
Xen and the Art of Virtualization

Nikola Gvozdiev
Georgian Mihaila

Outline

Xen and the Art of Virtualization – Ian Pratt et al.

I. The Art of Virtualization

II. Xen, goals and design

III. Xen evaluation

IV. The future looks bright

Typical system components

3

Hardware

Operating System

Process
1

Process
2

Process
3

Process
4

Basic idea

4

Linux Mac OS X Windows XP

Hardware

Virtualization layer

Some definitions

• Host/guest: machine or software

• Domain: running VM + guest OS executes

• Hypervisor or Virtual Machine Monitor (VMM):
software or firmware that creates a virtual
machine on the host hardware

5

Why virtualize?

• More resources, subdivide for better use

• 1+ app(s)/OS/server:

servers sys admin complexity & time

• Scarce resources & unwilling cooperation:

resource containers & accountability

6

Some applications

• Resource optimization

• Infrastructure as a Service (IaaS)

• Application mobility/migration

• Containers/virus/worm (sandboxing)

7

Types of hardware virtualization
(software, memory, storage, data, network)

• Full virtualization (VMware)

– run OS/software unmodified

• Partial virtualization

– software may need modification to run

• Paravirtualization (Xen)

– software unmodified runs in modified OS as
separate system

8

Outline

Xen and the Art of Virtualization – Ian Pratt et al.

I. The Art of Virtualization

II. Xen, goals and design

III. Xen evaluation

IV. The future looks bright

Virtualization, at what cost?

• Specialized hardware $

• No commodity OS ♥

• 100% binary compatibility, speed

• Speed => security ☠ or functionality

• Resource isolation/performance guarantees?

• So far, best effort provisioning => risk DoS

10

Xen goals

• x86 architecture => $+=0

• Commodity OS (Linux, BSD, XP) => ♥++

• Share resources safely & in a managed fashion => ☠-- ♥++

• No performance/functionality sacrifice => ♥++

• Up to 100 VM instances on the same server => ?++

• (Free -GNU/GPL- => $--)

11

The Xen paper

Focus on the VMM design

• How to multiplex physical resources at the
granularity of an entire OS and provide
performance isolation between guest OSes?

Prototype

• Full Linux, partial Win XP, ongoing NetBSD port

12

The Virtual Machine Interface (VMI)

13

Typical System call

14

User
Program

OS Kernel

call read()

read() returns

Kernel
performing read

Program
executing

Program
blocked

Program
executing

Virtualizing CPU

OS is most privileged hypervisor

Applications

guest OS

Hypervisor

x86

15

Ring 3

Ring 2

Ring 1

Ring 0

Control transfer

16

Domain (guest OS)

- Hypercall interface (synchronous software trap)

Xen (VMM)

- Event mechanism (asynchronous)

Hypercall

Event

High level view

User
program

Kernel

DriverCPU/Driver

Kernel

17

Sys call (set instructions)

Translate sys call to procedure
call (set instructions)

Write device registers
to initiate I/O

Put data from registers
to where it is needed

Return - resume

User mode (low privilege)

Kernel mode (high privilege)

*Loaded at boot time

High level view

User
program

Kernel

DriverCPU/Driver

Kernel

18

Sys call (set instructions)

Translate sys call to procedure
call (set instructions)

Write device registers
to initiate I/O

Put data from registers
to where it is needed

Return - resume

User mode (low privilege)

Kernel mode (high privilege)

*Loaded at boot time

Code executing in Ring 0 silently fails

Exceptions

• Typical exceptions

– System calls: register ‘fast’ exception handler
(in Exception Vector Table) which is accessed
directly by the processor, without indirecting
via ring 0

– Page faults: code executing in ring 0 only can
read the faulting address from register CR2,
therefore faults are delivered via Xen

19

Virtualizing CPU cont’d

• CPU scheduling

– Borrowed Virtual Time (BVT) scheduling
algorithm

Work-conserving

Low-latency wake-up (dispatch)

Timers : real, virtual, wall-clock

20

Memory mapping (relocation) cont’d

21

Shared Kernel Memory

Process 1 Process 2 Process 3

0xFFFF FFFF

0xC000 0000

0xBFFF FFFF

Virtual Memory

Addresses

0x0000 0000

1GB

3GB

Virtualizing memory management
(cont’d)

• x86 architecture

– No software managed TLB (walk the page table structure
in hardware to recover misses) and no tags (flush TLB for
address space switch)

• Guest OSes are responsible for allocating and managing the
hardware page tables, minimizing Xen involvement

• Xen exists in a 64MB section at the top of every address
space, avoiding a TLB flush when entering and leaving the
hypervisor

22

Xen

Guest OS

Pool of
reserved
memory

I need a new
page table

23

Xen

Guest OS

Pool of
reserved
memory

I’ll get it
myself

24

Xen

Guest OS

Pool of
reserved
memory

Xen

Register

25

Xen

Guest OS

Pool of
reserved
memory

Xen

UpdateRead

Write (batch, up to 8 MB)

26

Xen

Guest OS

Pool of
reserved
memory

Xen

Memory page flipped

• Reduce memory footprint
• Avoid copies

27

Virtualizing Device I/O
(disk, network interface)

• Xen exposes device abstractions

• I/O data is transferred to and from each domain via
Xen, using shared memory, asynchronous buffer
descriptor rings

28

Data Transfer : I/O Rings

29

Xen design

30

Outline

Xen and the Art of Virtualization – Ian Pratt et al.

