Internetworking II: MPLS, Security, and Traffic Engineering

3035/GZ01 *Networked Systems*Kyle Jamieson

Department of Computer Science University College London

Last time: Internetworking

- IP interconnects many heterogeneous networks
 - The Internet is a datagram network
 - Each datagram has enough information to allow any switch to decide how to get it to its destination
 - IP is simple and responsible for Internet's success

- But, IP leaves certain questions unresolved:
- 1. What to do about the complexity of the longest-prefix match (LPM) for IP address lookup?
- 2. What about privacy?
- 3. What if we want more control over where traffic goes?

Today

Three topics that address IP's shortcomings:

1. MPLS

2. Virtual private networks

3. Traffic engineering in the Internet

Multiprotocol label switching (MPLS)

- Widely-used part of the Internet's architecture, but largely hidden from end-users
- MPLS is a virtual circuit (VC) network
 - Unlike IP, MPLS establishes one or more connections (circuits) before moving data from A to B
 - Unlike IP, switches keep connection state
 - Like IP, MPLS sends packets over the connection

Label-switched forwarding

- MPLS routers forward based on labels instead of IP address
 - Labels have a fixed length, unlike CIDR IP addresses
 - Labels have local scope, unlike IP addresses: they only have meaning within one MPLS router
- Where are the labels? Inserted between the link- and network-layer headers, so encapsulating the IP datagram:

Comparison: IP address-based forwarding

- R3 and R4 each have one connected network
- R1 and R2 have IP routing tables indicating which outgoing interface to use for each of the two networks

MPLS label-switched forwarding: Advertising labels

- Routers allocate, advertise a label for each routing table prefix
 - Can think of labels as indices into the allocating router's table

MPLS label-switched forwarding: Attaching labels

- On hearing advertisement, neighboring router stores the remote label in its table alongside the prefix it represents
- Routers attach the corresponding label to outgoing packets.

MPLS label-switched forwarding: Forming the virtual circuit

- "Threaded indices" of labels get built up over multiple hops
- MPLS forwarding rule: Replace an incoming packet's matching label with the corresponding remote label
- MPLS routers' label state forms a virtual circuit

Label edge routers accept IP packets

- R1 is a label edge router (LER), the first MPLS router at which a certain IP packet arrives
- R1 must perform a complete LPM IP lookup to apply label 15
- Thereafter, MPLS routers only look at labels, avoiding LPM

Today

Three topics that address IP's shortcomings:

1. MPLS

2. Virtual private networks

3. Traffic engineering in the Internet

Private networks

- Internet addresses are globally routable: can send an IP packet to any device with a public IP address
- Sometimes, we want to restrict connectivity among nodes in the network as a whole
 - Confidentiality
 - Immunity from attack (denial-of-service, et al.)
- Corporations, governments often lease private lines and use these to interconnect different sites

Virtual private networks (VPNs)

- Useful property: VC requires that a circuit be established before data can flow
- VPNs use VCs in the Internet to restrict communication
 - But, the Internet is a datagram network
 - So we need a way of creating a VC there

Corporation Y private network

IP tunnels

IP tunnels

- To set up the IP tunnel, encapsulate IP datagrams leaving virtual interface 0 in an IP datagram addressed to R2
- R2 drops encapsulated IP packets not signed by R1

Today

- Three techniques that address IP's shortcomings:
- 1. MPLS
- 2. Virtual private networks
- 3. Traffic engineering
 - MPLS explicit routing
 - IP anycast

IP's source routing option

Switch 1

Suppose we want to pick a **different route** for a packet than the one IP forwarding would choose

But source routing isn't widely used. Why?

- Limited number of hops can be specified
- Processed on "slow path" of most IP routers
- Sometimes want **different** paths for datagrams with the **same destination IP address**
 - To balance traffic load, e.g.

• IP source (often client) determines the packet's route

Explicit routing with MPLS

- Service provider's LER picks the route, not the IP source
- Suppose we want to load-balance R1 \rightarrow R7 and R2 \rightarrow R7 traffic
- Could IP routing handle this?

 Not here: IP routing only looks at destination, not source

 Flows from R1 and R2 both have destination R7
- **Solution:** Tag packets at R1, R2 with different MPLS labels Threaded indices then accomplish the desired routing

Today

- Three techniques that address IP's shortcomings:
- 1. MPLS
- 2. Virtual private networks
- 3. Traffic engineering in the Internet
 - MPLS explicit routing
 - IP anycast

Not unicast

• Unicast: a single IP host receives all traffic

Not IP multicast

 IP multicast: Many hosts receive all traffic to a number of hosts (a multicast group)

- Multiple hosts are configured to accept traffic on a single IP address
- Usually, just one host receives each datagram
 - Datagram can be dropped like any other (best effort)
 - Preferably only one node receives packet, but there are no absolute guarantees
- The host that receives a specific datagram is determined by the underlying Internet routing

Three nodes configured with anycast address (10.5.0.1)

 Paths to different destinations have equal cost metrics in A's routing table, so A picks just one next hop

 Sequential datagrams may be delivered to different anycast nodes

 Traffic from different immediately-preceding hops may follow separate paths

- Server receiving a packet is determined by unicast routing
- Sequential packets from a client to an anycast address may be delivered to different servers
- Best used for single request/response type protocols