UCL CS 4030/GZ03 Brad Karp

Coursework 1: Distributed Tickertape

Due date: 12 noon, 2oth November, 2006

Introduction

The City of London has hired you to prototype an alternative, more decentralized stock
exchange. The City intends that each stock broker put a computer on the Internet that
runs your ticker server. Whenever a broker buys or sells stock, the broker will submit a
short description of that trade to the local ticker server. The ticker servers will exchange
information about all trades, and each server will print out the description of every trade
submitted to the system.

A key requirement is that all the servers must print out the trades in the same order.
Any broker will be upset if it seems that he is not being given the same information as every
other broker, because brokers make decisions about what to buy and sell based both on the
latest prices and on price trends.

The larger purpose of this assignment is to learn about protocols for maintaining repli-
cated data. If you have some data (a file system, for example) with identical replicas on a
number of servers, you might want to perform updates on that data in a way that keeps
the replicas identical. If you can arrange to perform the updates in the same order on all
the replicas (and the updates are deterministic), then the data will remain identical. An
important part of achieving this goal is making sure all the replicas process the updates in
the same order. That’s what you’ll do for this assignment, though under an unrealistically
optimistic set of assumptions about network and failure behavior that simplify the problem.

Requirements

Your server will take command-line arguments telling it its own port number, and the host
names and port numbers of all the other servers in the system.

We supply you with a client program that submits new trades to the local server, using
RPC. Each trade has a text tag. When a server sees a new trade submitted by a local client,
it should tell all the other servers in the system about the trade. How this happens is up to
you. We supply you with a prototype server that uses RPC (over UDP) to talk to the other
servers; we suggest you start by modifying this server.

A server will receive notifications about trades from time to time from other servers. It
should print each trade’s tag on the standard output (i.e., using printf). All the servers
should print the trade tags in the same order. The servers need not print the tags immediately
when they arrive.

Here are some other rules you must follow:



e Every live server must print out a trade within 9 seconds of when it was originally
submitted by a client.

e Your system must continue to operate even if some servers die (which you can simulate
with "C). Dead servers are not required to print trades. If a server originates a trade
but dies less than 3 seconds later, other servers are not required to handle that trade
correctly.

e We will test your server with the client program we supply, so you should not change
the submit RPC interface.

e Your server must work when more than one server runs on the same machine (with
different ports), and when servers run on different machines.

e Except as noted above, all servers must print all trades in the same order.
e Your server must pass the test-ticker tester program (see below).
Here are some slightly unusual things you are allowed to assume about the system:

e You are allowed to assume that the network will deliver your RPCs within three
seconds of when you make them, as long as the sending and receiving hosts are alive.
The three seconds include the time required to retransmit lost RPCs, if required.

e If a computer or server fails, it will never come back to life.

e The computers running your servers may fail, but you are allowed to assume fail-stop
behavior (i.e., no Byzantine failures).

These are optimistic assumptions, which you might not be able to make about a real
system; they should make your task easier.

Getting Started

All programming for this coursework must be done under Linux on the department’s lab
machines. We have ensured that the code we give you to build upon works correctly on
these lab machines. Note that these machines are accessible over the Internet, so you may
work on the coursework either from home or in the labs. The Linux lab machines are those
with the following hostnames:

achebe akutagawa alcott alkali agquinas atwood austen bellow boell
bronte calvini carey cervantes choukri cocteau collins cowper dahl
dumas eco faulkner flaubert fontane gibbon gogol golding grass hardy
heine hesse kahiga kerocuac levi mahfouz nabokov okri proust pushkin
sands seishonagon steinbeck swift tanizaki amritsar bhopal bhuj
calcutta darjeeling delhi dwarka indore mumbai mysore patiala patna
raipur madurai lucknow jhansi jaipur pune karwar



We supply you with a complete client, an RPC interface definition file, a skeleton server,
and a test program, in “ucacbnk/gz03-2006/ticker.tar.gz. To unpack, run:

% tar xvfz “ucacbnk/gz03-2006/ticker.tar.gz
ticker

ticker/minirpc.c

ticker/server.c

ticker/minirpc.h

ticker/ticker_prot.x

ticker/client.c

ticker/.cvsignore

ticker/Makefile

cd ticker

make

rpcgen —-C -h -o ticker_prot.h ticker_prot.x
cc —-c —ansi -Wall -g client.c

o oo

cc —ansi -Wall —-g —-o ticker-server server.o ticker_prot_xdr.o
ticker_prot_svc.o ticker_prot_clnt.o minirpc.o -L/usr/local/lib

%

(Don’t worry if there are warnings from the C compiler about unused variables while
compiling ticker prot_=.c;rpcgen automatically generates those .c files, and sometimes
includes unused variables in the C functions it generates. Remember: you should never
edit the C source code for the ticker prot *.c or ticker prot_=.h files. When you
change the ticker _prot.x file, rpcgen will re-generate these automatically.)