I. The Art of Virtualization

II. Xen, goals and design

III. Xen evaluation

IV. The future looks bright

Cost of porting an OS

32

In both OSes, the architecture-specific sections
are effectively a port of the x86 code to their
paravirtualized architecture.

Evaluation

• Based on Linux 2.4.21 (neither XP nor NetBSD
fully functional)

• Thoroughly compared to 2 other systems

– VMware Workstation (binary translation)

– UML (run Linux as a Linux process)

• Performs better than solutions with restrictive
licenses (ESX Server)

33

Relative Performance

CPU-bound tasks

• Relatively easy for all VMMs

• Little interaction with the OS

Legend

L – Linux

X – XenoLinux

V – VMware

U – User-mode Linux

34

Relative Performance

Tasks with more I/O

• About 7% of the time spent
in OS doing I/O and memory
management

• This portion of time gets
expanded for each VMM
but to a different extent

35

Relative Performance

36

Microbenchmarks

• As expected fork, exec and sh require large number
of page updates which slow things down

• On the up side these can be batched (up to 8MB of
address space constructed per hypercall)

37

Microbenchmarks

• Hmmm …. no calls into XEN yet …

38

Microbenchmarks

• Overhead due to a hypercall when switching context
in a guest OS (in order to change base of page table)

• The larger the working set the smaller the relative
overhead

39

Microbenchmarks

• 2 transitions into XEN

– One for the page fault handler

– One to actually get the page

40

Microbenchmarks

• Page flipping really pays off – no unnecessary data
copying

• More overhead for smaller packets – we still need to
deal with every header

41

Concurrent VMs
• Unexpectedly low

SMP performance
for 1 instance of
Apache

• As expected
adding another
domain leads to a
sharp jump in
performance
under XEN

• More domains –
more overhead

42

Concurrent VMs
• Performance

differentiation
works as expected
with IR

• But fails with OLTP

• Probably due to
inefficiencies with
the disk
scheduling
algorithm

• Bands matter !!!

43

Isolation

Hardware

Hypervisor (XEN)

SPEC
WEB99

Guest
OS

OSDB-IR

Guest
OS

Guest
OS

Guest
OS

• Run uncooperative
user applications, see
if they bring down the
system

• 2 “bad” domains vs 2
“good” ones

• XEN delivers good
performance even in
this case

• What about an
uncooperative OS ?

44

Scalability

• Very low footprint per domain (4 - 6MB memory, 20KB
state)

• Benchmark is compute-bound and Linux assigns long time
slices, XEN needs some tweaking

• Even without it does pretty well (but no absolute values)
45

Criticism

• No comparison between fundamentally similar
techniques (e.g. the big IBM mainframe)

• Memory footprint almost not mentioned

• Most tests performed with limited number of
domains, while the paper’s main goal is to
demonstrate performance with 100 domains

• Benchmarks used relevant today ?

46

Outline

Xen and the Art of Virtualization – Ian Pratt et al.

I. The Art of Virtualization

II. Xen, goals and design

III. Xen evaluation

IV. The future looks bright

Related work

• Started by IBM in the 70s

• Resurgence lately (at time of publication) as
hardware got fast enough to run multiple OS

• Unlike in other solutions isolation/security is
“implicitly” enforced by the hypervisor

• One of the first attempts at paravirtualization the
other two are:
– IBM zSeries mainframes (Linux)

– Denali (quite a bit different)

48

Xen vs. Denali ?

49

Feature Xen Denali

VM 100 1000

Target existing ABI Yes No (does not fully support x86
segmentation, used in Net BSD,

Linux, Windows XP)

Supports application multiplexing Yes No (1 app/OS)

Supports multiple address spaces Yes No (prototype virtual MMU
developed, helping Denali) => no

evaluation

Memory management support at the
virtualization layer

Yes No (VMM performs all paging to
and from disk)

Performance isolation Yes, each guest OS performs
own paging using guaranteed
memory reservation and disk

allocation

No, malicious VM can encourage
thrashing behavior

Virtualizes namespaces of all machine
resources

No (Secure access control
within hypervisor only)

Yes (resource isolation through
impossible naming)

Future work and impact

• Huge impact of the paper, sparked a lot of
interest, the project is still very much alive

• They did actually complete the XP port, but due
to licensing restrictions it never got published

• Currently only supports Windows as guest if the
hardware supports virtualization

• More recent versions of the project try to push
complexity away from the hypervisor

• However, paravirtualization nowadays is only
used if the hardware does not support
virtualization natively

50

Any questions?

