Internet Worms, Firewalls, and
Intrusion Detection Systems

Brad Karp
UCL Computer Science

A
I

CS 3035/GZ01
12th December 2013

Outline

e Internet worms

— Self-propagating, possibly malicious code spread over
Internet

e Firewalls:
— Simple, perimeter-based security

e Intrusion Detection Systems (IDSes)

— Searching for signatures in traffic to detect (and
block) attacks

— e.g., Bro, Snort

What's a Worm?

e \ast numbers of Internet-attached hosts
run vulnerable server software

e Worm: self-replicating code, containing

— Exploit for widely used, vulnerable server
software

— Payload: code that executes after exploit
succeeds

e Payload connects to other Internet hosts,
sends copy of {exploit, payload} to each...

e Unlike virus, spread not human-mediated

What's in the Payload?

Could be anything...arbitrary code execution
allowed by many exploits

Install login facility for attacker, to allow use at
will in botnet

— Botnets used widely today to launch DDoS attacks,
send spam

— Market in botnets exists today (3-10 US cents/host/
week for spam proxy in 2005 [Paxson])

Send sensitive files to attacker
Destroy or corrupt data

Enormous possibility for harm, in financial,
privacy, and inconvenience terms

Code-RedI Worm

e June 18™, 2001: eEye releases description
of buffer overflow vulnerability in Microsoft
IIS (web server)

e June 26, 2001: Microsoft releases patch

e July 12t, 2001: Code-RedI worm released
(i.e., first sent to vulnerable host)

e Estimated number hosts infected: 360,000

e Estimated damages: $2.6 billion from loss
of service availability, downtime, cleanup...

5

Code-RedI Behavior

Payload: defaces web site
— If language == English

e HELLO! Welcome to http://www.worm.com!
Hacked By Chinese!

1st — 19th of every month: spread

— Connect to random 32-bit IP address, send copy of
self (exploit+payload)

20t through end of every month:

— Flood traffic to 198.137.240.91
(www.whitehouse.gov)

Bug: fixed seed for random number generator
— All hosts generate same sequence of IPs!
— Result: only linear growth in infected population

Only memory-resident; vanishes on reboot

Code-RedlI v2: "Bugfix” Release

e July 19, 2001: new variant (“v2")
released

— Uses random seed

— Now all infected hosts try different targets
e White House changes IP address of its

server to avoid DDoS attack

— Result: July 20t, Code-RedI v2 dies out

e 360K hosts infected in 14 hours

New hosts per minute

1000 1500

500

Growth of Code-RedI v2

f Py, |
.. ") P e Source:

: Vern Paxson,
ICSI/UC Berkeley

4 6 8 10 12 14 16
Hour (PDT)

Network Telescopes

e Monitor traffic arriving at sizeable regions of
Internet address space. Reveals, e.qg.,:

— "Backscatter” (responses to randomly source-spoofed
DDoS attacks)

— Worms' random scanning of IP addresses

— Attackers’ random scanning for servers running
particular service

e LBNL: 2 /16 networks, or 1/32768% of Internet
address space

e UCSD/Univ. Wisconsin: 1 /8 network, or 1/256t"
of Internet address space

Spread of Code-RedI v2

e Network telescope estimate of infected host

count:
— Count unique source IPs that attempt to connect to

port 80 on non-used addresses
e Infected population over time fits logistic
function
— S-shaped curve: exponential growth at start, then
slowing growth after most vulnerable nodes infected
e Worm dies just as 20t starts

— But even one host with wrong clock can keep trying
to infect others

— On August 1st, worm begins to spread again!

10

Return of Code Red Worm

— July 31, 2001 August 1, 2001

: Fha

o | hibbeab i bmas me e e asa e in o s bt

! | I I I ! !
15 20 25 30 35 40 45

300
l

New Hosts Per Minute

100
I

Hours (PDT) Since Midnight, July 31
Source: Vern Paxson, ICSI/UC Berkeley 11

A Competitor: Code-Red 11

Targets same IIS vulnerability; unrelated code
Released August 4th, 2001

Installs superuser backdoor; persists after
reboot

Spreads preferentially to local addresses:

— 12 probability generates address on same /8
— 3/8 probability generates address on same /16

— 1/8 probabliity generates random non-class-D, non-
loopback address

Result: squeezes out Code-Red I v2!

