
Link State Routing

Brad Karp
UCL Computer Science

CS 3035/GZ01
3rd December 2013

2

Outline

•  Link State Approach to Routing
•  Finding Links: Hello Protocol
•  Building a Map: Flooding Protocol
•  Healing after Partitions: Bringing up

Adjacencies
•  Finding Routes: Dijkstra’s Shortest-Path-

First Algorithm
•  Properties of Link State Routing

3

Link State Approach to Routing

•  Finding shortest paths in graph is classic
theory problem

•  Classic centralized single-source shortest
paths algorithm: Dijkstra’s Algorithm
–  requires map of entire network

•  Link State Routing:
– push a copy of whole network map to every

router
– each router learns link state database
– each router runs Dijkstra’s algorithm locally

4

Finding Links: Hello Protocol

•  Each router configured to know its interfaces
•  On each interface, every period P transmit a

hello packet containing
–  sender’s ID
–  list of neighbors from which sender has heard hello

during period D
–  D > P (e.g., D = 3P)

•  Link becomes up if have received hello
containing own ID on it in last period D

•  Link becomes down if no such hello received in
last period D

•  Screens out unidirectional links

5

Building a Map: Flooding Protocol
•  Whenever node becomes up or becomes down, flood

announcement to whole network
–  two link endpoint addresses
–  metric for link (configured by administrator)
–  sequence number

•  Sequence number stored in link state database;
incremented on every changed announcement
–  prevents old link states from overwriting new ones

6

Building a Map: Flooding Protocol
•  Whenever node becomes up or becomes down, flood

announcement to whole network
–  two link endpoint addresses
–  metric for link (configured by administrator)
–  sequence number

•  Sequence number stored in link state database;
incremented on every changed announcement
–  prevents old link states from overwriting new ones

•  Upon receiving new link state message on interface i:
 if link not in database, add it, flood elsewhere
 if link in database, and seqno in message higher than
one in database, write into database, flood elsewhere
 if link in database and seqno in message lower than one
in database, send link state from database on interface i

7

Outline

•  Link State Approach to Routing
•  Finding Links: Hello Protocol
•  Building a Map: Flooding Protocol
•  Healing after Partitions: Bringing up

Adjacencies
•  Finding Routes: Dijkstra’s Shortest-Path-

First Algorithm
•  Properties of Link State Routing

8

Healing Network Partitions

•  Recall example from Distance Vector routing
where network partitions

•  Consider flooding behavior when partitions heal

A B
C

D E

1

1

0

1

0
1
2

2

0
1

1

1
1

1
1

0

0

9

Healing Network Partitions

•  Recall example from Distance Vector routing
where network partitions

•  Consider flooding behavior when partitions heal

A B
C

D E

1

1

0

1

0
1
2

2

0
1 1

1

1
1

0

0

10

Healing Network Partitions

•  Recall example from Distance Vector routing
where network partitions

•  Consider flooding behavior when partitions heal

A B
C

D E

1

1

0

1

0
1
2

2

0
1 1

1
1

0

0

11

Healing Network Partitions

•  Recall example from Distance Vector routing
where network partitions

•  Consider flooding behavior when partitions heal

A B
C

D E

1

1

0

1

0
1
2

2

0
1

1

1
1

1
0

0

12

Healing Network Partitions (II)
•  D detects link (D, E), floods link state to A
•  A and D may still think link (C, E) exists!
•  If first time link (D, E) comes up, how will A learn about

links (B, E), (B, C)?
•  Flooding to report changes only in neighboring links not

always sufficient!
•  Bringing up adjacencies:

–  when link comes up, routers at ends exchange short summaries
(link endpoints, sequence numbers) of their whole databases

–  routers then request missing or newer entries from one another
–  saves bandwidth; real LS database entries contain more than

link endpoints, seqnos

A B
C

D E

1

1

0

1

0
1
2

2

0
1

1

1
1

1
0

0

13

Outline

•  Link State Approach to Routing
•  Finding Links: Hello Protocol
•  Building a Map: Flooding Protocol
•  Healing after Partitions: Bringing up

