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Abstract tures,that correspond to malicious traffic. When such mali-
cious traffic is found, the IDS may raise an alarm; block fu-
It is widely believed that content-signature-based intru- ture traffic from the offending source address; or even block
sion detection systems (IDSes) are easily evadegoby the remainder of the offending flow's traffic. To date, to
morphic wormswhich vary their payload on every infec- detect and/or block Internet worm flows, IDSes use signa-
tion attempt. In this paper, we present Polygraph, a sig- tures that match bytes from a wornpayload using match-
nature generation system that successfully produces signaing techniques including string matching at arbitrary pay-
tures that match polymorphic worms. Polygraph gener- load offsets [20, 21]; string matching at fixed payload off-
ates signatures that consistmmiultiple disjointcontent sub-  sets [21]; and even matching of regular expressions within
strings. In doing so, Polygraph leverages our insight that a flow’s payload [20].
for a real-world exploit to function properly, multiple- It is natural to ask where the signature databases for
variantsubstrings must often be present in all variants of IDSes come from. To date, signatures have been generated
a payload; these substrings typically correspond to proto- manually by security experts who study network traces af-
col framing, return addresses, and in some cases, poorlyter a new worm has been released, typically hours or days
obfuscated code. We contribute a definition of the poly- after the fact. Motivated by the slow pace of manual sig-
morphic signature generation problem; propose classes of nature generation, researchers have recently giveniatient
signature suited for matching polymorphic worm payloads; to automatingthe generation of signatures used by IDSes
and present algorithms for automatic generation of signa- to match worm traffic. Systems such as Honeycomb [14],
tures in these classes. Our evaluation of these algorithms o Autograph [13], and EarlyBird [22] monitor network traf-
arange of polymorphic worms demonstrates that Polygraph fic to identify novel Internet worms, and produce signatures
produces signatures for polymorphic worms that exhibit low for them usingpattern-basedanalysis! i.e., by extracting
false negatives and false positives. common byte patterns across different suspicious flows.
These systems all generate signatures consistingiof a
gle, contiguous substringf a worm'’s payload, o$ufficient
1. Introduction and Motivation lengthto match only the worm, and not innocuous traffic.
The shorter the byte string, the greater the probability it
will appear in some flow’s payload, regardless of whether
the flow is a worm or innocuous. Thus, these signature gen-
X b X eration systems all make the same underlying assumptions:
and a lack of diversity in the software running on Internet- 4+ there exists a single payload substring that will remai
attached hosts, Internet worms increasingly threaten thejn ariantacross worm connections, and will be sufficiently

availability and integrity of Internet-based services. unique to the worm that it can be used as a signature without
Toward defending against Internet worms (and other at- causing false positives.

tack_s), the research community has proposed and built in- Regrettably, the above payload invariance assumptions
trusion detection systems (IDSes) [20, 21]. A netwo_rk ad- 5e naive, and give rise to a critical weakness in thesa-prev
ministrator deploys an IDS at the gateway between his edge

network and th_e Internet, oronan individual end host. The " 1taintCheck recently proposed a new approaemantic-baseduto-
IDS searches inbound traffic for known patternssigmna- matic signature generation [18]. We discuss this furthe3ention 8.

Enabled by ever-more pervasive Internet connectivity, an
increasing variety of exploitable vulnerabilities in suéire,




ously proposed signature generation systems. A worm au-a suite of novel algorithms for automatic generation of sig-
thor may craft a worm that substantially changes its payloadnatures that match polymorphic worms.

on every successive connection, and thus evades matching, 51 ation on real polymorphic worms: We use several
by any single substring signature that does not also o0cCurg,| \yinerabilities to create polymorphic worms: run our

in innocuous traffic. Polymorphismtechnique%l through  gjgnature generation algorithms on workloads consisting o
which a program may encode and re-encode itself into SuC-q5 mpjes of these worms; evaluate the quality (as measured
cessive, different byte strings, enable production of ghan  j t4ise positives and false negatives) of the signatures pr

ing worm payloads. It is pure serendipity that worm au- 4,ceq by these algorithms; and evaluate the computational
thors thus far have not chosen to render worms polymor- .o« of these signature generation algorithms.

phic; virus authors do so routinely [17, 24]. The effort re-
quired to do so is trivial, given that libraries to render eod We proceed in the remainder of the paper as follows.

polymorphic are readlly ava"a?'e [3_' 10]. In Section 2, we first provide evidence of the existence of
Itwould seem that given the imminent threat of polymor- jnyariant payload bytes that cannot be rendered polymor-
phic worms, automated signature generation, and indeedppic using examples from real exploits, to motivate several
even filtering of worms using human-generated signatures.cjasses of signature tailored to match disjoint invariameb
are doomed to fail as worm quarantine strategies. In thissyings. we continue in Section 3 by setting the context in
paper, we argue the contrary: that it is possible to gener-yhich polygraph will be used, and stating our design goals
ate signatulres automatically that match the many.\{arie[nts O for Polygraph. Next, in Section 4, we describe Polygraph’s
polymorphic worms, and that offer low false positives and sjgnature generation algorithms, before evaluating them i
low false negatives. This argument is based on a key insightsaction 5. We discuss possible attacks against Polygraph in
regarding the fundamental nature of polymorphic worms as section 6: discuss our results in Section 7: review related

compared with that of polymorphic viruses. Polymorphic \york in Section 8: and conclude in Section 9.
viruses are executables stored locally on a host, invoked by

a user or application. As such, their content may be entirel . "
arbitrary, sgﬁong as when executed, they perfo¥m the ope)rl—z' quymorphlc Worms: Characteristics and
ations desired by the author of the virus. That is, a poly- Signature Classes
morphic generator has free reign to obfuscate all bytes of
a virus. In sharp contrast, to execute on a vulnerable host, To motivate Polygraph, we now consider the anatomy of
a worm must exploit one or more specific server software polymorphic worms. We refer to a network flow containing
vulnerabilities. a particular infection attempt as amstanceor sampleof a

In practice, we find that exploits contaimvariant bytes polymorphic worm. After briefly characterizing the types
that are crucial to successfully exploiting the vulnerable of content found in a polymorphic worm, we observe that
server. Such invariant bytes can include protocol framing samples of the same worm often share samariantcon-
bytes, which must be present for the vulnerable server totent due to the fact that they exploit the same vulnerability
branch down the code path where a software vulnerabil-We provide examples of real-world software vulnerabitie
ity exists; and the value used to overwrite a jump target that support this observation. Next, we demonstrate that
(such as a return address or function pointer) to redirecta single, contiguous byte string signattiGannot always
the server’s execution. Individually, each of these iraari ~ match a polymorphic worm robustly. Motivated by the in-
byte strings may cause false positives. Thus, in our work, sufficiency of single substring signatures and the inherent
we explore automatic generation of signature types that in-structure in many exploits, we identify a family of signa-
corporatemultiple disjoint byte stringgthat used together, ture types more expressive than single substrings thatrbett
yield low false positive rates during traffic filtering. Tlees match an exploit’s structure. While these signature types
signature types include conjunctions of byte strings, moke are more complex than single substring signatures, and thus
subsequences (substrings that must appear in a specified ocomputationally costlier to generate and match, they hold
der, a special case of regular expression signatures, gehtch promise for robust matching of polymorphic worms.
by Bro and Snort), and Bayes-scored substrings.

