
UCL CS M030/GZ03 Brad Karp

Individual Coursework 1: Distributed Tickertape
Due date: 12 noon, 5th November, 2010

Value: 15% of marks for module

Introduction

The City of London has hired you to prototype an alternative, more decentralized stock
exchange. The City intends that each stock broker put a computer on the Internet that
runs your ticker server. Whenever a broker buys or sells stock, the broker will submit a
short description of that trade to the local ticker server. The ticker servers will exchange
information about all trades, and each server will print out the description of every trade
submitted to the system.

A key requirement is that all the servers must print out the trades in the same order.
Any broker will be upset if it seems that he is not being given the same information as
every other broker, because brokers make decisions about what to buy and sell based
both on the latest prices and on price trends.

The larger purpose of this assignment is to learn about protocols for maintaining
replicated data. If you have some data (a file system, for example) with identical replicas
on a number of servers, you might want to perform updates on that data in a way
that keeps the replicas identical. If you can arrange to perform the updates in the same
order on all the replicas (and the updates are deterministic), then the data will remain
identical. An important part of achieving this goal is making sure all the replicas process
the updates in the same order. That’s what you’ll do for this assignment, though under
an unrealistically optimistic set of assumptions about network and failure behavior that
simplify the problem.

Requirements

Your server will take command-line arguments telling it its own port number, and the
host names and port numbers of all the other servers in the system.

We supply you with a client program that submits new trades to the local server,
using RPC. Each trade has a text tag. When a server sees a new trade submitted by a
local client, it should tell all the other servers in the system about the trade. How this
happens is up to you. We supply you with a prototype server that uses RPC (over UDP)
to talk to the other servers; we suggest you start by modifying this server.

A server will receive notifications about trades from time to time from other servers.
It should print each trade’s tag on the standard output (i.e., using printf). All the
servers should print the trade tags in the same order. The servers need not print the tags
immediately when they arrive.

Here are some other rules you must follow:

� Every live server must print out a trade within 9 seconds of when it was originally
submitted by a client.

1

� Your system must continue to operate even if some servers die (which you can sim-
ulate with ˆC). Dead servers are not required to print trades. If a server originates
a trade but dies less than 3 seconds later, other servers are not required to handle
that trade correctly.

� We will test your server with the client program we supply, so you should not
change the submit RPC interface.

� Your server must work when more than one server runs on the same machine (with
different ports), and when servers run on different machines.

� Except as noted above, all servers must print all trades in the same order.

� Your server must pass the test-ticker tester program (see below).

Here are some slightly unusual things you are allowed to assume about the system:

� You are allowed to assume that the network will deliver your RPCs within three
seconds of when you make them, as long as the sending and receiving hosts are
alive. The three seconds include the time required to retransmit lost RPCs, if
required.

� If a computer or server fails, it will never come back to life.

� The computers running your servers may fail, but you are allowed to assume fail-
stop behavior (i.e., no Byzantine failures).

These are optimistic assumptions, which you might not be able to make about a real
system; they should make your task easier.

Getting Started

All programming for this coursework must be done under Linux on the department’s
lab machines. We have ensured that the code we give you to build upon works correctly
on these lab machines. Note that these machines are accessible over the Internet, so you
may work on the coursework either from home or in the labs.1 The Linux lab machines
are those with the following hostnames:

auerbach calder fulla goya hals judd kubin lowry munch

nattier opie pollock quarton rubens shitao valdes

whistler zorach faulkner flaubert heine hesse swift

We supply you with a complete client, an RPC interface definition file, a skeleton
server, and a test program, in �ucacbnk/gz03-2010/ticker.tar.gz.2 To unpack
and build the skeleton code, run:

1Because of particular configuration quirks of the lab machines, to log into them remotely, you must
first log into a CS departmental gateway such as newgate.cs.ucl.ac.uk using ssh, then from there
log into one of the lab machines using rlogin.

2Note that the character before ucacbnk is a tilde (located to the left of the “Z” key on a UK Mac
keyboard, to the left of the Enter key on a UK PC keyboard, and to the left of the “1” key on a US
keyboard.

2

% tar xvfz �ucacbnk/gz03-2010/ticker.tar.gz

ticker

ticker/minirpc.c

ticker/server.c

ticker/minirpc.h

ticker/ticker_prot.x

ticker/client.c

ticker/.cvsignore

ticker/Makefile

% cd ticker

% make

rpcgen -C -h -o ticker_prot.h ticker_prot.x

cc -c -Wall -g client.c

...

cc -Wall -g -o ticker-server server.o ticker_prot_xdr.o

ticker_prot_svc.o ticker_prot_clnt.o minirpc.o -L/usr/local/lib

%

(Don’t worry if there are warnings from the C compiler about unused variables while
compiling ticker prot *.c; rpcgen automatically generates those .c files, and some-
times includes unused variables in the C functions it generates. Remember: you should
never edit the C source code for the ticker prot *.c or ticker prot *.h files.
When you change the ticker prot.x file, rpcgen will re-generate these automatically.)

