
Dynamo: Key-Value Cloud Storage

Brad Karp
UCL Computer Science

CS M038 / GZ06
22nd February 2016



Context: P2P vs. Data Center
(key, value) Storage

• Chord and DHash intended for wide-area 
peer-to-peer systems
– Individual nodes at Internet’s edge
– Central challenges: low-latency key lookup 

with small forwarding state per node
– Consistent hashing to map keys to nodes
– Replication at successors for availability under 

failure
• Are these techniques useful in a more 

traditional data-center scenario?
2



Amazon’s Workload (in 2007)

• Peak load: tens of millions of customers
• Tens of thousands of servers in globally 

distributed data centers
• Dynamo: (key, value) storage back end for 

Amazon’s web-based store
– put(), get(); values “usually less than 1 MB”

• Requirements:
– Low latency of requests: focus on 99.9% SLA
– Highly available despite failures (measured in 

success of users’ operations)
– Scalable as workload grows to more servers 3



Amazon’s Workload (cont’d)

• “Shopping cart service must always be able 
to write to and read from its data store.”
– despite disks failing, network routes flapping, 

“data centers destroyed by tornadoes”
• Services that use (key, value) stores:

– Best-seller lists
– Shopping carts
– Customer preferences
– Session management
– Sales rank
– Product catalog

4



Techniques (mostly not new)

• Place replicated data on nodes according 
to consistent hashing

• Maintain consistency of replicated data 
using version vectors (“vector clocks” in 
paper)

• Eventual consistency for replicated data: 
prioritize success and low latency of writes 
and reads over consistency (unlike DBs)

• Efficiently sync replicas using Merkle trees
5



Techniques (mostly not new)

• Place replicated data on nodes according 
to consistent hashing

• Maintain consistency of replicated data 
using version vectors (“vector clocks” in 
paper)

• Eventual consistency for replicated data: 
prioritize success and low latency of writes 
and reads over consistency (unlike DBs)

• Efficiently sync replicas using Merkle trees
6

Key trade-offs:
response time vs. consistency vs. durability



Partitions Force Choice Between 
Availability and Consistency

• Suppose 3 replicas 
are partitioned into 2 
and 1

• If one replica fixed 
as master, no client 
in other partition can 
write

• In Paxos-based 
primary-backup, no 
client in minority 
partition can write

7



Partitions Force Choice Between 
Availability and Consistency

• Suppose 3 replicas 
are partitioned into 2 
and 1

• If one replica fixed 
as master, no client 
in other partition can 
write

• In Paxos-based 
primary-backup, no 
client in minority 
partition can write

8

Traditional distributed databases emphasize 
consistency over availability when there are 
partitions



Alternative: Eventual Consistency

• Tell client write 
complete when only 
some replicas have 
stored it

• Propagate to other 
replicas in background

• Allows writes in both 
partitions…

• …but risks:
– returning stale data
– write conflicts when 

partition heals
9



Alternative: Eventual Consistency

• Tell client write 
complete when only 
some replicas have 
stored it

• Propagate to other 
replicas in background

• Allows writes in both 
partitions…

• …but risks:
– returning stale data
– write conflicts when 

partition heals
10

put(k, 
v0)



Alternative: Eventual Consistency

• Tell client write 
complete when only 
some replicas have 
stored it

• Propagate to other 
replicas in background

• Allows writes in both 
partitions…

• …but risks:
– returning stale data
– write conflicts when 

partition heals
11

put(k, 
v0)

put(k, 
v1)



Alternative: Eventual Consistency

• Tell client write 
complete when only 
some replicas have 
stored it

• Propagate to other 
replicas in background

• Allows writes in both 
partitions…

• …but risks:
– returning stale data
– write conflicts when 

partition heals
12

put(k, 
v0)

put(k, 
v1)



Alternative: Eventual Consistency

• Tell client write 
complete when only 
some replicas have 
stored it

• Propagate to other 
replicas in background

• Allows writes in both 
partitions…

• …but risks:
– returning stale data
– write conflicts when 

partition heals
13

put(k, 
v0)

put(k, 
v1)

?@%$!!



Alternative: Eventual Consistency

• Tell client write 
complete when only 
some replicas have 
stored it

• Propagate to other 
replicas in background

• Allows writes in both 
partitions…

• …but risks:
– returning stale data
– write conflicts when 

partition heals
14

put(k, 
v0)

put(k, 
v1)

?@%$!!

