Roofnet: An 802.11b Mesh Network

Brad Karp UCL Computer Science

CS M038 / GZ06 11th January 2013

Context: Mesh Networks

- Ad hoc networking
 - Mobile, highly dynamic topologies
 - Chief metrics: routing protocol overhead, packet delivery success rate, hop count
 - Largely evaluated in simulation
- Sensornets
 - Fixed, resource-impoverished nodes
 - Chief metric: energy consumption
- Mesh networks
 - Fixed, PC-class nodes
 - Motivation: shared Internet access in community
 - Chief metric: TCP throughput
 - Today: Roofnet, a real, deployed mesh network

Context: Mesh Networks

- Ad hoc networking
 - Mobile, highly dynamic topologies
 - Chief metrics: routing protocol overhead, packet delivery success rate, hop count

Why a multi-hop mesh vs. single-hop access points?

- Mesh networks
 - Fixed, PC-class nodes
 - Motivation: shared Internet access in community
 - Chief metric: TCP throughput
 - Today: Roofnet, a real, deployed mesh network

Roofnet: Design Choices

- Volunteer users host nodes at home
 - Open participation without central planning
 - No central control over topology
- Omni antennas
 - Ease of installation by naïve user: no choice of neighbors or aiming
 - Links interfere, likely low quality
- Multi-hop routing (not 1-hop APs)
 - Potentially better coverage, path diversity
 - Routing more complex, end-to-end loss higher
- Goal: high TCP throughput
 - Reachability alone less challenging on (nearly) static network

Roofnet: Design Choices

- Volunteer users host nodes at home
 - Open participation without central planning
 - No central control over topology

Stated non-goals for paper:

- Throughput of multiple flows
- Scalability in number of nodes
- Design of routing protocols
- Performance change over time
- Topology change as users join / leave network

Roofnet Deployment

• Each node: PC, 802.11b card, roofmounted omni antenna

Node Addresses

- Autoconfiguration of wireless interface IP address
 - High byte: private (e.g., net 10) prefix
 - Roofnet nodes not reachable from Internet
 - Low 3 bytes are low 3 bytes of Ethernet MAC address
- NAT between wired Ethernet and Roofnet
 - Private addresses (net 192.168.1) for wired hosts
 - No address allocation coordination across Roofnet nodes required
 - Roofnet hosts can't connect to one another; only to Internet

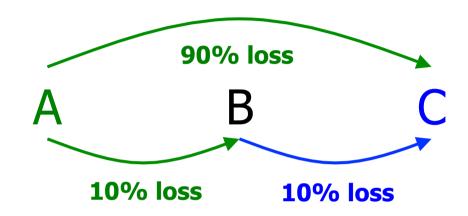
Internet Gateways

- Roofnet node tries DHCP on wired Ethernet; then tries reaching Internet hosts; success indicates node is an Internet gateway
- NAT between wireless interface and wired Internet gateway interface

- Why needed?

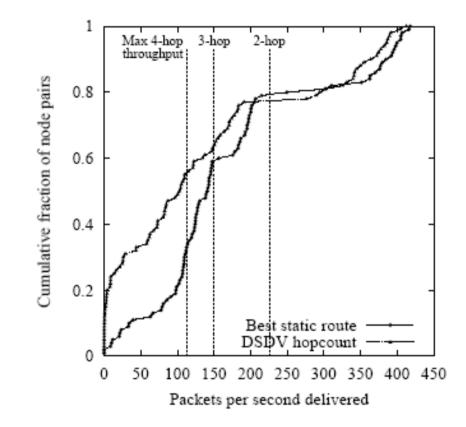
- Roofnet nodes track gateway used for each open TCP connection they originate
 - If best gateway changes, open connections continue to use gateway they already do

- Why?