Our contributions in this work are as follows: 2.1. Exploits and Polymorphism

Problem definition: We define the signature generation

problem for polymorphic worms. Within a worm sample, we identify three classes of

) ] ] bytes. Invariant bytesare those fixed in value, which if
Signature generation algorithms: We present Polygraph,  changed, cause an exploit no longer to function. Such bytes

2Throughout this paper, we refer to both polymorphism ancamet- 3For brevity, we hereafter refer to such signaturesiagle substring
phism as polymorphism, in the interest of brevity. signatures.



are useful as portions of signaturedVildcard bytesare force a jump to some specific point in library code. Such
those which may take on any value without affecting the exploits typically must include an address from some small
correct functioning of a worm—neither its exploit nor its set of narrow ranges in the request. In attacks that redirect
code. Finallycode bytesre the polymorphic code executed execution to injected code, the overwritten address must
by a worm, that are the output of a polymorphic code en- point at or near the beginning of the injected code, mean-
gine. Typically, the main worm code will be encrypted un- ing that the high-order bytes of the overwritten address are
der a different key in each worm sample. Execution starts attypically invariant. A previous study of exploits contaias

a small decryption routine, which is obfuscated differgntl similar observation [19]. Attacks that redirect execution

in each worm sample. The degree of variation in code bytesa library also typically select from a small set of candidate
from worm sample to worm sample depends on the quality jump targets. For example, CodeRed causes the server to
of the polymorphic obfuscator used—a poor polymorphic jump to an address in a common Windows DLL that con-
obfuscater may leave long regions of bytes unchanged betains the instructiortal | ebx. For this technique to be
tween the code instances it outputs, whereas a more aggrestable, the address used for this purpose must work for a
sive one may leave nearly no multi-byte regions in common range of Windows versions. According to the Metasploit
across its outputs. In this work, we do not depend on weak-op-code database, there are only six addresses that would
nesses of current code obfuscators to be able to generateork across Windows 2000 service packs zero and one [4].
quality signatures. Instead, we render worms tpédectly

polymorphig by filling in code bytes with values chosen 2.3. Examples: Invariant Content in Polymorphic
uniformly at random. We will also show that the current Worms

generation of polymorphic obfuscators actually do produce

invariant byte sequences in their output, which means that We manually identified the invariant content for exploits
we should be able to generate even higher quality signature®f a range of vulnerabilities by analyzing server sourcescod

for worms that use these real-world code obfuscators. (when available), and by studying how current exploits for
the vulnerabilities work. We now present six of the vulner-
2.2. Invariant Content in Polymorphic Exploits abilities and exploits that we studied to illustrate thesexi

tence of invariant content in polymorphic worms, even with

If a vulnerability requires that a successful exploit con- an ideal polymorphic engine. We also present our analysis
tain invariant content, that content holds promise for use of the output of one of the polymorphic generators, to show
in signatures that can match all variants of a polymorphic how close the current generators are to the ideal.
worm. But to what extent do rgal vulnerabilities have this Apache multiple-host-header vulnerability First, we con-
property? We surveyed over fifteen known software vul-
nerabilities, spanning a diverse set of operating systems a
applications, and found thagearly allrequire invariant con-
tent in any exploit that can succeed. We stress that we d

not claim all vulnerabilities share this property—onlytha . enates the twiost fields into one buffer, leading to an
a significant fraction do. We now describe the two chief o\ erfiow, This exploit contains several invariant protocol
sources of invariant content we unearthed: exploit framing framing strings: “GET”, “HTTP/1.1", and “Host:" twice.

and exploit payload.

sider the hypothetical payload of a polymorphic worm
structured like the payload of the Apache-Knacker ex-
ploit [9], shown in Figure 1. This exploit consists of3&T
%equest containing multipleost headers. The server con-

The secondtost field also contains an invariant value used
Invariant Exploit Framing A software vulnerability ex-  to overwrite the return address.

ists at some particular code site, along a code path exeg|ND TSIG vulnerability Next, we consider the Lion

cuted upon receiving a request from the network. In many . o.m [5]. We constructed a polymorphic version of the

cases, the code path to a vulnerability contains branches ;5 worm. shown in Figure 2. The Lion worm payload
whose outcome depends on the content of the received rejg 4 pNg r'equest and begins with the usual DNS proto-

quest; these branches typically correspond to parsingeof th 4| header and record counts, all of which may be varied
request, in accordance with a specific protocol. Thus, an.,nsiderably across payloads, and are thus wildcard bytes;
exploit typically includesnvariant framing(e.g.,reserved v 5 single bit in the header must be held invariant for
keywords or well known binary constants that are part of y,o" expioit to function—the bit indicating that the packet

a wire protocol) essential to exploiting a vulnerabilityesu 5 4 request, rather than a response. Next come two ques-
cessfully. tion entries. The second contains an invariant value used
Invariant Overwrite Values Exploits typically alter the  to overwrite a return address (also encoded in a QNAME).
control flow of the victim program by overwriting a jump  Finally, to take the vulnerable code path in the server, the
target in memory with a value provided in the exploit, ei- exploit payload must include an Additional record of type
ther to force a jump to injected code in the payload, or to TSIG; this requirement results in three contiguous invaria



NOP [Decryptio DecryptimEncrypte- vulnerable code path. It uses a buffer overrun to overwrite
Slide| Routine | Key Payload . . . .
%Ky%ﬁy a return address with a pointer tecal | esp instruction
contained in a common Windows DLL. There are only a
/ small number of such values that work across multiple win-
Randor. Payload Randon- Payload Randon dows versions.
Header: Part 1 | Header: Part 2 | Header
CodeRed The CodeRed [6] exploit takes advantage of a
buffer overflow when converting ASCII to Unicode. The

Figure 1. Polymorphed Apache-Knacker ex- exploit must be aGET request for a. i da file. The
ploit. ~ Unshaded content represents wild- value used to overwrite the return address must appear
card bytes; lightly shaded content represents later in the URL. CodeRed overwrites the return address
code bytes; heavily shaded content repre- to pointtocal | esp. There are only a small number of
sents invariant bytes. such pointers that will work across multiple Windows ver-
sions. Hence, the exploit must contain the invariant proto-
col framing string “GET”, followed by “.ida?”, followed by
QTYPE QCLASH m a pointertocal | esp.
AdmWorm The AdmWorm [7] exploits BIND via a buffer
\ overrun. Unlike the other exploits described here, theee ar
/ no invariant protocol framing bytes in this exploit. How-
DNS |RecordQuestionl | . IAdditional ever, there is still an invariant value used to overwrite-a re
Header Counts [%?1]2”5;:(;2](2 £ Record turn address.

eb 2d |59 31 ||d2 b2 |20 8b | 19 cl1l c3 Oe

Figure 2. BIND TSIG vulnerability, as ex-
ploited by the Lion worm. Shading as for 81 f3|81 68 44 b3 cl1 c3 0a cl c3 19 cl c3

Apache vulnerability. 11 89 19 [81 e9] ff ff ff ff 41 41 41 80 ea
02 4a (4a 74 07 eb | d8 e8 ce ff ff ff Ob

bytes near the end of the payload. _ _ _
Slapper The Slapper worm [1] exploits a heap buffer over- Figure 3. Output by Clet polymorphic engine

run vulnerability in Apache’s madsh module. Note that includes myanant subsitrings. @ bytes

the attack takes place during the initial handshake, mean- are found in at least 20%_ of Clet's outputs;

ing that it is not encrypted. It is a two-part attack; It shaded  bytes are found in all of Clet's out-

first uses the overrun to overwrite a variable containing the ~ PUts-

session-id length, causing the server to leak pointer val-

ues. This part must contain the normal protocol framing

ofaclient-hel | o message, as well as the value used to Clet polymorphic engine Figure 3 shows a sample output
overwrite the variable (0x70). by the Clet polymorphic code engine [1D]he output con-

In the second part of the attack, another session issists of encrypted code, which is completely different each
opened, and the same buffer is overrun. This time, thetime, and a decryption routine that is obfuscated diffdyent
leaked data is patched in, allowing the exploit to perform each time. In order to determine how effective the Clet ob-
a longer buffer overrun while still not causing the server to fuscation is, we generated 100 Clet outputs for the same
crash. The heap metadata is overwritten in such a way as tdnput code, and counted substrings of all lengths in com-
later cause the GOT entry bf ee to be overwritten with  mon among the decryption routines in these 100 outputs.
a pointer to the attacker's code, placed previously on the Strings that were present il 100 outputs appear with
heap. Thus, there is an invariant overwrite value that goint shaded backgrounds; those that were present in at least 20
to the attacker’s code, and another that points to the GOToutputs, but fewer than all 100, appear boxed. Clearly, Clet
entry forf r ee. An aggressively polymorphic worm may produces substrings that are entirely invariant across pay
try to target other GOT entries or function pointers as well. loads, and other substrings that occur in a substantial frac
However, there will still only be a relatively small number tion of payloads. However, upon examining the Clet source
of values that will work.