12

Slammer: A Fast UDP Worm

Exploit: buffer overflow vulnerability in Microsoft
SQL Server 2000

— Vulnerability reported in June 2002
— Patch released July 2002

SQL service uses connectionless UDP (rather
than connection-oriented TCP)

Entire worm fit in one packet!

— No need to wait for RTT; send single packet, try next
target address

Slammer infected over 75K hosts in 10 minutes
Growth rate limited by Internet’s capacity

13

Slammer’s Behavior

e Peak address scanning rate: 55 million
scans / second

— Reached in 3 minutes
— Beyond that point, congestion-limited

e Payload non-malicious, apart from
aggressive scanning

e Outages in 911 (emergency telephone)
service, Bank of America ATM network
— Purely from traffic load; crashed some

network equipment, saturated some
bottleneck links

14

Slammer’s Growth Limited by
Internet Bandwidth (!)

Probes in 2second buck
on
[}
[}

1760 1770 1780 1790 1800 15810 15820
Seconds after S5am UTC

w—1Shield Data

K=6.7/m, T=1808.7s, Peak=2050, Const. 28

e Source: Vern Paxson, ICSI/UC Berkeley

15

Worm Propagation Methods

Random scanning (e.g., Code-Red, Slammer)

Meta-server worm: query a service for hosts to
infect (e.qg., ask Google, “powered by phpbb”)

Topological worm: find candidates from files on

infected host’s disk (e.g., web server logs,

bookmark files, email address books, ssh known

hosts files, ...)

— Very fast; stealthy—no random scanning behavior to
attract attention

Contagion worm: piggyback worm on

application’s usual connections

— Connection patterns appear normal!

16

Firewalls: Perimeter-Based Defense

Firewall

Local
Site
Network

e Define trusted perimeter (typically boundary of
own infrastructure)

o All packets between Internet and trusted
perimeter flow through firewall

e Firewall inspects, filters traffic to limit access to
non-secure services by remote, untrusted hosts

17

Firewall: Physical Topology vs.
Filtering Policies

e Topological placement of firewall depends on
perimeter at which defense desired, e.q.,

— Firewall between company’s net and Internet

— Firewall between secret future product group’s LAN
and rest of company’s net

— Firewall A between Internet and public servers,
firewall B between servers and rest of company’s net

— Software personal firewall on desktop machine

e Filtering policy depends on which attacks want
to defend against, e.q.,
— Packet filtering router

— Application-level gateway (proxy for ftp, HTTP, &c.)

— Personal firewall disallows Internet Explorer from
making outbound SMTP connections

18

Background: Internet Services and
Port Numbers

Recall that UDP and TCP protocols identify
service by destination 16-bit port number

Well-known services: typically listen on ports <=
600

— UNIX: must be root to listen on or send from port <
1024

Outgoing connections typically use high source
port numbers
— App can ask OS to pick unused port number

See /ete/services 0N UNIX host for list of well-
known ports

19

Non-Secure Services

NFS server (port 2049)

— Recall: can read/write entire file system given file
handle for any directory

— File handles guessable on many platforms

Portmap (port 111)

— Relays RPC requests, so they appear to come from
localhost

FTP (port 21)

— Client instructs server to connect to self; can instead
direct server to connect to 3 party (“bounce” attack)

Yellow pages/NIS
— Allows remote retrieval of password database

Any server with a vulnerability

— MS SQL (UDP 1434), DNS (53), rlogin (513), Ipd
(515), ... 20

Firewalls: Packet Filtering

e Examine protocol fields of individual packets;
filter according to rules
— IP source, destination addresses
— IP protocol ID
— TCP/UDP source, destination ports
— TCP packet flags (e.g., SYN, FIN, ...)
— ICMP message type

e Example: to prevent remote Ipd exploit, block all
inbound TCP packets to destination port 515