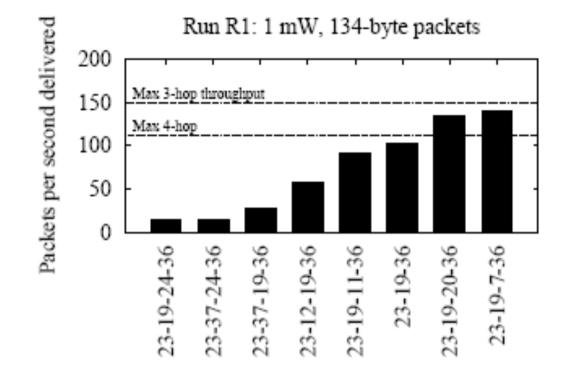

Routing Protocol

- Srcr: DSR-like protocol
- Each link has metric (not necessarily 1!)
- Data packets contain full source routes (robust against loops; metric may be dynamic)
- Nodes keep database of link metrics
 - Nodes write current link metric into source route of all packets they forward
 - Nodes flood route queries when cannot find route; queries accumulate link metrics
 - Nodes cache link metrics overheard in queries/ responses
- Run Dijkstra' s algorithm over database to compute source routes

Link Characteristics

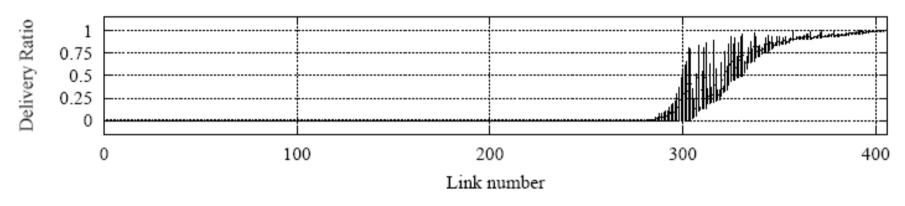

- Wired networks
 - Wired link offers bit error rate 10^{-12}
 - Links "all" (connected) or "nothing" (cut)
- Wireless networks
 - Bit error rate depends on SNR at receiver
 - Dependent on distance, attenuation, &c.
 - Ideal: radio mimics "all or nothing" links; beyond threshold distance, bit error rate approaches 1
 - Reality: links at every bit error (packet loss) rate
 - Are all hops created equal?

Varying Link Loss Rates: Example


- A \rightarrow C: 1 hop; high loss
- $A \rightarrow B \rightarrow C$: 2 hops; lower loss
- But does this happen in practice?

Hop Count and Throughput

- [DeCouto et al., 2003]; indoor predecessor to Roofnet
- 134-byte packets; theoretical 1-hop max = 451 pkts/s


Hop Count and Throughput (cont'd)

- [DeCouto et al., 2003]
- Shortest path not highest throughput
- 3-hop paths span wide range of throughputs

Wireless Link Loss Rates

(a) Pairwise delivery ratios at 1 mW

- [DeCouto et al., 2003]
- Vertical bar ends: loss rates in each direction on one link
- Large fraction of links very lossy in at least one direction
- Asymmetric loss rates
- Wide range of loss rates

Link Metric: Straw Men

- Discard links with loss rate above a threshold?
 - Risks disconnecting nodes!
- Product of link delivery ratios as probability of end-to-end delivery?
 - Ignores inter-hop interference: prefers 2-hop route with 0% loss over 1-hop with 10% loss, when latter is nearly double the throughput
- Throughput of highest-loss link on path?

– Also ignores inter-hop interference

ETX: Expected Transmissions

- Link ETX: predicted number of transmissions
- Path ETX: sum of link ETX values on path
- Calculate link ETX using forward and reverse delivery ratios
- To avoid retry, data packet and ACK must succeed
- ETX = $1 / (d_f x d_r)$

 $-d_f =$ forward delivery ratio (data packet) $-d_r =$ reverse delivery ratio (ACK packet)

ETX: Expected Transmissions

- Link ETX: predicted number of transmissions
- Path ETX: sum of link ETX values on path
- Calculate link ETX using forward and

Does path ETX allow overlapping transmissions along a path? Does path ETX offer equal accuracy for paths of all lengths?