. . “We also evaluated the ADMmutate [3] polymorphic engine. We
SQ'-Slar_nmer_ The SQ'-Slammer [2] exploit mu_St begin  present Clet as the more pessimal case, as it producedvessin content
with the invariant framing byte 0x04 in order to trigger the than the ADMmutate engine.



code, it seems likely that the obfuscation engine could beaddress, and TSIG identifier, two and three bytes long, re-
improved significantly, reducing the number of substrings spectively, are too short to be specific to the Lion worm.

in common between Clet outputs. As we show in our evaluation in Section 5, we found false
positives when searching for those substrings in DNS traf-
2.4. Substring Signatures Insufficient fic traces from a busy DNS server that is a nameserver for

top-level country code domains.

As described previously, the pattern-based signature We conclude that single substring signatures cannot
generation systems proposed to date [14, 13, 22] genermatch polymorphic worms with low false positives and low
ate single substring signatures, found either in reassabl false negatives.
flow payloads, or individual packet payloads. These sys-

tems thus make two assumptions about worm traffic: 2.5. Signature Classes for Polymorphic Worms

e A single invariant substring exists across payload in-
stances for the same worm; that is, the substring is
sensitivein that it will match all worm instances.

Motivated by the insufficiency of single substring sig-
natures for matching polymorphic worms robustly, we now
propose other signature classes that hold promise for match
e The invariant substring is sufficiently long to kspe- ing the particular invariant exploit framing and payload

cific; that is, the substring does not occur in any non- structures described in this section. All these signatares

worm payloads destined for the same IP protocol and built from substrings, otokens The signature classes we
port. investigate in detail in Section 4 include:

Can a sensitive and specific single substring SignatureConjunction signatures A signature that consists of a set

be found in the example payloads in the Apache and DNSOf tokens, and matches a payloadiif tokens in the set are
exploits described in Section 2.3? Consider the Apache ex-found in it, in any order. This signature type can match the

ploit. The unshaded bytes are wildcards, and cannot be reMultiple invariant tokens present in a polymorphic worm's

lied upon to provide invariant content; note that even the Payload, and matching multiple tokens is more specific than
NOP slide can contain significantly varying bytes across Matching one of those tokens alone.
payloads, as many instruction sequences effectively mayToken-subsequence signatures signature that consists
serve as NOPs. If we assume a strong code obfuscator, wef an ordered set of tokens. A flow matches a token-
cannotrely on there being an invariant substring longer tha subsequence signature if and only if the flow contains the
two bytes long in the obfuscated decryption routine, shown sequence of tokens in the signature with the same order-
with light shading. The only invariant bytes are the heavily ing. Signatures of this type can easily be expressed as
shaded ones, which are pieces of HTTP protocol framing, regular expressions, allowing them to be used in current
and a return address (or perhaps a two-byte prefix of thelDSes [20, 21]. For the same set of tokens, a token sub-
return address, if the worm is free to position its code any- sequence signature will be more specific than a conjunc-
where within a 64K memory region). Clearly, the HTTP tion signature, as the former makes an ordering constraint,
protocol framing substrings individually will not be spe- while the latter makes none. Framing often exhibits order-
cific, as they can occur in both innocuous and worm HTTP ing; e.g.the TSIG record in the Lion worm, which must
flows. By itself, even the two-to-four-byte return address comelastin the payload for the exploit to succeed, and the
present in the payload is not sufficiently specific to avoid return address, which must therefore come before it.
false positives; consider that a single binary substring of
that length may trivially occur in an HTTP upload request.
As we show in our evaluation in Section 5, we have exper-
imentally verified exactly this phenomenon; we have found
return address bytes from real worm payloads in innocuous
flows in HTTP request traces taken from the DMZ of Intel
Research Pittsburgh.

The Lion worm presents a similar story: the heavily
shaded invariant bytes, the high-order bytes of the return

Bayes signaturesA signature that consists of a set of to-
kens, each of which is associated with@re and an over-
all threshold.In contrast with the exact matching offered by
conjunction signatures and token-subsequence signatures
Bayes signatures provide probabilistic matching—given a
flow, we compute the probability that the flow is a worm us-
ing the scores of the tokens present in the flow. If the result-
ing probability is over the threshold, we classify the flow to
be a worm. Construction and matching of Bayes signatures
Sitis possible that a worm’s content varies only very sligfettross in- is lessrigid than for conjunction or token-subsequence sig-
stances, and that at least one of a small, constant-cétgliset of substring natures. This provides several advantages_ It allows Bayes
signatures matches all worm instances. We view this casaaliatively signatures to be learned from suspicious flow pools that
the same as that where worm content is invariant, and focuattention . .
herein on worms whose content varies to a much greater estect that ~ CONtain samples from unrelated worms, and even Innocu-
a small set of substring signatures does not suffice to métearants. ous network requests. (We show that the other signature




Full Suspicious There is a rich literature on methods for identifying
Fioe. / AEmlE e anomalous or suspicious traffic. Previous signature gener-
Network Flow Polygraph || _ sgnatures ti t h dinb dh t traffic [14
Tap Classifer | Sinaure : ation systems have used inbound honeypot tra ic [14] or
f _Ninnocuous / enerator port scan activity [13] to identify suspicious flows. Far
Lobeled ,  OWPoOl LT more accurate technigues are also available, such as moni-
Flots N Saratie Lo emmom7 toring the execution of a server to detect exploits at ruefim
I . .
| Evaluator_ | m%ggfph and mapping exploit occurrences to the network payloads

that caused them, as is done in run-time-detection-based
methods [18]. These current techniques are not suitable for
blocking individual infection attempts, either becauseyth
are too inaccurate or too slow, but they are suitable for use
in a flow classifier for Polygraph. The design of flow clas-

generation algorithms can be adapted to deal with these sitsifiers is outside the scope of this paper, but we assume as
uations effectively, but at a higher computational cost). | We design and evaluate algorithms for the Polygraph signa-
also helps to prevent false negatives in cases where a tokeftre generator that a flow classifier will be imperfect—that
is observed in all samples in the suspicious flow pool, but it may misclassify innocuous flows as suspicious, and vice-

does not actua”y appear in every Samp]e of the worm. ThisVersa. Such misclassified flows increase the dlﬁlCUlty of
issue is further discussed in Section 6. avoiding the generation of signatures that cause false pos-

itives; we refer to such innocuous flows in the suspicious
flow pool asnoise.

Another challenge in generating high-quality signatures
is that we presume the flow classifier does not distinguish

We now consider the context in which we envision Poly- between different worms (though some classifiers may be
graph will be used, both to scope the problem we consider inable to help do so [18]); it simply recognizes all worms as
this paper, and to reveal challenges inherent in the prablemworms, and partitions traffic by destination port. Thus, the
Having defined the problem, we then offer design goals for suspicious flow pool for a particular destination port may

Figure 4. Architecture of a Polygraph monitor.