Adjacencies
•  Finding Routes: Dijkstra’s Shortest-Path-

First Algorithm
•  Properties of Link State Routing

14

Link State Database à Routing Table

•  After flooding each router holds map of
entire network graph in memory

•  Need to transform network map into
routing table

•  How: single-source shortest paths
algorithm

•  Router views itself as source s, all other
routers as destinations

15

Shortest Paths: Definitions

•  Each router is a vertex, v ∈ V
•  Each link is an edge, e ∈ E, also written (u, v)
•  Each link metric an edge weight, w(u, v)
•  Series of edges is a path, whose cost is sum of

edges’ weights
•  Single-source shortest paths: seek path with

least cost from s to all other vertices
•  Data structures:

–  π[v] is predecessor of v: π[v] is vertex before v along
shortest path from s to v

–  d[v] is shortest path estimate: least cost found from s
to v so far

16

Shortest Paths: Definitions

•  Each router is a vertex, v ∈ V
•  Each link is an edge, e ∈ E, also written (u, v)
•  Each link metric an edge weight, w(u, v)
•  Series of edges is a path, whose cost is sum of

edges’ weights
•  Single-source shortest paths: seek path with

least cost from s to all other vertices
•  Data structures:

–  π[v] is predecessor of v: π[v] is vertex before v along
shortest path from s to v

–  d[v] is shortest path estimate: least cost found from s
to v so far

Assume all edge weights nonnegative
(Doesn’t make sense for a link to have negative
cost…)

17

Shortest Paths: Initialization

•  When we start, we know little:
– no estimate of cost of any path from s to any

other vertex
– no predecessor of v along shortest path from

s to any v
initialize-single-source(V, s)

for each vertex v ∈ V do
d[v] ß infinity
π[v] ß NULL

d[s] = 0

18

Shortest Paths Building Block:
Relaxation

•  Relaxation:
– Suppose we have current estimates d[u], d[v]

of shortest path cost from s to u and v
– Does it reduce cost of shortest path from s to

v to reach v via (u, v)?
relax(u, v, w)

if d[v] > d[u] + w(u, v) then
d[v] ß d[u] + w(u, v)
π[v] ß u

19

•  Suppose
–  d[u] = 5
–  d[v] = 9
–  w(u, v) = 2

•  relax(u, v, w) computes:
–  d[v] ?> d[u] + w(u, v)
–  9 ?> 5 + 2

•  Yes, so reaching v via (u, v) reduces path cost

–  d[v] = d[u] + w(u, v)
–  π[v] = u

Relaxation: Example

5 9

u v 2

20

•  Suppose
–  d[u] = 5
–  d[v] = 9
–  w(u, v) = 2

•  relax(u, v, w) computes:
–  d[v] ?> d[u] + w(u, v)
–  9 ?> 5 + 2

•  Yes, so reaching v via (u, v) reduces path cost

–  d[v] = d[u] + w(u, v)
–  π[v] = u

Relaxation: Example

5 9

u v

relax(u, v)

2

21

•  Suppose
–  d[u] = 5
–  d[v] = 9
–  w(u, v) = 2

•  relax(u, v, w) computes:
–  d[v] ?> d[u] + w(u, v)
–  9 ?> 5 + 2

•  Yes, so reaching v via (u, v) reduces path cost

–  d[v] = d[u] + w(u, v)
–  π[v] = u

Relaxation: Example

5 9

u v

relax(u, v)

5 7

u v

2

2

22

Dijkstra’s Algorithm: Overall Strategy

•  Maintain running estimates of costs of
shortest paths to all vertices (initially all
infinity)

•  Keep a set S of vertices that are
“finished”; shortest paths to these vertices
already found (initially empty)

•  Repeatedly pick the unfinished vertex v
with least shortest path cost estimate

•  Add v to set S
•  Relax all edges leaving v

23

Dijkstra’s Algorithm: Overall Strategy

•  Maintain running estimates of costs of
shortest paths to all vertices (initially all
infinity)

•  Keep a set S of vertices that are
“finished”; shortest paths to these vertices
already found (initially empty)

•  Repeatedly pick the unfinished vertex v
with least shortest path cost estimate

•  Add v to set S
•  Relax all edges leaving v

N.B. only correct for graphs where edge
weights nonnegative!