The server expects command-line arguments as follows: a unique numeric ID, a local
port number on which to receive RPC/UDP packets, and (for each other server) a host name
and port number. To test the server, you might run the following on calcutta:

calcutta% ./ticker-server 1 2001 delhi 2002
And this on delhi:
delhi% ./ticker-server 2 2002 calcutta 2001

You may have to modify the port numbers in case someone else is running this test at the
same time. You can also run multiple copies on the same machine, using different UDP port
numbers. Now in a third window (on either machine), submit a few trades. For example:

calcutta% ./ticker—-client localhost 2001 IBM-90
calcutta% ./ticker-client localhost 2001 DELL-16

Ideally, both servers would print either



IBM-90
DELL-16

or else they would both print

DELL-16
IBM-90

Either is acceptable, unless 7 or more seconds passed between submitting the two trades,
in which case they must appear in order of submission. Notice that the server we supply
you with doesn’t work; only one of the servers prints each trade.

Interfaces and Hints

You will need to modify the files server.c and ticker prot.x to complete this course-
work. You should not modify the TTCKER_PROC procedure, as it is used by the ticker—-client
program. Instead, you will probably want to add at least one procedure to the TICKER_PROG
RPC interface, for ticker servers to use when contacting each other. You can do this by
adding appropriate structures to the t icker_prot . x protocol definition file. For instance,

you might add something along the lines of the green text here:

/* XXX — You must place fields you want in the argument here =/

program TICKER_PROG {
version TICKER_VERS {
submit_result TICKER_SUBMIT (submit_args) = 1;

1;

} o=
= 400001;

}

For each procedure that you add, you must add a server side dispatch routine. This
function will be named by the procedure name you have chosen (translated into lower
case), with the version number (1) and svc appended, separated by underscores. In the
example above, you would want to add the following procedure to your program:



void =
ticker_xaction_1_svc (xaction_args *argp, struct svc_req xrgstp)

{

/ *

* XXX - You must write this code

* Arguments are in argp. (You can ignore the rgstp parameter.)
*/

return NULL;

Note that one thing you probably don’t want to do is block waiting for RPCs to other
servers. If, for example, when your ticker server received a trade it made synchronous RPCs
to every other ticker server, you could easily end up with deadlock when two servers receive
trades simultaneously. (Each will be waiting for an RPC result to return from another server
before servicing any other RPCs.)

Instead, we have supplied you with two functions for making asynchronous RPCs.
These functions make an RPC and return immediately, without waiting for the response,
but keep retrying in the background in case a UDP packet is lost. These functions are
declared in the header file minirpc.h:

e void rpc.send (struct sockaddr_in =*dest, u-int32_t prog, u-int32_t
vers, u_int32_t proc, xdrproc_t argxdr, void =*arg);

This function sends an RPC to the server at UDP port dest, but returns immediately
without awaiting a reply. (It will keep trying in the background in case the UDP
packet is lost.)

prog, vers, and proc are as in the . x file, for instance TTICKER_PROG, TICKER_VERS,
and TICKER_SUBMIT, respectively.

argxdr is the auto-generated XDR marshaling routing for the argument type. For ex-
ample, for type submit_args, the function is xdr_submit_args (in generally just prepend
"xdr_" to the name of the type). arg is a pointer to the actual arguments. e.g., for
TICKER_SUBMIT, this would be of type submit_args .

e void rpc_bcast (struct sockaddr_in x*dest, u_.int32_t prog, u_int32_t
vers, u_int32_t proc, xdrproc.t argxdr, void =xarg);

This function is like rpc_send, except that it sends the same RPC to several servers.
Here dest is now an array of pointers to UDP socket addresses. There must be a
NULL pointer after the last socket address.

Note that the skeletal server.c file, when it parses the command line arguments,
creates a NULL-terminated array called others with the addresses of all the other servers.
Thus, if you want to send an RPC to all the other servers, you can write, "rpc_bcast
(others, ...);".



Because you may want to wait around for a while before printing a trade (to make
sure there aren’t any previous trades you haven’t heard of), server.c contains a skeletal
function timer that you can ask to have called once per second. The following variables
(declared in minirpc.h) are useful for timer:

e extern time_t elapsed;

This variable always contains the number of seconds that have elapsed since your
ticker server program started. You can use the value to timestamp RPCs you receive
and decide how long ago you received them.

e extern int want_timer;

You must set this to a non-zero value for your timer function to get called. When
want_timer > 0, function timer will be called once per second. You should set
want_timer to non-zero when you need timer events, and set it to zero if you don’t
need any timers and can sleep until the next RPC is received.