3. Problem Definition and Design Goals

Polygraph. contain a mixture of different worms—that is, worms that
arenotpolymorphic variants based on the same exploit. For
3.1. Context and Architecture example, a single edge network may include hosts running

different HTTP server implementations, each with différen
h Vulnerabilities. In such a case, different worm payloads in

Figure 4 depicts a typical deployment of a Polygrap o
monitor, shown as the shaded region, which incorporatestn® suspicious flow pool for port 80 observed at the DMZ
may contain different exploits. As we describe in our de-

the Polygraph signature generator. In this paper, we con-"' g > ;
cern ourselves with the detailed design of algorithms for S9N goals, the signature generation algorithm should pro-
the Polygraph signature generator. We now give a brief duce h|gh-qual|ty_5|gnatures_, even when the suspicious flow
overview of the remaining pieces of a Polygraph monitor, to P00! contains a mixture of different worms.

provide context for understanding how the Polygraph signa- N the simplest possible setting, signature generation
ture generator fits into an end-to-end system. works as a single pass: the Polygraph signature generator

We envision that a Polygraph monitor observes all net- _takes a suspicious flow pool a_nd an innocuous flow pool as
work traffic, either at a monitoring point such as between INPUL, and produces a set of signatures as output, chosen to
an edge network and the Internet, or at an end host. In thism_at_Ch_ the worms in the input SUSpICIOUS flow pool, and to
work, we consider only a single monitor instance at a single minimize false p(_Jsmves, b.ased on the innocuous flow pool.
site® Monitored network traffic passes through a flow clas- However, we be!leve that mcorporat.lng fee.dbac-k, Where_by
sifier, which reassembles flows into contiguous byte flows, (€ Polygraph signature generator is provided information
and classifies reassembled flows destined for the same (FONceming the faise positives and false negatives caysed b
protocol number and port into suspicious flow pocind S|gnatu_res it has prey|0usly generated, can significamtly i
aninnocuous flow pool Flow reassembly (including traf- prove signature quality z?md allow Polygraph to adapt to at-
fic normalization) at a monitor has been well studied in the tacks that change over time.

IDS research community [20]; we defer a discussion of the

liabilities of conducting flow reassembly to Section 6. 3.2. Problem Definition for Polygraph Signature

Generator

SWwhile we believe that extending Polygraph to work distréaliy . . .
holds promise for reasons explored in previous signatunergéion sys- In the remainder of this paper, we focus on the signature

tems [13], we leave such extensions to future work. generation algorithms in the Polygraph signature generato



We now formally define the signature generation problem, Robustness against noise and multiple wormsA suc-
and introduce terminology and notation used in subsequentessful signature generator must generate high-quatjty si
exposition. natures on workloads that contain noise or a mixture of
The signature generation algorithm is given a training different worms on the same destination port. If the sys-
pool containing asuspicious flow poalvhere each flow is  tem cannot find a fully general signature that matches all
labeledas a worm flow, and aimnocuous flow poolvhere worms in the pool and does not cause false positives, it
each flow is labeled as a non-worm. Note that these labelsshould instead generate multiple signatures, each of which
are not necessarily accurate. In particular, the suspciou matches some subset of flows in the suspicious flow pool
pool may contain some innocuous flows. We refer to in- (most likely a subset that employ the same exploit), and
nocuous flows in the suspicious flow poolrasise such that the set of signatures together exhibits low false
The signature generation algorithm then produces a sefpositives and low false negatives.
of signatures. We state that the signature set causes a falsg pstness against evasion and subversiomn adver-
positive for a ro_w if itis nota worm, bL_Jt one or more Sig- sary who knows the design of Polygraph may attempt to
natures in the signature set maiches it. If a network flow o\ ade or subvert the system. Several well known attacks
a worm, but no signature in the S|gnatl_1re set classifies theagainst IDS systems may be mounted against Polygraph,
payload as a worm, we state that the signature set Causes gt there are novel attacks specific to Polygraph as well.
false negative for that network flow. An adversary may, for example, evolve a worm’s payload
over time, in an effort to cause signatures previously gener
ated by Polygraph to cease matching the worm. We con-
sider several evasion and subversion strategies an adver-
sary might adoptin Section 6, and describe defenses against
them.

3.3. Design Goals

PolygrapHK must meet several design goals to work ef-
fectively:

Signature quality. Our end-to-end goal in Polygraph, as

has been the case in prior worm signature generation sys4, Signature Generation Algorithms

tems, is to generate signatures that offer low false pesitiv

for innocuous traffic and low false negatives for worm in- | this section, we will describe our algorithms for auto-

stances, including polymorphic worm instances. matically generating signatures of different classesidc!
Efficient signature generation. The signature types pro- ing conjunction signatures, token subsequence signatures
posed in Section 2.5 are more complex than the single sub-and Bayes signatures. For ease of explanation, we first con-
string signatures generated automatically by today’sssign sider the problem of generating one signature that matches
ture generation systems. To the extent possible, we seek te@very sample (or most of the samples) in the suspicious flow
minimize the computational cost of signature generation in pool. However, when the suspicious flow pool has noise or
the size of the suspicious flow pool. Thus, we seek efficient contains a mix of different worms (or a worm with different
algorithms for signature generation. attack vectors), generating one signature that matcheg eve
flow is not always possible or will result in low-quality sig-
natures. In Section 4.3, we will show how these algorithms
can be adapted to handle the cases when there is noise and
when there are multiple worms in the suspicious pool, by
generating a set of signatures where each signature intthe se
) ] ) only matches part of the suspicious pool and the set of sig-
Generation of small signature setsSome constraint must 5t res together match the samples in the suspicious pool.

be made on theumberof signatures Polygraph generates  pany of the algorithms described in this section are
to match a suspicious flow pool. In the extreme case, Poly-jy55ed on algorithms found in [11].

graph might generate one signature for each polymorphic

payload. Clearly, such behavior does not qualify as gen-4 1. Preprocessing: Token Extraction

erating a signature that matches a polymorphic worm. We

seek to minimize the number of signatures Polygraph gen- e define atokento be a contiguous byte sequence.
erates for a suspicious flow pool, without sacrificing signa- gach signature in the signature classes that we consider is
ture quality (causing false positives). Such sets of sigieat  made up of one or more such tokens. Here we discuss al-

cost less bandwidth to disseminate, and cost less to matClyorithms for extracting and analyzing tokens, which will be
at traffic filtering time. used in our algorithms for creating signatures.

For the remainder of the paper, we refer to the Polygraphasige As a preproces;ing step bEere Signatur? generation, we
generator as Polygraph, in the interest of brevity. extract all of the distinct substrings of a minimum length

Efficient sighature matching. Each signature type also in-
curs a different computational cost during matching agains
network traffic. We characterize these matching costs for
each signature type, to argue for the tractability of filigri
using these more complex signatures.




a that occur in at leasK out of the totaln samples in the  signature from two samples, and then show how we can use
suspicious pool. By distinct, we mean that we do not want that algorithm to find a token-subsequence signature for any
to use a token that is a substring of another token, unless inumber of samples.

occurs in at leasK out of n samplesot as a substring of A subsequence of two strings is a sequence of bytes

that token. For example, suppose one of the substrings octhat occur in the same order in both strings, though not

curring in at leask out of then samples is “HTTP”. “TTP” necessarily consecutively. For example, in the strings

is not adistinctsubstring unless it occurs in at le#sbf the “xxonexxxtwox” and “oneyyyyytwoyy”, the longest com-

n samplesnotas a substring of “HTTP”. mon subsequence is “onetwo”. The problem of finding the
There is a well-known algorithm to find thengestsub- longest common subsequence of two strings can be framed

string that occurs in at leaktof n samples [12], intime lin-  as astring alignmentproblem. That is, given two strings,
ear in the total length of the samples. That algorithm can bewe wish to align them in such a way as to maximize the
trivially modified to return a set of substrings that inclade number of characters aligned with a matching character.
all of the distinct substrings that occur in at le&sbut of The alignmentthat gives the longest subsequence in the pre-
n samples, but also includes some of the non-distinct sub-vious examples is:

strings, in the same time bound. We can tphemneout the X X XX X - - |t wo|x -
non-distinct substrings and finally output the set of tokens . - YyYyyyylt wolyy
for use in signature generation. This alignment can be described by the regular expression