- d_f = forward delivery ratio (data packet)

 $-d_r$ = reverse delivery ratio (ACK packet)

ETX: Measuring Loss Rates

- Periodically send broadcast probe packets of fixed size
- All nodes know sending rate of probes
- All nodes compute loss rate based on how many arrive per measurement interval
- Nodes enclose loss measurements in their probes (B tells A loss from A→B)

Multi-Rate Radios

- ETX assumes all radios run at same bitrate
- 802.11b rates: {1, 2, 5.5, 11} Mbps
- Cannot compare 2 transmissions at 1 Mbps with 2 at 2 Mbps
- Solution: use time spent rather than transmission count

ETT: Expected Transmission Time

- ACKs always sent at 1 Mbps
- Data packets typically 1500 bytes
- Nodes send 1500-byte broadcast probes at every bit rate b (delivery ratio: d_{f,b})
- Nodes send 60-byte (min size) broadcast probes at 1 Mbps (delivery ratio: d_r)
- At each bit-rate b, $ETX_b = 1 / (d_{f,b} \times d_r)$
- For packet of length S, $ETT_b = (S/b) \times ETX$
- Link ETT = min_b (ETT_b)

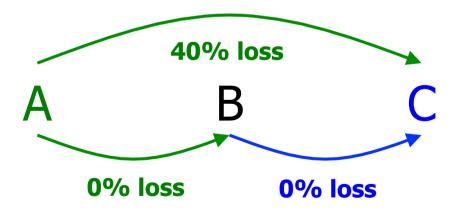
ETT: Assumptions

• Path throughput t given by:

$$t = \frac{1}{\sum_{i} \frac{1}{t_i}}$$

- where $t_i =$ throughput of hop I

- Underestimates throughput for long paths

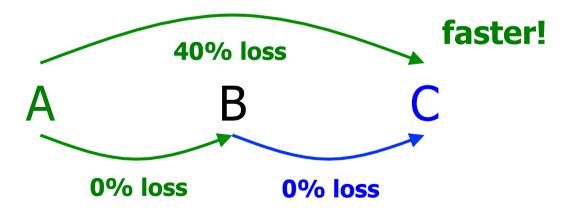

 distant nodes can send simultaneously
- Overestimates throughput for paths with heavy "self-collisions"

Auto Bit-Rate Selection

 Radio firmware automatically chooses bitrate among {1, 2, 5.5, 11} Mbps

– avoids bit-rates with high loss rates

• Undesirable policy!



Auto Bit-Rate Selection

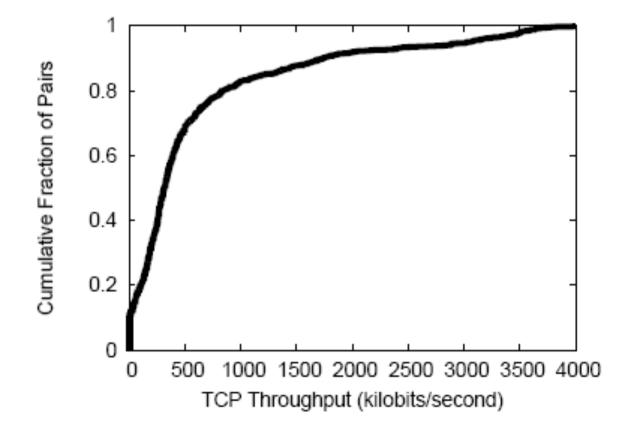
 Radio firmware automatically chooses bitrate among {1, 2, 5.5, 11} Mbps

- avoids bit-rates with high loss rates

• Undesirable policy!

