = 3.7 ×
10−3, b = 8 × 10−4 (production rates) and λ = 5 × 10−3 (decay
rate). Gaussian noise with a standard deviation of 0.03 was added to
the theoretical values of x to give the observations.
The results of the inference are shown in Figure 1. Figure 1 (a-
b) show the inferred posterior mean (dashed black) compared to
the input impulse (thin black) in the approximate and exact case
respectively. In order not to clutter the figures, we omitted the con-
fidence intervals for the posterior TF activity; since at each time
the TF is a binary variable, these can be obtained from the mean
value as

p

(q1 − q2
1). Also shown is the posterior first moment

for x(t) (thick black) with confidence intervals and the data (red
crosses). The grid used had five grid points for every observation
point (for a discussion of how grid size affects model result, see
the supplementary material). Both the reconstructions are reason-
able although the exact one has much tighter uncertainty. Figure 1
(c) shows the results of applying Lawrence et al. [2006] to the data
using a squared exponential covariance function for the GP prior.
Although the model produces a good fit to the data, the stationary
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Figure 1. Results of inference on toy data set. (a) Results from variational approach: inferred posterior mean (dashed black) compared to the input impulse
(thin black). Also shown the posterior first moment for x(t) (thick black) with confidence intervals and the data (red crosses). (b) Results of exact inference.
(c) Reconstructed first moment using Lawrence et al. [2006].

covariance used forces the inferred TF profile to have biologically
meaningless fast oscillations.
Both the exact and approximate inference slightly underestimate
the value of the parameter λ at 4 ± 0.3 × 10−3 (true value 5 ×
10−3). The estimates for the model parameters are good both in
the approximate and exact case, with A = 2.8 ± 0.3 × 10−3 and
b = 0.8 ± 0.1 × 10−3 (results from approximate inference) and
A = 3.2 ± 1.1 × 10−3 and b = 0.08 ± 0.6 × 10−3 (results from
exact inference). The exact inference was carried out with σ fixed to
the true value, while the approximate inference obtained σ = 0.05.
The whole process took approximately ten minutes on a standard
PC for the approximate case and 2 hours for the exact case.

2.2 Microaerobic shift in E.coli
As a real example on which to test our approach, we considered tran-
scriptomic measurements of the reaction of E.coli to sudden oxygen
starvation [Partridge et al., 2007]. Escherichia coli is a robust organ-
ism that can adapt remarkably well to changes in its environment.
One of the most dramatic such changes routinely encounterd by the
bacterium is the change in the availability of oxygen: the bacterium
can be expelled from the host’s gut and very rapidly moves from
an environment with virtually no oxygen to an aerobic environment.
This change entails a whole shift in the metabolism of the bacterium
from a nitric metabolism to a much more energetically favourable
aerobic metabolism. The set of enzymes involved in the two differ-
ent phases of E.coli metabolism is only partly overlapping; in order
to perform this shift, a large number of genes must be turned on and
off in a coordinated manner. This action is carried out by a few TFs
which respond to oxygen signals.
Perhaps one of the most important oxygen sensors in the cell is
the iron-sulphur cluster protein FNR. FNR is a master regulator (i.e.,
one of a dozen TFs which target most of the bacterial genes) which
can exist in two states. Its state in the presence of oxygen is an in-
active monomer. When oxygen is removed, the protein is dimerized
which can in turn bind DNA and activate or repress transcription
of a large number of genes. Therefore, one expects that, after a
certain time lag, FNR undergoes a fast transition from inactive to ac-
tive state. Interestingly, total protein concentration of FNR (dimer +
monomer) is approximately constant between aerobic and anaerobic
conditions [Jervis and Green, 2007].