Token extraction can be viewed as a first step toward “ *gne.*two.*".
eliminating the irrelevant parts of suspicious flows. After Note that thelongestsubsequence does not maximize
the token extraction, we can simply represent each suspiconsecutivenatches, only the total number of matches. For
cious flow as a sequence of tokens, and remove the rest obxample, consider the strings “oxnxexzxtwox” and “ytwoy-
the payload. oynyeyz”. The alignment corresponding to the longest sub-

sequence is:
- - - - -[o]x[n]x[e]x[z]xt wo X
yt woylo]y[n]yle]y([z]- - - - -

We next describe our algorithms that automatically gen- This results in the signature “.*0.*n.*e.*z.*". However,
erate a single signature that matches all (or most of) thein this case we would prefer to generate the signature
suspicious flow pool. Note that this approach of forcing all “*two.*”, which corresponds to the alignment:

(or most of) the suspicious flow pool to be matchedusingo x n x e x z x [t wo| X - - - - - - -
a single signature is not resilient against noise or whenthe. . . _ _ _ _ y[t wolyoynyeyz

SUSpiCiOUS flow p00| Conta-ins a mixture of different.WOI‘mS.. A|though the second a”gnment produces a shorter subse-
We present our full algorithms to address these issues inquence, the fact that all the bytes are contiguous produces

4.2. Generating Single Signatures

Section 4.3. a much better signature. (We can use the technique in Ap-
pendix A to show that the first signature has a 54.8% chance
4.2.1. Generating Conjunction Signatures of matching a random 1000-byte string, while the second

A uncti ianat ists of dered set of t signature has only a .0000595% chance). Thus, we need to
conjunction sighature consists of ah unordered setot 1o- oo 5 string alignment algorithm that prefers subsequences
kens, where a sample matches the signature if and only if

i tai token in the sianat T i with contiguous substrings.
It contains every token In the signature. 1o generate one . 5e an adaptation of the Smith-Waterman [23] al-
conjunction signature matching every sample in the pool,

imol the tok tracti laorithm d ib dgorithm to find such an alignment. An alignment is as-
we can simply use Ihe token extraction aigorithm describe signed a score by adding 1 for each character that is aligned
above to find all the distinct tokens that appear in every sam-

ple of the suspicious pool. The signature is then this set ofWIth a matching character, and subtracting a gap pewjty

tok Th g ti f the algorithm is i o th for each maximal sequence of spaces and/or non-matching
oxens. 1he running time ot the algorithm 1S in€ar N € ¢, racters. That is, there is a gap for every “.*" in the re-
total byte length of the suspicious pool.

sulting signature. However, we do not count the first and
) ) the last “.*", which are always present. In our experiments,
4.2.2. Generating Token-Subsequence Signatures we setW to 0.8 (We used the technique in Appendix A to

A token-subsequence signature is an ordered list of tokensN€IP choose this value, based on minimizing the chance of

A sample matches a token-subsequence signature if andne resulting signature matching unre_lated strings). ngin
only if the subsequence of tokens is in the sample. To gen_these parameters, the score for the alignment producing the
erate a token-subsequence signature, we want to find an orSignature “.*o.*n.*e.*z.*" has a value of 4 3x.8 = 1.6,
dered sequence of tokens that is present in every sample in  s1pis differs from the common definition of a gap, which is a inzad

the suspicious pool. We begin by showing how to find the sequence of spaces.




while the score for the alignment producing the signature approach its asymptotic error, in comparison to many other
“*two.*" has a value of 3- 0x.8= 3. Hence, the latter sig- models; thus, it will yield very good results when it is used
nature would be preferred. The Smith-Waterman algorithm with an extremely large number of dimensions.(tokens,
finds the highest-scoring alignment between two strings inin our case) and a moderately sized suspicious pool. In fu-
O(nm) time and space, whereandm are the lengths of the  ture work, we can easily relax this independence assump-
strings? tion and extend the naive Bayes model to other more com-

We generate a signature that matches every sample in th@lex Bayesian models to allow more complex dependencies
suspicious pool by finding a subsequence of tokens that isin the presence of sets of tokens.
present in each sample. We find this by iteratively applying  As in the conjunction and subsequence signature gen-
the string-alignment algorithm just described. After each eration, the first step in generating a Bayes signature is to
step, we replace any gaps in the output with a special gapchoose the set of tokens to use as features, as described
charactey, and find the best alignment between it and the in Section 4.1. Assume that we have a senadbkens,
next sample. Note that this algorithmgseedy and could {Ti }1<i<n, from the preprocessing step. Thus, a flogould
reach a local minimum. To help reduce this risk, we first use be denoted with a vectdxs,...,X,) in {0,1}", where the
the token extraction algorithm to find the tokens present in ith bit x; is set to 1 if and only if théth tokenT; is present
every sample, and then convert each sample to a sequencgomewhere in the string.
of tokens separated by This helps prevent an early align- We then calculate the empirical probability of a token
ment from aligning byte sequences that are not present inoccurring in a sample given the classification of the sample
other samples. It also has the added benefit of reducing thea worm or not a wormy), e., for each tokerT;, we compute
lengths of the strings, and hence the running time of the the probability that the tokem is present in a worm flow,
Smith-Waterman pairwise comparisons. denoted a$, and the probability that the tokdhis present

If the suspicious pool consists sbamples, eachbytes  in an innocuous flow, denoted as We calculatetj sim-
long, the running time i©(n) to perform the token extrac-  ply as the fraction of samples in the suspicious flow pool
tion, plusO(sI?) to perform the alignments. that the tokerT; occurs in. We estimats, the probability
of a token occurring in innocuous traffic, by measuring the
fraction of samples it appears in the innocuous pool, and by
calculating it using the technique described in Appendix A.
The conjunction and token-subsequence classes of signaWe use whichever value is greater, in an effort to minimize
tures assume that the distinction between worms and in-the risk of false positives.
nocuous flows involves an exact pattern of a set of tokens. Given a sample, let £(x) denote the true label of,
However, the distinction between worms and innocuousi-€., £ (X) = worm denotes is a worm, and. (X) =~ worm
flows may instead be a difference in the probability dis- denotesx is not a worm. Thus, to classify a sample=
tributions over sets of tokens that may be present. Thus,(X,-..,X), we wish to compute RPr (x) = worm|x] and
given two different distributions over sets of tokeresg, Pr{£ (x) =~ worm|x].
for worms and innocuous flows), we could classify a flow  To calculate P (x) = worm|x], we use Bayes law.
by the distribution from which its token set is more likely
to have been generated. This type of signature allows for
probabilistic matching and classification, rather tharefor Prix| £ (x) = worm|
act matches, and may be more resilient to noise and changes - Prix]
in the traffic.