The server expects command-line arguments as follows: a unique numeric ID, a local
port number on which to receive RPC/UDP packets, and (for each other server) a host
name and port number. To test the server, you might run the following on lowry:

lowry% ./ticker-server 1 2001 swift 2002

And this on swift:

swift% ./ticker-server 2 2002 lowry 2001

You may have to modify the port numbers in case someone else is running this test
at the same time. You can also run multiple copies on the same machine, using different
UDP port numbers. Now in a third window (on either machine), submit a few trades.
For example:

lowry% ./ticker-client localhost 2001 IBM-90

lowry% ./ticker-client localhost 2001 DELL-16

Ideally, both servers would print either

IBM-90

DELL-16

or else they would both print

DELL-16

IBM-90

Either is acceptable, unless 7 or more seconds passed between submitting the two
trades, in which case they must appear in order of submission. Notice that the server we
supply you with doesn’t work; only one of the servers prints each trade.

3

Interfaces and Hints

You will need to modify the files server.c and ticker prot.x to complete this
coursework. You may not modify the files minirpc.c or minirpc.h. You may not
modify the TICKER PROC procedure in server.c, as it is used by the ticker-client
program. Instead, you will probably want to add at least one procedure to the TICKER PROG

RPC interface, for ticker servers to use when contacting each other. You can do this by
adding appropriate structures to the ticker prot.x protocol definition file. For in-
stance, you might add something along the lines of the bold text below:

struct xaction_args f
/* XXX - You must place fields you want in the argument here */

g;

program TICKER_PROG f
version TICKER_VERS f

submit_result TICKER_SUBMIT (submit_args) = 1;

void TICKER_XACTION (xaction_args) = 2;

g = 1;

g = 400001;

For each procedure that you add, you must add a server side dispatch routine. This
function will be named by the procedure name you have chosen (translated into lower
case), with the version number (1) and svc appended, separated by underscores. In the
example above, you would want to add the following procedure to your program:

void *
ticker_xaction_1_svc (xaction_args *argp, struct svc_req *rqstp)

{

/*

* XXX - You must write this code

* Arguments are in argp. (You can ignore the rqstp parameter.)

*/

return NULL;

}

Note that one thing you probably don’t want to do is block waiting for RPCs to other
servers. If, for example, when your ticker server received a trade it made synchronous
RPCs to every other ticker server, you could easily end up with deadlock when two
servers receive trades simultaneously. (Each will be waiting for an RPC result to return
from another server before servicing any other RPCs.)

Instead, we have supplied you with two functions for making asynchronous RPCs.
These functions make an RPC and return immediately, without waiting for the response,
but keep retrying in the background in case a UDP packet is lost. These functions are
declared in the header file minirpc.h:

� void rpc send (struct sockaddr in *dest, u int32 t prog,

u int32 t vers, u int32 t proc, xdrproc t argxdr, void *arg);

4

This function sends an RPC to the server at UDP port dest, but returns immedi-
ately without awaiting a reply. (It will keep trying in the background in case the
UDP packet is lost.)

prog, vers, and proc are as in the .x file, for instance TICKER PROG, TICKER VERS,
and TICKER SUBMIT, respectively.

argxdr is the auto-generated XDR marshaling routing for the argument type. For
example, for type submit args, the function is xdr submit args (in general,
just prepend "xdr " to the name of the type). arg is a pointer to the actual
arguments. e.g., for TICKER SUBMIT, this would be of type submit args *.

� void rpc broadcast (struct sockaddr in **dest, u int32 t prog,

u int32 t vers, u int32 t proc, xdrproc t argxdr, void *arg);

This function is like rpc send, except that it sends the same RPC to several
servers. Here dest is now an array of pointers to UDP socket addresses. There
must be a NULL pointer after the last socket address.

Note that the skeletal server.c file, when it parses the command line arguments,
creates a NULL-terminated array called others containing the addresses of all the other
servers. Thus, if you want to send an RPC to all the other servers, you can write:

rpc broadcast (others, ...);

Because you may want to wait around for a while before printing a trade (to make
sure there aren’t any previous trades you haven’t heard of), server.c contains a skele-
tal function timer that you can ask to have called once per second. The following
variables (declared in minirpc.h) are useful for timer:

� extern time t elapsed;

This variable always contains the number of seconds that have elapsed since your
ticker server program started. You can use the value to timestamp RPCs you
receive and decide how long ago you received them.

� extern int want timer;

You must set this to a non-zero value for your timer function to get called. When
want timer > 0, function timer will be called once per second. You should set
want timer to non-zero when you need timer events, and set it to zero if you
don’t need any timers and can sleep until the next RPC is received.

Testing Your Server

Once you have a server that you think might work, you can do a quick test as follows.
Start two servers as above. Then run the client program with these arguments:

% ./ticker-client -r 5 lowry 2001 delhi 2002

This generates 5 submissions to each of the servers indicated, in rapid succession.
(This isn’t quite correct, since the client is only allowed to submit to the local server, but

5

it’s just for testing.) If your servers always agree on the order of outputs when you run
the client this way, you’re well on your way to finishing the coursework.

