Introduction to Python Programming

Kyle Jamieson

Networked Computer Systems Programme

Department of Computer Science
University College London

Setup and startup

bash

cd ~

cp ~jamieson/pyintro distribution.tgz
gunzip pyintro distribution.tgz

tar xvpf pyintro distribution.tar

cd pyintro/src

V- U 00

* To start the Python interpreter, use python wrapper:

S python-wrapper

Python 2.6.2 (r262:71600, Sep 2 2009, 18:21:20)

[GCC 4.1.2 20080704 (Red Hat 4.1.2-44)] on linux2

Type "help", "copyright", "credits" or "license"
more information.

>>>

for

* To exit the interpreter, type Ctrl+D
e Can type any Python expression at the primary command
prompt (>>>)

Running Python scripts

e Start a text editor (a simple editor gedit, or your favorite), edit
and save hello.pyin tubelab/src

$ cd pyintro/src
S gedit hello.py

e Run your first program!

Contents of file hello.py:

print “Hello, world.”

$./python-wrapper hello.py

Hello, world.
$

* Now, let’s start the Python interpreter and explore the
language, starting with basic expressions and types

For further information

* Python tutorial
— http://docs.python.org/tutorial

* Library reference
— http://docs.python.org/library/index.html

* Language reference
— http://docs.python.org/reference/index.html

Tubelab

* Objective: Print out directions between pair of Zone 1 stations
Directions should correspond to shortest distance between

the two stations, measured by sum of station stops and
transfers between platforms

— Represent this map with Python data structures

— Breadth-first search to find shortest routes

Belsize Park™ W 10Wn West
Harlesden Kilburn
Kensal Brondesbury Chalk F Caledonian Road
Willesden Junction Rise Park West Hampstead %= atkc Farm N Highbury & L
7 ¥ ’ + Camden |slington= Canonbury Midtt
Finchley Road Road 2
/ | — Brondesbury Yy ‘Camden Town < \)
/ Swiss Cottage Caledcnien "\\,_Dalston Kingsland
Queen's Park Kilburn South X FMornington - oad
High Road Hampstead St. John's Wood ey et N arnsbury Dalston Junction N_Hackney Central
. = N S King's Cross ‘ N
Kilburn Park St. Pancras X -

Maida Vale
Warwick Avenue

Edgware
Paddington®= Road Marylebone 2=

Baker
Street

Great s
Portland Euston
N e e

Haggerston @

Homerton Hackney
Wick

Royal Oak. Angel Hoxton @
i ot Old Street = Bethnal
Westbourne Park Edgware F Warren Street g:zl:’: O reen Mile End
Road Farringdon
Regent’s Park Boy
Ladbroke Grove 8 — = zu;ar::tox ,sno:cauchg
k- Bayswater . High Street w”,
Latimer Road T quare Barbican
3 Goodge. Bow Church (&)
East White [l ~Shepherd's Notting = Lancaster Bond | Oxford Street Chancery Moorgate
Acton City Bush %= | Hill Gate ate street] Circus p Lane Stepney Green) Devon
¥ T T e m St. Paul's Adpts 6
North Holland Queensway Marble F Tottenham olborn as Baned
Acton Arch Court Road FBank Whitechapel i o
WosdlLane ‘Covent Garden'f 3 Aldgate € Ausai
L High Street : squaret Shadwell ey]l | B
Ke t eicester Square’ festferry
Shepherd’s Bush ~ i Q 3 O—
arket . Hyde Park Corner, Piccadill / —
Ke[gilngt?n)) e y F2=cannon street e T ‘Poplar
Goldhawk Road P Knightsbridge, Mansion House @ Hill =
+ = Fencmch et Tower Wappl West
2= Charing Getans japping)
Barons Gloucester) Cross T-Blacksriars- Yy India ¢
Hammersmith Court Road o || St-James’s River T
Victoria J| Park Temple Rotherhithe
i Fcanary Wharf
¥ —- T -
tamford Ravenscourt West South Sloane @ Westminster Embankment & London N o CGiad ?
Brook Park Kensington i Square ermondse;
ing Court Kensington ~ Squ ey Y e FHeron Quays €)
1_ £) 1|
= West Brompton Walerl;g 590 South Quay ()
Surrey Quays 4 Il
ry Crossharbour ()
Pimlico I Southwark X
Fulham Braadway #£) 4 Mudehita

http://www.tfl.gov.uk/assets/downloads/standard-tube-map.gif

A user’s interaction with Tubelab

e 0o Terminal — bash — 80x24
[jamieson@shannon:src] $ python tubelab.py

Origin station: Paddington

Destination station: Leicester Square

To get from Paddington station to Leicester Square station

Begin at the Paddington station Bakerloo line platform

Take the Bakerloo Line 6 stop(s) to Piccadilly Circus station
Transfer at Piccadilly Circus station to the Piccadilly line platform
Take the Piccadilly Line 1 stop(s) to Leicester Square station