Auto Bit-Rate Selection (cont'd)

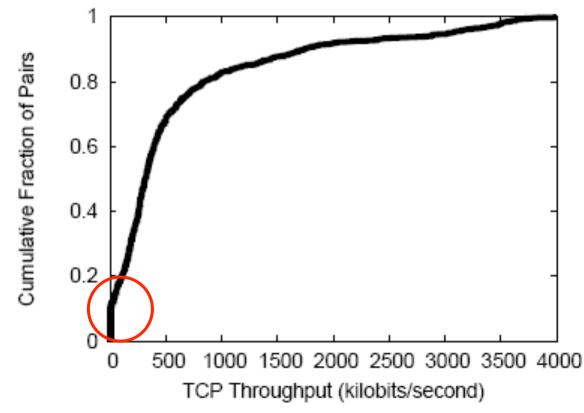
- Ideally, could choose exact bit-rate that at given SNR, gives highest throughput and nearly zero loss
- Instead, 802.11b bit-rates quantized at roughly powers of two
- Result: over single hop, bit-rate 2R with up to 50% loss always higher-throughput than bit-rate R!


Auto Bit-Rate Selection in RoofNet: SampleRate

- Samples delivery rates of actual data packets using 802.11 retransmit indication
- Occasionally sends packets at rates other than current rate
- Sends most packets at rate predicted to offer best throughput (as with ETT)
- Adjusts per-packet bit-rate faster than ETT
 - only 1 hop of information required
 - delivery ratio estimates not periodic, but perpacket


RoofNet Evaluation

- TCP always single flow at a time
- Multi-hop: 15-second, 1-way bulk TCP transfers between all pairs of nodes
- Single-hop: same, direct link between all pairs of nodes
- Loss matrix: loss rate between all pairs for 1500-byte broadcasts at each bit-rate
- No RTS/CTS (more later!)
- Background traffic: users always active


End-to-End Throughput

End-to-End Throughput

End-to-End Throughput

- Mean: 627 kbps; median: 400 kbps
- Routing queries fail for 10% of pairs; link losses, retries fail

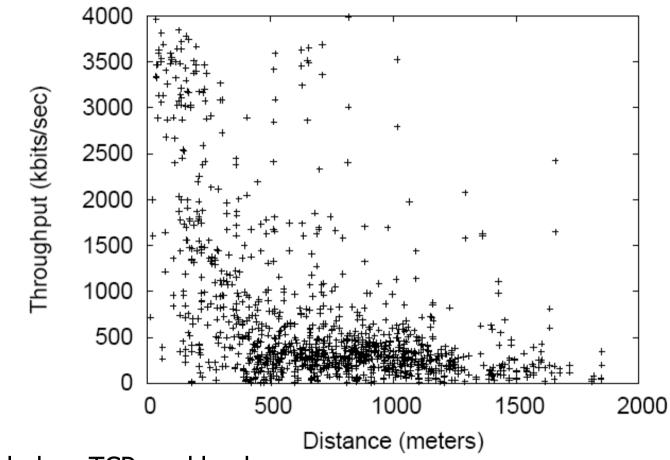
Hop Count, Throughput, Latency

Hops	Number of Pairs	Throughput (kbits/sec)	Latency (ms)
1	158	2451	14
2	303	771	26
3	301	362	45
4	223	266	50
5	120	210	60
6	43	272	100
7	33	181	83
8	14	159	119
9	4	175	182
10	1	182	218
no route	132	0	_
Avg: 2.9	Total: 1332	Avg: 627	Avg: 39

 Neighboring nodes interfere with one another

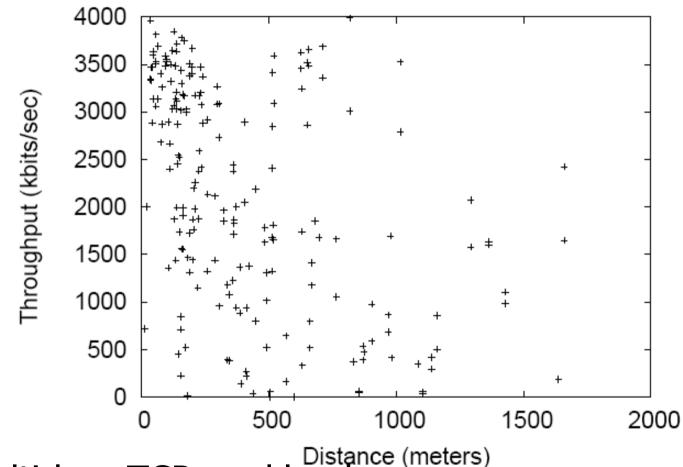
Theoretical Max Throughput (Lossless)