Dynamo emphasizes availability over 
consistency when there are partitions



Dynamo’s Interface

• Keys and values opaque to Dynamo
• Dynamo hashes keys into 128-bit 

identifiers with MD-5
• get(key) à value, context

– returns one value or multiple conflicting 
values

– context describes version(s) of value(s)
• put(key, context, value) à “OK”

– context indicates which value versions this 
new value version derived from

15



Consistent Hashing in Dynamo

• Much like in Chord
• (k, v) pair stored at k’s successors (named 

“preference list” in paper)
• Each physical node acts as multiple virtual 

nodes, each with own place on ring
– When physical node fails, many other physical 

nodes handle its load
– When physical node added, takes load from 

many other physical nodes
– Physical nodes of heterogeneous capacity can 

host different numbers of virtual nodes
16



Gossip and “Lookup”

• To add node, administrator explicitly informs 
existing node of new node’s address

• Once per second, each node contacts 
random other node; they exchange their lists 
of known nodes (including virtual node IDs)

• Each node learns which other nodes handle 
all key ranges

• Result: all nodes can send directly to any 
key’s successor

17



Data Replication

• Successor node of key k named 
“coordinator”

• Nodes send put(k,…) to k’s coordinator
• k’s coordinator replicates to preference list
• Goal: each (k, v) pair replicated at N 

nodes
• Preference list longer than N to allow for 

failed nodes
18



Consistency Model:
“Sloppy Quorums”

• Goal: want it to be likely that get()s see most 
recent put()s

• Goal: don’t want to block get()s or put()s 
from completing during partitions

• Dynamo tries to store all values put() under k 
on first N live nodes of coordinator’s 
preference list

• Coordinator replies “success” for put() when 
only W replicas have completed write

• Coordinator replies “success” for get() when 
only R replicas have completed read

• R < N and W < N to make get(), put() fast 19



Sloppy Quorums and put()s

• Suppose coordinator doesn’t receive W 
replies when replicating a put()

• Could return failure, but remember goal of 
high availability for writes…

• Hinted handoff: coordinator tries next 
successors in preference list (beyond first 
N successors) if necessary
– Indicates to recipient correct replica node
– Recipient will periodically try to forward to 

correct replica node
20



Wide-Area Replication

• Last paragraph in Section 4.6 states that 
preference lists always contain nodes from 
more than one data center

• Consequence: data likely to survive failure 
of entire data center

• Synchronously waiting for writes to 
remote data center would incur 
unacceptably high latency

• Compromise: W < N, eventual consistency
21



Sloppy Quorums and get()s

• Suppose coordinator doesn’t receive R 
replies when processing a get()

• p. 211: “R is the minimum number of 
nodes that must participate in a successful 
read operation.” (Sounds like these get()s 
fail.)

• Why not return whatever data was found, 
though? As we will see, consistency not 
guaranteed anyway…

22



Sloppy Quorums and Freshness

• Common case given in paper:
N = 3, R = 2, W = 2

• With these values, do sloppy quorums guarantee a 
get() sees all prior put()s?

• If no failures, yes:
– Two writers saw each put()
– Two readers responded to each get()
– Write and read quorums must overlap!

• If failures, no:
– Two nodes in preference list go down; put() 

replicated outside preference list
– Two nodes in preference list come back up; get() 

occurs before they receive prior put()
23



Sloppy Quorums and Freshness

• Common case given in paper:
N = 3, R = 2, W = 2

• With these values, do sloppy quorums guarantee a 
get() sees all prior put()s?

• If no failures, yes:
– Two writers saw each put()
– Two readers responded to each get()
– Write and read quorums must overlap!

• If failures, no:
– Two nodes in preference list go down; put() 

replicated outside preference list
– Two nodes in preference list come back up; get() 

occurs before they receive prior put()
24

Sloppy quorums increase probability get()s 
observe recent put()s, but no guarantee



Conflicts

• Suppose N = 3, W = 2, R = 2, and nodes 
are named A, B, C

• First put(k, …) completes on A, B
• Second put(k, …) completes on B, C
• Now get(k) arrives, completes first at A, C
• Conflicting results from A and C: each has 

seen different put(k, …)
• Dynamo returns both results
• What does client do now?

25



Conflicts vs. Applications

• Shopping cart:
– Could take union of two results
– What if second put() was result of user 

deleting item from cart stored in first put()?
– Result: “resurrection” of deleted item

• Can we do better? Can Dynamo resolve 
cases when multiple values are found?
– Sometimes. If it can’t, application must do so.