Your code’s correctness will be assessed with the test-ticker program. You
should run it manually to see if your server works before handing it in. You can run
it as follows:

% �ucacbnk/gz03-2010/bin/test-ticker ./ticker-server

One server, one transaction (no points): passed

Two servers, one transaction (1 point): passed

Two servers, two transactions (1 point): passed

Two servers, ten concurrent transactions (2 points): passed

Five servers, continuous transactions (3 points): passed

One of two servers fail (1 point): passed

Three of six servers fail (2 points): passed

FINAL SCORE: 10/10

[internal use only: student:10:1081213431:78d892ccade421ccf638:9a26ed

763484f3407f98]

%

(Ignore the last line; it is used during grading.)

Turning in the Assignment

In order to turn in your completed assignment, you must do as follows before 12 noon
Friday, the 5th of November, 2010:

1. Run the command make handin. That command will produce two files: score
and ticker.tar.gz. When you run make handin, you should see output like
the following:

% make handin

make clean

...

�echo �ucacbnk�/gz03-2010/bin/test-ticker ./ticker-server | tee score

One server, one transaction (no points): passed

Two servers, one transaction (1 point): passed

Two servers, two transactions (1 point): passed

Two servers, ten concurrent transactions (2 points): passed

Five servers, continuous transactions (3 points): passed

One of two servers fail (1 point): passed

Three of six servers fail (2 points): passed

FINAL SCORE: 10/10

[internal use only: student:10:1081214349:78d892ccade421ccf638:fc5504

adf0f2a980dd76]

%

Be sure that the line including internal use only is present.

2. Without modifying any file in your directory, submit the following four files as
Coursework 1 on the M030/GZ03 Moodle web page:

6

� score (produced by make handin)

� ticker.tar.gz (produced by make handin)

� ticker-server (the executable program for your server that was built in
the directory when you ran make handin)

� A design document: in a plain-text or PDF file named either design.txt or
design.pdf, respectively, pseudocode for the algorithm used in your solu-
tion and a clear explanation in English of why it will always print trades in
the same order on all participating hosts, given the assumptions stated at the
start of this coursework but no further assumptions. This design document
may not be longer than one side of one page of A4 paper.

The ticker-server file you submit by email must be the one that was present in
your directory when you ran make handin. The marking software can detect if
the ticker-server executable file you submit was used to produce the score
file you submit. If they do not match, you will receive zero marks for the test
portion of the coursework.

75% of your mark on this coursework will be whatever score you obtain from the au-
tomated tests. The remaining 25% of your mark on this coursework will be determined
by the instructors’ evaluation of the correctness of the algorithm and completeness of
explanation you provide in the design document you submit.

If you have any problems with submitting the coursework, please contact the instruc-
tor.

Late Work Policy

As explained in the first lecture of term and on the class web site, M030/GZ03 uses a
late days system for late coursework; this policy is different from the general depart-
mental policy. If you turn in this coursework late, please write at the top of your design
document how many late days you would like to use.

Academic Honesty

This coursework is an individual coursework. Every line of code you submit must have
been written by you alone, and must not be a reproduction of the work of others–
whether from the work of students in the class from this year or prior years, from the
Internet, or elsewhere.

Students are permitted to discuss with one another the definition of a problem posed
in the coursework and the general outline of an approach to a solution, but not the
details or code for a solution. Students are strictly prohibited from showing their solu-
tions to any problem (in code or prose) to a student from this year or in future years.
In accordance with academic practice, students must cite all sources used; thus, if you
discuss a problem with another student, you must state in your solution that you did so,
and what the discussion entailed.

You are free to read reference materials found on the Internet (and any other refer-
ence materials). You may of course use the code we have given you. Again, all other
code you submit must be written by you alone.

7

http://www.cs.ucl.ac.uk/staff/B.Karp/gz03/f2010/admin.html

Copying of code from student to student is a serious infraction; it will result in
automatic awarding of zero marks to all students involved, and is viewed by the UCL
administration as cheating under the regulations concerning Examination Irregularities
(normally resulting in exclusion from all further examinations at UCL). The course staff
use extremely accurate plagiarism detection software to compare code submitted by all
students and identify instances of copying of code; this software sees through attempted
obfuscations such as renaming of variables and reformatting, and compares the actual
parse trees of the code. Rest assured that it is far more work to modify someone else’s
code to evade the plagiarism detector than to write code for the assignment yourself!

Read the Web Forum

You will find it useful to monitor the M030/GZ03 Web Forum on Moodle during the
period between now and the due date for the coursework. Any announcements (e.g.,
helpful tips on how to work around unexpected problems encountered by others) will
be posted there.

References

The following references may be useful in completing this assignment:

� Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.
In Communications of the ACM, 21(7):558-565, July 1978. (This is the original
paper describing logical clocks.)

� RFC 1832: XDR data representation standard

� Linux manual page for RPC

� RFC 1831: RPC protocol specification

8

http://www.cs.ucl.ac.uk/staff/B.Karp/gz03/f2010/lamportclocks.pdf
http://www.ietf.org/rfc/rfc1832.txt
http://www.die.net/doc/linux/man/man3/rpc.3.html
http://www.ietf.org/rfc/rfc1831.txt