Testing Your Server

Once you have a server that you think might work, you can do a quick test as follows. Start
two servers as above. Then run the client program with these arguments:

% ./ticker-client -r 5 calcutta 2001 delhi 2002

This generates 5 submissions to each of the servers indicated, in rapid succession. (This
isn’t quite correct, since the client is only allowed to submit to the local server, but it’s just
for testing.) If your servers always agree on the order of outputs when you run the client
this way, you’re well on your way to finishing the coursework.

Your coursework will be graded with the test-ticker program. You should run it
manually to see if your server works before handing it in. You can run it as follows:

% test-ticker ./ticker-server

One server, one transaction (no points): passed

Two servers, one transaction (1 point): passed

Two servers, two transactions (1 point): passed

Two servers, ten concurrent transactions (2 points): passed
Five servers, continuous transactions (3 points): passed
One of two servers fail (1 point): passed

Three of six servers fail (2 points): passed

FINAL SCORE: 10/10

[internal use only: student:10:1081213431:78d892ccaded421ccf638:9%9a26ed
763484£3407£98]

Q

(Ignore the last line; it is used during grading.)

6



Turning in the Assignment

In order to turn in your completed assignment, you must do all of the following before
noon on Monday, the 20th of November, 2006:

1. Run the command make handin. That command will produce two files: score
and ticker.tar.gz.

2. Without modifying any file in your directory, attach the following three files from your
directory to an email to gz03cw@googlemail . com:

e score (produced by make handin)
e ticker.tar.gz (produced by make handin)

e ticker-server (the executable program for your server that was built in the
directory when you ran make handin)

The ticker-server file you submit by email must be the one that was present in
your directory when you ran make handin. The marking software can detect if the
ticker-server executable file you submit was used to produce the score file you
submit. If they do not match, you will receive zero marks for the coursework.

3. Finally, you must turn in hardcopies of the following items with a coursework cover
sheet (again, before noon on Monday, the 2o0th of November, 2006):

e All source files you modified (minimum: server.c, ticker.x)

e Hardcopy of the score file produced when you ran make turnin, including
the final line marked internal use only.

In order to turn in the assignment, you just need to run the command make handin.
You should see output like the following;:

Q

% make handin
make clean

‘echo "ucacbnk’/gz03-2006/bin/test-ticker ./ticker-server | tee score
One server, one transaction (no points): passed

Two servers, one transaction (1 point): passed

Two servers, two transactions (1 point): passed

Two servers, ten concurrent transactions (2 points): passed

Five servers, continuous transactions (3 points): passed

One of two servers fail (1 point): passed

Three of six servers fail (2 points): passed

FINAL SCORE: 10/10



[internal use only: student:10:1081214349:78d892ccaded421ccf638:fc5504
adf0£2a980dd76]

%
Make sure the last line (containing internal use only) is present. If you have any
problems with submitting the coursework, please contact the instructor.

Extra Credit

For two points of extra credit, if your ticker server passes all the tests, you can modify
your server so that in the ordinary case (no network partitions and no failed servers) trades
print almost immediately on all terminals. Put a text description of how you implemented
this, and exactly how your protocol works, in a text file called extra-credit.txt, and in-
clude this additional file as an additional attachment (with the other three listed above) to
gz03cw@googlemail.com. Obviously, the enhanced server must still pass all the tests in
test-ticker.

Academic Honesty

You are to complete this coursework alone; you may not consult with other students in the
course (or other people who are not taking the course) about what algorithm to use or how
to write your code. You are free to read reference materials found on the Internet (and any
other reference materials).

You may of course use the code we have given you. All other code you submit must be
written by you alone.

Copying of code from student to student is a serious infraction; it will result in automatic
awarding of zero marks to all students involved, and is viewed by the UCL administration
as cheating under the regulations concerning Examination Irregularities (normally resulting
in exclusion from all further examinations at UCL). The course staff use extremely accu-
rate plagiarism detection software to compare code submitted by all students and identify
instances of copying of code; this software sees through attempted obfuscations such as
renaming of variables and reformatting, and compares the actual parse trees of the code.
Rest assured that it is far more work to modify someone else’s code to evade the plagiarism
detector than to write code for the assignment yourself!

Read the Mailing List

Please monitor the course mailing lists, {4030, gz03}@cs.ucl.ac.uk, during the period
between now and the due date for the coursework. Any announcements (e.g., helpful tips
on how to work around unexpected problems encountered by others) will be sent to the
lists.



References
The following references may be useful in completing this assignment:

e Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.| In
Communications of the ACM, 21(7):558-565, July 1978. (This is the original paper
describing logical clocks.)

e RFC 1832: XDR data representation standard
e Linux manual page for RPC

e RFC 1831: RPC protocol specification


http://www.cs.ucl.ac.uk/staff/B.Karp/z03/lamportclocks.pdf
http://www.ietf.org/rfc/rfc1832.txt
http://www.die.net/doc/linux/man/man3/rpc.3.html
http://www.ietf.org/rfc/rfc1831.txt

