Xen and the Art of Virtualization

UCL Computer Science

A

i

CS M038 / GZ06

Nikola Gvozdiev
Georgian Mihaila

Outline

Xen and the Art of Virtualization — lan Pratt et al.

|. The Art of Virtualization
lI. Xen, goals and design
lll. Xen evaluation

I\VV. The future looks bright

Typical system components

Process | Process | Process | Process
Operating System

Hardware

Basic idea

“‘.\' = “_ -

-

e

=
i

]

Linux

Mac OS X

Virtualization layer

Hardware

Windows XP

Some definitions

Host/guest: machine or software
Domain: running VM + guest OS executes

Hypervisor or Virtual Machine Monitor (VMM):
software or firmware that creates a virtual
machine on the host hardware

Why virtualize?
 More resources, subdivide for better use

e 1+ app(s)/0OS/server:
servers /. sys admin complexity & time /

* Scarce resources & unwilling cooperation:
resource containers & accountability

Some applications

Resource optimization
Infrastructure as a Service (laaS)
Application mobility/migration

Containers/virus/worm (sandboxing)

Types of hardware virtualization

(software, memory, storage, data, network)

* Full virtualization (VMware)
— run OS/software unmodified

* Partial virtualization
— software may need modification to run

e Paravirtualization (Xen)

— software unmodified runs in modified OS as
separate system

Outline

Xen and the Art of Virtualization — lan Pratt et al.

ll. Xen, goals and design
lll. Xen evaluation
I\VV. The future looks bright

Virtualization, at what cost?

Specialized hardware S /

No commodity OS ¥ \,

100% binary compatibility, speed \,

Speed / - security £\, or functionality \|

Resource isolation/performance guarantees?
So far, best effort provisioning => risk DoS

Xen goals

x86 architecture => $+=0

Commodity OS (Linux, BSD, XP) => ¥++

Share resources safely & in a managed fashion => &&-- ¥++
No performance/functionality sacrifice => ¥++

Up to 100 VM instances on the same server => ?++

(Free -GNU/GPL- => S--)

The Xen paper

Focus on the VMM design

 How to multiplex physical resources at the
granularity of an entire OS and provide
performance isolation between guest OSes?

Prototype
* Full Linux, partial Win XP, ongoing NetBSD port

The Virtual Machine Interface (VMI)

Memory Management

Segmentation Cannot install fully-privileged segment descriptors and cannot overlap with the top end of the linear
address space.

Paging Guest OS has direct read access to hardware page tables, but updates are batched and validated by
the hypervisor. A domain may be allocated discontiguous machine pages.

CPU

Protection Guest OS must run at a lower privilege level than Xen.

Exceptions Guest OS must register a descriptor table for exception handlers with Xen. Aside from page faults.

System Calls

the handlers remain the same.
Guest OS may install a “fast” handler for system calls, allowing direct calls from an application into
its guest OS and avoiding indirecting through Xen on every call.

Interrupts Hardware interrupts are replaced with a lightweight event system.
Time Each guest OS has a timer interface and 1s aware of both ‘real” and “virtual® time.
Device I/O

Network. Disk. etc.

Virtual devices are elegant and sumple to access. Data 1s transferred using asynchronous I/O rings.
An event mechanism replaces hardware interrupts for notifications.

Table 1: The paravirtualized x86 interface.

13

Typical System call

User

Program

Program
executing

Program
blocked

Program
executing

call read()

OS Kernel

Kernel
performing read

read() returns

14

Virtualizing CPU

X86

guest OS

Hypervisor

15

Hypercall

Control transfer

Domain (guest OS)

- Hypercall interface (synchronous software trap)

Event

Xen (VMM)

- Event mechanism (asynchronous)

16

High level view

User

Return - resume program Sys call (set instructions)

User mode (low privilege) / / \
1

Kernel mode (high privilege)

Kernel Kernel
/ /

Translate sys call to procedure
call (set instructions)

N

Driver
/

*Loaded at boot time
device registers
to initiate I/O 17

High level view

User

Return - resume program Sys call (set instructions)