	Max Throughput			
	(kbits/sec)			
Rate	1 Hop	2 Hops	$3 { m Hops}$	
1	890	445	297	
2	1634	817	545	
5.5	3435	1718	1145	
11	5013	2506	1671	

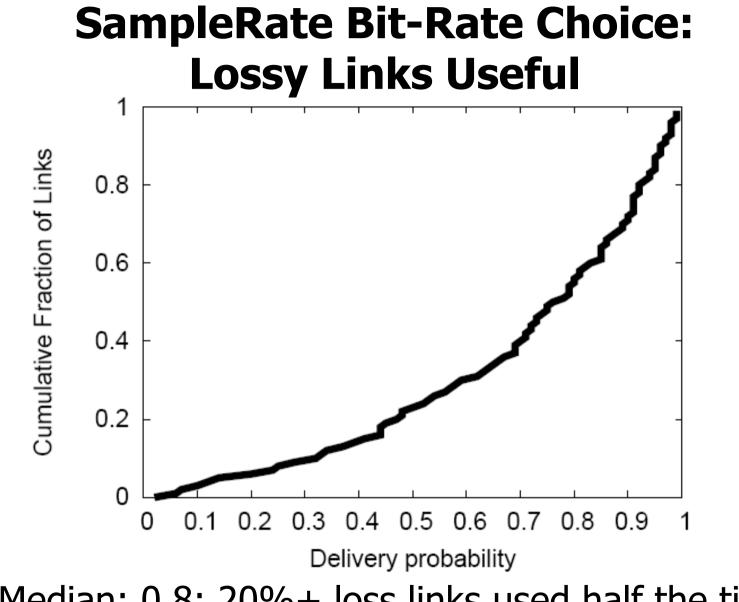

- Computed analytically, assuming hops don't forward in parallel
- One-hop routes seem to use 5.5 Mbps
- Longer routes far slower than predicted

User Experience: Mean Throughput from Gateway

Hops	Number	Throughput	Latency
	of nodes	(kbits/sec)	(ms)
1	12	2752	9
2	8	940	19
3	5	552	27
4	7	379	43
5	1	89	37
Avg: 2.3	Total: 33	Avg: 1395	Avg: 22


- Latency: 84-byte ping; interactive use OK
- Acceptable throughput, even 4 hops out

Link Quality vs. Distance: All Links

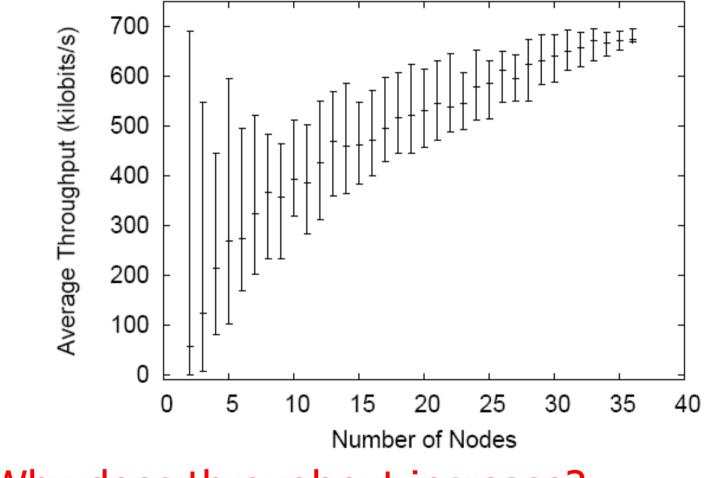


- Single-hop TCP workload
- Many links ca. 500 kbps of varying lengths
- A few short, high-throughput links; a very few long, high-throughput links