Origin station: Green Park

Destination station: Liverpool Street

To get from Green Park station to Liverpool Street station
Begin at the Green Park station Jubilee line platform

Take the Jubilee Line 4 stop(s) to London Bridge station
Take the Northern Line 1 stop(s) to Bank station

Transfer at Bank station to the Central line platform

Take the Central Line 1 stop(s) to Liverpool Street station

Origin station: “D
Tada!
[jamieson@shannon:src] $ I

Two key data types

e Station: named on the tube map, contains platforms
— Example: Euston Station has three platforms:
* Two platforms on the Northerp Line susmn@m
* One platform on the Victoria line =

— Example: Tottenham Court Road Station has
one platform on the Northern line, one on the *gg;ﬁ‘;”;;:‘di

Central line
— Example: Great Portland Street Station has Great

Portlanc
one platform on the , Street
, and Metropolitan lines

[
* Platform: associated with one or more lines
* Line: represent with Python strings

Breadth-first search (BFS)

* Explore graph, expanding frontier between undiscovered and discovered
vertices uniformly across its breadth

e Input: Undirected graph G = (V, E) and source vertex s

* Output: A breath-first tree with root s, containing shortest paths between
s and any other vertex

E(FS?)(%:I\)Izone 0 e 0.0
<3S
e Qe 1l () @‘Q (2

u <— Q.dequeue()
Visited.add(u)
foreach v € Adj(u):
if v & Visited and v & Q:
0 Q.enqueue(v) Q S
1 n(v)<u

R OONOTUTPRRWNE

Breadth-first search (BFS)

* Explore graph, expanding frontier between undiscovered and discovered
vertices uniformly across its breadth

e Input: Undirected graph G = (V, E) and source vertex s

* Output: A breath-first tree with root s, containing shortest paths between
s and any other vertex

BFS(G, s):
1(s) <= None
Q < {s}
Visited < {s}
while Q # {}:
u <— Q.dequeue()
Visited.add(u)
foreach v € Adj(u):
if v & Visited and v & Q:
0 Q.enqueue(v) Q Wi\r
1 n(v)<u

R OONOTUTPRRWNE

Breadth-first search (BFS)

* Explore graph, expanding frontier between undiscovered and discovered
vertices uniformly across its breadth

e Input: Undirected graph G = (V, E) and source vertex s

* Output: A breath-first tree with root s, containing shortest paths between
s and any other vertex

BFS(G, s):
1(s) <= None
Q < {s}
Visited < {s}
while Q # {}:
u <— Q.dequeue()
Visited.add(u)
foreach v € Adj(u):
if v & Visited and v & Q:
0 Q.enqueue(v) Qlr|t |x
1 n(v)<u

R OONOTUTPRRWNE

Breadth-first search (BFS)

* Explore graph, expanding frontier between undiscovered and discovered
vertices uniformly across its breadth

e Input: Undirected graph G = (V, E) and source vertex s

* Output: A breath-first tree with root s, containing shortest paths between
s and any other vertex

BFS(G, s):
1(s) <= None
Q < {s}
Visited < {s}
while Q # {}:
u <— Q.dequeue()
Visited.add(u)
foreach v € Adj(u):
if v & Visited and v & Q:
0 Q.enqueue(v) Q |t |x|v
1 n(v)<u

R OONOTUTPRRWNE

Breadth-first search (BFS)

* Explore graph, expanding frontier between undiscovered and discovered
vertices uniformly across its breadth

e Input: Undirected graph G = (V, E) and source vertex s

* Output: A breath-first tree with root s, containing shortest paths between
s and any other vertex

BFS(G, s):
1(s) <= None
Q < {s}
Visited < {s}
while Q # {}:
u <— Q.dequeue()
Visited.add(u)
foreach v € Adj(u):
if v & Visited and v & Q:
0 Q.enqueue(v) Q X |V |U
1 n(v)<u

R OONOTUTPRRWNE

Breadth-first search (BFS)

* Explore graph, expanding frontier between undiscovered and discovered
vertices uniformly across its breadth

e Input: Undirected graph G = (V, E) and source vertex s

* Output: A breath-first tree with root s, containing shortest paths between
s and any other vertex

BFS(G, s):
1(s) <= None
Q < {s}
Visited < {s}
while Q # {}:
u <— Q.dequeue()
Visited.add(u)
foreach v € Adj(u):
if v & Visited and v & Q:
0 Q.enqueue(v) Q V |U |Z
1 n(v)<u

R OONOTUTPRRWNE

Breadth-first search (BFS)

* Explore graph, expanding frontier between undiscovered and discovered
vertices uniformly across its breadth

e Input: Undirected graph G = (V, E) and source vertex s

* Output: A breath-first tree with root s, containing shortest paths between
s and any other vertex