User mode (low privilege) / \
\

7

Kernel mode (high privilege)

Code executing in Ring 0 silently fails

Translate sys call to procedure
call (set instructions)

Put data from reg@i
to where i

Driver

*Loaded at boot time
device registers
to initiate I/0

Exceptions

* Typical exceptions

— System calls: register ‘fast” exception handler
(in Exception Vector Table) which is accessed
directly by the processor, without indirecting
via ring O

— Page faults: code executing in ring 0 only can
read the faulting address from register CR2,
therefore faults are delivered via Xen

Virtualizing CPU cont’d

 CPU scheduling

— Borrowed Virtual Time (BVT) scheduling
algorithm

Work-conserving
Low-latency wake-up (dispatch)

Timers : real, virtual, wall-clock

Memory mapping (relocation) cont’d

OxXFFFF FFFF

0xC000 0000
OxBFFF FFFF

Virtual Memory
Addresses

0x0000 0000

Shared Kernel Memory

Process 1

—

1GB

3GB

21

Virtualizing memory management
(cont’d)

e Xx86 architecture

— No software managed TLB (walk the page table structure
in hardware to recover misses) and no tags (flush TLB for
address space switch)

* Guest OSes are responsible for allocating and managing the
hardware page tables, minimizing Xen involvement

* Xen exists in a 64MB section at the top of every address
space, avoiding a TLB flush when entering and leaving the
hypervisor

Pool of
reserved
memory

Xen

| need a new

page table

Guest OS

23

Xen

Guest OS

I'll get it
myself

Pool of
reserved
memory

24

Xen

Register

25

Pool of
reserved
memory

Xen

Guest OS

Update

Xen

Write (batch, up to 8 MB)

26

Pool of
reserved
memory

Xen

Guest OS

Memory page flipped

Xen

* Reduce memory footprint
* Avoid copies

27

Virtualizing Device I/O

(disk, network interface)

e Xen exposes device abstractions

e |/O data is transferred to and from each domain via
Xen, using shared memory, asynchronous buffer
descriptor rings

Data Transfer : I/O Rings

Reguest Consumer
Private pointer

in Xen *

Reguest Producer

Shared pointer
A/ updated by guest 0S

Data buffer

Response Producer
Shared pointer

updated by Response Consumer
Xen Private pointer
L]

in guest OS5

|:| Request quene - Descriptors queued by the VM but not vet accepted by Xen
[Outstanding descriptors - Descriptor slots awaiting a response from Xen

|:| Response queune - Descriptors returned by Xen 1n response to serviced requests
|:| Unused descriptors

Figure 2: The structure of asynchronous I'O rings, which are
used for data transfer between Xen and guest OSes.

Xen design

User User User
Software Software Software

GuestOS GuestOS GuestOS

{(XenoLinux) (XenoBSD) {XenoXP)
Xeno-Aware Xeno-Aware Xeno-Aware Xeno-Aware
Device Drivers Device Drivers Device Drivers Device Drivers

=mx

Figure 1: The structure of a machine running the Xen hyper-
visor, hosting a number of different guest operating systems,
including Domain running control software in a XenoLinux
environment.

Outline

Xen and the Art of Virtualization — lan Pratt et al.

lll. Xen evaluation
I\VV. The future looks bright

Cost of porting an OS

OS subsection # lines
Linux XP
Architecture-independent 78 1299
Virtual network driver 484 —
Virtual block-device driver 1070 —
Xen-specific (non-driver) 1363 3321
Total 2995 4620

(Portion of total x86 code base 1.36% 0.04%)

Table 2: The simplicity of porting commodity OSes to Xen. The
cost metric is the number of lines of reasonably commented and
formatted code which are modified or added compared with the
original x86 code base (excluding device drivers).

In both OSes, the architecture-specific sections

are effectively a port of the x86 code to their
paravirtualized architecture.