Link Quality vs. Distance: Srcr Links

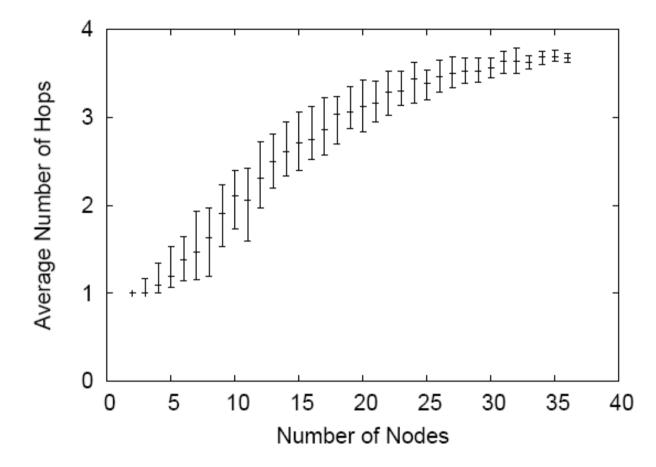
- Multi-hop TCP workload
- Srcr favors short, fast links

• Median: 0.8; 20%+ loss links used half the time

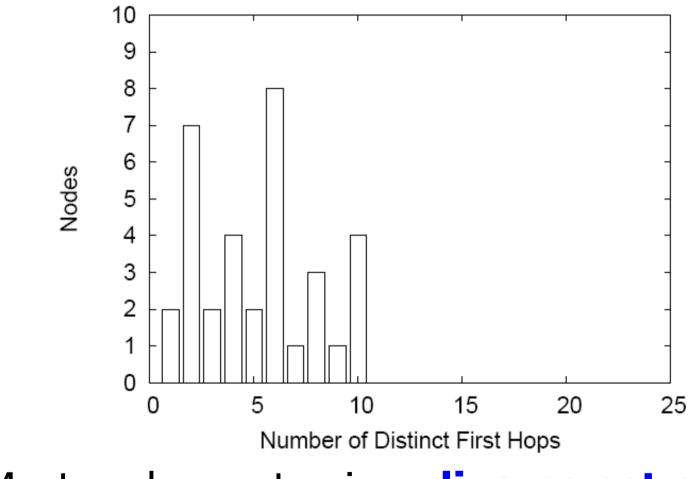

Density Evaluation

- Want to evaluate Roofnet with varying numbers of nodes (== varying density)
- One-hop TCP throughput known by measurement
- Using path ETT formula, can estimate multi-hop TCP throughput for any path
- Choose random node subsets, compute estimated throughput using only subset member nodes in paths

Node Density and Connectivity ŢŢŦŢŢŢŦŦŦ 1 Fraction of Pairs Connected 0.8 0.6 0.4 0.2 0 0 5 10 15 20 25 30 35 40 Number of Nodes


- 25th, 50th, 75th %iles over 100 random subsets
- Connected = >= 1 kbyte / s throughput

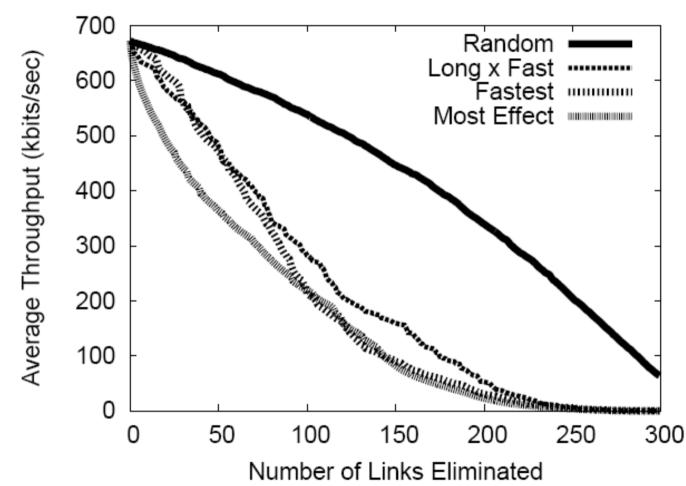
Node Density and Throughput


Why does throughput increase?