BFS(G, s):
1(s) <= None
Q < {s}
Visited < {s}
while Q # {}:
u <— Q.dequeue()
Visited.add(u)
foreach v € Adj(u):
if v & Visited and v & Q:
0 Q.enqueue(v) Q ulz
1 n(v)<u

R OONOTUTPRRWNE

Breadth-first search (BFS)

* Explore graph, expanding frontier between undiscovered and discovered
vertices uniformly across its breadth

e Input: Undirected graph G = (V, E) and source vertex s

* Output: A breath-first tree with root s, containing shortest paths between
s and any other vertex

BFS(G, s):
1(s) <= None
Q < {s}
Visited < {s}
while Q # {}:
u <— Q.dequeue()
Visited.add(u)
foreach v € Adj(u):
if v & Visited and v & Q:
0 Q.enqueue(v) Q V4
1 n(v)<u

R OONOTUTPRRWNE

Breadth-first search (BFS)

* Explore graph, expanding frontier between undiscovered and discovered
vertices uniformly across its breadth

e Input: Undirected graph G = (V, E) and source vertex s

* Output: A breath-first tree with root s, containing shortest paths between
s and any other vertex

BFS(G, s):
1(s) <= None
Q < {s}
Visited < {s}
while Q # {}:
u <— Q.dequeue()
Visited.add(u)
foreach v € Adj(u):
if v & Visited and v & Q:
0 Q.enqueue(v) Q
1 n(v)<u

R OONOTUTPRRWNE

From tube map to graph representation

* Each vertex in the abstract graph corresponds to a Platform
* Each edge is either a transfer or a trip between platforms of
different stations on the same line

* Examples:
— (camden, euston_b): Northern line south one stop
— (euston_b, euston_c): Transfer at Euston Station to the Victoria line
* BFS happens in this graph, breadth-first tree constructed using
Platform.set predecessor(Platform)

camden] euston_b kgx_b
(Northern) J (Northern) (Northern)

morning... euston_a euston_c kgx_a
(Northern) (Northern) (Victoria) (Victoria)

Code walkthru: Stations

e A Station groups a number of platforms together

* The iterator returned by platforms(self) yields all Platforms
contained within the Station

station.py

class Station
def init (self, name, platforms) # list of platforms
def str (self) # return a string representation
def platforms(self) # returns a generator ==> platform

Code walkthru: Platforms

platform.py

class Platform
def init (self, lines) # list of strings: which lines?
def set station(self, station) # set containing station
def add neighbor(self, line, other platform)
def set predecessor(self, platform) # for BFS
def set predecessor line(self, line) # for BFS
def neighbors(self) # returns an iterator ==> (platform, line)

* Convention: the iterator returned by neighbors (self) yields
(Platform, None) for transfers within a Station

camaen

Ftcamden Town Road

T Mornington
Crescent

x
King's Cross
St. Pancras

d Euston
x>

camden] euston_b kgx_b
(Northern) J (Northern) (Northern)

morning... euston_a euston_c kgx_a
(Northern) (Northern) (Victoria) (Victoria)

Code walkthru: Putting it together

tubedata.py

from platform import *
from station import *

northern = 'Northern'
victoria = 'Victoria’
central = 'Central’

tott ct rd a = Platform([northern])
tott ct rd b = Platform([central])
tott ct rd sta = Station('Tottenham
Court Road’, [tott ct rd a,

tott ct rd ;

goodge st = Platform([northern])
goodge_st_sta = Station('Goodge
Street', [goodge st])

warren st = Platform([northern,
victorial])
warren st _sta = Station('Warren

Street', [warren st])

euston a = Platform([northern])
euston b = Platform([northern]
euston ¢ = Platform [v1ctor1a]

euston sta = Station('Euston'
[euston _a, euston b, euston c])

connect (northern, [waterloo_b,
embankment a, charing cross a,
leicester sq, tott ct rd a,
goodge st, warren st, euston a,
mornlngton crescent, camden Ttown])

Exercise: fire up Python, and print all
neighbors of the Victoria line platform
in Euston Station (euston_c):

S cd tubelab

$ python-wrapper

>>> from tubedata import *

>>>

4

Exercise: fire up Python, and print all

platforms at Euston Station (euston_sta):

$ cd tubelab

$ python-wrapper

>>> from tubedata import *
>>>

4

Code walkthru: Main program

 The program entry point, command line interface (CLI), and
shortest-paths calculator are in file tubelab. py

— bfs directions: computes shortest-paths with BFS
— completer: allows user to use tab to complete

— Entry point: runs a while loop until Ctrl+D or Ctrl+C input from user,
takes input, passesittobfs directions

Main lab assignment

Implement BFS's “inner loop”
iInbfs directions.

y

 To run/test:
S python-wrapper tubelab.py