In the experimental setting considered in Partridge et al. [2007],
an aerobically grown culture of E.coli K12 was rapidly deprived
of oxygen. Microarray measurements were then taken at 5, 10, 15
and 60 minutes following the imposition of the stress. The arrays
measure the change in concentration of mRNA relative to the ini-
tial point. This implies that one of the parameters in our model, b,
becomes unidentifiable as the lower steady state becomes 1. This is
easily resolved by setting b = λ in the model. Partridge et al. [2007]
also performed genome-wide TF activity inference using the prob-
abilistic model described in [Sanguinetti et al., 2006]. This showed
a rapid response of FNR to the signal that appeared to tail off when
the system reached steady state.
We considered a subset of five genes which are known to be ac-
tivated by FNR and with a reasonably simple promoter structure:
these are ompW, yjiD, hypB, moaA and aspA. In practice, all of
these genes, with the exception of yjiD, are also regulated by other
transcription factors. However, these other transcription factors are
further downstream than FNR in the stress response cascade, so that
one can assume that the initial response to oxygen withdrawal is
well modelled as a SIM. Performing the exact inference in this case
would require numerically solving a partial differential equation
(PDE) with five spatial dimensions, which is infeasible. The results
of the approximate inference of the FNR active profile are shown in
Figure 2 (a). The system appears to undergo a sharp transition be-
tween inactive and active state at around 3 to 6 minutes. This results
in an interesting prediction: removing oxygen for a period shorter
than 3 minutes will not lead to an FNR-mediated transcriptional re-
sponse. Therefore, one may view this as an indirect measurement
of the time it takes E.coli to commit itself to change its metabolic
regime between aerobic and nitric. The model also predicts that the
activity of FNR will tail off slightly after approximately 20 minutes.
While, there is no simple biochemical explanation for this, as FNR
will remain dimerized and hence active as long as oxygen is absent,
a decrease in activity towards steady state was also predicted by
Partridge et al. [2007] using a different computational model. The
most plausible explanation is the action of other transcription fac-
tors which are downstream targets of FNR and which become active
after a reasonable transcriptional delay.
Figure 2 (b) shows the inferred half lives of the five targets (tri-
angles on the right) against their experimentally measured values
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Selinger et al. [2003]. In two cases, yjiD and moaA, the experi-
mental value of the half life of the transcript was not available. In
general, there is a good agreement between the inferred values and
the experimental measurements, although it should be noticed that
the experimental measurements are extremely noisy in some cases.
The ability to provide a reasonable indirect estimate of mRNA half
lives is potentially precious to biologists: it is known that mRNA de-
cay is a regulated process, implying that mRNA half lives measured
in different experimental conditions will in general be different. As
it is difficult to measure experimentally decay rates in a dynamic
setting like stress reaction, it is essential to be able to identify these
parameters in the model.
We can gain further insight into the workings of the model by
comparing predicted expression profiles with the observed discrete
time points. Figure 3 shows this for three genes, ompW (a), hypB
(b) and aspA (c). The solid lines represent the mean of the stochastic
process, and the dotted lines are the confidence intervals obtained by
adding±1 standard deviation of the time marginals (these error bars
include only the variability in the stochastic process, the kinetic pa-
rameters were fixed at their maximum likelihood value for the plot).
In general, all reconstructed profiles show a saturating behaviour,
as implied by the inferred TF activity (Figure 2 (a)). The specific
form of the profile though is determined by the kinetic parameters
inferred. It is also interesting to notice that the fit of the model to
the hypB expression profile is not as good as in the other two cases.
In particular, hypB expression markedly decreases from 15 minutes
to 60 minutes, which is incompatible with the other profiles and can
hardly be accommodated by the model. This is probably due to the
effect of the transcription factor IHF, which also activates hypB but
is repressed by FNR. It is therefore plausible that, after a certain
amount of time, the SIM approximation breaks down in this case,
explaining the poor fit to this profile.

3 DISCUSSION
In this paper, we presented a novel model-based approach to infer
TF activity profiles from microarray time series data. The central
assumptions underpinning the model are the SIM assumption (all
the genes are targets of a single TF) and the prior model that TFs
transit quickly from active to inactive state. This second assumption
is likely to be reasonable in many stress reaction experiments, par-
ticularly when the stress is applied at the metabolic level, triggering
a post-translational modification of the TFs. While this is a fairly
broad class of conditions, it is important to point out that there are
biological stresses (e.g. heat shock) that do not fit well in this cat-
egory. It would be interesting to explore stochastic models that can
combine fast and slowly reacting components.
The work that is perhaps most closely related to ours is Lawrence
et al. [2006], where transcriptional regulation is modelled with a lin-
ear system of ODEs with a latent driving factor. However, the choice
of a Gaussian process prior for the TF activity has as a natural con-
sequence that the inferred posterior TF profiles vary continuously
with time. While this may be a reasonable assumption in certain
settings, it clearly is untenable when modelling fast biological pro-
cesses such as stress reaction. Another important advantage of our
model over Lawrence et al. [2006] is the ability to identify the de-
cay parameters. Lawrence et al. need to fix at least one of the decay
rates to the experimentally measured value (a weakness shared by

Barenco et al. [2006]). Given the very low accuracy of such mea-
surements (see Figure 2 b), the bias introduced by fixing a parameter
could potentially lead to serious errors in the estimation of the latent
process.
There are also several other papers that attack the problem of
inferring TF activity profiles from mRNA time series data. For ex-
ample, Rogers et al. [2007], Khanin et al. [2007] use the same
ODE-based model of transcription, but then restrict themselves to
piecewise constant TF level, effectively discretising time. These
models are also limited to the SIM case. Many other models ad-
dress the global case, where hundreds of TFs regulate thousands of
genes [e.g. Liao et al., 2003, Sanguinetti et al., 2006, Sabatti and
James, 2006]; however, in order to contain complexity, they adopt
a simplistic model of transcription where only linear and additive
effects of TFs are retained. While genome-wide modelling is still an
ambitious target for the model we developed, it should be pointed
out that it presents significant computational advantages over other
ODE-based approaches. In particular, the complexity of our al-
gorithm scales linearly with the number of target genes and time
points, while for example the Gaussian Process-based approach of
Lawrence et al. [2006] is cubic in the product of the number of genes
and time points. In this light, statistical modelling of a moderate size
pathway is certainly within reach.
There is an interesting relationship between our work and the
work on re-wiring networks of Guo et al. [2007]. There, links in a
biological network were switched on and off according to a discrete
time Markov process. In our approach, it is the activity of the regu-
latory nodes in the network that switches on and off as a (continuous
time) Markov process.
Another potentially interesting generalisation of our work is to the
case where the stochastic behaviour of gene expression is not solely
due to the TFs activity, but also to the intrinsic stochasticity of tran-
scription. A variational approach to inference in bi-stable (or more
generally, non-Gaussian) systems of SDEs was recently proposed in
[Archambeau et al., 2007].
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