32

Evaluation

e Based on Linux 2.4.21 (neither XP nor NetBSD
fully functional)
* Thoroughly compared to 2 other systems
— VMware Workstation (binary translation)
— UML (run Linux as a Linux process)
* Performs better than solutions with restrictive
licenses (ESX Server)

Relative score to Linux

1.1

1.0

09

0.8

0.7

06

0.5

0.4

03

02

0.1

0.0

Relative Performance

554
50

L X VvV U
SPEC INT2000 (score)

CPU-bound tasks

e Relatively easy for all VMMs
e Little interaction with the OS

Legend

L — Linux

X — XenolLinux

V —VMware

U — User-mode Linux

34

Relative score to Linux

1.1

Relative Performance

263

271

L X V U
Linux build time (s)

Tasks with more I/O

* About 7% of the time spent
in OS doing |/O and memory
management

* This portion of time gets
expanded for each VMM
but to a different extent

35

Relative score to Linux

1.1

1.0

09

0.8

0.7

0.6

0.5

04

0.3

0.2

0.1

0.0

Relative Performance

1714
33

418

518
514

400

199

L X WV U L X VvV U L X VvV U L X Vv U
OSDB-IR (tup/s) QSDB-0OLTP (tup/s) dbench (score) SPEC WEB99 (score)

36

Config

Microbenchmarks

null null openslct sig sig fork exec sh
call /O stat closeTCP inst hndl proc proc proc

L-SMP
L-UP
Xen

VMWW

UML

0.53 0.81 2.10 3.51 23.2 0.83 2.94 143 601 4k2
0.450.50 1.28 1.92 5.70 0.68 2.49 110 530 4kO
0.46 0.50 1.22 1.88 5.69 0.69 1.75(198_[68 4Kk8

0.730.83 1.88 2.99 11.1 1.02 4.63 874 2k3 10k
247 251 36.1 62.8 39.9 26.0 46.0 21k 33k 58k

Table 3: 1lmbench: Processes - times in s

e As expected fork, exec and sh require large number
of page updates which slow things down

* On the up side these can be batched (up to 8MB of
address space constructed per hypercall)

37

Config

Microbenchmarks

null null openslct sig sig fork exec sh
call /O stat closeTCP inst hndl proc proc proc

L-SMP
L-UP
Xen
VMWW
UML

Hmmm

0.53 0.81 2.10 3.51 23.2 0.832.94 1143 601 4k2
0.450.50 1.28 1.92 5.70 0.51‘10 530 4k0
0.46 0.50 1.22 1.88 5.69 0.69 1. /5198 768 4Kk8
0.730.83 1.88 2.99 11.1 1.02 4.63 874 2k3 10k

247 251 36.1 62.8 39.9 26.0 46.0 21k 33k 58k
Table 3: 1lmbench: Processes - times in s

no calls into XEN vyet ...

38

Config

Microbenchmarks

2 2p 2p 8p 8p 16p 16
DE 16K 64K 16K 64K 16K 64

L-SMPF 1.69 1.88 2.03 2.36 EEE 479 384

L-UP
Xen

VMW
UML

19? 2,22 2.67 3U? EE? ?I}B 394

155 145 144 153 358 235 EED

Table 4: 1mbench: Context switching times in s

* Overhead due to a hypercall when switching context
in a guest OS (in order to change base of page table)

 The larger the working set the smaller the relative

overhead

39

Microbenchmarks

Config| OK File

10K File
create delete create delete |at fault fault

Mmap Prot Page

L-SMP| 44.9 242
L-UP | 32.1 6.08
Xen 32.5 5.86
VMW | 35.3 9.3

UML | 130 65.7

45.2
12.5
13.6
21.4 :
113 21.8 26.3

Table 5: 1lmbench: File & VM system latencies in s

2 transitions into XEN

— One for the page fault handler

— One to actually get the page

40

Microbenchmarks

TCP MTU 1500 TCP MTU 500

X RX TX RX
Linux| 897 897 602 od4d
Xen (| 897 (-0%) 897 (-0%) 916 (-14%) 467 (-14%)

VMW

UML

- 0 i - 0 - 0

165 (-82%) 203 (-77%) 61.1(-90%) 91.4(-83%)

Table 6: ttcp: Bandwidth in Mb/s

* Page flipping really pays off — no unnecessary data

copying

* More overhead for smaller packets — we still need to

deal with

every header

41

Concurrent VMs

1000

800

=06 3% (non-5M P guest)

600

400

Aggregate number of conforming clients

1 2 4 a 16
Simultaneous SPEC WEB99 Instances on Linux (L) and Xen(X)

Figure 4: SPEC WEBY99 for 1, 2, 4, § and 16 concurrent Apache
servers: higher values are better.