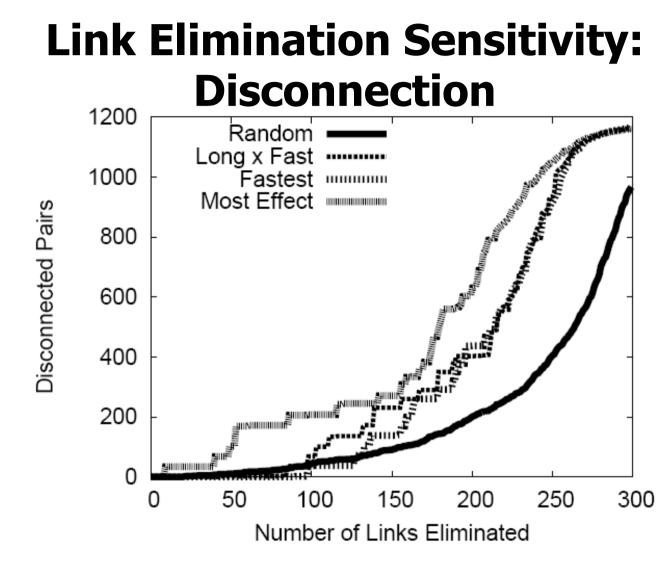
Node Density and Path Length

 Increasing density increases diversity: adds short, low-loss links!

Diversity in Node Use: "Meshness"

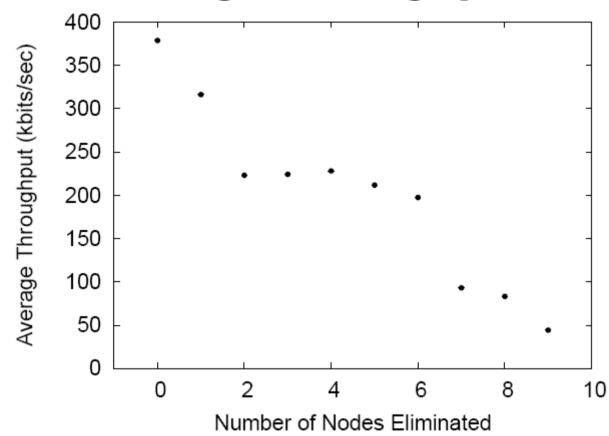


 Most nodes route via a diverse set of neighbors


Mesh Robustness Evaluation: Sensitivity to Eliminated Links

- Know single-hop TCP throughputs for all node pairs
- Try eliminating links, compute multi-hop throughputs analytically (ETT path equation)
- Orders of link removal:
 - Most Effect: link that decreases average throughput most
 - Long x Fast: link with greatest product distance x tput
 - Fastest: link with greatest throughput
 - Random: mean of 40 simulations, deleted in random order

Link Elimination Sensitivity: Average Throughput



- Best few links matter a lot
- Over 50 links lost before throughput halved

 Long & fast links more essential to connectivity than fastest links

Node Elimination Sensitivity: Average Throughput

- Eliminate nodes that appear in the most all-pairs routes
- First two eliminations reduce throughput by 43%; thereafter more gradual

Why not Access Points?