We study the naive Bayes classifier as a first step toward
exploring this class of signatures. This model is character
ized by the following independence assumption: the prob- Pr{£ (x) = worm|
ability of a token being present in a string, when the string ~ — Prx] 1£|<nPr[xi = 1|2 (x) = worm].
is known to be a worm or an innocuous string, is indepen- -

dent of the presence of other tokens in the string. This as- we only need to estimate the quant'ﬁﬂf( >(<))()—:V\\/I\(/)()¢pr‘1)\i}

sumption often holds approximately in many practical sce- (j ¢ i this is greater than 1, then thés more likely to have
narios, and is simple enough to allow us to focus on the paan generated by a worm, and vice-versa).

important questioni,e., how such a probabilistic matching

4.2.3. Generating Bayes Signatures

Pr£ (x) = worm|X]

Pr{£ (X) = worm|

From the independence assumption of the naive Bayes
model, we can compute this as follows:

scheme compares to the exact matching schemes. In addi- Pr{£ (X) = worm|x]
tion, a naive Bayes classifier needs far fewer examples to Pr£ (X) =~ worm|x]
9Hirchberg's algorithm can reduce the space boun@(m), wherem PrL (x) = worm] - [1<j<p PriX = 1| £ (X) = worm]

is the length of the longer string. - Pr£ (X) =~ worm - Mi<i<n Prixi = 1| £ (x) =~ worm|



To calculate the result, we need to find a value to use erarchical clustering is relatively efficient, does not dhee
for Pr{£(x) = worm, i.e, the probability that any partic- to know the number of clusters beforehand, and can be
ular flow is a worm. This value is difficult to determine, adapted to match our semantics. We next describe the de-
and changes over time. We simply sef/Rx) = worm| = tails of how we use hierarchical clustering in Polygraph.

PriL (x) =~worm] = 5. Since false positives are often con- jierarchical Clustering. Each cluster consists of a set of
sidered more harmful than false negatives, we set a threshyg,s and a signature generated using that set. Géven
old so that the classifier reports positive only if it is suf-
ficiently far away from the decision boundary. Given a de-
sired maximum false positive rate, the value of the threghol specific. It matches exactly the one flow in that cluster.

to use is automatically set by running the classifier on the o next step is to iteratively merge clusters. Whenever
innocuous traffic pool and the suspicious traffic p?ol, and vy clusters are merged, the signature generation algorith
selecting a threshold that minimizes the “negative” classi being used is run again on the combined set of samples to

fications in the suspicious traffic pool while achieving no ,o4,ce a new, more sensitive signature for the new cluster.
more than the maximum false positive rate in the innocuous We decide which two of the clusters to merge first by

traffic pool. determining what the merged signature would be for each of

In practice, we transform the formula above such that \he () pairs of clusters, and using the innocuous pool to
each token is assigned a score based on the log of its term iRgimate the false positive rate of that signature. Thefowe
the formula. To classify a sample, the scores of the tokensy,q ta1se positive rate is, the more specific the signature is
it contains are added together. If a token is present in atne more specific the signature is, the more similar are the
sample multiple times, it is counted only once. If the total 1,4 cjysters. Hence, we merge the two clusters that result
score is greater than the threshold, the sample is classified, e signature with the lowest false positive rate. After
as a worm. This transformation allows the signatures to o1, merge, we compute what the merged signature would
be more human-understandable than if we were to use thg,q petween the new cluster and each of the remaioitsy
probability calculations directly. clusters. We always choose whichever pair of the current
clusters results in the signature with the lowest falsetpesi
rate to merge next.

In a practical deployment, the suspicious flow pool could ~ Merging stops when the signature resulting from merg-
contain more than one type of worm, and could contain iNg @ny two clusters would result in an unacceptably high
innocuous flows (as a result of false positives by the flow false positive rate, or when there is qnly one cluster remain
classifier). In these cases, we would like for Polygraph to INg- The system then outputs the signature for each of the
still output a signature, osetof signatures, that matches 'émaining clusters that has enough samples in it to be likely

the worms found in the suspicious pool, and does not matcht0 be general enough. As we show in Section 5, a cluster
innocuous flows. should contain at least 3 samples to be general enough to

We show that the Bayes generation algorithm can be match other samples of t_he worm. The cost of this algo-
used unmodified even in the case of multiple worms or fithmis to computed(s?) signatures. _
noise in the pool. However, for the token subsequence and Note thatour method for generating signatures with clus-
conjunction algorithms, we must perforctustering With terlng is a greedy_ approgch for finding the best signatures.
clustering, the suspicious flow pool is divided into several AS is well-known in the literature, a greedy approach may
clusters, where each cluster contasisilar flows. The sys-  réach local minimum instead of global minimum. For ex-
tem then outputs a signature for each cluster, by using the2MPple, two flows from different worms may have some co-

algorithms previously described to generate a signatate th incidental similarity, causing them to be merged into a sin-
matches every flow in a cluster. gle cluster during an early round of the algorithm, possibly

Clearly, the quality of the clustering is important for gen- prgventing the ideal clustering (and set of s_ignatures)ﬁro
erating good signatures. First, the clusters should naiwe t P€ing found. However, due to the complexity of the prob-
general. If we mix flows from differentworms into the same €M, @ greedy approach is worthwhile, since it offers re-
cluster, or mix flows of worms and noise in the same clus- duced computational cost compared to an exhaustive search
ter, the resulting signature may be too general and exhibit a®f Possible clusterings.
high false positive rate. Second, the clusters should not be
too specific. If flows of the same worm are separated into 5. Evaluation
different clusters, the signatures for each cluster mapbe t
specific to match other flows of the worm. In our experiments, we evaluate the performance of each

We choose to adapt a widely-used clustering method, Polygraph signature generation algorithm under seveeal sc
hierarchical clustering[11], to our problem setting. Hi- narios. We first consider the simple case where the suspi-

flows, we begin withs clusters, each containing a single
flow. At this point, the signature for each cluster is very

4.3. Generating multiple signatures



cious flow pool contains only flows of one worm. We next 5.2. Experimental Results

consider the case where the flow classifier is imperfect, re-

sulting in innocuous requests present in the suspicious flow  We describe our experimental results below.
pool along with the flows from one worm. Last, we con-

sider the most general case, in which the suspicious flowg 5 1. Single Polymorphic Worm

pool contains flows from multiple worms, and from innocu-

ous requests. We first consider the case where the suspicious flow pool
contains only flows from one worm. In these experiments,
5.1. Experimental Setup we want to determine what signatures Polygraph would find

for each worm, how accurate these signatureseacg bow

We describe our experimental setup below. In all our ex- Mmany false positives and false negatives they cause), and
periments, we set the token-extraction threshold3 (de- how many worm samples are necessary to generate a qual-
scribed in Section 4.1), the minimum token length= 2, ity signature. If there are too few worm samples in the sus-
and the minimum cluster size to be 3. We conduct 5 in- Picious flow pool, the resulting signatures will be too spe-
dependent trials for each experiment, and report the 2ndCiﬁC, because they will incorporate tokens that those sam-
worst value for each data poirg.g, the 80th percentile). ~ Ples have in common only by coincidence, but that do not
All experiments were run on desktop machines with 1.4 appear in other samples of the worm. For each exploit, we

GHz Intel® Pentiun®) |1l processors, running Linux ker- ~ run our signature generation algorithms using differest su
nel 2.4.20. picious pools, of size ranging from 2 to 100 worm samples.