Unexpectedly low
SMP performance
for 1 instance of
Apache

As expected
adding another
domain leads to a
sharp jump in
performance
under XEN

More domains —
more overhead

42

Aggregate score relative to single instance

Concurrent VMs

OSDB-IR
Simultaneous OSDB-IR and OSDB-0OLTP Instances on Xen

Performance
differentiation
works as expected
with IR

But fails with OLTP

Probably due to
inefficiencies with
the disk
scheduling
algorithm

Bands matter !!!

43

Isolation

SPEC

WEB99 OSDB-IR

Guest Guest Guest Guest
ON 0OS 0OS oS

Hypervisor (XEN)

Hardware

Run uncooperative
user applications, see
if they bring down the
system

2 “bad” domains vs 2
“good” ones

XEN delivers good
performance even in
this case

What about an
uncooperative OS ?

44

Scalability

Mormalised Thoughput
o

13[i i i . . ?}enz_ln_lxl:Eﬁsj"ElsI:e'{—hl—
0 10 20 30 40 50 B0 7O 80 90 100 110 120 130

Concurment Processes'Domains

Very low footprint per domain (4 - 6MB memory, 20KB
state)

Benchmark is compute-bound and Linux assigns long time
slices, XEN needs some tweaking

Even without it does pretty well (but no absolute values)

Criticism
No comparison between fundamentally similar
techniques (e.g. the big IBM mainframe)

Memory footprint almost not mentioned

Most tests performed with limited number of
domains, while the paper’s main goal is to
demonstrate performance with 100 domains

Benchmarks used relevant today ?

Outline

Xen and the Art of Virtualization — lan Pratt et al.

V. The future looks bright

Related work

Started by IBM in the 70s

Resurgence lately (at time of publication) as
hardware got fast enough to run multiple OS

Unlike in other solutions isolation/security is
“implicitly” enforced by the hypervisor

One of the first attempts at paravirtualization the
other two are:

— IBM zSeries mainframes (Linux)
— Denali (quite a bit different)

Xen vs. Denali ?
T reawre | xen | e

VM 100 1000

Target existing ABI Yes No (does not fully support x86
segmentation, used in Net BSD,
Linux, Windows XP)

Supports application multiplexing Yes No (1 app/0S)
Supports multiple address spaces Yes No (prototype virtual MMU
developed, helping Denali) => no
evaluation
Memory management support at the Yes No (VMM performs all paging to
virtualization layer and from disk)
Performance isolation Yes, each guest OS performs No, malicious VM can encourage
own paging using guaranteed thrashing behavior
memory reservation and disk
allocation
Virtualizes namespaces of all machine No (Secure access control Yes (resource isolation through
resources within hypervisor only) impossible naming)

49

Future work and impact

Huge impact of the paper, sparked a lot of
interest, the project is still very much alive

They did actually complete the XP port, but due
to licensing restrictions it never got published

Currently only supports Windows as guest if the
hardware supports virtualization

More recent versions of the project try to push
complexity away from the hypervisor

However, paravirtualization nowadays is only
used if the hardware does not support
virtualization natively

Any gquestions?

THERE'S NO NEED TO
WORRY ABOUT THE
SERVER VIRTUALI-
ZATION PROJECT.

IN PHASE ONE,
A TEAM OF BLIND
MONKEYS WILL UNPLUG
UNNECESSARY SERVERS.

)

www.dilbert.com scottadama@asl.com

0w 38 2008 Scott Adams, Inc./Dist. by UFS, Inc.

IN PHASE TWO, THE
MONKEYS WILL HURL
SOFTWARE AT
WHATEVER IS LEFT.

1
VOILA!