24

Dijkstra’s Algorithm: Pseudocode

Dijkstra(V, E, w, s)
initialize-single-source(V, s)
S ß ∅
Q ß V
while Q ≠ ∅ do

u ß extract-min(Q)
S ß S ∪ {u}
for each vertex v that neighbors u do

relax(u, v, w)

25

Dijkstra’s Algorithm: Pseudocode

Dijkstra(V, E, w, s)
initialize-single-source(V, s)
S ß ∅
Q ß V
while Q ≠ ∅ do

u ß extract-min(Q)
S ß S ∪ {u}
for each vertex v that neighbors u do

relax(u, v, w)

extract-min(Q): return
vertex v in Q with
minimal shortest-path
estimate d[v]

26

Dijkstra’s Algorithm: Example

•  s: source
•  d[i]: number inside of vertex i
•  π[b]: if (a, b) red, then π[b] = a
•  members of set S: blue-shaded vertices
•  members of priority queue Q: non-shaded

vertices

0

∞ ∞

∞ ∞

s

u v

y x

10
1

2 3

5
2

7
6 4

9
0

∞ 10

∞ 5

u v

y x

10
1

2 3

5
2

7
6 4

9
s

27

Dijkstra’s Algorithm Example (cont’d)

0

∞ 10

∞ 5

u v

y x

10
1

2 3

5
2

7
6 4

9
0

14 8

7 5

u v

y x

10
1

2 3

5
2

7
4

9

0

13 8

7 5

v

y x

10
1

2 3

5
2

7
4

9

6

6

u

0

9 8

7 5

v

y x

10
1

2 3

5
2

7
4

9
6

u

s

s

s

s

28

Dijkstra’s Algorithm Example (cont’d)

•  At termination, know shortest-path routes
from s to all other routers

•  Shortest-path tree, rooted at s

0

9 8

7 5

v

y x

10
1

2 3

5
2

7
4

9
6

u

0

9 8

7 5

v

y x

10
1

2 3

5
2

7
4

9
6

u

s s

29

Dijkstra’s Algorithm: Efficiency

•  Most networks are sparse graphs
–  far fewer edges than O(N2)

•  Implement Q with binary heap
–  for N items in heap, cost of extract-min() is O(log2 N)

•  Begin with |V| entries in Q, call extract-min() once for
each
–  Cost: O(Vlog2 V)

•  Total cost to insert |V| entries into Q: O(V)
•  Each call to relax() reduces d[] value for vertex in Q

–  Cost: O(log2 V)

•  At most |E| calls to relax()
•  Total cost: O((V + E) log2 V), or O(E log2 V) when all

vertices reachable from source

30

Outline

•  Link State Approach to Routing
•  Finding Links: Hello Protocol
•  Building a Map: Flooding Protocol
•  Healing after Partitions: Bringing up

Adjacencies
•  Finding Routes: Dijkstra’s Shortest-Path-

First Algorithm
•  Properties of Link State Routing

31

Link State Routing: Properties

•  At first glance, flooding status of all links seems costly
–  It is! Doesn’t scale to thousands of nodes without other tricks,

namely hierarchy (more when we discuss BGP)
–  Cost reasonable for networks of hundreds of routers

•  In practice, for intra-domain routing, LS has won, and
DV no longer used
–  LS: after flooding, no loops in routes, provided all nodes have

consistent link state databases
–  LS: flooding offers fast convergence after topology changes

•  LS more complex to implement than DV
–  Sequence numbers crucial to protect against stale

announcements
–  Bringing up adjacencies
–  Maintains both link state database and routing table

