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Context: Mesh Networks

e Ad hoc networking
— Mobile, highly dynamic topologies
— Chief metrics: routing protocol overhead, packet delivery success
rate, hop count

— Largely evaluated in simulation

e Sensornets
— Fixed, resource-impoverished nodes
— Chief metric: energy consumption

e Mesh networks
— Fixed, PC-class nodes
— Motivation: shared Internet access in community
— Chief metric: TCP throughput
— Today: Roofnet, a real, deployed mesh network



Context: Mesh Networks

e Ad hoc networking
— Mobile, highly dynamic topologies
— Chief metrics: routing protocol overhead, packet delivery success
rate hop count

Why a muIt| hop mesh vs. single-hop
access points?

e Mesh networks
— Fixed, PC-class nodes
— Motivation: shared Internet access in community
— Chief metric: TCP throughput
— Today: Roofnet, a real, deployed mesh network



Roofnet: Design Choices

Volunteer users host nodes at home

— Open participation without central planning

— No central control over topology

Omni antennas

— Ease of installation by naive user: no choice of neighbors or

aiming

— Links interfere, likely low quality

Multi-hop routing (not 1-hop APs)

— Potentially better coverage, path diversity

— Routing more complex, end-to-end loss higher
Goal: high TCP throughput

— Reachability alone less challenging on (nearly) static network



Roofnet: Design Choices

e Volunteer users host nodes at home
— Open participation without central planning
— No central control over topology

Stated non-goals for paper:

- Throughput of multiple flows

- Scalability in number of nodes

- Design of routing protocols

- Performance change over time

- Topology change as users join / leave network



Roofnet Deployment
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Each node: PC, 802.11b card, roof-
mounted omni antenna



Node Addresses

e Autoconfiguration of wireless interface IP
address

— High byte: private (e.g., net 10) prefix
— Roofnet nodes not reachable from Internet
— Low 3 bytes are low 3 bytes of Ethernet MAC address

o NAT between wired Ethernet and Roofnet
— Private addresses (net 192.168.1) for wired hosts

— No address allocation coordination across Roofnet
nodes required

— Roofnet hosts can’t connect to one another; only to
Internet



Internet Gateways

e Roofnet node tries DHCP on wired Ethernet;
then tries reaching Internet hosts; success
indicates node is an Internet gateway

e NAT between wireless interface and wired
Internet gateway interface

— Why needed?

e Roofnet nodes track gateway used for each
open TCP connection they originate

— If best gateway changes, open connections continue
to use gateway they already do

— Why?



Routing Protocol

Srcr: DSR-like protocol
Each link has metric (not necessarily 1!)

Data packets contain full source routes (robust
against loops; metric may be dynamic)
Nodes keep database of link metrics

— Nodes write current link metric into source route of all
packets they forward

— Nodes flood route queries when cannot find route;
queries accumulate link metrics

— Nodes cache link metrics overheard in queries/
responses

Run Dijkstra’ s algorithm over database to
compute source routes



Link Characteristics

e Wired networks
— Wired link offers bit error rate 10-12
— Links “all” (connected) or “nothing” (cut)

o Wireless networks
— Bit error rate depends on SNR at receiver
— Dependent on distance, attenuation, &c.

— Ideal: radio mimics “all or nothing” links; beyond
threshold distance, bit error rate approaches 1

— Reality: links at every bit error (packet loss) rate
— Are all hops created equal?
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Varying Link Loss Rates: Example

909% loss

A B C
~—_ T

10% loss 10% loss

e A > C: 1 hop; high loss
e A> B > C: 2 hops; lower loss

e But does this happen in practice?
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Hop Count and Throughput
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e [DeCouto et al., 2003]; indoor predecessor to Roofnet
e 134-byte packets; theoretical 1-hop max = 451 pkts/s
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Hop Count and Throughput (cont’ d)

Run R1: I mW, 134-byte packets
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e [DeCouto et al., 2003]
e Shortest path not highest throughput
e 3-hop paths span wide range of throughputs
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Delivery Ratio

Wireless Link Loss Rates

(a) Pairwise delivery ratios at 1 mW
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Link number

[DeCouto et al., 2003]
Vertical bar ends: loss rates in each direction on one link

Large fraction of links very lossy in at least one direction

Asymmetric loss rates
Wide range of loss rates
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Link Metric: Straw Men

e Discard links with loss rate above a
threshold?

— Risks disconnecting nodes!
e Product of link delivery ratios as
probability of end-to-end delivery?

— Ignores inter-hop interference: prefers 2-hop
route with 0% loss over 1-hop with 10% loss,
when latter is nearly double the throughput

e Throughput of highest-loss link on path?
— Also ignores inter-hop interference
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ETX: Expected Transmissions

e Link ETX: predicted number of
transmissions

e Path ETX: sum of link ETX values on path

e Calculate link ETX using forward and
reverse delivery ratios

e To avoid retry, data packet and ACK must
succeed

e ETX = 1/ (d; x d.)
— d. = forward delivery ratio (data packet)
—d. = reverse delivery ratio (ACK packet) 16



ETX: Expected Transmissions

e Link ETX: predicted number of
transmissions

e Path ETX: sum of link ETX values on path
. CaIcuIate Iink ETX using forward and

" Does path ETX allow overla _;meg
transmissions along a path-

Does path ETX offer equal accuracy for
9 paths of all lengths?