- Mesh networking is far from perfect
 - Complexity of multi-hop routing and path selection, vs. single-hop access point choice
 - Interference between neighboring forwarding hops
 - Loss substantially increases with path length
- Could we do better with same hardware?
 - Place nodes as before
 - Same goal: Internet access for all nodes
 - Constrain topology to access point case: all nodes one hop from an Internet gateway

Evaluation Strategy: Multi-Hop vs. AP

- Add gateways to the network one by one
- "Optimal": at each step, add gateway that maximizes number of nodes that becomes newly connected with non-zero throughput
- "Random": use randomly selected set of gateways of designated size; repeat for 250 trials; take median set (by # of connected nodes)
- Break ties by mean throughput

Optimal Gateway Placement

-	Multi-Hop		Single-Hop	
GWs	Conn	Throughput	Conn	Throughput
		(kbits/sec)		(kbits/sec)
1	37	781	23	174
2	37	1450	32	824
3	37	1871	34	1102
4	37	2131	36	1140
5	37	2355	37	1364
6	37	2450	37	2123
7	37	2529	37	2312
8	37	2614	37	2475
9	37	2702	37	2564
10	37	2795	37	2659
:	:	:	:	
15	37	3197	37	3180
20	37	3508	37	3476
25	37	3721	37	3658

- Complete coverage: **5 GWs in single-hop; 1 GW in multi-hop**
- Multi-hop offers greater throughput at any number of gateways (why?)

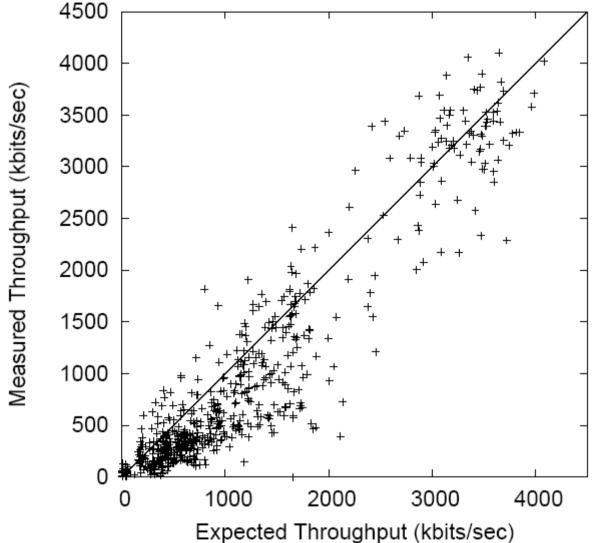
Random Gateway Placement

		Multi-Hop		Single-Hop	
	GWs	Conn	Throughput	Conn	Throughput
			(kbits/sec)		(kbits/sec)
	1	34	760	10	535
	2	35	1051	17	585
	3	35	1485	22	900
	4	35	2021	25	1260
	5	36	1565	28	1221
	6	36	1954	30	1192
	7	36	1931	31	1662
	8	37	1447	32	1579
	9	37	1700	33	1627
	10	37	1945	34	1689
	:	:		:	:
	15	37	2305	36	1714
	20	37	2509	36	2695
	25	37	2703	37	2317

• Complete coverage: 8 GWs for multi-hop; 25 for single-hop

Random Gateway Placement

		Multi-Hop		Single-Hop	
	GWs	Conn	Throughput	Conn	Throughput
			(kbits/sec)		(kbits/sec)
_	1	94	760	10	E9E


For few gateways, random placement with multi-hop outpérforms optimal placement with single-hop

For many gateways, optimal placement with single-hop outperforms random placement with multi-hop

:	:	:	:	:
$\frac{15}{15}$	37	.2305	36	. 1714
$\frac{10}{20}$	37	2509	36	2695
$\overline{25}$	37	2703	37	2317

 Complete coverage: 8 GWs for multi-hop; 25 for single-hop

Forwarding Creates Interference

- Multi-hop throughput less than predicted
- Reason: interference between successive forwarding hops

RTS/CTS Don't Prevent Interference

Hops	Pairs	Average Throughput	
		without	with
1	3	2094	1735
2	5	836	725
3	6	314	312

- Mean throughputs for node pairs separated by paths of various lengths
- Single-hop: RTS/CTS just overhead
- Multi-hop: RTS/CTS don't improve throughput