Polymorphic workloads. We generate signatures for poly- Signature Quality. Tables 1 and 2 show our results for
morphic versions of three real-world exploits. The first two the Apache-Knacker and BIND-TSIG exploits. For sake of
exploits, the Apache-Knacker exploit (described in Sectio comparison, we also evaluate the signatures based on the
2) and the ATPhttpd expldit use the text-based HTTP pro- longest common substring, and the most specific common
tocol. The third exploit, the BIND-TSIG exploit, uses the substring (thatis, the one that results in the fewest fadse p
binary-based DNS protocol. itives) for each wornt! Token-subsequence signatures are
In our experimentsi we show that P0|ygraph generatesShOWn in regular exprESSion notation. The Bayes Signatures
high quality signatures for both HTTP exploits and the DNS are a list of tokens and their corresponding scores, and the
exploit, even with an ideal polymorphic engine. In order to threshold decision boundary, which indicates the score nec
simulate an ideal polymorphic engine, we fill wildcard and €ssary for a flow to match the signature.
code bytes for each exploit with values chosen uniformlyat ~ The conjunction and token-subsequence signatures gen-
random. For the HTTP exploits, we also include randomly €rated by Polygraph exhibit significantly fewer false posi-

generated headers of random length, which do not affect thelives than ones consisting of only a single substring. Fer th
functioning of the exploit. Apache-Knacker exploit, the subsequence signature pro-

duces a lower false positive rate than the conjunction signa

Network traces. We used several network traces as input c . ;
. . ture, which is expected since the ordering property makes
for and to evaluate Polygraph signature generation. For our. e . . )
it more specific. For both exploits, the Bayes signature is

HTTP experiments, we used two traces containing both in- effectively equivalent to the best-substring signaturbisT

coming and outgoing requests, taken from the perimeter of. i N
Intel Research Pittsburgh in October of 2004. We used a|s reasonable for the Apache-Knacker ex_pl(_)|t, since all but
) one of the tokens occurs very frequently in innocuous traf-
5-day trace (45,111 flows) as our innocuous HTTP pool. fic. For the BIND-TSIG exploit, the Bayes signature would
We used a 10-day trace (125,301 flows), taken 10 days after_ plot, y g

the end of the first trace, as an evaluation trace. The eval-be equivalent to the conjunction signature if the matching

. . hreshold were set slightly higher. We hypothesize that thi
uation trace was used to measure the false positive rate o : o .
. . . : ..~ “would have happened if we had specified a lower maximum
generated signatures. In experiments with noisy susgsciou

: : false positive rate (we used .001%). It also would have hap-
pools, noise flows were drawn uniformly at random from ; : . !
the evaluation pool pened if the best substring occurred equally often in the in-

We also used a 24-hour DNS trace, taken from a DNS putinnocuous pool as in the evaluation trace.
server that serves a major academic institution’s domain,Number of Worm Samples Needed.For each algorithm,
and several CCTLDs. We used the first 500,000 flows from the correct signature is generated 100% of the time for all
this trace as our innocuous DNS pool, and the last 1,000,00XPeriments where the suspicious pool size is greater than 2

flows as our evaluation trace. and 0% of the time where the suspicious pool size is only 2.
10In this ATPhttpd exploit, the attacker provides a long URLaIGET 11we do not propose an algorithm to find such a substring
request, which is used to overwrite the return address oagheer, trans- automatically—we simply measure the result of using eadistsing and

ferring control to the attacker’s code. report the best one.



Class False+ | False— Signature

Longest Substring| 92.5% 0% HTTP/1.1\r\n
Best Substring || .008% 0% \XFF\xBF
. . ‘GET’, * HTTP/L.1\r\n’, " *, * \r\nHost: ’,
0, 0,
r\n’,: 7, “ \r\nHost: ’, \xFF\xBF’, ‘\r\n
Conjunction .0024% 0% . N H '\ EE\xBE". ,
Token GET .*HTTP/1.A\r\n.*: .* \r\nHost: .*
0, 0,
Subsequence 0008%| 0% \r\n.*: *\r\nHost: AxFF\xBF.*\r\n
r\n’: 0. , 0. ., \r\nHost: ": 0. ,
“\r\n’: 0.0000, “: ": 0.0000, \r\nHost: : 0.0022
Bayes .008% 0% ‘GET ": 0.0035, ‘ HTTP/1.Ar\n": 0.1108,

“\xFF\xBF': 3.1517. Threshold: 1.9934

Table 1. Apache-Knacker signatures. These signatures were successfully generated for innocuous
pools containing at least 3 worm samples.

Class False+ | False— Signature
Longest Substring|| .3279% | 0% \X00\x00\xFA
Best Substring .0023% | 0% \XFF\xBF
Conjunction 0% 0% “\XFF\xBF’, *\x00\x00\xFA
Token Subsequence 0% 0% \XFF\xBF.*\x00\x00\xFA
“\X00\X00\xFA: 1.7574, \xFF\xBF': 4.3295
Bayes -0023% 0% X000 Threshold: 4}.222\2

Table 2. BIND-TSIG signatures. These signatures were succe  ssfully generated for innocuous pools
containing at least 3 worm samples.

The signatures generated using 2 samples are too specifigrows beyond 80%, at which point the signatures cause
and cause 100% false negatives. 100% false negatives. This is because we are only using
a token as a feature in the Bayes signature if it occurs in
at least 20% of the suspicious flow pddlThis parameter

can be adjusted to allow Bayes to generate signatures with

Next we show that Polygraph generates quality signatureshigher noise ratios.
even if the flow classifier misclassifies some flows, result- False PositivesFigures 5(a) and 5(b) show tlaelditional
ing in innocuous flows in the suspicious flow pool. In these false positives (that is, not including those generatechby t
experiments, we use hierarchical clustering with our con- correct signatures) that result from the addition of noise.
junction and token subsequence algorithms. Ideally, one orin the HTTP case, when there is sufficiently high noise,
more signatures will be generated that match future sampleshere are also clusters of innocuous flows that result in sig-
of the polymorphic worm, and no signatures will be gener- natures. That is, the clustering algorithm interprets simi
ated from the innocuous traffic that will result in false posi lar noise flows that are dissimilar from flows in the innocu-
tives. We also demonstrate that Bayes does not require hierous pool as other worms in the pool. We hypothesize that
archical clustering, even when there are innocuous flows inthis occurs because our HTTP traces come from a relatively
the suspicious pool. In each of these experiments, we use Small site. That is, a more diverse innocuous pool would al-
flows from a polymorphic worm, while varying the number |ow the algorithm to determine that the resulting signagure
of additional innocuous flows in the suspicious flow pool.  cause too many false positives and should not be output.
False Negatives For the conjunction and token- Again, once the ratio of noise grows beyond the 80%
subsequence signatures, Polygraph generates a clustdfreshold, Bayes does not use any tokens from the actual
containing the worm flows, and no other flows. The signa- Worm flows as part of its signature. Instead, the signa-
tures for these clusters are the same signatures genetated fure consists only of tokens common to the innocuous noise
the case with no noise, and prOduce 0% false negatives' 12\We do this to minimize the number of tokens that are only ddire-

The Bayes signatures are not affected by noise until it tally in common between flows being used as part of the sigaatu

5.2.2. Single Polymorphic Worm Plus Noise
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Figure 5. False positives due to noise in suspicious pool.

flows, resulting in false positives. with the square of the number of samples when using hier-
archical clustering. However, we still find that the run-gisn
are reasonable, even with our unoptimized implementation.
When training on 25 samples, the conjunction and subse-
Finally, we examine the fully general case: that in which quence signatures with hierarchical clustering are géeera
there are flows from more than one polymorphic worm, and in under ten minutes.

misclassified innocuous flows in the suspicious flow pool.  The performance of our signature generation algorithms
We evaluate Polygraph on a suspicious flow pool contain- can be improved with optimizations. Additionally, some of
ing 5 flows from the Apache-Knacker polymorphicworm; 5 our algorithms can be parallelized (especially hieramhic
from the ATPhttpd polymorphic worm, and a varying quan- clustering), allowing the signature generation time todse r
tity of noise flows. Ideally, Polygraph should generate a duced significantly by using multiple processors.

signature that covers each polymorphic worm, and not gen-

5.2.3. Multiple Polymorphic Worms Plus Noise

erate any signatures that cover the innocuous flows. 6. Attack Analysis
False NegativesOur results in this case are similar to those
with one HTTP worm plus noise. We observe that Poly-  In this section, we analyze potential attacks on Poly-

graph generates conjunction and token-subsequence signaraph, and propose countermeasures. Note that some at-
tures for each of the two polymorphic worms. Bayes gen- tacks are not unique to Polygraph. For example, resource
erates a single signature that matchethworms. The sig-  utilization attacks are common to all stateful IDSes, and
natures generated by each algorithm generate 0% false negerevious work addresses these issues. In addition, eva-
atives, except for Bayes once the fraction of noise flows in- sion attacks are common to network-based IDSes, and tech-
creases beyond 80%, at which point it has 100% false neg-hiques such as normalization have been proposed to defend
atives. against them. We do not discuss these more general attacks

False Positives. Figure 5(c) shows that the false positive here; We focus on Polygraph-specific attacks.

behavior is very similar to when there is only one type of Overtraining Attacks: The conjunction and token-
worm in the suspicious pool. Once again, the signaturessubsequence algorithms are designed to extractribst
generated by each algorithm have no false positives untilspecificsignature possible from a worm. An attacker may

there are a large number of noise samples in the suspiciougttempt to exploit this property to prevent the generatgd si
pool. nature from being sufficiently general.