=T \~T " %77
— d; = forward delivery ratio (data packet)

—d, = reverse delivery ratio (ACK packet) 17



ETX: Measuring Loss Rates

e Periodically send broadcast probe packets
of fixed size

e All nodes know sending rate of probes

e All nodes compute loss rate based on how
many arrive per measurement interval

e Nodes enclose loss measurements in their
probes (B tells A loss from A->B)

18



Multi-Rate Radios

e ETX assumes all radios run at same bit-
rate

e 802.11b rates: {1, 2, 5.5, 11} Mbps

e Cannot compare 2 transmissions at 1
Mbps with 2 at 2 Mbps

e Solution: use time spent rather than
transmission count

19



ETT: Expected Transmission Time

ACKs always sent at 1 Mbps
Data packets typically 1500 bytes

Nodes send 1500-byte broadcast probes at
every bit rate b (delivery ratio: d; )

Nodes send 60-byte (min size) broadcast probes
at 1 Mbps (delivery ratio: d,)

At each bit-rate b, ETX, =1/ (d;,, x d,)
For packet of length S, ETT, = (S/b) x ETX
Link ETT = min, (ETT,)
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ETT: Assumptions

e Path throughput t given by:

1
t = ——

(]

1
1

— where t. = throughput of hop I
e Underestimates throughput for long paths
— distant nodes can send simultaneously

e Overestimates throughput for paths with
heavy “self-collisions”
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Auto Bit-Rate Selection

e Radio firmware automatically chooses bit-
rate among {1, 2, 5.5, 11} Mbps

— avoids bit-rates with high loss rates
e Undesirable policy!

40% loss

A B C
~—_ T

0% loss 0% loss
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Auto Bit-Rate Selection

e Radio firmware automatically chooses bit-
rate among {1, 2, 5.5, 11} Mbps

— avoids bit-rates with high loss rates
e Undesirable policy!

|
40% loss faster!

A B C
~—_ T

0% loss 0% loss
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Auto Bit-Rate Selection (cont’ d)

e Ideally, could choose exact bit-rate that at
given SNR, gives highest throughput and
nearly zero loss

e Instead, 802.11b bit-rates quantized at
roughly powers of two

e Result: over single hop, bit-rate 2R with
up to 50% loss always higher-throughput
than bit-rate R!
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Auto Bit-Rate Selection in RoofNet:
SampleRate

e Samples delivery rates of actual data
packets using 802.11 retransmit indication

e Occasionally sends packets at rates other
than current rate

e Sends most packets at rate predicted to
offer best throughput (as with ETT)

o Adjusts per-packet bit-rate faster than ETT
—only 1 hop of information required

— delivery ratio estimates not periodic, but per-
packet

25



RoofNet Evaluation

o TCP always single flow at a time

e Multi-hop: 15-second, 1-way bulk TCP
transfers between all pairs of nodes

e Single-hop: same, direct link between all
pairs of nodes

e Loss matrix: loss rate between all pairs for
1500-byte broadcasts at each bit-rate

e No RTS/CTS (more later!)
e Background traffic: users always active

26



End-to-End Throughput

Cumulative Fraction of Pairs
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TCP Throughput (kilobits/second)
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End-to-End Throughput

Cumulative Fraction of Pairs
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End-to-End Throughput
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TCP Throughput (kilobits/second)

Mean: 627 kbps; median: 400 kbps

ch_)Iuting queries fail for 10% of pairs; link losses, retries
al 29



Hop Count, Throughput, Latency

Hops Number of | Throughput | Latency
Pairs | (kbits/sec) (ms)

1 158 2451 14

2 303 771 26

3 301 362 45

4 223 266 50

5 120 210 60

6 43 272 100

7 33 181 83

8 14 159 119

9 4 175 182

10 1 182 218
no route 132 0 -
Avg: 2.9 | Total: 1332 Avg: 627 | Avg: 39

e Neighboring nodes interfere with one
another



Theoretical Max Throughput (Lossless)

Max Throughput

(kbits /sec)
Rate | 1 Hop | 2 Hops | 3 Hops
1 390 445 297
2 1634 3817 545
5.5 3435 1718 1145
11 5013 2506 1671

e Computed analytically, assuming hops don’ t forward in

parallel

e One-hop routes seem to use 5.5 Mbps
e Longer routes far slower than predicted



User Experience:
Mean Throughput from Gateway

Hops Number | Throughput | Latency
of nodes (kbits/sec) (ms)

| 12 2752 9

2 S 940 19

3 5 552 27

4 7 379 43

5 1 89 37
Avg: 2.3 | Total: 33 Avg: 1395 | Avg: 22

e | atency: 84-byte ping; interactive use OK
e Acceptable throughput, even 4 hops out
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Link Quality vs. Distance: All Links
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e Single-hop TCP workload