— Remote users shouldn’t be printing at your site
anyway

21

Firewall Example:
Blocking Source Spoofing

e Block traffic from
outside your site with
a source address in
our site’s address
lock IP src

e Egress filtering: block 1286113
traffic from within
your site with a source
address not in your
site’s address block

— e.g., rule:
“‘deny ip not from

128.16/16 recv
em0 xmit eml”

ocal

Site
(128.16/
16)

IP src
.150.187.61

22

Firewall Example:
Blocking Outbound Mail

o \Worms often use infected hosts to send spam or
confidential documents

o Defense: authorize only a few servers at site to
send outbound mail; filter all outbound mail
connections from others

e e.g., rules:

allow tcp from 128.16.1.20 not to
128.16/16 dst-port 25

deny tcp from 128.16/16 not to
128.16/16 dst-port 25

23

Firewall Example:
Block All Inbound Traffic by Default

Little control over what software users run on
desktops (including servers) at most sites

May wish to avoid remote exploits of any
software run on users’ desktops

Policy:

— disallow all inbound TCP connections but those to

known legitimate servers (e.g., one public web
server, one mail server)

— allow all outbound TCP connections

Implementation:

— Stateless way: drop all inbound TCP packets with SYN
flag set, but not ACK flag

24

Stateful Firewalling

e Stateful way to implement “outbound TCP only”:

— Firewall stores state for every active TCP connection
(src IP, src port, dst IP, dst port)

— Only forwards “legal” packets for current state

e e.g., if connection unknown, only allow outbound packets
with SYN flag set, but not ACK flag

e e.g., if connection known, only allow inbound packets with
data after SYN/ACK seen

— Time out connection state for long-idle connections

e Also used to block inbound UDP only

— No standard SYN, ACK fields in UDP to support
stateless filtering

e Risk: state memory exhaustion on firewall

25

Firewalling Complex Protocols

Consider FTP

Client connects to server, instructs server to
open TCP connection back to client on specified
client-side port

Client’s firewall won't allow inbound connection!

One solution: application-level proxy

— Client’s firewall starts FTP application-level proxy
upon detecting FTP session

— Proxy on firewall acts as client for TCP connections
with remote server, server for TCP connections with
local client

— gan) enforce policy for many protocols (SMTP, HTTP,
C.

— But not used for encrypted protocols (SSL, SSH, &c.),.

Bro: Intrusion Detection System

e Goals:
— detect remote attacks on local network

— detect what attackers have done after
breaking into local machines

e Remote attacks:
— Buffer overflows on servers

— Password guessing
— &C.

27

Bro Model

e Bro runs on UNIX machine connected between
firewall and outside world (i.e., on DMZ)

e Monitors all traffic in and out

e Analyzes packets to detect likely intruders

— e.g., reassemble TCP flows, search for regular
expressions in reassembled data

— Policies: rules to match against traffic, supplied by
administrator

e Reacts to threats
— Alert administrator
— Log traffic for later analysis after detecting attack
— Dynamically block traffic from offending source IPs

28

Bro’s Goals

e Process traffic in real-time for high-speed
links; can’t miss packets or may miss
attacks

e Real-time alerts
e Separate mechanism from policy

— Language for expressing patterns to search
for in traffic

o Extensibility
e Resilience to attack

29

Bro Architecture

!
! Policy script

i
4

Real-time notification
Record to disk

Policy Script Interpreter

|
i Event control T Event stream
?

Event Engine

Tcpdump ﬂIterT Filtered packet stream

 ——

libpcap

Packet stream

30

Bro Architecture

T
i Policy seript | 2 ecord to disk

|
l Real-time notification
%

Policy Script Interpreter

|
i Event control T Event stream
?

Event Engine

[
| Tepdump ﬁlterT Filtered packet stream
§

libpcap

Packet stream

[Where do policy scripts come from?