We call one such attack thmincidental-patterrattack.
Rather than filling in wildcard bytes with values chosen uni-
formly at random, the attacker selects from a smaller distri
Without clustering, all of our signature generation tech- bution. The result is that there tend to be many substrings
nigues generate a signature very quickly. For example,coincidentally in common in the suspicious pool that do not
when training on 100 samples in our Apache-Knacker eval- actually occur in every sample of the worm.
uation, the conjunction signature, the token subsequence We evaluate Polygraph’sresilience to this attack by mod-
signature, and the Bayes signature are each computed iifying the Apache-Knacker exploit to set each of the ap-
under 10 seconds. The cost of signature generation growgroximately 900 wildcard bytes to one of only two values.

5.2.4. Runtime Performance Overhead



E e Conjunction the case of a non-zero-day exploit, a longer window gives
\'\\ = u Token Subsequence time for other defenses, such as patching the vulnerability
o 0.8 '\ |+ Bayes N Another defense is to deploy distributed Polygraph mon-
& "-m itors, each using a locally collected innocuous pool. This
fzj 0.6 : would make it significantly more difficult for the attacker to
% poison all innocuous pools. It also offers other added ben-
Z 04 efits, such as decreasing the time needed to detect a new
Z worm.
L
0.2 Long-tail Attack: Matching on network flows is tricky, be-
cause we cannot examine the entire flow at once—we must
0 let packets through. Sometimes an exploit could have al-

ready occurred by the time we see a full signature match.
For the token-subsequence signature, it may be desirable
to prune off the end of the signature, and keep just enough
Figure 6. Number of worm samples required to ensure few false positives. For a Bayes signature, the
when under ‘coincidental-pattern’ attack. flow can be matched before we see every token in the signa-
ture. In either case, it may also be desirable to bufferitlero
streams that are in the middle of a partial match.

2 3 4
Worm Samples in Suspicious Pool

We used between 2 and 50 samples generated in this way in ) )
Polygraph’s suspicious pool, and another 1000 generated in/ - Discussion
this way to measure the false negative rates.

Figure 6 shows the false negative rates of Polygraph’s We have presented three classes of signatures, and an
signatures generated for this attack. Bayes is resiligiiieto ~ algorithm to generate signatures for each class. The ques-
attack, because it does not requéineeryone of the com-  tion remains—which algorithm and signature class should
mon tokens to be present to match. However, the conjunc-be used?
tion and subsequence algorithms need a greater number of All three signature classes have advantages and disad-
worm samples than before to create a sufficiently generalvantages. The token-subsequence signature class produces
signature. ordered signatures that are more specific than the equivalen

Another concern is theed herringattack, where aworm  unordered conjunction signatures. However, some exploits
initially specifies some fixed tokens to appear within the may contain invariants that can appear in different orders.
wildcard bytes, causing them to be incorporated into sig- In that case, the token-subsequence signature will cafsist
natures. Over time, the worm can stop including these only the tokens that appear in a consistent order, and may
tokens, thus causing previously produced signatures to ncactually be less specific than a conjunction signature fr th
longer match. Again, Bayes should be resilient to this at- Same worm. The Bayes signature class can be generated
tack, because it does not require every token in its sigaatur more quickly than the others, and is more useful when there
to be present to match a worm flow. For the other signa- are tokens that only appear some of the time.
ture classes, the signature must be regenerated each time All three algorithms are promising, but no one algorithm
the worm stops including a token. is superior to the others for every worm. The most resilient
approach for using these algorithms is to consalkthree,
and use the signature that appears to have the fewest false
positives and false negatives.

Innocuous Pool Poisoning:After creating a polymorphic
worm, an attacker could determine what signatures Poly-
graph would generate for it. He could then create otherwise
innocuous flows that match these signatures, and try to get
them into Polygraph’s innocuous flow pool. If he is suc- 8. Related Work
cessful, then the worm signature will seem to cause a high
false positive rate. As a result, the signature may not be  The Bro [20] and Snort [21] IDSes monitor network traf-
generated at all (when using clustering), or the system mayfic, and search the monitored traffic for signatures of known
conclude that the signature is insufficiently specific. worms and other intrusions; Polygraph solves the comple-
This problem can be addressed in several ways. One waymentary problem of how to provide the signature database
is for Polygraph to collect the the innocuous pool using a required by an IDS automatically. We note that both Bro
sliding window, always using a pool that is relatively old and Snort support matching regular expression signatures
(perhaps one month). The attacker must then wait for thisin reassembled TCP flows, and thus already support match-
time period between creating a worm and releasing it. Ining the token subsequence signatures generated by Poly-



graph. Shield [26] uses manually generated vulnerability- to function correctly. We have defined the signature gen-
based signatures to filter out attack flows on a host. Theseeration problem for polymorphic worms; provided exam-
vulnerability-based signatures could be effective agains ples that illustrate the presence of invariant content igpo
polymorphic worms, however, they need to be manually morphic worms; proposed conjunction, token-subsequence,
generated. and Bayes signatures classes that specifically target match
Honeycomb [14], Autograph [13], and EarlyBird [22] all ing polymorphic worms’ invariant content; and offered and
generate signatures for novel worms automatically. While evaluated Polygraph, a suite of algorithms that automati-
these three systems produce signatures by different meansally derive signatures in these classes. Our results indi-
they share a common signature type: a single, contiguouscate that even in the presence of misclassified noise flows,
string. As discussed in Section 2.4, these signatures ofterand multiple worms, Polygraph generates high-quality sig-
fail to match polymorphic worm payloads robustly. natures. We conclude that the rumors of the demise of
TaintCheck [18] is a tool for automatic exploit detec- content-based filtering for worm quarantine are decidedly
tion and signature generation. Besides being able to de-exaggerated.
tect very accurately when monitored software is exploited,
it proposes a novel method for automatic signature gen-
eration, semantic-basedignature generation—instead of
the pattern-basedignature generation methods in Honey-
Comb [14], EarlyBird [22], Autograph [13], and Polygraph, ~ Thanks to Dan Ferullo, David Brumley, and Hyang-
which is based on extracting common patterns in sampIeAh Kim for their help in dissecting exploits. Thanks to
flows, TaintCheck proposes to automatically generate Sig_Shobha Venkataraman for feedback and pointers into ma-
natures using information about the vulnerability and how chine leaming literature. Thanks to Lisa Sittler and James
it is exploited. As a first step, TaintCheck demonstrated Gurganus for their assistance in gathering network traces.
how to automatically extract values used to overwrite the Finally, thanks to the anonymous reviewers for their insigh
high-order bytes of the jump target and use that as an in-ful feedback.
variant part of a signature. Extensions to such semantic-
based signature generation could be used to identify otheReferences
invariant parts for signatures such as protocol framing.[18
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A. Token Distinguishability