26



Version Vectors (“Vector Clocks”)

• Version vector: list of (node, counter) 
pairs, e.g., [(A, 1), (B, 3), …]

• Dynamo stores version vector with each 
stored (k, v) pair

• Idea: track “ancestor/descendant” 
relationship between different versions of 
data stored under the same key k

27



Version Vectors (cont’d)

• Rule: given two versions, each with a VV, if each 
counter of the first version is less than or equal to 
that of the second, then the first is an ancestor of 
the second and can be forgotten by Dynamo

• Each time a put() occurs, Dynamo increments the 
counter in the VV for the coordinator node

• Each time a get() occurs, Dynamo returns the VV 
for the value(s) returned (in the “context”)

• When get()ting a value, modifying it, and put()ting 
it again under the same key, user must supply the 
context Dynamo provided in the result of the get()

28



Version Vectors
(Auto-Resolving Example)

• put() handled by A is 
version v1, stamped 
with VV [(A,1)]

• put() updating same 
k handled by C is 
version v2, stamped 
with VV
[(A,1),(C,1)]

• get(k) retrieved from 
A and C returns only 
v2

29

v1 [(A,1)]

v2 [(A,1),(C,1)]

write handled 
by C

write handled 
by A



Version Vectors
(Application-Resolving Example)

30

v1 [(A,1)]

v3 [(A,1),(C,1)]

write handled 
by C

write handled 
by A

write handled 
by B

v2 [(A,1),(B,1)]
reconciled 
and written 
by A

v4 [(A,2),(B,1)(C,1)]



Limitations of
Application-Based Reconciliation

• Suppose two clients wish to increment the 
same counter concurrently (stored under 
the same key k)

• Each will independently read the same 
value

• Each will locally modify it
• Each will write back
• A subsequent reader will see two 

instances of the same value…no sensible 
way to identify two increments occurred!

31



Trimming Version Vectors

• Many nodes may process a series of put()s to 
same key; VVs may get long

• Must they grow forever?
• Dynamo stores time of modification with 

each entry in VV
• When VV longer than 10 hosts long, VV 

drops the timestamp of host that least 
recently processed that key

• Avoids passing huge VVs around
• Conservative: might force client to do 

reconciliation, as loses state about a value’s 
ancestry 32



Maintaining Replication:
Node-to-Node Reconciliation

• A node holding data received via “hinted 
handoff” may crash before it can pass 
data to unavailable node in preference list

• Need another way to ensure each (k, v) 
pair replicated N times

• Nodes nearby on ring periodically compare 
the (k, v) pairs they hold, and copy any 
they are missing that are held by the 
other

33



Efficient Reconciliation:
Merkle Trees

• Idea: hierarchically summarize the (k, v) 
pairs a node holds by ranges of keys

• Leaf node: hash of one (k, v) pair
• Internal node: hash of concatenation of 

children
• Compare roots; if match, done
• If don’t match, compare children; recur…

34



Merkle Tree Reconciliation:
Example

• B is missing orange key; A is missing 
green one

• Compare nodes from root downwards, 
pruning when hashes match

35

B’s values:A’s values:
[0, 2128)

[0, 2127) [2127, 2128)
[0, 2128)

[0, 2127) [2127, 2128)



Merkle Tree Reconciliation:
Example

• B is missing orange key; A is missing 
green one

• Compare nodes from root downwards, 
pruning when hashes match

36

B’s values:A’s values:
[0, 2128)

[0, 2127) [2127, 2128)
[0, 2128)

[0, 2127) [2127, 2128)



Merkle Tree Reconciliation:
Example

• B is missing orange key; A is missing 
green one

• Compare nodes from root downwards, 
pruning when hashes match

37

B’s values:A’s values:
[0, 2128)

[0, 2127) [2127, 2128)
[0, 2128)

[0, 2127) [2127, 2128)



Merkle Tree Reconciliation:
Example

• B is missing orange key; A is missing 
green one

• Compare nodes from root downwards, 
pruning when hashes match

38

B’s values:A’s values:
[0, 2128)

[0, 2127) [2127, 2128)
[0, 2128)

[0, 2127) [2127, 2128)



How General Is Dynamo’s 
Consistency Model?

• Doesn’t support, e.g., concurrent 
increments…or many other operations

• Amazon’s stated uses:
– Shopping cart (merge carts, resurrected 

deleted items)
– Session information for users
– Product list (but probably nearly read-only, so 

R = 1, W = N would work well)

39



How Useful Is It to Vary N, R, W?
N R W Behavior

3 2 2 Parameters from paper: good durability, good R/W
latency

3 3 1 Slow reads, weak durability, fast writes
3 1 3 Slow writes, strong durability, fast reads
3 3 3 More likely that reads see all prior writes?
3 1 1 Doesn’t make sense. (Why not?)

40



Dynamo: Summary

• Consistent hashing broadly useful for replication—
not only in P2P systems

• Extreme emphasis on availability and low latency,
unusually, at the cost of some inconsistency

• Eventual consistency lets writes and reads return 
quickly, even when partitions and failures

• Version vectors allow some conflicts to be resolved 
automatically; others left to application 

• Seems to meet Amazon’s specific applications’ 
consistency needs…

• …but definitely not right for all applications
41