e Many links ca. 500 kbps of varying lengths

e A few short, high-throughput links; a very few long, high-
throughput links
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Link Quality vs. Distance: Srcr Links
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e Multi-hop TCP workloa
e Srcr favors short, fast links
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SampleRate Bit-Rate Choice:
Lossy Links Useful
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Median: 0.8; 20%+ loss links used half the time
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Density Evaluation

e Want to evaluate Roofnet with varying
numbers of nodes (== varying density)

e One-hop TCP throughput known by
measurement

e Using path ETT formula, can estimate
multi-hop TCP throughput for any path

e Choose random node subsets, compute
estimated throughput using only subset
member nodes in paths
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Node Densily anql Clonlnelctivity
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e 25t 50th 75th %iles over 100 random subsets
e Connected = >= 1 kbyte / s throughput




Node Density and Throughput
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e Why does throughput increase?




Node Density and Path Length
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Increasing density increases diversity: adds short,

low-loss links!
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Diversity in Node Use: “Meshness”
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Mesh Robusthess Evaluation:
Sensitivity to Eliminated Links

e Know single-hop TCP throughputs for all node
pairs

e Try eliminating links, compute multi-hop
throughputs analytically (ETT path equation)

e Orders of link removal:

— Most Effect: link that decreases average throughput
most

— Long x Fast: link with greatest product distance x tput
— Fastest: link with greatest throughput

— Random: mean of 40 simulations, deleted in random
order
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Link Elimination Sensitivity:

Average Throughput
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e Best few links matter a lot

e Over 50 links lost before throughput halved
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Link Elimination Sensitivity:

Discon nectlon
Random — ' o
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e Long & fast links more essential to
connectivity than fastest links

300

43



Node Elimination Sensitivity:
Average Throughput
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e Eliminate nodes that appear in the most all-pairs routes

e First two eliminations reduce throughput by 43%;
thereafter more gradual 44



Why not Access Points?

o Mesh networking is far from perfect

— Complexity of multi-hop routing and path selection,
vs. single-hop access point choice

— Interference between neighboring forwarding hops
— Loss substantially increases with path length

e Could we do better with same hardware?
— Place nodes as before
— Same goal: Internet access for all nodes

— Constrain topology to access point case: all nodes one
hop from an Internet gateway
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Evaluation Strategy: Multi-Hop vs. AP

o Add gateways to the network one by one

« “Optimal™: at each step, add gateway that
maximizes number of nodes that becomes

newly connected with non-zero
throughput

« “Random™: use randomly selected set of
gateways of designated size; repeat for
250 trials; take median set (by # of
connected nodes)

e Break ties by mean throughput
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Optimal Gateway Placement

Multi-Hop Single-Hop

GWs | Conn | Throughput [ Conn | Throughput
(kbits/sec) (kbits/sec)

| 37 781 23 174
2 37 1450 32 324
3 37 1871 34 1102
1 37 2131 36 1140
5) 37 2355 37 1364
6 37 2450 37 2123
7 37 2529 37 2312
8 37 2614 37 2475
9 37 2702 37 2564
10 37 2795 37 2659
15 37 3197 37 3180
20 37 3508 37 3476
25 37 3721 37 3658

e Complete coverage: 5 GWs in single-hop; 1 GW in multi-hop

e Multi-hop offers greater throughput at any number of
gateways (why?)



Random Gateway Placement

Multi-Hop Single-Hop

GWs | Conn | Throughput [ Conn | Throughput
(kbits/sec) (kbits/sec)

1 34 760 10 535
2 35 1051 L7 H&5
3 35 1485 22 900
4 35 2021 25 1260
5 36 1565 28 1221
O 36 1954 30 1192
7 36 1931 31 1662
8 37 1447 32 1579
9 37 L1700 33 1627
10 37 1945 34 1689
15 37 2305 36 1714
20 37 2509 36 2695
25 37 2703 37 2317

e Complete coverage: 8 GWs for multi-hop; 25
for single-hop "



Random Gateway Placement

Multi-Hop Single-Hop
GWs | Conn | Throughput | Conn | Throughput
(kbits/sec) (kbits/sec)
=0 1.0 | [ T

1 D A |

For few gateways, random placement with
multi-hop outperf'orms optimal placement

with single-hop
For many gateways, optimal placement
with single-hoE outperforms random

placement with multi-hop
15 37 2305 36 1714
20 37 2509 36 2695
25 37 2703 37 2317

e Complete coverage: 8 GWs for multi-hop; 25
for single-hop "



Forwarding Creates Interference
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e Multi-hop throughput less than predicted
e Reason: interference between successive forwarding hops 50



RTS/CTS Don’ t Prevent Interference

Hops | Pairs | Average Throughput
without with

1 3 2094 1735

2 D 336 725

3 6 314 312

e Mean throughputs for node pairs separated by
paths of various lengths

e Single-hop: RTS/CTS just overhead
e Multi-hop: RTS/CTS don’ t improve throughput



